Towards Efficient Verification of
Population Protocols

Javier Esparza
Technical University of Munich

Joint work with
Michael Blondin, Stefan Jaax, and Philipp Meyer

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

e How can they conduct the
vote?

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

e Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

e Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

e Initially all ninjas are Active, and their initial estimation is
their own vote

Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when
they bump into each other

Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.
Initially all ninjas are Active, and their initial estimation is
their own vote

Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when
they bump into each other

Each ninja stores his current estimation of the final outcome
of the vote (Yes or No). Additionally, he is Active or Passive.

Initially all ninjas are Active, and their initial estimation is
their own vote

Goal: eventually all ninjas reach the same estimation, and this
estimation is the one corresponding to the majority vote

Ninjas follow this protocol:
(YA,NA) — (NP,NP) (opposite votes “cancel”)
(YA,NP) — (YA,YP) (active “survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)

Deaf Black Ninjas in the Dark

R Caéle~com
FOUTCALAZTTEONSG.CON , .-

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA,NA) — (NP,NP) (opposite votes “cancel”)
(YA,NP) — (YA,YP) (active “survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)
(NP,YP) — (NP,NP) (todeal with ties)

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA,NA) — (NP,NP) (opposite votes “cancel”)
(YA,NP) — (YA,YP) (active “survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)
(NP,YP) — (NP,NP) (todeal with ties)

Big Ninja's three questions:

e What is a protocol?

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA,NA) — (NP,NP) (opposite votes “cancel”)
(YA,NP) — (YA,YP) (active “survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)
(NP,YP) — (NP,NP) (todeal with ties)

Big Ninja's three questions:

e What is a protocol?
e When is a protocol correct?

Deaf Black Ninjas in the Dark: Corrected

The new Big Ninja added a rule in case there is a tie:

(YA,NA) — (NP,NP) (opposite votes “cancel”)
(YA,NP) — (YA,YP) (active “survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)
(NP,YP) — (NP,NP) (todeal with ties)

Big Ninja's three questions:

e What is a protocol?
e When is a protocol correct?
e How can | decide if a protocol is correct?

Big Ninja's first question: What is a protocol?

Population protocols: Theoretical model for distributed
computation proposed in 2004 by Yale group (Angluin, Fischer,
Aspnes ...)

Designed to model collections of
identical, finite-state, and mobile agents

like

ad-hoc networks of mobile sensors

e “soups’ of interacting molecules (Chemical Reaction
Networks)

people in social networks

PP-scheme: pair (Q,A), where Q) is a finite set of states, and A is
a set of interactions of the form (q1,q2) — (g3, q4).

Syntax

PP-scheme: pair (Q,A), where @ is a finite set of states, and A is
a set of interactions of the form (q1,¢2) — (g3, q4).

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in q.

q1 q2 q3 44

ONORORO

Syntax

PP-scheme: pair (Q,A), where @ is a finite set of states, and A is
a set of interactions of the form (q1,¢2) — (g3, q4).

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in q.

ONORORO

(g1, 42) > (g3, qu)

Syntax

PP-scheme: pair (Q,A), where @ is a finite set of states, and A is
a set of interactions of the form (q1,¢2) — (g3, q4).

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in q.

ONORORORLNOROROR0

(q1,42) ¥ (g3, qu)

Syntax

PP-scheme: pair (Q,A), where @ is a finite set of states, and A is
a set of interactions of the form (q1,¢2) — (g3, q4).

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in q.

ONOROROERNONORORO
(q1,42) ¥ (g3, qu)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Syntax

PP-scheme: pair (Q,A), where @ is a finite set of states, and A is
a set of interactions of the form (q1,¢2) — (g3, q4).

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in q.

ONOROROERNONORORO
(q1,42) ¥ (g3, qu)

If several steps are possible, a random scheduler chooses one
uniformly at random.

Execution: infinite sequence Cy — C7 — Co — - -+ of steps.

A population protocol (PP) consists of
e A PP-scheme (Q,A)

A population protocol (PP) consists of
e A PP-scheme (Q,A)

o An ordered subset (i, ..., i) of input states

Semantics

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (i1, ...,) of input states

e A partition of () into 1-states (green) and O-states (pink)

Semantics

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (i1, ...,) of input states

e A partition of () into 1-states (green) and O-states (pink)

An execution reaches consensus b € {0, 1} if from some point on
every agent stays within the b-states.

