
Concurrent Hyperproperties

Ernst-Rüdiger Olderog

joint work with Bernd Finkbeiner

September 2023

Hyperproperties Clarkson and Schneider [CS10]

Aim: analyze executions of systems

I trace properties = sets of execution traces

... express properties of individual executions,

e.g. safety:

∀π.2(outπ 6= bad)

I hyperproperties = sets of sets of traces [CS10]

... express properties of sets of traces
by relating different executions,

e.g. observational determinism:

∀π.∀π ′.2(inπ ↔ inπ ′)→2(outπ ↔ outπ ′)

2/29 Concurrent Hyperproperties

Information-flow Security Policies

Noninterference:

Consider actions of a high - security agent H
and obervations made by a low - security observer L .

For all computatations and all sequences of H-actions
the observations of L should be independent of H ’s actions.

Hyperproperties refer to traces,
which represent concurrency by an interleaving semantics.

We model systems by Petri nets , which represent concurrency using
partial orders. This brings us to concurrent hyperproperties .

3/29 Concurrent Hyperproperties

Example Systems as Petri Nets

Hyperproperty: All traces must agree on occurrence and ordering of l1 and l2.

NA :
p0

p11 p12

p21 p22

p31 p32

h1 h2

l1 l1

l2 l2

4/29 Concurrent Hyperproperties

Example Systems as Petri Nets

Hyperproperty: All traces must agree on occurrence and ordering of l1 and l2.

NA :
p0

p11 p12

p21 p22

p31 p32

h1 h2

l1 l1

l2 l2

NB :
p0

p11 p12

p21 p22 p23 p24

h1 h2

l1 l2 l1 l2

5/29 Concurrent Hyperproperties

Generalized Noninterference (GNI) McCullough [McC88]

For every pair of traces

there exists a third trace that agrees
with the first trace on the low - security events and
with the second trace on the high - security events.

NB :
p0

p11 p12

p21 p22 p23 p24

h1 h2

l1 l2 l1 l2

6/29 Concurrent Hyperproperties

Example Systems as Petri Nets

NA :
p0

p11 p12

p21 p22

p31 p32

h1 h2

l1 l1

l2 l2

NB :
p0

p11 p12

p21 p22 p23 p24

h1 h2

l1 l2 l1 l2

NC :
p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

7/29 Concurrent Hyperproperties

Concurrent Traces = Pomsets

Let Σ be a set of labels. A Σ-labeled partially ordered set is a triple (X ,<,`)
where < is an irreflexive partial order on X and ` : X → Σ is a labeling function.

A partially ordered multiset (pomset) over Σ is an isomorphy class of Σ-labeled
partial ordered sets, denoted as [(X ,<,`)] [Pra85].

A totally ordered multiset (tomset) is a pomset where < is a total order.

Terminology:

I traces = tomsets over Σ

I trace property = set of traces

I hyperproperty = set of sets of traces

I concurrent traces = pomsets over Σ

I concurrent trace property = set of concurrent traces

I concurrent hyperproperty = set of sets of concurrent traces

T(Σ) = set of all concurrent traces over Σ.

8/29 Concurrent Hyperproperties

Information Flow Properties I

Every pair of concurrent traces agrees on the
occurrence of the low-security events, independent on any other event.

Let Σlow be the set of low-security events.

The requirement is formalized as the concurrent hyperproperty

H1 = { T ⊆ T(Σ) | ∀ [(X ,<,`)], [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

∀x ∈ Xlow . `
′(f (x)) = `(x)}

where
Xlow = {x ∈ X | `(x) ∈ Σlow}

X ′low = {x ∈ X ′ | `′(x) ∈ Σlow}

9/29 Concurrent Hyperproperties

Information Flow Properties II

Every pair of concurrent traces agrees
both on the occurrence and the ordering of the low-security events.

This requirement is formalized as the concurrent hyperproperty

H2 = { T ⊆ T(Σ) | ∀ [(X ,<,`)], [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

(∀x ∈ Xlow . `
′(f (x)) = `(x)

∧∀x ,y ∈ Xlow . f (x) <′ f (y)⇔ x < y)}

10/29 Concurrent Hyperproperties

Generalized Noninterference (GNI) McCullough [McC88]

... for concurrent traces.

Distinguish low-security and high-security events: Σ = Σlow ∪Σhigh.

For every pair of concurrent traces

there exists a third concurrent trace that agrees
with the first trace on the low - security events and
with the second trace on the high - security events.

Unlike the trace-based version,
this version of GNI distinguishes nondeterminism from concurrency.

