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HIGHER-ORDER WITH STATE
(FINITARY SETTING)
• finite base types 

• (typed) lambda calculus 

• assignable variables (only base type) 

• iteration, no recursion 

• termination decidable 

• contextual equivalence undecidable



GAME SEMANTICS

Dixon, Murawski

Definition 3.2 The set PA of plays over A consists of the justified sequences s over A that satisfy the
two conditions below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions justified by q must be answered.

It is easy to check that the justified sequences s1, s2 from ???? are plays.

Remark 3.3 It is worth noting that the notion of play is stable with respect to swaps of adjacent moves
except when the swaps involve occurrences of moves m1m2 related by the pointer structure: m1m2 or
m1,m2 are answers to questions q1, q2 such that q2 justifies q1.

A subset σ of PA is O-complete if s P σ and so P PA imply so P σ, when o is an O-move.

Definition 3.4 A strategy on A, written σ : A, is a prefix-closed O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a FICA-term. Let us write !Γ $ θ" for the
arena !θ1" ˆ ¨ ¨ ¨ ˆ !θl" ñ !θ". In [?] it is shown how to assign a strategy on !Γ $ θ" to any FICA-
term Γ $ M : θ. We write !Γ $ M" to refer to that strategy. For example, !Γ $ div" “ tε, runu and
!Γ $ skip" “ tε, run, run doneu. The plays s1, s2 turn out to belong to the strategy that interprets the
term from Example ??. Given a strategy σ, we denote by comppσq the set of non-empty complete plays
of σ, i.e. those in which all questions have been answered. For example, s1 (??) is not complete, but s2
(??) is.

The game-semantic interpretation !¨ ¨ ¨" can be viewed as a faithful record of all possible interactions be-
tween the term and its contexts. It provides a fully abstract model in the sense that contextual equivalence
is characterized by the sets of non-empty complete plays.

Theorem 3.5 ([?]) We have Γ $ M1 – M2 if and only if compp!Γ $ M1"q “ compp!Γ $ M2"q.

The strategies corresponding to FICA terms turn out to be closed under swaps of adjacent moves as long
as the earlier move is a P-move or the later one is an O-move, and the swap produces a play. Formally,
for any arena A, let us define ľĎ PA ˆ PA to be the least preorder satisfying smo s1 ľ s oms1 and
s pms1 ľ smp s1, where m, o, p range over moves, O-moves and P-moves respectively. In the pairs of
plays above, we assume that, during a swap, the justification pointers from the two moves also move with
them.

Example 3.6 Consider the following play.

s3 “ q runf runf1 runc donec donef1 donef 1

O P O P P OO P

Observe that s2 ľ s3, where s2 is the play from ??, because the P-move donef1 moved to the right past a
P-move (runc) and an O-move (donec). In contrast, we do not have s3 ľ s2, as this would involve moving
a P-move (donef1) left past an O-move (donec).

Example 3.7 Consider the plays s4, s5 given below (in the arena !com Ñ com Ñ com"), which corre-
spond to parallel and sequential composition respectively. Observe that s4 ľ s5. Note that the witnessing
swap involves swapping run2 (P-move) with done1 (O-move), which is permitted by the definition of ľ.

s4 “ run run1 run2 done1 done2 done
O P P O O P

s5 “ run run1 done1 run2 done2 done
O P O P O P

Definition 3.8 A strategy σ : A is saturated if, for all s, s1 P PA, if s P σ and s ľ s1 then s1 P σ.

6

• O (environment, context), P (program)

• program is interepreted compositionally as a strategy for P

• full abstraction

• plays are words with extra structure



ALGORITHMIC GAME 
SEMANTICS

• represent plays as words (strategies as languages) 

• identify cases when the languages can be specified in 
formalisms with a decidable equivalence problem 

• translate terms to automata inductively (for canonical 
forms) 

• numerous results over the last two decades 

• full classifications (type-based) for Idealized Algol (CBN) 
and RML (CBV)



IDEALIZED ALGOL (CBN)

4 Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong

(Lemma 14). Thanks to the closure property of SVPCMA, it then follows that
RMLEBVASS observational equivalence is reducible to the emptiness problem for
VPCMA (Theorem 13).

Finally and most importantly, we show (Theorem 20 and Theorem 22) that
the emptiness problem for VPCMA (equivalently for SVPCMA) is equivalent
to the reachability problem for extended branching VASS (EBVASS) [17], the
decidability of which remains an open problem. In particular, reachability in
EBVASS is a harder problem than the long-standing open problem of reach-
ability in BVASS (equivalently, provability in multiplicative exponential linear
logic) [11], which is known to be non-elementary [19].

In summary the results of this paper complete our programme to give an
automata classification of the ML types with respect to the observational equiv-
alence problem for closed terms of finitary RML. We tabulate our findings as
follows:

Order Type Automata / Status

1 Int ! · · · ! Int DFA / decidable (ICALP’00)

2 (Int ! Int) ! Int DFA / decidable (ICALP’00)

3 ((Int ! Int) ! Int) ! Int VPA / decidable (FoSSaCS’05)

4 (((Int ! Int) ! Int) ! Int) ! Int undecidable (LICS’03)

ICALP’00: Ghica, McCusker

LICS’03: M.

FoSSaCS’05: M., Walukiewicz

Order Type Automata / Status

1 Int ! · · · ! Int NDCMA / decidable (FoSSaCS’15)

2 (Int ! · · · ! Int) ! Int VPA / decidable (ICALP’11)

2 Int ! (Int ! · · · ! Int) ! Int EBVASS (ESOP’17)

2 Int ! Int ! (Int ! Int) ! Int Undecidable (ESOP’17)

2 (Int ! Int) ! Int ! Int Undecidable (FoSSaCS’15)

3 ((Int ! Int) ! Int) ! Int Undecidable (FoSSaCS’15)

ICALP’11: Hopkins, M., Ong

FoSSaCS’15: Cotton-Barratt, Hopkins, M., Ong

ESOP’17: Cotton-Barratt, M., Ong



RML (CBV)

4 Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong

(Lemma 14). Thanks to the closure property of SVPCMA, it then follows that
RMLEBVASS observational equivalence is reducible to the emptiness problem for
VPCMA (Theorem 13).

Finally and most importantly, we show (Theorem 20 and Theorem 22) that
the emptiness problem for VPCMA (equivalently for SVPCMA) is equivalent
to the reachability problem for extended branching VASS (EBVASS) [17], the
decidability of which remains an open problem. In particular, reachability in
EBVASS is a harder problem than the long-standing open problem of reach-
ability in BVASS (equivalently, provability in multiplicative exponential linear
logic) [11], which is known to be non-elementary [19].

In summary the results of this paper complete our programme to give an
automata classification of the ML types with respect to the observational equiv-
alence problem for closed terms of finitary RML. We tabulate our findings as
follows:

Order Type Automata / Status

1 Int ! · · · ! Int DFA / decidable (ICALP’00)

2 (Int ! Int) ! Int DFA / decidable (ICALP’00)

3 ((Int ! Int) ! Int) ! Int VPA / decidable (FoSSaCS’05)

4 (((Int ! Int) ! Int) ! Int) ! Int undecidable (LICS’03)

ICALP’00: Ghica, McCusker

LICS’03: M.

FoSSaCS’05: M., Walukiewicz

Order Type Automata / Status

1 Int ! · · · ! Int NDCMA / decidable (FoSSaCS’15)

2 (Int ! · · · ! Int) ! Int VPA / decidable (ICALP’11)

2 Int ! (Int ! · · · ! Int) ! Int EBVASS / open (ESOP’17)

2 Int ! Int ! (Int ! Int) ! Int Undecidable (ESOP’17)

2 (Int ! Int) ! Int ! Int Undecidable (FoSSaCS’15)

3 ((Int ! Int) ! Int) ! Int Undecidable (FoSSaCS’15)

ICALP’11: Hopkins, M., Ong

FoSSaCS’15: Cotton-Barratt, Hopkins, M., Ong

ESOP’17: Cotton-Barratt, M., Ong



THIS TALK
• revisit the results in view of new advances in game 

semantics (operational game semantics), which present 
game models as special LTSs 

• attempt to extract the automata directly from the LTS 

• unify the results for CBN and CBV 

• this talk: DVPA and DFA 

• claimed advantages: accessibility, generality, model-
checking friendly 



CBPV (LEVY 1999)
Value Type � , U⌧ | Unit | Int | Ref Computation Type ⌧ , F� | � ! ⌧

Value Term V , thunk M | x | () | bn | ` | MkVar V V

Computation Term M , force V | return V | �x�
.M | let x be V.M | M to x.M

| case V of (Mi)i2I | MV | ref V | !V | V := V | whileM doM
Evaluation Context K , • | K to x.M | KV

Value Context VC , thunk C | MkVar VC V | MkVar V VC

Context C , • | force VC | return VC | �x�
.C | let x be VC .M | let x be V.C | C to x.M

| M to x.C | case V of (Mi)i<j , C, (Mi)j<i | CV | MVC | !VC | VC := V

| whileC doM | whileM doC

Notational conventions: x, y 2 Var, ` 2 Loc, I = {0, · · · ,max}, n 2 I

Syntactic sugar: If x does not occur free in N , we write M ;N for M to x.N , and ⌦ for while (return b1) do (return ()).
We write V1 + V2 for case V1 of (case V2 of ([i+ j)j2I)i2I

Fig. 1. CBPV syntax

⌃;� `v () : Unit

n 2 {0, · · · ,max}
⌃;� `v bn : Int

(x,�) 2 �

⌃;� `v
x : �

` 2 ⌃

⌃;� `v
` : Ref

⌃;� `c
M : ⌧

⌃;� `v thunk M : U⌧

⌃;� `v
V : �

⌃;� `c return V : F�

⌃;� `v
V : U⌧

⌃;� `c force V : ⌧

⌃;� `v
V : � ⌃;�, x : � `c

M : ⌧

⌃;� `c let x be V.M : ⌧

⌃;� `v
V : Int ⌃;� `c

Mi : ⌧

⌃;� `c case V of (Mi)i2I : ⌧

⌃;� `c
M : F� ⌃;�, x : � `c

N : ⌧

⌃;� `c
M to x.N : ⌧

⌃;�, x : � `c
M : ⌧

⌃;� `c
�x

�
.M : � ! ⌧

⌃;� `c
M : � ! ⌧ ⌃;� `v

V : �

⌃;� `c
MV : ⌧

⌃;� `v
V : Int

⌃;� `c ref V : FRef

⌃;� `v
Vread : UF Int ⌃;� `v

Vwrite : U(Int ! FUnit)