Semantics

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (i1, ...,) of input states

e A partition of () into 1-states (green) and O-states (pink)

An execution reaches consensus b € {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (ni,ne,...,nk) if the
executions starting at the configuration with n; agents in state i;
reach consensus b with probability 1.

Semantics

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (i1, ...,) of input states

e A partition of () into 1-states (green) and O-states (pink)

An execution reaches consensus b € {0, 1} if from some point on
every agent stays within the b-states.

A PP computes the value b for input (ni,ne,...,nk) if the
executions starting at the configuration with n; agents in state i;
reach consensus b with probability 1.

A PP computes P(x1,...,x,): N — {0, 1} if it computes
P(ny,...,ny) for every input (ny,...,ng)

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

Presburger predicates: quantifier-free boolean combinations of

e Threshold predicates: Zaixi >c

2

e Modulo predicates: Zaixi mod m = ¢

(2

What predicates can PPs compute?

Theorem (Angluin et al. 2007): PPs compute exactly the
Presburger predicates.

Presburger predicates: quantifier-free boolean combinations of

e Threshold predicates: Zaixi >c

2

e Modulo predicates: Zaixi mod m = ¢

(2

To show that PPs compute all Presburger predicates:

e Give protocols for the threshold and remainder predicates.

e Show that computable predicates are closed under negation
and conjunction.

Big Ninja's second question: When is a protocol correct?

A protocol is well specified if it computes some predicate:

e for every input (z1,...,x,), the executions reach the same
consensus (which depends on (x1,...,x,)) with probability
one.

A protocol is correct for a given predicate P if it is well specified
and computes P.

Big Ninja's second question: When is a protocol correct?

A protocol is well specified if it computes some predicate:

e for every input (z1,...,x,), the executions reach the same
consensus (which depends on (x1,...,x,)) with probability
one.

A protocol is correct for a given predicate P if it is well specified
and computes P.

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.

Big Ninja's third question: How can | decide correctness?

Theorem [E., Ganty, Leroux, Majumdar ‘15]: The well-specification
and correctness problems can be reduced to the reachability
problem for Petri nets, and are thus decidable.

But ...

Theorem: The reachability problem for Petri nets is polynomially
reducible to the well-specification problem.

The reachability problem for Petri nets is

e EXPSPACE-hard

e All known algorithms have non-primitive recursive complexity

Fighting complexity

Search for a subclass of the class WS of well-specified protocols
that

e has a membership problem of reasonable complexity,
e still can compute all Presburger predicates, and
e contains many of the protocols in the literature.

Fighting complexity 1I: The class WS?

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Fighting complexity 1I: The class WS?

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Proposition: WS? protocols (well specified and silent) compute all
Presburger predicates.

Fighting complexity 1I: The class WS?

Many protocols from the literature are silent: Executions end w.p.1
in terminal configurations that enable no transitions.

Proposition: WS? protocols (well specified and silent) compute all
Presburger predicates.

Proposition : Petri net reachability is reducible to the membership
problem for WS2.

Fighting complexity 1ll: The class WS?

WS?2: Well-sp. silent

Termination

For every reachable
configuration C' there exists an
execution leading from C' to a
terminal conf. C|

Consensus

All terminal configurations
reachable from a given initial
configuration form the same
consensus.

Fighting complexity 1ll: The class WS?

WS?2: Well-sp. silent

Termination

For every reachable
configuration C' there exists an
execution leading from C' to a
terminal conf. C|

Consensus

All terminal configurations
reachable from a given initial
configuration form the same
consensus.

WS3: Well-sp. strongly silent

Layered Termination

For every configuration C' there
exists a layered execution
leading from C' to a terminal
configuration C'|

Strong Consensus

All terminal configurations
weakly reachable from a given
initial configuration form the
same consensus.

Layered Termination

A protocol is layered if there is a partition of the set T of
transitions into layers 17, ... T, s.t. for every configuration C'
(reachable or not):

e all executions from C containing only transitions of a single
layer are finite.

e if all transitions of T} are disabled at C', then they cannot be
re-enabled by any sequence of transitions of T;1,...,T,.

An execution is layered if it “respects the layers”, i.e., if it belongs
to IVT5 ... T,

Layered Termination

A protocol is layered if there is a partition of the set T of
transitions into layers 17, ... T, s.t. for every configuration C'
(reachable or not):

e all executions from C containing only transitions of a single
layer are finite.

e if all transitions of T} are disabled at C', then they cannot be
re-enabled by any sequence of transitions of T;1,...,T,.

