
Towards Efficient Verification of
Population Protocols

Javier Esparza
Technical University of Munich

Joint work with
Michael Blondin, Stefan Jaax, and Philipp Meyer

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at
a Zen garden in the dark

• They must decide by
majority to attack or not
(“don’t attack” if tie)

• How can they conduct the
vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at
a Zen garden in the dark

• They must decide by
majority to attack or not
(“don’t attack” if tie)

• How can they conduct the
vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at
a Zen garden in the dark

• They must decide by
majority to attack or not
(“don’t attack” if tie)

• How can they conduct the
vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at
a Zen garden in the dark

• They must decide by
majority to attack or not
(“don’t attack” if tie)

• How can they conduct the
vote?

Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

• Initially all ninjas are Active, and their initial estimation is
their own vote

• Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

• Ninjas follow this protocol:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

• Initially all ninjas are Active, and their initial estimation is
their own vote

• Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

• Ninjas follow this protocol:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

• Initially all ninjas are Active, and their initial estimation is
their own vote

• Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

• Ninjas follow this protocol:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

• Initially all ninjas are Active, and their initial estimation is
their own vote

• Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

• Ninjas follow this protocol:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

• Initially all ninjas are Active, and their initial estimation is
their own vote

• Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

• Ninjas follow this protocol:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

(NP , YP) → (NP , NP) (to deal with ties)

Big Ninja’s three questions:

• What is a protocol?

• When is a protocol correct?

• How can I decide if a protocol is correct?

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

(NP , YP) → (NP , NP) (to deal with ties)

Big Ninja’s three questions:

• What is a protocol?

• When is a protocol correct?

• How can I decide if a protocol is correct?

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

(NP , YP) → (NP , NP) (to deal with ties)

Big Ninja’s three questions:

• What is a protocol?

• When is a protocol correct?

• How can I decide if a protocol is correct?

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA , NA) → (NP , NP) (opposite votes “cancel”)

(YA , NP) → (YA , YP) (active “survivors” tell

(NA , YP) → (NA , NP) outcome to passive Ninjas)

(NP , YP) → (NP , NP) (to deal with ties)

Big Ninja’s three questions:

• What is a protocol?

• When is a protocol correct?

• How can I decide if a protocol is correct?

Big Ninja’s first question: What is a protocol?

Population protocols: Theoretical model for distributed
computation proposed in 2004 by Yale group (Angluin, Fischer,
Aspnes ...)

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules (Chemical Reaction
Networks)

• people in social networks

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Syntax

PP-scheme: pair (Q,∆), where Q is a finite set of states, and ∆ is
a set of interactions of the form (q1, q2) 7→ (q3, q4).

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence C0 → C1 → C2 → · · · of steps.

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

Semantics

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (i1, . . . , ik) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (n1, n2, . . . , nk) if the
executions starting at the configuration with nj agents in state ij
reach consensus b with probability 1.

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

Presburger predicates: quantifier-free boolean combinations of

• Threshold predicates:
∑
i

αixi > c

• Modulo predicates:
∑
i

αixi mod m = c

To show that PPs compute all Presburger predicates:

• Give protocols for the threshold and remainder predicates.

• Show that computable predicates are closed under negation
and conjunction.

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

Presburger predicates: quantifier-free boolean combinations of

• Threshold predicates:
∑
i

αixi > c

• Modulo predicates:
∑
i

αixi mod m = c

To show that PPs compute all Presburger predicates:

• Give protocols for the threshold and remainder predicates.

• Show that computable predicates are closed under negation
and conjunction.

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

Presburger predicates: quantifier-free boolean combinations of

• Threshold predicates:
∑
i

αixi > c

• Modulo predicates:
∑
i

αixi mod m = c

To show that PPs compute all Presburger predicates:

• Give protocols for the threshold and remainder predicates.

• Show that computable predicates are closed under negation
and conjunction.

Big Ninja’s second question: When is a protocol correct?

A protocol is well specified if it computes some predicate:

• for every input (x1, . . . , xn), the executions reach the same
consensus (which depends on (x1, . . . , xn)) with probability
one.

A protocol is correct for a given predicate P if it is well specified
and computes P .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.

Big Ninja’s second question: When is a protocol correct?

A protocol is well specified if it computes some predicate:

• for every input (x1, . . . , xn), the executions reach the same
consensus (which depends on (x1, . . . , xn)) with probability
one.

