
Failure Trace Semantics

for a Process Algebra with Time-Outs

Rob van Glabbeek

University of Edinburgh

CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

September 2023

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

hidden action τ — unobservable and instantaneous

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

hidden action τ — unobservable and instantaneous

time-out action t — unobservable and instantaneous

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

hidden action τ — unobservable and instantaneous

novelty: time-out action t — unobservable and instantaneous

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

hidden action τ — unobservable and instantaneous

novelty: time-out action t — unobservable and instantaneous
models the end of a time-consuming activity from which we abstract.

Context

Classic process algebra

Classic semantics in terms of labelled transition systems

No probabilities, no quantified time, no name binding, no nothing

uninterpreted visible actions a, b, c — instantaneous

hidden action τ — unobservable and instantaneous

novelty: time-out action t — unobservable and instantaneous
models the end of a time-consuming activity from which we abstract.

Goal: find the coarsest reasonable semantics for LTSs with t.

The passage of time in labelled transition systems

The passage of time in labelled transition systems

s
τ

goal state

The passage of time in labelled transition systems

s
τ

goal state

I want to assume that one reaches this goal state.
(This assumption is called progress in [GH19].)
Without this assumption, no useful liveness properties can be
established.

The passage of time in labelled transition systems

s
τ

goal state

I want to assume that one reaches this goal state.
(This assumption is called progress in [GH19].)
Without this assumption, no useful liveness properties can be
established.

If we allow to system to idle a finite amount of time in state s, and
during this time nothing happens at all, by what mechanism will
the system ever continue?

The passage of time in labelled transition systems

s
τ

goal state

I want to assume that one reaches this goal state.
(This assumption is called progress in [GH19].)
Without this assumption, no useful liveness properties can be
established.

If we allow to system to idle a finite amount of time in state s, and
during this time nothing happens at all, by what mechanism will
the system ever continue?

Within state s we await the completion of a task from with we abstract.

The passage of time in labelled transition systems

s
τ

goal state

I want to assume that one reaches this goal state.
(This assumption is called progress in [GH19].)
Without this assumption, no useful liveness properties can be
established.

If we allow to system to idle a finite amount of time in state s, and
during this time nothing happens at all, by what mechanism will
the system ever continue?

Within state s we await the completion of a task from with we abstract.

s1 s2
t τ

goal state

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

τ
a b

c

t

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

τ
a b

c

t

X
X

User blocks a and c :
System makes
nondeterministic choice
between τ and b.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

τ
a b

c

t

X
X

User blocks a and c :
System makes
nondeterministic choice
between τ and b.
Will not choose t.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

τ
a b

c

t

X
X

User blocks a and c :
System makes
nondeterministic choice
between τ and b.
Will not choose t.

No time spend in state s.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

System chooses a, b or c .

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X
XX

User blocks a, b, and c :

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X
XX

User blocks a, b, and c :
System stays in state s.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X
XX

User blocks a, b, and c :
System stays in state s.
User may change mind.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X

User blocks a, b, and c :
System stays in state s.
User may change mind.

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X

User blocks a, b, and c :
System stays in state s.
User may change mind.
System chooses a or c .

The environment

a

·
b

·
c

· · · ·

z

·
a

Right blocks

The system

s

a b
c

t

X
XX

User blocks a, b, and c :
System stays in state s.
User may change mind.

Or time-out occurs first
and system takes t.

More expressiveness

s

a b

t

c d

We can now express priorities.

More expressiveness

s

a b

t

c d

We can now express priorities.

It has been shown [GH15] that mutual exclusion cannot be
adequately expressed in CCS-like languages. We need to
(a) extend the language, e.g. with “signals”, and
(b) adopt “justness”, a very weak fairness assumption

(weaker than “weak fairness”).

(Bouwman et al. show that (a) and (b) can be combined into one assumption.)

More expressiveness

s

a b

t

c d

We can now express priorities.