⌃;� `v MkVar Vread Vwrite : Ref

⌃;� `v
V : Ref

⌃;� `c!V : F Int

⌃;� `v
V : Ref ⌃;� `v

U : Int

⌃;� `c
V := U : FUnit

⌃;� `c
M : F Int ⌃;� `c

N : FUnit

⌃;� `c whileM doN : FUnit

Fig. 2. CBPV typing rules

(K[let x be V.M ], h) ! (K[M{V/x}], h)
(K[(�x�

.M)V ], h) ! (K[M{V/x}], h)
(K[case i of (Mi)], h) ! (K[Mi], h)
(K[force thunk M ], h) ! (K[M ], h)
(K[return V to x.M ], h) ! (K[M{V/x}], h)

(K[ref V ], h) ! (K[return `], h · [` 7! V ])
(K[!`], h) ! (K[return h(`)], h)
(K[` := V ], h) ! (K[return ()], h[` 7! V ])
(K[!(MkVar Vr Vw)], h) ! (K[force Vr], h)
(K[(MkVar Vr Vw) := U ], h) ! (K[(force Vw)U ], h)

(K[whileM doN ], h) ! (K[M to x.case x of return (), (N to y.whileM doN)i>0], h) x, y are fresh

Fig. 3. Operational semantics for CBPV

We will also use continuation names, to identify the question
move being answered in an answer move. This is simply
a technical convenience, as in the setting without control
operators, all continuation names can be reconstructed due to
the bracketing condition.

Definition 5. Let TNames =
U

⌧ TNamesU⌧ be the set of
thunk names, partitioned into mutually disjoint countably
infinite sets TNamesU⌧ . We use f, g to range over TNames,
and write f : U⌧ for f 2 TNamesU⌧ . Analogously, let
CNames =

U
� CNames� be the set of continuation names.

c ranges over CNames, and c : � denotes c 2 CNames� .
We assume CNames,TNames are disjoint and let Names =
TNames ] CNames. Elements of Names will appear in
structures throughout this work, and so ⌫(X) refers to the
set of names used in some entity X .

Players will take actions which consist of a name applied
to some (sequence of) values. To handle passing thunks, we
will use abstract values. These are values with occurrences of
thunks replaced by names, so are generated by the grammar:

A , f | () | bn | MkVar A A
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Computation Term M , force V | return V | �x�
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Evaluation Context K , • | K to x.M | KV

Value Context VC , thunk C | MkVar VC V | MkVar V VC

Context C , • | force VC | return VC | �x�
.C | let x be VC .M | let x be V.C | C to x.M

| M to x.C | case V of (Mi)i<j , C, (Mi)j<i | CV | MVC | !VC | VC := V

| whileC doM | whileM doC

Notational conventions: x, y 2 Var, ` 2 Loc, I = {0, · · · ,max}, n 2 I

Syntactic sugar: If x does not occur free in N , we write M ;N for M to x.N , and ⌦ for while (return b1) do (return ()).
We write V1 + V2 for case V1 of (case V2 of ([i+ j)j2I)i2I
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We will also use continuation names, to identify the question
move being answered in an answer move. This is simply
a technical convenience, as in the setting without control
operators, all continuation names can be reconstructed due to
the bracketing condition.

Definition 5. Let TNames =
U

⌧ TNamesU⌧ be the set of
thunk names, partitioned into mutually disjoint countably
infinite sets TNamesU⌧ . We use f, g to range over TNames,
and write f : U⌧ for f 2 TNamesU⌧ . Analogously, let
CNames =

U
� CNames� be the set of continuation names.

c ranges over CNames, and c : � denotes c 2 CNames� .
We assume CNames,TNames are disjoint and let Names =
TNames ] CNames. Elements of Names will appear in
structures throughout this work, and so ⌫(X) refers to the
set of names used in some entity X .

Players will take actions which consist of a name applied
to some (sequence of) values. To handle passing thunks, we
will use abstract values. These are values with occurrences of
thunks replaced by names, so are generated by the grammar:
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We will also use continuation names, to identify the question
move being answered in an answer move. This is simply
a technical convenience, as in the setting without control
operators, all continuation names can be reconstructed due to
the bracketing condition.

Definition 5. Let TNames =
U

⌧ TNamesU⌧ be the set of
thunk names, partitioned into mutually disjoint countably
infinite sets TNamesU⌧ . We use f, g to range over TNames,
and write f : U⌧ for f 2 TNamesU⌧ . Analogously, let
CNames =

U
� CNames� be the set of continuation names.

c ranges over CNames, and c : � denotes c 2 CNames� .
We assume CNames,TNames are disjoint and let Names =
TNames ] CNames. Elements of Names will appear in

structures throughout this work, and so ⌫(X) refers to the
set of names used in some entity X .

Players will take actions which consist of a name applied
to some (sequence of) values. To handle passing thunks, we
will use abstract values. These are values with occurrences of
thunks replaced by names, so are generated by the grammar:

A , f | () | bn | MkVar A A

As names are intrinsically typed, abstract values can be typed
in the obvious way, denoted A : �. Given a value V : �,
AVal�(V ) is the set of pairs (A, �) such that A is an abstract
value and � : ⌫(A) ! Vals is a substitution (defined in
Figure 4). It is not quite the case that A{�} = V due
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CBN AND CBV IN CBPV

RML type CBPV value types
Int,Unit,Ref Int,Unit,Ref

�1 ! �2 U(�1
RML ! F�2

RML)

IA type CBPV computation types
expr, com F Int, FUnit

var Int ! Int ! F Int
⌧1 ! ⌧2 U⌧1

IA ! ⌧2
IA

CBV type CBPV value types
IntCBV = Int

(�1 ! �2)
CBV = U(�1

RML ! F�2
RML)

CBN type CBPV computation types
IntCBN = F Int

(⌧1 ! ⌧2)
CBN = U⌧1

CBN ! ⌧2
CBN

For a CBV environment � = {x1 : �1 · · ·xk : �k},

let �CBV = {x1 : �1
CBV · · ·xk : �k

CBV}.

The sequent � ` M : � is translated into �CBV `c
M

CBV : F�
CBV.

For an CBN environment � = {x1 : ⌧
1
· · ·xk : ⌧k},

let �CBN = {x1 : U⌧
1

CBN · · ·xk : U⌧k
CBN}.

The sequent � ` M : ⌧ is translated into �CBN `c
M

CBN : ⌧CBN

We provide the translation �RML on terms in the table below.

RML term M : � CBPV computation M
RML : F�

RML

x return x

() return ()
bn return bn
` return `

�x.M return thunk �x.M
RML

MkVar M N M
RML to fr.N

RML to fw.MkVar (thunk force fr()) fw
M N M

RML to f.N
RML to x.(force f)x

M := N N
RML to x.M

RML to y.y := x

!M M
RML to x.!x

refM M
RML to x.ref x

whileM doN whileMRML doNRML

case M of (Mi)i2I M
RML to x.case x of (Mi

RML)i2I

For a RML environment � = {x1 : �1 · · ·xk : �k}, we let �RML = {x1 : �1
RML · · ·xk : �k

RML}. The sequent � ` M : � is
translated into �RML `c

M
RML : F�

RML.

For IA, we need to ensure terms are in ⌘-long form: that is we ⌘-expand so that all occurances of variables with function
type are fully applied. ⌘-expansion does not effect contexual equivalence in IA. This is so that any arguments that sub-terms
of M take with type ⌧1 ! · · · ⌧k ! var are exposed. We provide the translation �IAP on terms in the table below, then define
M

IA to be M
0IAP where M has ⌘-long form M

0. Let assert(x ⇠ n) be short for case x of (⌦)i<n, (), (⌦)n<i.
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�x.M return thunk �x.M
RML

MkVar M N M
RML to fr.N

RML to fw.MkVar (thunk force fr()) fw
M N M

RML to f.N
RML to x.(force f)x

M := N N
RML to x.M

RML to y.y := x

!M M
RML to x.!x
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RML to x.ref x

whileM doN whileMRML doNRML

case M of (Mi)i2I M
RML to x.case x of (Mi

RML)i2I

For a RML environment � = {x1 : �1 · · ·xk : �k}, we let �RML = {x1 : �1
RML · · ·xk : �k

RML}. The sequent � ` M : � is
translated into �RML `c

M
RML : F�

RML.

For IA, we need to ensure terms are in ⌘-long form: that is we ⌘-expand so that all occurances of variables with function
type are fully applied. ⌘-expansion does not effect contexual equivalence in IA. This is so that any arguments that sub-terms
of M take with type ⌧1 ! · · · ⌧k ! var are exposed. We provide the translation �IAP on terms in the table below, then define
M

IA to be M
0IAP where M has ⌘-long form M

0. Let assert(x ⇠ n) be short for case x of (⌦)i<n, (), (⌦)n<i.
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CONTEXTUAL EQUIVALENCE

a separate argument.
We believe ours is the first work seeking to give decision

procedures for contextual equivalence by refining operational
game models into automata. However, OGS has been used as
a foundation for other techniques, particularly bisimulation-
based. An example of this strand of work is the equivalence
checker SyTeCi [15] for automatically proving contextual
equivalences with respect to contexts with general references.
It is based on Symbolic Kripke Open Relations, which can
be seen as an abstraction of OGS. The associated decidability
result is incomparable to ours: it uses more powerful contexts
and disallows reference creation inside functions, albeit with-
out a type restriction. HOBBIT is a bounded-complete inequiv-
alence checker, which exploits ‘symbolic up-to’ techniques to
allow it to (semi-) automatically prove many equivalences [16].
Kripke Normal Form Bisimulations [17] are a sound and
complete technique for showing contextual equivalence for
a family of CBV languages with control and higher-order
state, but the cited paper does not discuss decidability. Apart
from OGS-inspired research, there has been much related
work based on logical relations [18], [19] and normal form
bisimulations [20], also without decision procedures.