An execution is layered if it “respects the layers”, i.e., if it belongs
to IVT5 ... T,

Fact: For every configuration C' (reachable or not) there exists a
layered execution leading from C' to a terminal configuration C .

Layered Termination

Layered Termination

T

Layered Termination

T 13

Th

T

Layered Termination

Ty
T

Layered Termination

13

Complexity of checking Layered Termination

Lemma: Deciding Layered Termination is in NP.

Complexity of checking Layered Termination

Lemma: Deciding Layered Termination is in NP.

Proof sketch:

e Guess layers.

e Test that each individual layer terminates.
Reducible to a Linear Programming Problem.

e Test that lower layers cannot re-enable higher layers.
Simple syntactic check.

Strong Consensus: The Liquid Approximation

; THE
“BUBBLER

Strong Consensus: The Liquid Approximation

HANMNA- BI\RHE

‘Hi(,{i\”w ? Jﬁ l—

\ PR
R
9

¢ THE
“BUBBLER

Fluid agents in action

(D, By)

_)

(A, By)

(Bl) Bg) — (D , D)
(D, D)

, C2) —

(Cy

Fluid agents in action

By A Ch
(A, B)) — (D, Bs)
(A, C1) — (D,) By Cs
(B1,B2) — (D,D) Q Q
(C1,C2) — (D,D) EK

Theorem (Fraca, Haddad '15): Liquid reachability is in NP (P).

Fluid agents in action

By A Ch
(A, B)) — (D, Bs)
(A, C1) — (D,) By Cs
(B1,B2) — (D,D) Q Q
(C1,C2) — (D,D) EK

2 2
D
Theorem (Fraca, Haddad '15): Liquid reachability is in NP (P).

Lemma: Deciding Strong Consensus is in co-NP.

Completeness

Lemma: All well-specified population protocols can be represented
by an equivalent population protocol satisfying Layered
Termination and Strong Consensus.

e Give WS? protocols for Threshold and Remainder predicates

e Prove that WS? protocols are closed under conjunction and
negation.

Completeness

Lemma: All well-specified population protocols can be represented
by an equivalent population protocol satisfying Layered
Termination and Strong Consensus.

e Give WS? protocols for Threshold and Remainder predicates

e Prove that WS? protocols are closed under conjunction and
negation.

Fact: Protocols from the literature for Majority, Threshold,
Modulo, etc. belong to WS3.

Peregrine

e Peregrine: Haskell + SMT solver Z3
gitlab.lrz.de/i7/peregrine

e Peregrine reads a protocol and
constructs two sets of constraints:
» The first is satisfiable iff Layered
Termination holds.
» The second is unsatisfiable iff Strong
Consensus holds.

gitlab.lrz.de/i7/peregrine

Experimental Results

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate Q| |T| Time[s]
Majority [1] x>y 4 4 0.1
Approx. Majority [2] Not well-specified 3 4 0.1
Broadcast [3] x>1 2 1 0.1
Threshold [4] Yiqx; > ¢ 76 2148 23759
Modulo [5] Yio;x; mod 70 =1 72 2555 3176.5
Flock of birds [6] x > 50 51 1275 181.6
Flock of birds [7] x > 325 326 649 3470.8
Prime flock of birds x> 107 37 155 18.91
Poly-log flock of birds z > 8- 10* 66 244 12.79

[1] Draief et al., 2012

[2] Angluin et al., 2007 [3] Clément et al., 2011

[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011

Conclusions

e The natural verification problems for population protocols are
decidable.

o Efficient verification algorithms for the class WS3.

e Implementation on top of SMT-solvers.

Conclusions

The natural verification problems for population protocols are
decidable.

Efficient verification algorithms for the class WS3.

Implementation on top of SMT-solvers.
Many open questions:

» Complexity for immediate observation and immediate

transmission protocols.

» Correctness problem and convergence speed for WS>
protocols.
Minimal population protocols for given predicates.
Fault localization and repair.
Automatic synthesis of WS? protocols.
Theoretical and practical power of the liquid abstraction.
Expressive power of PPs in non-uniform computational models.
Applications to theoretical chemistry and systems biology.

vV vy vy VY VvYYy

3333

Thank You