11/29 Concurrent Hyperproperties

GNI as Concurrent Hyperproperty

H3 = { T ⊆ T(Σ) | ∀ [(X ,<,`)], [(X ′,<′, `′)] ∈ T .

∃ [(X ′′,<′′, `′′)] ∈ T . Flow ∧Ghigh}

where
Flow ≡ ∃bijection f : Xlow → X ′′low .

(∀x ∈ Xlow . `
′′(f (x)) = `(x)

∧∀x ,y ∈ Xlow . f (x) <′′ f (y)⇔ x < y),

Ghigh ≡ ∃bijection g : X ′high→ X ′′high.

(∀x ∈ X ′high. `
′′(g(x)) = `′(x)

∧∀x ,y ∈ X ′high. g(x) <′′ g(y)⇔ x <′ y),

Xlow = {x ∈ X | `(x) ∈Σlow},

X ′′low = {x ∈ X ′′ | `′′(x) ∈Σlow},

X ′high = {x ∈ X ′ | `′(x) ∈Σhigh},

X ′′high = {x ∈ X ′′ | `′′(x) ∈Σhigh}.

12/29 Concurrent Hyperproperties

GNI: Traces vs. Concurrent Traces

In the example system NC

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

GNI on traces is satisfied, but GNI on concurrent traces is violated.

13/29 Concurrent Hyperproperties

Testing of Petri Nets

Idea: testing of processes due to De Nicola and Hennessy [DH84]:
interaction of a nondet. process with a user (test) ,
may and must testing.

Here, a test is a Petri net, extended by a set of successful places.
Graphically, we mark these places by X .

To perform a test Ton a given Petri net N,
we consider the parallel composition N‖T.

A run ρ = (NR , f) of N‖T is deadlock free if it is infinite;

it terminates successfully if it is finite and
all places of T inside the parallel composition without causal successor
are marked with X .

14/29 Concurrent Hyperproperties

May and Must

A net Nmay pass a test T if there exists a maximal run of N‖Twhich is
deadlock free or terminates successfully.

A net Nmust pass a test T if all maximal runs of N‖Tare
deadlock free or terminate successfully.

To check a hyperproperty relating two concurrent traces of a system N0 ,
we investigate maximal runs ρ = (N, f) and ρ ′ = (N ′, f ′) of N0 ,
where N and N ′ are causal nets of N0 ,
but in N ′ every action u of N0 is relabled into a primed copy u ′ .

To represent the hyperproperty (with two quantifiers), we test

Qρ.Q′ρ ′. N ‖N′m pass T,

where Q,Q′ ∈ {∃,∀} and m ∈ {may, must}.

15/29 Concurrent Hyperproperties

For H1 and H2 consider net NC

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

16/29 Concurrent Hyperproperties

Net NC and Three Maximal Runs

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

Three maximal runs:

ρ1 : ρ2 : ρ3 :

p11 p12

p13 p13

p21 p22

p23 p24

p31 p32

h1 h2 h2

l1 l2 l1 l2

l2 l1

Corresponding traces π1,π2,π3

ignore the places.

17/29 Concurrent Hyperproperties

Testing Concurrent Hyperproperty H1

Now we check the concurrent hyperproperty H1:

every pair of concurrent traces π and π ′

agrees on occurrence of low-security events l1 and l2.

To this end, we use the concurrent test Tcon :

s1

l1

X

s01

X

s02

l2

s2

l ′1 l ′2

18/29 Concurrent Hyperproperties

Outcome of Concurrent Test Tcon

The outcome of testing ρ1 and ρ3 of NC :

ρ1 : ρ ′3 :

p11 p12

Tcon :

X

s02

X s02

X

s01

X s01

p13

p21

p22 p24

p32

h1 h′2

l1

l2 l ′2

l ′1

We conclude that ρ1 ‖ρ3 must pass Tcon . Indeed, we have

∀ρ,ρ ′ .N‖N′ must pass Tcon .

This shows that the system NC satisfies H1 .
19/29 Concurrent Hyperproperties

Testing Concurrent Hyperproperty H2

Next we check the concurrent hyperproperty H2:

every pair of concurrent traces π and π ′

agrees on occurrence and ordering of low-security events l1 and l2.

To this end, we use the sequential test Tseq :

s1

l1

X

s0

l2

s2

l ′1 l ′2

20/29 Concurrent Hyperproperties

Outcome of Sequential Test Tseq

The outcomes of testing ρ1 and ρ ′3 of NC :

ρ1 : ρ ′3 :

p11 p12

Tseq :

X

s0

Xs0

Xs0

p13

p21

p22 p24

p32

h1 h′2

l1

l2 l ′2

l ′1

ρ1 : ρ ′3 :

p11 p12

Tseq :

X

s0

s1

p13

p21

h1 h′2

l1

Two maximal runs of ρ1 ‖Tseq ‖ρ ′3.