II. THE LANGUAGE

1) Syntax: The language being studied in this paper extends
Levy’s Call-by-Push-Value �-calculus [21] with mutable state
and basic data types. We will deal with the finitary fragment
of the language, lacking infinite types and recursion. The types
and terms are shown in Figure 1. The types are stratified into
values (generated by �) and computations (generated by ⌧ ).
The slogan often associated with this division is ‘A value is,
a computation does’.

A typing judgement gives a type to a term given the types of
locations and variables. In CBPV, we have separate judgments
for value types and computation types. For values we write
⌃;� `v

V : � and for computations we write ⌃;� `v
M :

⌧ , where � is a finite partial function that assigns types to
variables, and ⌃ is a list of locations. We abbreviate ;;� `
M : ⌧ to � ` M : ⌧ and ⌃; ; ` M : ⌧ to ⌃ ` M : ⌧ . Typing
judgements are derived using the rules in Figure 2.

We treat the type Ref as if it were a pair of thunks:
a read thunk of type UF Int and a write thunk of type
U(Int ! FUnit). This is an old idea, due to Reynolds [22],
and is a feature of many game models of languages with
references. As a consequence, we need the construct MkVar,
which embeds a pair of thunks into the Ref type, allowing
‘bad variables’, which possibly return different values from
those last written. When reading (!V ) or writing (V := U )
such a bad variable, we use the appropriate thunk. We include
bad variables for comparability with existing results, although
they can be avoided by incorporating parts of the heap into
the trace semantics [4]. For space reasons, we will sometimes
write {|V1, V2|} for MkVar V1 V2.

2) The operational semantics: We present the operational
semantics as the reduction relation ! in Figure 3 on con-
figurations, which are pairs of a computation and a heap

h (a mapping of locations to values). We write h : ⌃ for
⌃ ✓ dom(h). h[` 7! V ] denotes updating ` in h.

3) Contextual equivalence: Contexts C can be seen as
computations with a hole, •, into which another computation
may be substituted. We can also type a context, by saying
⌃;� `k

C : ⌧ =) ⌧
0 : if ⌃;�, x : ⌧ `c

C[x] : ⌧ 0 : for a
fresh x. One key notion of terms being ‘equal’ is contextual
equivalence, which is formalised in terms of termination.

A terminal is a (closed) computation of the form return V

or �x
�
.M . Termination means that a term reduces to a

terminal: we write (M,h) +ter if there exist N, h
0 such that

(M,h) !⇤ (N, h
0) and N is a terminal.

Definition 1. Given computations � `c
M1,M2 : ⌧ , we

define � `c
M1 .CBPV

ter M2 to hold, when for all contexts
`k

C : ⌧ =) F�, we have (C[M1], ;) +ter implies
(C[M2], ;) +ter . We write ⇠=CBPV

ter for the equivalence induced
by .CBPV

ter .

A standard result is that contexts considered for contextual
approximation can be restricted to evaluation contexts after
instantiating the free variables of computations to closed
values (closed instances of use, CIU). We write ⌃,�0 ` � : �
for substitutions � such that, for any (x,�x) 2 �, the value
�(x) satisfies ⌃;�0 `v

�(x) : �x. Then M{�} stands for the
outcome of applying � to M .

Definition 2 (CIU Approximation). Let � `c
M1,M2 : F�

be CBPV computations. Then � `c
M1 .CBPV(ciu)

ter M2,
when for all ⌃, h,K, �, such that h : ⌃, ⌃ `k

K : ⌧ =)
F�, and ⌃ ` � : �, we have (K[M1{�}], h) +ter implies
(K[M2{�}], h) +ter .

We obtain a CIU Lemma establishing the sufficiency of CIU
testing following the framework of [23].

Lemma 3 (CIU Lemma). We have � `c
M1 .CBPV

ter M2 iff
� `c

M1 .CBPV(ciu)
ter M2.

We make the observation that the only contexts we really
need to consider are those of type F� =) F�

0.

Lemma 4. Let � `c
M1,M2 : �1 ! · · · ! �k ! F�.

Then � `c
M1 .CBPV

ter M2 iff �, (x1,�1), · · · , (xk,�k) `c

M1 x1 · · ·xk .CBPV

ter M2 x1 · · ·xk.

III. LABELLED TRANSITION SYSTEM

We develop a labelled transition system (LTS) to capture
the semantics of terms in the style of [24]. Its traces can
be thought of as exchanges of moves between two players,
representing the context and the term respectively. This way
of modelling contextual interactions is often called operational
game semantics.

1) Names and Abstract Values: In actions of this game,
players pass (fresh) names to represent thunks passed between
the two players. As these represent thunks, the names have a
type U⌧ . In keeping with the Reynolds approach of embedding
references as a pair of thunks, we will ‘decompose’ references
into separate thunk names for reading and writing respectively.
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OPERATIONAL GAME 
SEMANTICS (LTS)

(P⌧) hM, c, �,�, h,Hi ⌧��! hN, c, �,�, h
0
, Hi

when (M,h) ! (N, h
0)

(PA) hreturn V, c, �,�, h,Hi c̄(A)���! h� · �0
,� ] ⌫(A), h,H,H(c) ] ⌫(A)i

when c : �, (A, �
0) 2 AVal�(V )

(PQ) hK[(force f)
�!
V ], c, �,�, h,Hi f̄(

�!
A,c0)/(c0,(K,c))������������! h� · �0

,� ] �
0
, h,H,H(f) ] ⌫(

�!
A )i

when f : U⌧ , (
�!
A, �

0) 2 AVal(
�!
V ), � = RType(⌧), c0 : � and �

0 = ⌫(
�!
A ) ] {c0}

(OA) h�,�, h,H,Fni c(A),(c,(K,c0))���������! hK[return A], c0, �,� ] ⌫(A), h,H · [⌫(A) 7! Fn]i
when c : �, A : �

(OQ) h�,�, h,H,Fni f(
�!
A,c)����! h(force V )

�!
A, c, �,� ] �

0
, h,H · [�0 7! Fn]i

when f 2 Fn, f : U⌧ ,
�!
A 2 ASeq(⌧), � = RType(⌧), c : �, �(f) = V and �

0 = ⌫(
�!
A ) ] {c}

Given N ✓ Names, [N 7! V] stands for the map [n 7! V |n 2 N ].

Fig. 6. LCBPV transition rules

Example 18. Let � = {f : U(Ref ! Int ! FUnit)}, � =
U(UF Int ! F Int), and

M = ref b0 to x.(force f)xb4;
return thunk (�h.force h to y.!x to z.y + z)

If ⇢ = [f 7! f ] and t is the trace in Example 8, then
((⇢, c), t) 2 TrCBPV(� `c

M : F�).

IV. FULL ABSTRACTION

To establish the soundness of this model (trace inclusion
implies contextual inclusion), we will wish to reason about a
computation in a specific context. Let � `c

M : F�. Using
the CIU lemma, we will consider testing using a heap h : ⌃,
evaluation context `k

K : F� =) F�
0 and a substitution

� : �. Let us fix a continuation name � : �0, which we use to
determine when a context has returned.

Next we define the set AVal�(�) of all disjoint decompo-
sitions of values from � into abstract values and the corre-
sponding matchings by

AVal�(�) = {( ~Ai, ~�i) | 1  i  k, (Ai, �i) 2 AVal�i(�(xi)),
⌫(A1), · · · , ⌫(Ak)mutually disjoint }

where � = {x1 : �1, · · · , xk : �k}, ~Ai stands for
(A1, · · · , Ak), and ~�i for (�1, · · · , �k).

Definition 19 (Context configuration). Given ⌃, h : ⌃, ⌃ `c

K : F� =) F�
0, ⌃ `c

� : �, ( ~Ai, ~�i) 2 AVal�(�)
and c : � (c 62 �), the corresponding configuration C~�i,c

h,K,� is
defined by

C~�i,c
h,K,� = (h

k]

i=1

�i, �
0 ] {c}, h, [� 7! ;], �0 i, (c, (K, �)) : ?)

where �
0 =

Uk
i=1

⌫(Ai)

Intuitively, the names ⌫(Ai) correspond to thunks extracted
from �, whereas c corresponds to K. Note that traces in
TrCBPV(C

~�i,c
h,K,�) will be ({�},

Uk
i=1

⌫(Ai) ] {c})-traces.
For the next result, we introduce the following notation.

Given ( ~Ai, ~�i) 2 AVal�(�), we define a �-assignment ⇢ ~Ai

by ⇢ ~Ai
(xi) = Ai. Note that ⌫(⇢ ~Ai

) =
Uk

i=1
dom(�i). The

key lemma we now need to prove will relate traces of a term
to its ability to converge in a given evaluation context. From
correctness, we can then obtain soundness.

Lemma 20 (Correctness). Let � `c
M : F� be a CBPV com-

putation, let ⌃, h,K, � be as above, ( ~Ai, ~�i) 2 AVal�(�), and
c : � (c 6= �). Then (K[M{�}], h) +ter iff there exist t, A such
that t 2 TrCBPV(C

⇢ ~Ai
,c

M ) and t
? �̄(A) 2 TrCBPV(C

~�i,c
h,K,�).

Moreover, t satisfies ⌫(t) \ {�} = ;.

Theorem 21 (Soundness). For any CBPV computations � `c

M1,M2 : F�, TrCBPV(� `c
M1) ✓ TrCBPV(� `c

M2) then
� `c

M1 .CBPV(ciu)
ter M2.

For the opposite direction, we establish that any trace of a
suitable shape corresponds to a context.

