Concurrent Hyperproperties

Ernst-Rüdiger Olderog joint work with Bernd Finkbeiner

September 2023

Aim: analyze executions of systems

trace properties = sets of execution traces

... express properties of individual executions,

e.g. safety:

 $\forall \pi. \Box (out_{\pi} \neq bad)$

- hyperproperties = sets of sets of traces [CS10]
 - ... express properties of sets of traces by relating different executions,

e.g. observational determinism:

 $\forall \pi. \forall \pi'. \Box(\mathit{in}_{\pi} \leftrightarrow \mathit{in}_{\pi'}) \rightarrow \Box(\mathit{out}_{\pi} \leftrightarrow \mathit{out}_{\pi'})$

Noninterference:

Consider actions of a high - security agent Hand obervations made by a low - security observer L.

For all computatations and all sequences of H-actions the observations of L should be independent of H 's actions.

Hyperproperties refer to traces,

which represent concurrency by an interleaving semantics.

We model systems by Petri nets, which represent concurrency using partial orders. This brings us to concurrent hyperproperties.

Example Systems as Petri Nets

Hyperproperty: All traces must agree on occurrence and ordering of l_1 and l_2 .

Example Systems as Petri Nets

Hyperproperty: All traces must agree on occurrence and ordering of l_1 and l_2 .

For every pair of traces

there exists a third trace that agrees with the first trace on the low - security events and with the second trace on the high - security events.

Example Systems as Petri Nets

Let Σ be a set of labels. A Σ -labeled partially ordered set is a triple $(X, <, \ell)$ where < is an irreflexive partial order on X and $\ell : X \to \Sigma$ is a labeling function.

A partially ordered multiset (pomset) over Σ is an isomorphy class of Σ -labeled partial ordered sets, denoted as $[(X, <, \ell)]$ [Pra85].

A totally ordered multiset (tomset) is a pomset where < is a total order.

Terminology:

- traces = tomsets over Σ
- trace property = set of traces
- hyperproperty = set of sets of traces
- concurrent traces = pomsets over Σ
- concurrent trace property = set of concurrent traces
- concurrent hyperproperty = set of sets of concurrent traces

```
\mathbb{T}(\Sigma) = set of all concurrent traces over \Sigma.
```

Every pair of concurrent traces agrees on the occurrence of the *low-security* events, independent on any other event.

Let Σ_{low} be the set of *low-security* events.

The requirement is formalized as the concurrent hyperproperty

$$\begin{aligned} H_1 &= \{ \ T \subseteq \mathbb{T}(\Sigma) \ | \quad \forall \ [(X, <, \ell)], \ [(X', <', \ell')] \in T. \\ \exists \ \text{bijection} \ f : X_{low} \to X'_{low}. \\ \forall x \in X_{low}. \ \ell'(f(x)) = \ell(x) \} \end{aligned}$$

where

$$\begin{aligned} X_{low} &= \{ x \in X \mid \ell(x) \in \Sigma_{low} \} \\ X'_{low} &= \{ x \in X' \mid \ell'(x) \in \Sigma_{low} \} \end{aligned}$$

Information Flow Properties II

Every pair of concurrent traces agrees both on the occurrence and the ordering of the *low-security* events.

This requirement is formalized as the concurrent hyperproperty

$$\begin{aligned} H_2 &= \{ \ T \subseteq \mathbb{T}(\Sigma) \ | \quad \forall \ [(X, <, \ell)], \ [(X', <', \ell')] \in T. \\ & \exists \ \text{bijection} \ f : X_{low} \to X'_{low}. \\ & (\ \forall x \in X_{low}. \ \ell'(f(x)) = \ell(x) \\ & \land \forall x, y \in X_{low}. \ f(x) <' f(y) \Leftrightarrow x < y) \} \end{aligned}$$

... for concurrent traces.

Distinguish low-security and high-security events: $\Sigma = \Sigma_{low} \cup \Sigma_{high}$.

For every pair of concurrent traces

there exists a third concurrent trace that agrees with the first trace on the low - security events and with the second trace on the high - security events.