It has been shown [GH15] that mutual exclusion cannot be
adequately expressed in CCS-like languages. We need to
(a) extend the language, e.g. with “signals”, and
(b) adopt “justness”, a very weak fairness assumption

(weaker than “weak fairness”).

(Bouwman et al. show that (a) and (b) can be combined into one assumption.)

In the presence of time-out transitions mutual exclusion can be
correctly expressed in CCS, even without assuming justness.

The environment

a

·
b

· · · ·

z

·
a

Environment ‖A System

a τ

t

a τ

e

b

f

d

‖A

s

a b

t

c
d

The environment

a

·
b

· · · ·

z

·
a

Environment ‖A System

a τ

t

a τ

e

b

f

d

X = {a}

‖A

s

a b

t

c
d

The environment

a

·
b

· · · ·

z

·
a

Environment ‖A System

a τ

t

a τ

e

b

f

d

X = {a} X = {a, b}

‖A

s

a b

t

c
d

The environment

a

·
b

· · · ·

z

·
a

Environment ‖A System

a τ

t

a τ

e

b

f

d

X = {a} X = {a, b}

X = {d , e, f }
‖A

s

a b

t

c
d

The process algebra CCSPt

E ::= 0 | α.E | E + E | E ‖S E | τI (E) | R(E) |
x | /

\x |S
\
/ (with x ∈ VS)

with α ∈ Act := A ⊎ {τ, t}, S , I ⊆ A, R⊆ A×A, x ∈ Var and S a
recursive specification:
a set of equations {y = Sy | y ∈ VS} with VS ⊆ Var (the bound

variables of S) and each Sy a CCSPt expression.

α.x
α−→ x

x
α−→ x ′

x + y
α−→ x ′

y
α−→ y ′

x + y
α−→ y ′

x
α−→ x ′

R(x) β−→ R(x ′)

(

α=β=τ
∨ α=β=t

∨ (α,β)∈R

)

x
α−→ x ′

x ‖
S
y

α−→ x ′ ‖
S
y

(α 6∈ S)
x

a−→ x ′ y
a−→ y ′

x ‖
S
y

a−→ x ′ ‖
S
y ′

(a ∈ S)
y

α−→ y ′

x ‖
S
y

α−→ x ‖
S
y ′

(α 6∈ S)

x
α−→ x ′

τI (x)
α−→ τI (x ′)

(α 6∈ I)
x

a−→ x ′

τI (x)
τ−→ τI (x ′)

(a ∈ I)
/
\SX |S

\
/

α−→ y

/
\X |S\

/
α−→ y

Three crucial laws

τ.P + t.Q = τ.P

Three crucial laws

τ.P + t.Q = τ.P

t.(τ.τ{b}(P)+b.Q)‖{b}t.(τ.τ{b}(S)+b.T) = t.τ.τ{b}(P)‖{b}t.τ.τ{b}(S)

t

τ

τ{b}(P)

b

Q

t

τ

τ{b}(S)

b

T

Three crucial laws

τ.P + t.Q = τ.P

t.(τ.τ{b}(P)+b.Q)‖{b}t.(τ.τ{b}(S)+b.T) = t.τ.τ{b}(P)‖{b}t.τ.τ{b}(S)

t

τ

τ{b}(P)

b

Q

t

τ

τ{b}(S)

b

T

a.P + t.(Q + τ.R + a.S) = a.P + t.(Q + τ.R)

The linear time – branching time spectrum

T ∗

F ∗

R∗FT ∗

RT ∗

RS∗

FS∗

S∗

PF ∗

T∞

F∞

R∞FT∞

RT∞

RS

2S

B

S

PF∞

RSω

2Sω

Bω

Sω

Trace and failures equivalence fail to be a congruence

a a

c cb f

d e

a.(b + c .d) + a.(f + c .e)

=F

6=FT

=R

6=RT

aa

cc fb

de

a.(b + c .e) + a.(f + c .d)

Trace and failures equivalence fail to be a congruence

a a

c cb f

d e

a.(b + c .d) + a.(f + c .e)

=F

6=FT

=R

6=RT

aa

cc fb

de

a.(b + c .e) + a.(f + c .d)

Use the context C[] := τ{a,b,c}(a.(b + t.c) ‖{a,b,c,f }).