Lemma 22 (Definability). Suppose � ✓ TNames and t is an
even-length O,P-visible, O,P-bracketed ({�},� ] {c})-trace
starting with an O-action, such that t = t

0 �̄(A) and t
0 is

complete. There exists a passive configuration C such that
Treven(C) is the even-length prefixes of t (along with their
renamings via permutations on Names that fix � ] {�}).
Moreover, C = h�,� ] {c}, h, [� 7! ;],�i, (c, (K, �)) : ?)
for some h,K, �.

Completeness follows from definability and correctness.

Theorem 23 (Completeness). For any CBPV computations
� `c

M1,M2 : F�, if � `c
M1 .CBPV(ciu)

ter M2 then
TrCBPV(� `c

M1) ✓ TrCBPV(� `c
M2).

Using soundness (Theorem 21), completeness (Theo-
rem 23), and CIU lemma (Lemma 3), we have the following
corollary.

Corollary 24 (Full Abstraction). For any CBPV computa-
tions � `c

M1,M2 : F�, then � `c
M1 .CBPV

ter M2 iff
TrCBPV(� `c

M1) ✓ TrCBPV(� `c
M2).
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TOWARDS A VPA
(FINITE ALPHABET)

V. FROM LTS TO AUTOMATA (ALPHABET)
In this section, we demonstrate how LCBPV gives rise

directly to an automaton, when considering terms drawn from
a particular fragment of CBPV. Initially, we will look for a
fragment of CBPV for which (a faithful representation of) a
term’s traces can be captured using a (deterministic) Visibly

Pushdown Automaton (VPA) [27]. A VPA is a type of push-
down automata in which the action on the stack is determined
by the input symbol. The alphabet is partitioned into call
(push), return (pop), and internal (noop) symbols. This ensures
that inclusion (and so equivalence) of deterministic VPA is
decidable in polynomial time.

In seeking to identify a fragment for which VPA’s suffice,
we need to ensure that the space of states and the alphabet
of actions are finite. Primarily, this is an issue when it is not
possible to bound the set of names visible to O, VisO(t) for a
trace t generated by the LTS. As the configuration will require
a map from (at least the visible) names to the corresponding
thunks from P, not having a bound on visible names will also
mean we cannot bound the size of this map. We will see how
this consideration restricts the type of terms through examples.

Example 24. Let N1

O = {c : UFUF Int}. Consider (N1

O, ;)-
traces of the form c̄(g) g(✏, c1) c̄1(f1) · · · g(✏, cn) c̄n(fn)
fi(✏, c0). To capture them, one needs to generate arbitrarily
many fresh names, because the last action could refer to any
fi. This issue arises whenever we permit P to provide to O a
thunk which returns a thunk (g in this case), as O can then
obtain arbitrarily many, (potentially) distinct thunks.

Let N
2

O = {c : U(U(UF Int ! FUnit) ! FUnit)}.
Consider (N2

O, ;)-traces of the form c̄(g) g(f1, c1) f̄1(h1, c
0
1
)

· · · g(fn, cn) f̄n(hn, c
0
n) hi(✏, c0). Here we can see that the

same issue arises when we allow an argument passed by O
(fi) to itself receive an argument thunk (hi) from P.

The fragment defined below is designed precisely to cir-
cumvent the problems identified above.

Definition 25. A CBPV computation � `c
M : F�

P is in
the P-thunk-restricted (PTR) fragment when all types in �
can be generated by �

2 in the grammar below.

�
2 , �

1 | U⌧
2

�
P , �

0 | Ref | U⌧
P

⌧
2 , F�

2 | �P ! ⌧
2

⌧
P , F�

0 | �1 ! ⌧
P

�
1 , �

0 | Ref | U⌧
1

⌧
1 , F�

1 | �0 ! ⌧
1

�
0 , Int | Unit

Remark 26. Note that all thunk P-names in a trace generated
by a computation in the PTR-fragment have the type U⌧

P .

Remark 27. An alternative way to characterise the the PTR-
fragment is by polarising the occurrences of U , which corre-
spond to question actions. If one writes U

+ for occurrences
of U that produce O-questions, and U

� for those producing
P-questions, the problematic types in Example 24 are then
U

+
FU

+
F Int and U

+(U�(U+
F Int ! FUnit) ! FUnit),

both of which contain nested occurrences of U
+. The PTR-

fragment is then obtained by forbidding nested occurrences of
U

+, while allowing nested occurrences of U�.

Definition 28. A (NO, ;)-trace is a PTR-trace when it is
O- and P-bracketed, O- and P-visible, and it starts with a P-
action with {c} = NO \ CNames where c : �

P , and for
f 2 NO \ TNames, f : �2, where �

P
,�

2 are as defined in
Definition 25.

Observe that these are exactly the traces which LCBPV

generates on PTR computations.
To provide a representation of traces without arbitrarily

many fresh names, we develop the notion of a name scheme.
The idea is to associate each thunk type appearing in a typing
judgment with a fixed name. Readers familiar with game
semantics will find the definition similar to that of an arena,
where thunk names and continuation names indicate the po-
sition of questions and answers respectively, and SucT, SucC
correspond to the enabling relation.

Definition 29. A (�, F�)-name scheme is a tuple
(TB,CB, ⇢, c0, SucT, SucC) such that ⇢ is a �-assignment,
c0 : �, and TB ✓ TNames and CB ✓ CNames are the
smallest sets such that ⌫(⇢) ✓ TB, c0 2 CB and the conditions
listed below are satisfied. We set TBU⌧ , TB \ TNamesU⌧

and CB� , CB \ CNames� .

• SucT is the least partial function from (TB⇥N)]CB to
TB[(TB⇥TB) such that: if c 2 CBU⌧ then SucT(c) 2
TBU⌧ ; if c 2 CBRef then SucT(c) 2 TBUF Int ⇥
TBU(Int!FUnit); if f 2 TBU(�1!···!�k!FU�0) and
1  i  k then SucT(f, i) 2 TBU⌧i for �i = U⌧i and
SucT(f, i) 2 TBUF Int ⇥ TBU(Int!FUnit) for �i = Ref .

• SucC : TB ! CB is a function such that if f 2 TBU⌧

then SucC(f) 2 CBRType(⌧).
• ⌫(SucX(d)) \ ⌫(SucX(d0)) = ; for d 6= d

0 and X 2
{T,C} (which implies injectivity) and (img(SucT) [
img(SucC)) \ (⌫(⇢) [ {c0}) = ;.

Elements of TB and CB will be referred to as base thunk

names and base continuation names respectively.

Abstract values containing base names only will be called
base abstract values. We shall write ��,F� for a (�, F�)-
name scheme, and � when we leave (�, F�) implicit.

Example 30. Consider ⌧ = U(⌧ 0) ! FUFUnit, where
⌧
0 = UF Int ! UFUnit ! F Int, � = {f : U⌧}, c0 : Unit.

For simplicity, assume f 2 TBU⌧ and ⇢(f) = f . Then
��,FUnit = (TB,CB, ⇢, c0, SucT, SucC) is a name scheme,
where

• TB = {f : U⌧ , g : UFUnit, h : U⌧
0
, i : UF Int,

j : UFUnit};
• CB = {c0 : Unit, cf : UFUnit, cg : Unit, ch : Int,
ci : Int, cj : Unit};

• SucT(f, 1) = h, SucT(h, 1) = i, SucT(h, 2) = j,
SucT(cf ) = g; and

• SucC(f) = cf , SucC(g) = cg , SucC(h) = ch, SucC(i) =
ci, SucC(j) = cj .
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SPECIAL FRAGMENT
V. FROM LTS TO AUTOMATA (ALPHABET)

In this section, we demonstrate how LCBPV gives rise
directly to an automaton, when considering terms drawn from
a particular fragment of CBPV. Initially, we will look for a
fragment of CBPV for which (a faithful representation of) a
term’s traces can be captured using a (deterministic) Visibly

Pushdown Automaton (VPA) [27]. A VPA is a type of push-
down automata in which the action on the stack is determined
by the input symbol. The alphabet is partitioned into call
(push), return (pop), and internal (noop) symbols. This ensures
that inclusion (and so equivalence) of deterministic VPA is
decidable in polynomial time.

In seeking to identify a fragment for which VPA’s suffice,
we need to ensure that the space of states and the alphabet
of actions are finite. Primarily, this is an issue when it is not
possible to bound the set of names visible to O, VisO(t) for a
trace t generated by the LTS. As the configuration will require
a map from (at least the visible) names to the corresponding
thunks from P, not having a bound on visible names will also
mean we cannot bound the size of this map. We will see how
this consideration restricts the type of terms through examples.

Example 24. Let N1

O = {c : UFUF Int}. Consider (N1

O, ;)-
traces of the form c̄(g) g(✏, c1) c̄1(f1) · · · g(✏, cn) c̄n(fn)
fi(✏, c0). To capture them, one needs to generate arbitrarily
many fresh names, because the last action could refer to any
fi. This issue arises whenever we permit P to provide to O a
thunk which returns a thunk (g in this case), as O can then
obtain arbitrarily many, (potentially) distinct thunks.

Let N
2

O = {c : U(U(UF Int ! FUnit) ! FUnit)}.
Consider (N2

O, ;)-traces of the form c̄(g) g(f1, c1) f̄1(h1, c
0
1
)

· · · g(fn, cn) f̄n(hn, c
0
n) hi(✏, c0). Here we can see that the

same issue arises when we allow an argument passed by O
(fi) to itself receive an argument thunk (hi) from P.

The fragment defined below is designed precisely to cir-
cumvent the problems identified above.

Definition 25. A CBPV computation � `c
M : F�

P is in
the P-thunk-restricted (PTR) fragment when all types in �
can be generated by �

2 in the grammar below.

�
2 , �

1 | U⌧
2

�
P , �

0 | Ref | U⌧
P

⌧
2 , F�

2 | �P ! ⌧
2

⌧
P , F�

0 | �1 ! ⌧
P

�
1 , �

0 | Ref | U⌧
1

⌧
1 , F�

1 | �0 ! ⌧
1

�
0 , Int | Unit

Remark 26. Note that all thunk P-names in a trace generated
by a computation in the PTR-fragment have the type U⌧

P .