Unlike the trace-based version,

this version of GNI distinguishes nondeterminism from concurrency.

$$H_3 = \{ T \subseteq \mathbb{T}(\Sigma) \mid \forall [(X, <, \ell)], [(X', <', \ell')] \in T. \\ \exists [(X'', <'', \ell'')] \in T. F_{low} \land G_{high} \}$$

where

$$\begin{array}{ll} F_{low} \equiv & \exists \text{ bijection } f: X_{low} \rightarrow X''_{low}. \\ & (\ \forall x \in X_{low}. \ \ell''(f(x)) = \ell(x) \\ & \land \forall x, y \in X_{low}. \ f(x) <'' \ f(y) \Leftrightarrow x < y). \end{array}$$

$$\begin{array}{ll} G_{high} \equiv & \exists \mbox{ bijection } g: X'_{high} \to X''_{high}. \\ & (\ \forall x \in X'_{high}. \ \ell''(g(x)) = \ell'(x) \\ & \wedge \forall x, y \in X'_{high}. \ g(x) <'' \ g(y) \Leftrightarrow x <' y), \end{array}$$

$$\begin{split} X_{low} &= \{ x \in X \mid \ell(x) \in \Sigma_{low} \}, \\ X'_{low} &= \{ x \in X'' \mid \ell''(x) \in \Sigma_{low} \}, \\ X'_{high} &= \{ x \in X' \mid \ell'(x) \in \Sigma_{high} \}, \\ X''_{high} &= \{ x \in X'' \mid \ell''(x) \in \Sigma_{high} \}. \end{split}$$

GNI: Traces vs. Concurrent Traces

In the example system $\mathcal{N}_{\mathcal{C}}$

GNI on traces is satisfied, but GNI on concurrent traces is violated.

Idea: testing of processes due to De Nicola and Hennessy [DH84]: interaction of a nondet. process with a user (test), may and must testing.

Here, a test is a Petri net, extended by a set of successful places. Graphically, we mark these places by \checkmark .

To perform a test \mathcal{T} on a given Petri net \mathcal{N} , we consider the parallel composition $\mathcal{N} \parallel \mathcal{T}$.

A run $\rho = (\mathcal{N}_R, f)$ of $\mathcal{N} \parallel \mathcal{T}$ is deadlock free if it is infinite;

it terminates successfully if it is finite and

all places of ${\mathcal T}$ inside the parallel composition without causal successor are marked with \checkmark .

A net \mathcal{N} may pass a test \mathcal{T} if there exists a maximal run of $\mathcal{N} \| \mathcal{T}$ which is deadlock free or terminates successfully.

A net \mathcal{N} must pass a test \mathcal{T} if all maximal runs of $\mathcal{N} \| \mathcal{T}$ are deadlock free or terminate successfully.

To check a hyperproperty relating two concurrent traces of a system \mathcal{N}_0 , we investigate maximal runs $\rho = (\mathcal{N}, f)$ and $\rho' = (\mathcal{N}', f')$ of \mathcal{N}_0 , where \mathcal{N} and \mathcal{N}' are causal nets of \mathcal{N}_0 ,

but in \mathcal{N}' every action u of \mathcal{N}_0 is relabled into a primed copy u'.

To represent the hyperproperty (with two quantifiers), we test

$$\mathcal{Q}\rho.\mathcal{Q}'\rho'.\mathcal{N} \parallel \mathcal{N}' m$$
 pass \mathcal{T} ,

where $\mathcal{Q}, \mathcal{Q}' \in \{\exists, \forall\}$ and $\mathcal{m} \in \{\text{may, must}\}$.

For H_1 and H_2 consider net \mathcal{N}_C

 \mathcal{N}_{C} :

Net \mathcal{N}_C and Three Maximal Runs

N_C:

Three maximal runs:

Corresponding traces π_1, π_2, π_3 ignore the places.

Testing Concurrent Hyperproperty H₁

Now we check the concurrent hyperproperty H_1 :

```
every pair of concurrent traces \pi and \pi'
agrees on occurrence of low-security events l_1 and l_2.
```

To this end, we use the concurrent test \mathcal{T}_{con} :

Outcome of Concurrent Test \mathcal{T}_{con}

The outcome of testing ρ_1 and ρ_3 of \mathcal{N}_C :

We conclude that $\rho_1 \| \rho_3$ must pass \mathcal{T}_{con} . Indeed, we have

 $\forall \rho, \rho' . \mathcal{N} \| \mathcal{N}' \text{ must pass } \mathcal{T}_{con}.$

This shows that the system \mathcal{N}_{C} satisfies H_{1} .

Testing Concurrent Hyperproperty H_2

Next we check the concurrent hyperproperty H_2 :

every pair of concurrent traces π and π' agrees on occurrence and ordering of low-security events l_1 and l_2 .