Left: Here at first the alternative starting with l2 of the test Tseq is chosen.
This runs terminates successful .

Right: Here at first the alternative starting with l1 of Tseq is chosen.
This runs ends in a deadlock because ρ3 engages first in l2.

21/29 Concurrent Hyperproperties

Test Result for NC

I May testing of NC successful:

∃ρ,ρ ′ .N‖N′ may pass Tseq

I Must testing NC not successful:

∀ρ,ρ ′ .N‖N′ must pass Tseq

does not hold.

So NC does not satisfy the concurrent hyperproperty H2.

22/29 Concurrent Hyperproperties

Decidability

Universal must testing of a net N0 of the form

(∗) ∀ρ1, · · · ,∀ρk .N1 ‖ · · · ‖Nk must pass T,

can be decided
because its falsification is a reachability problem for Petri nets.

Since we consider safe Petri nets, reachablity is PSPACE-complete [EN94].

23/29 Concurrent Hyperproperties

Undecidability

Theorem.
Universal may testing is undecidable for tests with two maximal runs.

Proof. We reduce the falsification of the Post Correspondence Problem
(PCP) to universal may testing using a test with two maximal runs. 2

Proof idea for PCP over alphabet {a,b}. As an input, consider the set

I = {(u1,v1),(u2,v2),(u3,v3)},

of pairs of subwords, where

u1 = ab, v1 = bb, u2 = a, v2 = aba, u3 = baa, v3 = aa.

This PCP is solvable by the correspondence (2,3,1,3) because

u2u3u1u3 = ab aaab b aa = v2v3v1v3.

24/29 Concurrent Hyperproperties

Simulating the Input I

Petri net NI simulating the input I of the PCP:

τ τ

fu u 1
a

a a b

b 3 a 2

v fv 1
b

a b
a

3 a 2

b a

25/29 Concurrent Hyperproperties

Test TPCP

Test TPCP for checking whether two runs of N
do not simulate a correspondence of the PCP:

v ′

u

τ τ

1,X

a′

1,X

b′

1,Xa b

fu

X

fv ′

a,X

1′

a,X

2′

a,X1 2

a,X 3 fu

X3′

fv ′

26/29 Concurrent Hyperproperties

Conclusion

Summary:

I We introduced concurrent hyperproperties as
sets of sets of concurrent traces.

I We used Petri nets as semantic model.

I We adapted the testing approach by De Nicola and Hennessy to
check concurrent hyperporperties.

I We achieved (un)decidablity results.

Future work:

I Suitable logic for specifying concurrent hyperproperties,
extending HyperLTL introduced for normal traces [CFK+14].

I Possible starting point: event structure logic [MT92, Pen95].

27/29 Concurrent Hyperproperties

References I

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.

Temporal logics for hyperproperties.
In Martín Abadi and Steve Kremer, editors, Principles of Security and Trust – Third International Conference, POST 2014, Held
as Part of ETAPS 2014, Proceedings, volume 8414 of LNCS, pages 265–284. Springer, 2014.

Michael R. Clarkson and Fred B. Schneider.
Hyperproperties.
J. Comput. Secur., 18(6):1157–1210, 2010.

R. DeNicola and M. Hennessy.

Testing equivalences for processes.
TCS, 34:83–134, 1984.

Javier Esparza and Mogens Nielsen.

Decidability issues for Petri nets – a survey.
Bull. EATCS, 52:244–262, 1994.

Daryl McCullough.

Noninterference and the composability of security properties.
In Proc. IEEE Symposium on Security and Privacy, pages 177–186. IEEE Computer Society, April 1988.

Madhavan Mukund and P. S. Thiagarajan.

A logical characterization of well branching event structures.
Theor. Comput. Sci., 96(1):35–72, 1992.

Wojciech Penczek.
Branching time and partial order in temporal logics.
In L. Bolc and A. Szalas, editors, Time and Logics: A Computational Approach, pages 203–257. UCL Press Ltd., 1995.

28/29 Concurrent Hyperproperties

References II

Vaughan R. Pratt.

The pomset model of parallel processes: Unifying the temporal and the spatial.
In Stephen D. Brookes, A. W. Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, Carnegie-Mellon University,
volume 197 of LNCS, pages 180–196. Springer, 1985.

29/29 Concurrent Hyperproperties