Remark 27. An alternative way to characterise the the PTR-
fragment is by polarising the occurrences of U , which corre-
spond to question actions. If one writes U

+ for occurrences
of U that produce O-questions, and U

� for those producing
P-questions, the PTR-fragment is then obtained by forbidding
nested occurrences of U+, while allowing nested occurrences
of U�.
U

+
FU

+
F Int and U

+(U�(U+
F Int ! FUnit) !

FUnit) are problematic, because both contain nested occur-
rences of U+.

Definition 28. A (NO, ;)-trace is a PTR-trace when it is
O- and P-bracketed, O- and P-visible, and it starts with a P-
action with {c} = NO \ CNames where c : �

P , and for
f 2 NO \ TNames, f : �2, where �

P
,�

2 are as defined in
Definition 25.

Observe that these are exactly the traces which LCBPV

generates on PTR computations.
To provide a representation of traces without arbitrarily

many fresh names, we develop the notion of a name scheme.
The idea is to associate each thunk type appearing in a typing
judgment with a fixed name. Readers familiar with game
semantics will find the definition similar to that of an arena,
where thunk names and continuation names indicate the po-
sition of questions and answers respectively, and SucT, SucC
correspond to the enabling relation.

Definition 29. A (�, F�)-name scheme is a tuple
(TB,CB, ⇢, c0, SucT, SucC) such that ⇢ is a �-assignment,
c0 : �, and TB ✓ TNames and CB ✓ CNames are the
smallest sets such that ⌫(⇢) ✓ TB, c0 2 CB and the conditions
listed below are satisfied. We set TBU⌧ , TB \ TNamesU⌧

and CB� , CB \ CNames� .
• SucT is the least partial function from (TB⇥N)]CB to
TB[(TB⇥TB) such that: if c 2 CBU⌧ then SucT(c) 2
TBU⌧ ; if c 2 CBRef then SucT(c) 2 TBUF Int ⇥
TBU(Int!FUnit); if f 2 TBU(�1!···!�k!FU�0) and
1  i  k then SucT(f, i) 2 TBU⌧i for �i = U⌧i and
SucT(f, i) 2 TBUF Int ⇥ TBU(Int!FUnit) for �i = Ref .

• SucC : TB ! CB is a function such that if f 2 TBU⌧

then SucC(f) 2 CBRType(⌧).
• ⌫(SucX(d)) \ ⌫(SucX(d0)) = ; for d 6= d

0 and X 2
{T,C} (which implies injectivity) and (img(SucT) [
img(SucC)) \ (⌫(⇢) [ {c0}) = ;.

Elements of TB and CB will be referred to as base thunk

names and base continuation names respectively.
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Pushdown Automaton (VPA) [27]. A VPA is a type of push-
down automata in which the action on the stack is determined
by the input symbol. The alphabet is partitioned into call
(push), return (pop), and internal (noop) symbols. This ensures
that inclusion (and so equivalence) of deterministic VPA is
decidable in polynomial time.

In seeking to identify a fragment for which VPA’s suffice,
we need to ensure that the space of states and the alphabet
of actions are finite. Primarily, this is an issue when it is not
possible to bound the set of names visible to O, VisO(t) for a
trace t generated by the LTS. As the configuration will require
a map from (at least the visible) names to the corresponding
thunks from P, not having a bound on visible names will also
mean we cannot bound the size of this map. We will see how
this consideration restricts the type of terms through examples.
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fi(✏, c0). To capture them, one needs to generate arbitrarily
many fresh names, because the last action could refer to any
fi. This issue arises whenever we permit P to provide to O a
thunk which returns a thunk (g in this case), as O can then
obtain arbitrarily many, (potentially) distinct thunks.

Let N
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O = {c : U(U(UF Int ! FUnit) ! FUnit)}.
Consider (N2

O, ;)-traces of the form c̄(g) g(f1, c1) f̄1(h1, c
0
1
)

· · · g(fn, cn) f̄n(hn, c
0
n) hi(✏, c0). Here we can see that the

same issue arises when we allow an argument passed by O
(fi) to itself receive an argument thunk (hi) from P.

The fragment defined below is designed precisely to cir-
cumvent the problems identified above.

Definition 25. A CBPV computation � `c
M : F�

P is in
the P-thunk-restricted (PTR) fragment when all types in �
can be generated by �

2 in the grammar below.

�
2 , �

1 | U⌧
2

�
P , �

0 | Ref | U⌧
P

⌧
2 , F�

2 | �P ! ⌧
2

⌧
P , F�

0 | �1 ! ⌧
P

�
1 , �

0 | Ref | U⌧
1

⌧
1 , F�

1 | �0 ! ⌧
1

�
0 , Int | Unit

Remark 26. Note that all thunk P-names in a trace generated
by a computation in the PTR-fragment have the type U⌧

P .

Remark 27. An alternative way to characterise the the PTR-
fragment is by polarising the occurrences of U , which corre-
spond to question actions. If one writes U

+ for occurrences
of U that produce O-questions, and U

� for those producing
P-questions, the PTR-fragment is then obtained by forbidding
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Definition 28. A (NO, ;)-trace is a PTR-trace when it is
O- and P-bracketed, O- and P-visible, and it starts with a P-
action with {c} = NO \ CNames where c : �

P , and for
f 2 NO \ TNames, f : �2, where �

P
,�

2 are as defined in
Definition 25.

Observe that these are exactly the traces which LCBPV

generates on PTR computations.
To provide a representation of traces without arbitrarily

many fresh names, we develop the notion of a name scheme.
The idea is to associate each thunk type appearing in a typing
judgment with a fixed name. Readers familiar with game
semantics will find the definition similar to that of an arena,
where thunk names and continuation names indicate the po-
sition of questions and answers respectively, and SucT, SucC
correspond to the enabling relation.

Definition 29. A (�, F�)-name scheme is a tuple
(TB,CB, ⇢, c0, SucT, SucC) such that ⇢ is a �-assignment,
c0 : �, and TB ✓ TNames and CB ✓ CNames are the
smallest sets such that ⌫(⇢) ✓ TB, c0 2 CB and the conditions
listed below are satisfied. We set TBU⌧ , TB \ TNamesU⌧

and CB� , CB \ CNames� .
• SucT is the least partial function from (TB⇥N)]CB to
TB[(TB⇥TB) such that: if c 2 CBU⌧ then SucT(c) 2
TBU⌧ ; if c 2 CBRef then SucT(c) 2 TBUF Int ⇥
TBU(Int!FUnit); if f 2 TBU(�1!···!�k!FU�0) and
1  i  k then SucT(f, i) 2 TBU⌧i for �i = U⌧i and
SucT(f, i) 2 TBUF Int ⇥ TBU(Int!FUnit) for �i = Ref .

• SucC : TB ! CB is a function such that if f 2 TBU⌧

then SucC(f) 2 CBRType(⌧).
• ⌫(SucX(d)) \ ⌫(SucX(d0)) = ; for d 6= d

0 and X 2
{T,C} (which implies injectivity) and (img(SucT) [
img(SucC)) \ (⌫(⇢) [ {c0}) = ;.

Elements of TB and CB will be referred to as base thunk

names and base continuation names respectively.
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MARKED NAMES
(FOR P-MOVES)

Base�(Tr(C⇢,c0
Mi

)) = {t} where t = f̄(✏, d) d(g) f̄(✏, d) d(g) ḡ(✏, e) e(()) c̄0(())
Rename�(Tr(C⇢,c0

M1
)) = {t, f̄(✏, d) d(ĝ) f̄(✏, d) d(g) ¯̂g(✏, e) e(()) c̄0(()), f̄(✏, d) d(g) f̄(✏, d) d(ĝ) ḡ(✏, e) e(()) c̄0(())}

Rename�(Tr(C⇢,c0
M2

)) = {t, f̄(✏, d) d(ĝ) f̄(✏, d) d(g) ḡ(✏, e) e(()) c̄0(()), f̄(✏, d) d(g) f̄(✏, d) d(ĝ) ¯̂g(✏, e) e(()) c̄0(())}

Fig. 9. Translation of traces for Examples 36 and 37

IVal�� (d, V, ⌘) , (V, ;, ⌘) for � 2 {Unit, Int}
IVal�U⌧ (d, V, ⌘) , (f i

, [f i 7! V ], ⌘[f 7! i+ 1]) where SucT(d) = f, ⌘(f) = i

IVal�
Ref

(d, {|V1, V2|}, ⌘) , ({|f⌘(f)
, g

⌘(j)|}, [f⌘(f) 7! V1, g
⌘(g) 7! V2], ⌘[f, g 7! ⌘(f) + 1, ⌘(g) + 1]) where SucT(d) = (f, g)

IVal�
Ref

(d, `, ⌘) , ({|f i
, g

j |}, [f i 7! thunk (!`), gj 7! thunk (�x.` := x)], ⌘[f, g 7! i+ 1, j + 1])
where SucT(d) = (f, g), ⌘(f) = i, ⌘(g) = j

IVal�(f,
�!
V , ⌘0) , (A1 · · · Ak, �1 · �2 · · · �k, ⌘k) where f : U(�1 ! · · · ! �k ! F�),

�!
V = V1 · · · Vk

and for 1  i  k, (Ai, �i, ⌘i) = IVal��i
((f, i), Vi, ⌘i�1)

IVals�� (d, ⌘) , {(V, ⌘) | V : �} where � 2 {Int,Unit}
IVals�U⌧ (d, ⌘) , {(f i

, ⌘[f 7! i+ 1])} where SucT(d) = f, ⌘(f) = i

IVals�
Ref

(d, ⌘) , {(MkVar f i
g
j
, ⌘[f, g 7! i+ 1, j + 1])} where SucT(d) = (f, g), ⌘(f) = i, ⌘(g) = j

IValSeq�(f, ⌘0) , {(B1 · · ·Bk, ⌘k) | (Bi, ⌘i) 2 IVals��i
((f, i), ⌘i�1)} where f : U(�1 ! · · · ! �k ! F�)

Fig. 10. Functions for decomposing values in indexed abstract values and maps, for � = (TB,CB, ⇢, c0, SucT, SucC)

we write �(A) to denote the same abstract value with indices
removed (but preserving marks).