To this end, we use the sequential test \mathcal{T}_{seq} :

Outcome of Sequential Test \mathcal{T}_{seq}

The outcomes of testing ρ_1 and ρ_3' of \mathcal{N}_C :

Two maximal runs of $\rho_1 \| \mathscr{T}_{seq} \| \rho'_3$.

- *Left*: Here at first the alternative starting with l_2 of the test \mathcal{T}_{seq} is chosen. This runs terminates successful.
- *Right*: Here at first the alternative starting with l_1 of \mathcal{T}_{seq} is chosen. This runs ends in a deadlock because ρ_3 engages first in l_2 .

Test Result for \mathcal{N}_{c}

May testing of N_C successful:

```
\exists 
ho, 
ho' . \mathscr{N} \| \mathscr{N}' 	ext{ may pass } \mathscr{T}_{seq}
```

• Must testing \mathcal{N}_{C} not successful:

 $\forall
ho,
ho' . \mathscr{N} \parallel \mathscr{N}'$ must pass \mathscr{T}_{seq}

does not hold.

So \mathcal{N}_{C} does not satisfy the concurrent hyperproperty H_{2} .

Universal must testing of a net \mathcal{N}_0 of the form

(*)
$$\forall \rho_1, \cdots, \forall \rho_k. \mathcal{N}_1 \parallel \cdots \parallel \mathcal{N}_k \text{ must pass } \mathcal{T},$$

can be decided

because its falsification is a reachability problem for Petri nets.

Since we consider safe Petri nets, reachablity is PSPACE-complete [EN94].

Theorem.

Universal may testing is undecidable for tests with two maximal runs.

Proof. We reduce the falsification of the Post Correspondence Problem (PCP) to universal may testing using a test with two maximal runs.

Proof idea for PCP over alphabet $\{a, b\}$. As an input, consider the set

$$I = \{(u_1, v_1), (u_2, v_2), (u_3, v_3)\},\$$

of pairs of subwords, where

$$u_1 = ab, v_1 = bb, u_2 = a, v_2 = aba, u_3 = baa, v_3 = aa.$$

This PCP is solvable by the correspondence (2,3,1,3) because

$$u_2u_3u_1u_3 = abaaabbaa = v_2v_3v_1v_3.$$

Simulating the Input I

Petri net \mathcal{N}_{I} simulating the input *I* of the PCP:

Test \mathcal{T}_{PCP}

Test \mathcal{T}_{PCP} for checking whether two runs of \mathcal{N} do not simulate a correspondence of the PCP:

Conclusion

Summary:

- We introduced concurrent hyperproperties as sets of sets of concurrent traces.
- We used Petri nets as semantic model.
- We adapted the testing approach by De Nicola and Hennessy to check concurrent hyperporperties.
- We achieved (un)decidablity results.

Future work:

- Suitable logic for specifying concurrent hyperproperties, extending HyperLTL introduced for normal traces [CFK⁺14].
- Possible starting point: event structure logic [MT92, Pen95].

References I

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.

Temporal logics for hyperproperties.

In Martín Abadi and Steve Kremer, editors, Principles of Security and Trust – Third International Conference, POST 2014, Held as Part of ETAPS 2014, Proceedings, volume 8414 of LNCS, pages 265–284. Springer, 2014.

Michael R. Clarkson and Fred B. Schneider.

Hyperproperties.

J. Comput. Secur., 18(6):1157-1210, 2010.

R. DeNicola and M. Hennessy.

Testing equivalences for processes. *TCS*, 34:83–134, 1984.

Javier Esparza and Mogens Nielsen.

Decidability issues for Petri nets – a survey. Bull. EATCS, 52:244–262, 1994.

Daryl McCullough.

Noninterference and the composability of security properties. In Proc. IEEE Symposium on Security and Privacy, pages 177–186. IEEE Computer Society, April 1988.

Madhavan Mukund and P. S. Thiagarajan.

A logical characterization of well branching event structures. *Theor. Comput. Sci.*, 96(1):35–72, 1992.

Wojciech Penczek.

Branching time and partial order in temporal logics. In L. Bolc and A. Szalas, editors, *Time and Logics: A Computational Approach*, pages 203–257. UCL Press Ltd., 1995.

References II

Vaughan R. Pratt.

The pomset model of parallel processes: Unifying the temporal and the spatial.

In Stephen D. Brookes, A. W. Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, Carnegie-Mellon University, volume 197 of LNCS, pages 180–196. Springer, 1985.