This context implements a priority of b over c .

Only the RHS can ever reach d .

Simulation equivalence fails to be a congruence

Take P := a.b + a and Q = a.b, and use the context
C[] := τ{a,b}(a.(b + t.d) ‖{a,b}).

Then only C[P] can ever perform the action d .

Operational def. of failure trace semantics

Each execution of a system generates a failure trace, such as

a b X c Y d e Z W⊤

a sequence of actions a ∈ A and sets of refused actions X ⊆ A.
It is the observation of a sequence of instantaneous actions
a b c d e interspersed with periods of idling. Each period of idling is
denoted by the set X ⊆ A of actions that are offered by the
environment during this period. The sequence ends with ⊤, the
act of the observer of ending the observation.

⊤ ∈ FT∗(x)
x

a−→ y ρ ∈ FT∗(y)

aρ ∈ FT∗(x)

x
τ−→ y ρ ∈ FT∗(y)

ρ ∈ FT∗(x)

x
α−6→ for all α∈X ∪{τ}

ρ ∈ FT∗(x)

Xρ ∈ FT∗(x)

x
α−6→ for all α∈X ∪{τ}

x
t−→ y Xρ ∈ FT∗(y)

Xρ ∈ FT∗(x)

x
α−6→ for all α∈X ∪{τ}

x
t−→ y aρ ∈ FT∗(y)

Xaρ ∈ FT∗(x)
(a∈X)

Congruence

Systems P ,Q are failure trace equivalent, P ≡∗
FT Q, if FT ∗(P) = FT ∗(Q

Theorem: ≡∗
FT is a congruence for the operators of CCSPt, except +.

A rooted version of ≡∗
FT is a congruence for all of CCSPt.

Congruence

Systems P ,Q are failure trace equivalent, P ≡∗
FT Q, if FT ∗(P) = FT ∗(Q

Theorem: ≡∗
FT is a congruence for the operators of CCSPt, except +.

A rooted version of ≡∗
FT is a congruence for all of CCSPt.

Write P ⊑∗
FT Q iff FT ∗(P) ⊇ FT ∗(Q).

The coarsest preorder respecting safety properties

Assume that the alphabet A of visible actions contains one specific
action b, whose occurrence is bad.
The canonical safety property says that b will never happen.

A process P satisfies this property, notation P |= safety(b), if no
partial failure trace of P contains the action b.

A preorder ⊑ respects the canonical safety property if P ⊑ Q and
P |= safety(b) implies Q |= safety(b).

Theorem: ⊑∗
FT is the coarsest preorder that respects the

canonical safety property.

In other words, if P 6⊑∗
FT Q, then there is a context C[] such that

C[P] |= safety(b), yet C[Q] 6|= safety(b).

May testing

Let ω /∈ A be a special action, that does not occur in ordinary
processes, but may be used in testing contexts C[].
Occurrence of ω denotes a successful test run.
We say that C[P] may succeed if it has a trace containing ω.

The may-testing preorder is defined by P ⊑may Q if

∀C[]. C[P] may succeed ⇒ C[Q] may succeed

Theorem: ⊒∗
FT equals ⊑may .

In other words, if P 6⊒∗
FT Q, then there is a context C[] such that

C[P] may succeed, yet C[Q] may not.

Concluding remarks

I added a time-out action to standard untimed process algebra.

Failure trace equivalence is now the coarsest reasonable congruence:
the coarsest that satisfies the canonical safety property,
the coarsest that satisfies all safety properties,
the congruence closure of trace equivalence,
and the equivalence generated by may testing.

Future work includes
• proving a congruence result for recursion
• finding complete axiomatisations
• and extending the approach from partial to complete failure

traces, so that liveness properties will be respected.