Note that a typical update to ⌘ will make the values grow.
In order to keep them bounded, we will implement a recycling
scheme for indices. In order to formulate it, we need to transfer
the notion of level to thunk names in a trace. Let t be an NO-
trace such that � agrees with NO. Then f in t is a level-n
name if Base�t (f) is a level-n name, and g is the originator
of f if g can be reached from f by following the introduction
of head names, and Base�t (g) is the originator of Base�t (f).

Example 40. In trace t in Example 8, f is a level-0 name,
r, w, g are level 1, and h is level 2.

Our recycling scheme is inspired by the Lemmata below.

Lemma 41. Let c : �
0 be a continuation name (one

which corresponds to returning a value of a basic type).
Then, for any O/P-visible, and O/P-bracketed trace s =
t f(

�!
A, c) t0 c̄(A0) t00, no names introduced in f(

�!
A, c) t0 ap-

pear in VisO(s) (if s ends in a P-action) or VisP (s) (if s ends
in an O-action).

Lemma 42. Let s = t f(
�!
A, c) t0 ḡ(

�!
A

0
, d) and s

0 = s t
00
d(A)

be PTR (NO, ;)-traces, where g is a level-2 name whose
originator is introduced in

�!
A . Let X be the names introduced

in f(
�!
A, c) t0 ḡ(

�!
A

0
, d). Then if s00 is a proper prefix of s0 at

least as long as s, VisO(s00)\X = ; (if s00 ends in a P-action)
and VisP (s00) \X = ; (if s00 ends in an O-action).

Note that both Lemmata state that certain names become
unavailable. In the first case this deactivation is permanent
after c̄(A0), whereas in the second case it is temporary: it
starts after a level-2 name is used in ḡ(

�!
A

0
, d) and ends

after the corresponding d(A). We will take advantage of the

deactivation period to reuse the deactivated indices. In the first
case, this will be done simply by resetting the relevant bounds.
In the PTR fragment, all non-initial continuation names have
type �

0, so this recycling is actually widely applicable. In the
second case, we will reset the parameters temporarily and, to
be able to restore them, will push the information related to
deactivated names on the stack (PQ). It can then be restored
during the matching pop (OA).

Example 43. To better explain why this second scheme
is necessary, recall � and name scheme ��,FUnit

from Example 30, and consider the computation
� `c (force f)(thunk �i.�j.(force i)) to g.force g : FUnit.
Some of the associated traces, written with base names and
specific indices, have the following shape:

f̄0(h0
, c

0

f ) h
0(i0 j0, c0h) ī

0(✏, c0i ) h
0(i1 j1, c1h) ī

1(✏, c1i ) . . . .

What happens here is that, when P calls in, h0 becomes visible
to O. This allows O to call h0 again with i

n+1. As this can
repeat unboundedly many times, we must recycle the indices
on i and j, which is what the second recycling scheme permits.

Before we can present L�

PTR
we will need one final element,

modifications to the operational semantics given in Figure 3.
Their purpose is to replace the generation of arbitrary new
locations with locations drawn sequentially from N, similarly
to how we intend to use indexed names. This will enable us to
exploit the fact that Lemmata 41 and 42 mean that available
locations are also restricted. Instead of having configurations
of the form (M,h), we have ones of the form (M,h, ih, ⌘),
where ih is the next available location (and ⌘ will be a function
as above). The previous operational rules ! (save those for
ref V and whileM doN ) are embedded into the new reduction
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TOWARDS A VPA 
(INDEXING RECYCLING)
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Rename�(Tr(C⇢,c0

M1
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Note that a typical update to ⌘ will make the values grow.
In order to keep them bounded, we will implement a recycling
scheme for indices. In order to formulate it, we need to transfer
the notion of level to thunk names in a trace. Let t be an NO-
trace such that � agrees with NO. Then f in t is a level-n
name if Base�t (f) is a level-n name, and g is the originator
of f if g can be reached from f by following the introduction
of head names, and Base�t (g) is the originator of Base�t (f).

Example 40. In trace t in Example 8, f is a level-0 name,
r, w, g are level 1, and h is level 2.

Our recycling scheme is inspired by the Lemmata below.

Lemma 41. Let c : �
0 be a continuation name (one

which corresponds to returning a value of a basic type).
Then, for any O/P-visible, and O/P-bracketed trace s =
t f(

�!
A, c) t0 c̄(A0) t00, no names introduced in f(

�!
A, c) t0 ap-

pear in VisO(s) (if s ends in a P-action) or VisP (s) (if s ends
in an O-action).

Lemma 42. Let s = t f(
�!
A, c) t0 ḡ(

�!
A

0
, d) and s

0 = s t
00
d(A)

be PTR (NO, ;)-traces, where g is a level-2 name whose
originator is introduced in

�!
A . Let X be the names introduced

in f(
�!
A, c) t0 ḡ(

�!
A

0
, d). Then if s00 is a proper prefix of s0 at

least as long as s, VisO(s00)\X = ; (if s00 ends in a P-action)
and VisP (s00) \X = ; (if s00 ends in an O-action).

Note that both Lemmata state that certain names become
unavailable. In the first case this deactivation is permanent
after c̄(A0), whereas in the second case it is temporary: it
starts after a level-2 name is used in ḡ(

�!
A

0
, d) and ends

after the corresponding d(A). We will take advantage of the

deactivation period to reuse the deactivated indices. In the first
case, this will be done simply by resetting the relevant bounds.
In the PTR fragment, all non-initial continuation names have
type �

0, so this recycling is actually widely applicable. In the
second case, we will reset the parameters temporarily and, to
be able to restore them, will push the information related to
deactivated names on the stack (PQ). It can then be restored
during the matching pop (OA).

Example 43. To better explain why this second scheme
is necessary, recall � and name scheme ��,FUnit

from Example 30, and consider the computation
� `c (force f)(thunk �i.�j.(force i)) to g.force g : FUnit.
Some of the associated traces, written with base names and
specific indices, have the following shape:

f̄0(h0
, c

0

f ) h
0(i0 j0, c0h) ī

0(✏, c0i ) h
0(i1 j1, c1h) ī

1(✏, c1i ) . . . .

What happens here is that, when P calls in, h0 becomes visible
to O. This allows O to call h0 again with i

n+1. As this can
repeat unboundedly many times, we must recycle the indices
on i and j, which is what the second recycling scheme permits.

Before we can present L�

PTR
we will need one final element,

modifications to the operational semantics given in Figure 3.
Their purpose is to replace the generation of arbitrary new
locations with locations drawn sequentially from N, similarly
to how we intend to use indexed names. This will enable us to
exploit the fact that Lemmata 41 and 42 mean that available
locations are also restricted. Instead of having configurations
of the form (M,h), we have ones of the form (M,h, ih, ⌘),
where ih is the next available location (and ⌘ will be a function
as above). The previous operational rules ! (save those for
ref V and whileM doN ) are embedded into the new reduction
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Base�(Tr(C⇢,c0
Mi

)) = {t} where t = f̄(✏, d) d(g) f̄(✏, d) d(g) ḡ(✏, e) e(()) c̄0(())
Rename�(Tr(C⇢,c0

M1
)) = {t, f̄(✏, d) d(ĝ) f̄(✏, d) d(g) ¯̂g(✏, e) e(()) c̄0(()), f̄(✏, d) d(g) f̄(✏, d) d(ĝ) ḡ(✏, e) e(()) c̄0(())}

Rename�(Tr(C⇢,c0
M2

)) = {t, f̄(✏, d) d(ĝ) f̄(✏, d) d(g) ḡ(✏, e) e(()) c̄0(()), f̄(✏, d) d(g) f̄(✏, d) d(ĝ) ¯̂g(✏, e) e(()) c̄0(())}

Fig. 9. Translation of traces for Examples 36 and 37

IVal�� (d, V, ⌘) , (V, ;, ⌘) for � 2 {Unit, Int}
IVal�U⌧ (d, V, ⌘) , (f i
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IVal�
Ref

(d, {|V1, V2|}, ⌘) , ({|f⌘(f)
, g

⌘(j)|}, [f⌘(f) 7! V1, g
⌘(g) 7! V2], ⌘[f, g 7! ⌘(f) + 1, ⌘(g) + 1]) where SucT(d) = (f, g)

IVal�
Ref
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, g
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IVal�(f,
�!
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�!
V = V1 · · · Vk
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IVals�
Ref
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g
j
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IValSeq�(f, ⌘0) , {(B1 · · ·Bk, ⌘k) | (Bi, ⌘i) 2 IVals��i
((f, i), ⌘i�1)} where f : U(�1 ! · · · ! �k ! F�)

Fig. 10. Functions for decomposing values in indexed abstract values and maps, for � = (TB,CB, ⇢, c0, SucT, SucC)

we write �(A) to denote the same abstract value with indices
removed (but preserving marks).

Note that a typical update to ⌘ will make the values grow.
In order to keep them bounded, we will implement a recycling
scheme for indices. In order to formulate it, we need to transfer
the notion of level to thunk names in a trace. Let t be an NO-
trace such that � agrees with NO. Then f in t is a level-n
name if Base�t (f) is a level-n name, and g is the originator
of f if g can be reached from f by following the introduction
of head names, and Base�t (g) is the originator of Base�t (f).

Example 40. In trace t in Example 8, f is a level-0 name,
r, w, g are level 1, and h is level 2.

Our recycling scheme is inspired by the Lemmata below.

Lemma 41. Let c : �
0 be a continuation name (one

which corresponds to returning a value of a basic type).
Then, for any O/P-visible, and O/P-bracketed trace s =
t f(

�!
A, c) t0 c̄(A0) t00, no names introduced in f(

�!
A, c) t0 ap-

pear in VisO(s) (if s ends in a P-action) or VisP (s) (if s ends
in an O-action).

Lemma 42. Let s = t f(
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be PTR (NO, ;)-traces, where g is a level-2 name whose
originator is introduced in

�!
A . Let X be the names introduced

in f(
�!
A, c) t0 ḡ(

�!
A

0
, d). Then if s00 is a proper prefix of s0 at

least as long as s, VisO(s00)\X = ; (if s00 ends in a P-action)
and VisP (s00) \X = ; (if s00 ends in an O-action).