A protocol is correct for a given predicate P if it is well specified
and computes P .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.

Big Ninja’s third question: How can I decide correctness?

Theorem [E., Ganty, Leroux, Majumdar ‘15]: The well-specification
and correctness problems can be reduced to the reachability
problem for Petri nets, and are thus decidable.

But . . .

Theorem: The reachability problem for Petri nets is polynomially
reducible to the well-specification problem.

The reachability problem for Petri nets is

• EXPSPACE-hard

• All known algorithms have non-primitive recursive complexity

Fighting complexity

Search for a subclass of the class WS of well-specified protocols
that

• has a membership problem of reasonable complexity,
• still can compute all Presburger predicates, and
• contains many of the protocols in the literature.

Fighting complexity II: The class WS 2

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Proposition: WS 2 protocols (well specified and silent) compute all
Presburger predicates.

Proposition : Petri net reachability is reducible to the membership
problem for WS 2.

Fighting complexity II: The class WS 2

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Proposition: WS 2 protocols (well specified and silent) compute all
Presburger predicates.

Proposition : Petri net reachability is reducible to the membership
problem for WS 2.

Fighting complexity II: The class WS 2

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Proposition: WS 2 protocols (well specified and silent) compute all
Presburger predicates.

Proposition : Petri net reachability is reducible to the membership
problem for WS 2.

Fighting complexity III: The class WS 3

WS 2: Well-sp. silent

Termination

For every reachable
configuration C there exists an
execution leading from C to a
terminal conf. C⊥

Consensus
All terminal configurations
reachable from a given initial
configuration form the same
consensus.

WS 3: Well-sp. strongly silent

Layered Termination

For every configuration C there
exists a layered execution
leading from C to a terminal
configuration C⊥

Strong Consensus

All terminal configurations
weakly reachable from a given
initial configuration form the
same consensus.

Fighting complexity III: The class WS 3

WS 2: Well-sp. silent

Termination

For every reachable
configuration C there exists an
execution leading from C to a
terminal conf. C⊥

Consensus
All terminal configurations
reachable from a given initial
configuration form the same
consensus.

WS 3: Well-sp. strongly silent

Layered Termination

For every configuration C there
exists a layered execution
leading from C to a terminal
configuration C⊥

Strong Consensus

All terminal configurations
weakly reachable from a given
initial configuration form the
same consensus.

Layered Termination

A protocol is layered if there is a partition of the set T of
transitions into layers T1, . . . Tn s.t. for every configuration C
(reachable or not):

• all executions from C containing only transitions of a single
layer are finite.

• if all transitions of Ti are disabled at C, then they cannot be
re-enabled by any sequence of transitions of Ti+1, . . . , Tn.

An execution is layered if it “respects the layers”, i.e., if it belongs
to T ∗1 T

∗
2 . . . T

∗
n .

Fact: For every configuration C (reachable or not) there exists a
layered execution leading from C to a terminal configuration C⊥.

Layered Termination

A protocol is layered if there is a partition of the set T of
transitions into layers T1, . . . Tn s.t. for every configuration C
(reachable or not):

• all executions from C containing only transitions of a single
layer are finite.

• if all transitions of Ti are disabled at C, then they cannot be
re-enabled by any sequence of transitions of Ti+1, . . . , Tn.

An execution is layered if it “respects the layers”, i.e., if it belongs
to T ∗1 T

∗
2 . . . T

∗
n .

Fact: For every configuration C (reachable or not) there exists a
layered execution leading from C to a terminal configuration C⊥.

Layered Termination

C0

C⊥
T ∗1 T ∗2 . . . T ∗n

T1

T2

· · ·
Tn

Layered Termination

C0

C⊥

T ∗1

T ∗2 . . . T ∗n

T1

T2

· · ·
Tn

Layered Termination

C0

C⊥

T ∗1 T ∗2

. . . T ∗n

T1

T2

· · ·
Tn

Layered Termination

C0

C⊥

T ∗1 T ∗2 . . .

T ∗n

T1

T2

· · ·
Tn

Layered Termination

C0 C⊥
T ∗1 T ∗2 . . . T ∗n

T1

T2

· · ·
Tn

Complexity of checking Layered Termination

Lemma: Deciding Layered Termination is in NP.

Proof sketch:

• Guess layers.

• Test that each individual layer terminates.
Reducible to a Linear Programming Problem.

• Test that lower layers cannot re-enable higher layers.
Simple syntactic check.

