
Revisiting partial-order reduction

Joint work with
Frédéric Herbreteau
Sarah Larroze-Jardine

Whatis POR

Cr SW Ce Sa
at at bit at

" "

and dai bat anti
ar un

as 16, as they use disjoint- 10 -3

↳1, ↓ 160 sets of processese. - -

: ↓
-jonbri I · X -
an

POR Literature

Where POR isuseful

Model-checking programs (especially stateless model-checking)

Proving correctness of concurrentprograms

Symbolic execution

Verification of timed systems

Probabilisticsystems

How POR works

C1 S2· Client/server programs
atasso6720 da

·(2
· Programs withoutcycles:initial andfinal state, complete ran

· Trace equivalence:permutingindependentactions

acbecab ac6 + abc

a c U

↳ ↓
C

How POR works

C1· Client/server programs
atasio o?. Ie

· Programs withoutcycles:initial andfinal state, complete ran

· Trace equivalence:permutingindependentactions as ca

·Goal:sound and complete transition system for a program
4 A

every complete every complete run is

path is a complete rub -meequivalentto come completepath

How POR works

C1· Client/server programs
atasio o?. Ie

· Programs withoutcycles:initial andfinal state, complete ran

· Trace equivalence:permutingindependentactions as ca

small

2
·Goal:sound and complete transition system for a program

Source(s) =(9,6)
· Source setfor every node -

Optimal on-the-fly POR

Constructs a tree ofruns: every path isa complete ran, no two paths are trace equin

every runofthe program is trace equito come path

essources
&

Look for some patterns inside

eventually add some actions to source(s)

Race reversal
I

isofDee i
it

2a
al ↓
le

↓
e

Optimal on-the-fly POR

Constructs a tree ofruns: every path isa complete ran, no two paths are trace equin

every runofthe program is trace equito come path

Race reversal

S C

~ e eete

t ↓
↓
E

- i For such a situation

add 6 to source(s)

Optimal on-the-fly POR

· For optimalityneeded to keep free traces (1), and
not be source (s)

Fre

exponential memory
· Works only for non-blocking systems S

~
·Improved to poly-memory -s ↓

·

Blocking considered only very recently

· Lexicographic exploration isoptimal too.

How bad can optimal stateles get?

it Y
%I it an k 21 am
al :

al ! I
For a processes t

a repeated

-or *Free> (n-1)! times
n! paths n1 paths

Statefull POR

· Still based on persistent/ample sets -sleep sets

· Sensitive to exploration order

·X..."
small graph: ... th

abd atdn big graph:and
It

00 e

↓
-

24

Both are optimal:every trace
appears atmostonce

Stateless would produce the big graph

Good POR algorithm is imposible

minTS/P):the smallestnumber of states of a sound and complete isfor P

Aly is god ifgiven P constructs a sound and complete isfor P

of size <g(minTS(P)) time < r(/P1+minTs(P))

THM: If OFND then there isno good POR algorithm.

THM: If OFNP Then there isno good POR algorithm.

For a Boolean formula constructPu s.t

If a notSATThen minTS(Pe) =61e

If 2 SAT then mints(Pu)> A valuationssatisfying &

Proof:Take 2 =4n (2,v22)1.. a(zen-v2em)

If 4 SATthen i has a 2m satisfying valuations

Run Aly(Pe) for r161e)) time.

Ifitstops 4 isnotSAT

If itdoes notstop. 4 isSAT

Ce Is Se. C*

·I I
isal e +I I

:

x,48

:

E,4] agen
En

- in? En :(1)
On in C.n ·

x48 48]
16

u
=(vcrc)n...(vcrc)

a. isX, or En for some I

If i notSATthen we have -,......e

If e SATthen there are inns with ainstead of e.

What do we have?

Stateful POR algorithms thathandle blocking
butare notgood:)

We cannot determine if a transition system will be small or large by simply looking at the program.
This means that there is no nice syntax for parallelism avoiding state explosion
(without limiting the kinds of models we can write in an important way).

CONCLUSIONS

We are interested in stateful POR methods

Finding subclasses for which good POR algorithms exist: acyclic architectures
Finding heuristics working in practice (based on reversals)

Impossibility results:

Show that optimal stateless POR with blocking is impossible