Note that both Lemmata state that certain names become
unavailable. In the first case this deactivation is permanent
after c̄(A0), whereas in the second case it is temporary: it
starts after a level-2 name is used in ḡ(

�!
A

0
, d) and ends

after the corresponding d(A). We will take advantage of the

deactivation period to reuse the deactivated indices. In the first
case, this will be done simply by resetting the relevant bounds.
In the PTR fragment, all non-initial continuation names have
type �

0, so this recycling is actually widely applicable. In the
second case, we will reset the parameters temporarily and, to
be able to restore them, will push the information related to
deactivated names on the stack (PQ). It can then be restored
during the matching pop (OA).

Example 43. To better explain why this second scheme
is necessary, recall � and name scheme ��,FUnit

from Example 30, and consider the computation
� `c (force f)(thunk �i.�j.(force i)) to g.force g : FUnit.
Some of the associated traces, written with base names and
specific indices, have the following shape:

f̄0(h0
, c

0

f ) h
0(i0 j0, c0h) ī

0(✏, c0i ) h
0(i1 j1, c1h) ī

1(✏, c1i ) . . . .

What happens here is that, when P calls in, h0 becomes visible
to O. This allows O to call h0 again with i

n+1. As this can
repeat unboundedly many times, we must recycle the indices
on i and j, which is what the second recycling scheme permits.

Before we can present L�

PTR
we will need one final element,

modifications to the operational semantics given in Figure 3.
Their purpose is to replace the generation of arbitrary new
locations with locations drawn sequentially from N, similarly
to how we intend to use indexed names. This will enable us to
exploit the fact that Lemmata 41 and 42 mean that available
locations are also restricted. Instead of having configurations
of the form (M,h), we have ones of the form (M,h, ih, ⌘),
where ih is the next available location (and ⌘ will be a function
as above). The previous operational rules ! (save those for
ref V and whileM doN ) are embedded into the new reduction
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LTS

(P⌧) hM, c, �,�, h,Hi ⌧��! hN, c, �,�, h
0
, Hi

when (M,h) ! (N, h
0)

(PA) hreturn V, c, �,�, h,Hi c̄(A)���! h� · �0
,� ] ⌫(A), h,H,H(c) ] ⌫(A)i

when c : �, (A, �
0) 2 AVal�(V )

(PQ) hK[(force f)
�!
V ], c, �,�, h,Hi f̄(

�!
A,c0)/(c0,(K,c))������������! h� · �0

,� ] �
0
, h,H,H(f) ] ⌫(

�!
A )i

when f : U⌧ , (
�!
A, �

0) 2 AVal(
�!
V ), � = RType(⌧), c0 : � and �

0 = ⌫(
�!
A ) ] {c0}

(OA) h�,�, h,H,Fni c(A),(c,(K,c0))���������! hK[return A], c0, �,� ] ⌫(A), h,H · [⌫(A) 7! Fn]i
when c : �, A : �

(OQ) h�,�, h,H,Fni f(
�!
A,c)����! h(force V )

�!
A, c, �,� ] �

0
, h,H · [�0 7! Fn]i

when f 2 Fn, f : U⌧ ,
�!
A 2 ASeq(⌧), � = RType(⌧), c : �, �(f) = V and �

0 = ⌫(
�!
A ) ] {c}

Given N ✓ Names, [N 7! V] stands for the map [n 7! V |n 2 N ].

Fig. 6. LCBPV transition rules

Example 18. Let � = {f : U(Ref ! Int ! FUnit)}, � =
U(UF Int ! F Int), and

M = ref b0 to x.(force f)xb4;
return thunk (�h.force h to y.!x to z.y + z)

If ⇢ = [f 7! f ] and t is the trace in Example 8, then
((⇢, c), t) 2 TrCBPV(� `c

M : F�).

IV. FULL ABSTRACTION

To establish the soundness of this model (trace inclusion
implies contextual inclusion), we will wish to reason about a
computation in a specific context. Let � `c

M : F�. Using
the CIU lemma, we will consider testing using a heap h : ⌃,
evaluation context `k

K : F� =) F�
0 and a substitution

� : �. Let us fix a continuation name � : �0, which we use to
determine when a context has returned.

Next we define the set AVal�(�) of all disjoint decompo-
sitions of values from � into abstract values and the corre-
sponding matchings by

AVal�(�) = {( ~Ai, ~�i) | 1  i  k, (Ai, �i) 2 AVal�i(�(xi)),
⌫(A1), · · · , ⌫(Ak)mutually disjoint }

where � = {x1 : �1, · · · , xk : �k}, ~Ai stands for
(A1, · · · , Ak), and ~�i for (�1, · · · , �k).

Definition 19 (Context configuration). Given ⌃, h : ⌃, ⌃ `c

K : F� =) F�
0, ⌃ `c

� : �, ( ~Ai, ~�i) 2 AVal�(�)
and c : � (c 62 �), the corresponding configuration C~�i,c

h,K,� is
defined by

C~�i,c
h,K,� = (h

k]

i=1

�i, �
0 ] {c}, h, [� 7! ;], �0 i, (c, (K, �)) : ?)

where �
0 =

Uk
i=1

⌫(Ai)

Intuitively, the names ⌫(Ai) correspond to thunks extracted
from �, whereas c corresponds to K. Note that traces in
TrCBPV(C

~�i,c
h,K,�) will be ({�},

Uk
i=1

⌫(Ai) ] {c})-traces.
For the next result, we introduce the following notation.

Given ( ~Ai, ~�i) 2 AVal�(�), we define a �-assignment ⇢ ~Ai

by ⇢ ~Ai
(xi) = Ai. Note that ⌫(⇢ ~Ai

) =
Uk

i=1
dom(�i). The

key lemma we now need to prove will relate traces of a term
to its ability to converge in a given evaluation context. From
correctness, we can then obtain soundness.

Lemma 20 (Correctness). Let � `c
M : F� be a CBPV com-

putation, let ⌃, h,K, � be as above, ( ~Ai, ~�i) 2 AVal�(�), and
c : � (c 6= �). Then (K[M{�}], h) +ter iff there exist t, A such
that t 2 TrCBPV(C

⇢ ~Ai
,c

M ) and t
? �̄(A) 2 TrCBPV(C

~�i,c
h,K,�).

Moreover, t satisfies ⌫(t) \ {�} = ;.

Theorem 21 (Soundness). For any CBPV computations � `c

M1,M2 : F�, TrCBPV(� `c
M1) ✓ TrCBPV(� `c

M2) then
� `c

M1 .CBPV(ciu)
ter M2.

For the opposite direction, we establish that any trace of a
suitable shape corresponds to a context.

Lemma 22 (Definability). Suppose � ✓ TNames and t is an
even-length O,P-visible, O,P-bracketed ({�},� ] {c})-trace
starting with an O-action, such that t = t

0 �̄(A) and t
0 is

complete. There exists a passive configuration C such that
Treven(C) is the even-length prefixes of t (along with their
renamings via permutations on Names that fix � ] {�}).
Moreover, C = h�,� ] {c}, h, [� 7! ;],�i, (c, (K, �)) : ?)
for some h,K, �.

Completeness follows from definability and correctness.

Theorem 23 (Completeness). For any CBPV computations
� `c

M1,M2 : F�, if � `c
M1 .CBPV(ciu)

ter M2 then
TrCBPV(� `c

M1) ✓ TrCBPV(� `c
M2).

Using soundness (Theorem 21), completeness (Theo-
rem 23), and CIU lemma (Lemma 3), we have the following
corollary.

Corollary 24 (Full Abstraction). For any CBPV computa-
tions � `c

M1,M2 : F�, then � `c
M1 .CBPV

ter M2 iff
TrCBPV(� `c

M1) ✓ TrCBPV(� `c
M2).
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(K[whileM doN ], h, ih, ⌘) !e (K[M to x.case x of return (), (N to y.end(ih, ⌘).whileM doN)j>0], h, ih, ⌘)
(K[end(ih, ⌘0).whileM doN ], h, jh, ⌘) !e (K[M to x.case x of return (), (N to y.end(ih, ⌘).whileM doN)j ], h<ih , ih, ⌘

0)

Fig. 11. The modifications needed to produce reduction relation !e

(P⌧) hM, c
j
, �, h,H, ih, ⌘, µ, li

⌧��! hN, c
j
, �<⌘0 , h

0
, H<⌘0 , i

0
h, ⌘

0
, µ<⌘0 , li

when (M,h, ih, ⌘) !e (N, h
0
, i

0
h, ⌘

0)

(PA) hreturn V, c
0

0
, �, h,H, ih, ⌘, µ, li

c̄0(�(A))�����! h� · �0
, h,H,H(c0) ] ⌫(A), ih, ⌘0, µ, li

when c0 : �, (A, �
0
, ⌘

0) = IVal�� (c0, V, ⌘)

(PA) hreturn V, c
i
, �, h,H, ih, ⌘, µ, li

c̄(V )���! h�<⌘0 , h<i0h
, H<⌘0 , H(ci), i0h, ⌘

0
, µ<⌘0 , li

when c 6= c0 and (i0h, ⌘
0) = µ(ci)

(PQ) hK[(force f
i)
�!
V ], c0j , �, h,H, ih, ⌘, µ, li

f̄(�(
�!
A),c)/(c0,(K,c0j))��������������! h� · �0

, h,H,H(f i) ] ⌫(
�!
A ), ih, ⌘0, µ, li

when f is not a level 2 name, (
�!
A, �

0
, ⌘

0) 2 IVal�(f,
�!
V , ⌘), and SucC(f) = c

(PQ) hK[(force f
i)
�!
V ], c0j , �, h,H, ih, ⌘, µ, li

f̄(
�!
V ,c)/(c0,(K,c0j),P )��������������! h�<⌘0 , h<i0h

, H<⌘0 , H(f i), i0h, ⌘
0
, µ<⌘0 , li

when f is a level 2 name, and (i0h, ⌘
0) = µ(f i), SucC(f) = c, and P = (ih, ⌘, ��⌘0 , h�i0h