Complexity of checking Layered Termination

Lemma: Deciding Layered Termination is in NP.

Proof sketch:

• Guess layers.

• Test that each individual layer terminates.
Reducible to a Linear Programming Problem.

• Test that lower layers cannot re-enable higher layers.
Simple syntactic check.

Strong Consensus: The Liquid Approximation

Strong Consensus: The Liquid Approximation

Fluid agents in action

(A , B1) → (D , B2)

(A , C1) → (D , C2)

(B1 , B2) → (D , D)

(C1 , C2) → (D , D)

B1 A C1

B2 C2

D

2 2

Theorem (Fraca, Haddad ‘15): Liquid reachability is in NP (P).

Lemma: Deciding Strong Consensus is in co-NP.

Fluid agents in action

(A , B1) → (D , B2)

(A , C1) → (D , C2)

(B1 , B2) → (D , D)

(C1 , C2) → (D , D)

B1 A C1

B2 C2

D

2 2

Theorem (Fraca, Haddad ‘15): Liquid reachability is in NP (P).

Lemma: Deciding Strong Consensus is in co-NP.

Fluid agents in action

(A , B1) → (D , B2)

(A , C1) → (D , C2)

(B1 , B2) → (D , D)

(C1 , C2) → (D , D)

B1 A C1

B2 C2

D

2 2

Theorem (Fraca, Haddad ‘15): Liquid reachability is in NP (P).

Lemma: Deciding Strong Consensus is in co-NP.

Completeness

Lemma: All well-specified population protocols can be represented
by an equivalent population protocol satisfying Layered
Termination and Strong Consensus.

• Give WS 3 protocols for Threshold and Remainder predicates

• Prove that WS 3 protocols are closed under conjunction and
negation.

Fact: Protocols from the literature for Majority, Threshold,
Modulo, etc. belong to WS 3.

Completeness

Lemma: All well-specified population protocols can be represented
by an equivalent population protocol satisfying Layered
Termination and Strong Consensus.

• Give WS 3 protocols for Threshold and Remainder predicates

• Prove that WS 3 protocols are closed under conjunction and
negation.

Fact: Protocols from the literature for Majority, Threshold,
Modulo, etc. belong to WS 3.

Peregrine

• Peregrine: Haskell + SMT solver Z3

gitlab.lrz.de/i7/peregrine

• Peregrine reads a protocol and
constructs two sets of constraints:

I The first is satisfiable iff Layered
Termination holds.

I The second is unsatisfiable iff Strong
Consensus holds.

gitlab.lrz.de/i7/peregrine

Experimental Results

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate |Q| |T | Time[s]

Majority [1] x ≥ y 4 4 0.1
Approx. Majority [2] Not well-specified 3 4 0.1
Broadcast [3] x ≥ 1 2 1 0.1
Threshold [4] Σiαixi ≥ c 76 2148 2375.9
Modulo [5] Σiαixi mod 70 = 1 72 2555 3176.5
Flock of birds [6] x ≥ 50 51 1275 181.6
Flock of birds [7] x ≥ 325 326 649 3470.8
Prime flock of birds x ≥ 107 37 155 18.91
Poly-log flock of birds x ≥ 8 · 104 66 244 12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011

[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011

Conclusions

• The natural verification problems for population protocols are
decidable.

• Efficient verification algorithms for the class WS 3.

• Implementation on top of SMT-solvers.

• Many open questions:
I Complexity for immediate observation and immediate

transmission protocols.
I Correctness problem and convergence speed for WS 3

protocols.
I Minimal population protocols for given predicates.
I Fault localization and repair.
I Automatic synthesis of WS 3 protocols.
I Theoretical and practical power of the liquid abstraction.
I Expressive power of PPs in non-uniform computational models.
I Applications to theoretical chemistry and systems biology.

Conclusions

• The natural verification problems for population protocols are
decidable.

• Efficient verification algorithms for the class WS 3.

• Implementation on top of SMT-solvers.

• Many open questions:
I Complexity for immediate observation and immediate

transmission protocols.
I Correctness problem and convergence speed for WS 3

protocols.
I Minimal population protocols for given predicates.
I Fault localization and repair.
I Automatic synthesis of WS 3 protocols.
I Theoretical and practical power of the liquid abstraction.
I Expressive power of PPs in non-uniform computational models.
I Applications to theoretical chemistry and systems biology.

Thank You