, H�⌘0 , µ�⌘0)

(OA) h�, h,H,Fn, ih, ⌘, µ, li
c(�(A)),(c0,(K,c0j))�������������! hK[return A], c0j , �, h,H · [⌫(A) 7! Fn], ih, ⌘0, µ, l0i

when c : �, (A0
, ⌘

0) 2 IVals�� (c, ⌘) and if l = 1 then A = A
0
, l

0 = 1 else A 2 Select(A0), and l
0 = IsMark(A)

(OA) h�, h,H,Fn, ih, ⌘, µ, li
c(�(A)),(c0,(K,c0j),P )��������������! hK[return A], c0j , � · �0

, h,H
0
, i

0
h, ⌘

0
, µ

0
, l

0i
when c : �, P = (i0h, ⌘

00
, �

0
, h

0
, H

00
, µ

00), (A0
, ⌘

0) 2 IVals�� (c, ⌘00) and if l = 1 then A = A
0
, l

0 = 1
else A 2 Select(A0), and l

0 = IsMark(A); and H
0 = H ·H 00 · [⌫(A) 7! Fn], and µ

0 = µ · µ00 · [⌫(A) 7! (ih, ⌘)]

(OQ) h�, h,H,Fn, ih, ⌘, µ, li
f(�(

�!
A),c)������! hforce V

�!
A, c

j
, �, h,H · [⌫(�!A ), cj 7! Fn], ih, ⌘0, µ0

, li
when f

i 2 Fn, (
�!
A

0
, ⌘

00) 2 IValSeq�(f, ⌘), SucC(f) = c, ⌘(c) = j, ⌘
0 = ⌘

00[c 7! j + 1], �(f i) = V, and
if l = 1 then A = A

0
, l

0 = 1 else A 2 Select(A0), and l
0 = IsMark(A); and µ

0 = µ · [⌫(�!A ), cj 7! (ih, ⌘)]

In the PQ rules, the name f can be either marked or unmarked. In the second PA (PQ), V (
�!
V ) does not contain thunks,

so is an abstract value. The second OA rule is sound as �
0
, h

0
, H

00
, µ

00 are disjoint from �, h,H, µ. Select(A) is the set of
marked indexed abstract values obtained by marking at most one name in A. IsMark(A) = 1 if a name in A is marked, 0
otherwise.

Fig. 12. L�
PTR transition rules for name scheme � = (TBNames,CBNames, ⇢, c0, SucT, SucC)

Ground Types � , Unit | Int
Restricted Values V0 , x | () | bn | ` | MkVar V0 V0

Values V , V0 | thunk M | MkVar (thunk M) (thunk M)
Restricted Computations M0 , force V0 | return V0 | M0V | ref V | !V0 | V0 := V0

Computations M , M0 | return V | �x�
.M | let x� be V.M

| M to x
�
.M | M0 to x.M | case V of (Mi)i2I | whileM doM

Fig. 13. The grammar for terms in canonical form

In this case one can show that the stack height is bounded
and, for canonical forms, the bound is linear. Consequently,
we can treat the (bounded) stack as part of the state space and
convert the VPA to a finite-state machine.

The fact that our results are stated for CBPV makes it
possible to specialise them to the CBN- and CBV-variants of
the language, known in the literature as Idealised Algol [7]
and RML [6] respectively. This can be done by translation
provided it is fully abstract (preserves and reflects contextual
equivalence). Our translations extend the standard translations

from the CBN and CBV �-calculus respectively [21]. The
translations of types are given in the table below. For RML, a
term M : � is translated into a computation M

RML : F�
RML.

RML type CBPV value types
Int,Unit,Ref Int,Unit,Ref

�1 ! �2 U(�1
RML ! F�2

RML)

12



!e using the rule

(M,h) ! (M 0
, h

0)

(M,h, ih, ⌘) !e (M 0, h0, ih, ⌘)
.

The reduction rule for handling new references is replaced
by (K[ref V ], h, ih, ⌘) !e (K[ih], h · [ih 7! V ], ih + 1, ⌘). It
uses ih as the location for the new reference, and then sets the
next location to be ih+1. This gives an operational semantics
which is behaviorally the same as generating a fresh location,
so long as ih is larger than any name appearing in h.

We also make changes to handle the while do construct.
The idea is to reset both ih and ⌘ back to the value before the
loop once we reach the end of the loop. This is due to the fact
that, by the way the scopes work in the language, any name
or location generated in the loop cannot be used outside of
(that iteration of) the loop. In particular, we introduce a new
construct, end(ih, ⌘).M , to indicate the end of an iteration
of a loop. We provide rules for while and end in Figure 11,
where h<ih denotes the heap h restricted to domain of location
smaller than ih. Similarly, if ⇣ is a partial map from indexed
names, and ⌘ maps base names to indices, we write ⇣⌘ to mean
⇣ restricted to indexed names f

i for which i < ⌘(f). We will
use h�ih and ⇣�⌘ analogously.

Finally, we present the LTS L�

PTR
in Figure 12. Active con-

figurations of L�

PTR
have the form hM, c, �, h,H, ih, ⌘, µ, li

and passive ones h�, h,H,Fn, ih, ⌘, µ, li. As described above,
⌘ is a function from base names to the next available index,
which we call the (next) index component. ih is the (next)

location component, the next available location. µ is the reset

component, a partial map from (indexed) level-2 thunk names
and O-continuation names to the value of (ih, ⌘) prior to the
move that introduced the name. l is a binary flag used to
indicate whether a marked name has been produced in the
trace so far.

We now need to define initial configurations. Let
� `c

M : F� be a PTR computation and � =
(TB,CB, ⇢, c0, SucT, SucC) be a (�, F�)-name scheme. Let
⇢
0 = [xi 7! ⇢(xi)0], NO = ⌫(⇢) [ {c0} and N

0

O = {n0 |n 2
N0}. Then the active initial configuration CPTR,�

M is defined
to be

(hM{⇢0}, c0
0
, ;, ;, [N0

O 7! ;], 0, ⌘, ;, 0i,?)

where ⌘ = [NO, c0 7! 1] · [(TB [ CB) \ (NO [ {c0}) 7! 0].
The main change to the LTS, is to ‘recycle’ the indices, so

as to keep the space of reachable configurations finite. This is
the role of the µ component, based on the properties identified
in Lemmata 41 and 42. In particular, after a PA-action (other
than on the initial continuation name), we ‘prune’ the domains
of the components to the index names and locations introduced
before the OQ-action being answered. Similarly, after a PQ-
action on a level-2 name f , we split the components between
the index names and locations introduced before the OQ-action
introducing the originator of f , and those after. Those from
before the OQ-action become part of the next configuration,
whereas those from after are stored on the stack until they can

be restored after the matching OA-action. Let Tr�
PTR

(C) be
the set of base traces generated from C in L�

PTR
.

Definition 44. The PTR-trace semantics of a
PTR-computation � `c

M : F� is defined to be
TrPTR(� `c

M : F�) , { (�, t) | � is a (�, F�)-name
scheme, t 2 Tr�

PTR
(CPTR,�

M ), t is complete}.

We can show that the new semantics agree with the full
trace semantics on PTR-computations.

Lemma 45. For any PTR-computation � ` M : F�,
a (�, F�)-name scheme � = (TB,CB, ⇢, c0, SucT, SucC),
Tr�

PTR
(CPTR,�

M ) = Rename�(TrCBPV(C
⇢,c0
M )).

Lemma 45 with Corollaries IV and 39 imply the following.

Theorem 46 (PTR Full Abstraction). For any PTR com-
putations � ` M1,M2 : F�, then � ` M1 .CBPV

ter M2 iff
TrPTR(� ` M1) ✓ TrPTR(� ` M2).

L�

PTR
turns out to be a VPA for any PTR-computation.

In general, it inherits the non-elementary bounds from the �-
calculus but, for terms in canonical form (see Figure 13), we
obtain an exponential bound.

Lemma 47. For PTR-computation � `c
M : F�, (�,�)-

name scheme �, the set of of states reachable from CPTR,�
M

in L�

PTR
is finite. If M is in canonical form, it is exponential

in the size of M .

Lemma 48. For PTR-computation � `c
M : F� and (�,�)-

name scheme �, one can effectively construct a deterministic
VPA accepting Tr�

PTR
(CPTR,�

M ). If M is in canonical form,
the construction can be carried out in exponential time.

VII. DECIDABILITY, COMPLEXITY AND TRANSLATIONS

Theorem 49. Contextual approximation for the PTR-
fragment of CBPV is decidable. For computations in canon-
ical form, it is decidable in exponential time.

Proof. From Theorem 46, testing two computations � `c

M1,M2 : F� for contextual approximation can be done by
comparing the complete traces generated by L�

PTR
for every

possible name scheme �. As choice of base names in �,�
is arbitrary, we need only care about the Ints occurring in
�, which gives exponentially many �. By Lemma 48, each
comparison reduces to a language equivalence test. For canon-
ical forms, the two VPA’s are constructible in exponential
time. In particular, they will be of exponential size. Because
language equivalence is in P for deterministic VPA, the lemma
follows.

One can show that it is the use of level-2 names that forces
us to make use of an unbounded stack. The computations that
omit level-2 names are of the form � `c

M : F�
1, where

each type in � is a �
2 type according to the grammar given

below.
�
2 , �

1 | U⌧
1

�
1 , �

0 | Ref | U⌧
0

⌧
1 , F�

2 | �1 ! ⌧
1

⌧
0 , F�

0 | �0 ! ⌧
0

�
0 , Int | Unit
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MAIN RESULTS (CBPV)
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.
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next location to be ih+1. This gives an operational semantics
which is behaviorally the same as generating a fresh location,
so long as ih is larger than any name appearing in h.

We also make changes to handle the while do construct.
The idea is to reset both ih and ⌘ back to the value before the
loop once we reach the end of the loop. This is due to the fact
that, by the way the scopes work in the language, any name
or location generated in the loop cannot be used outside of
(that iteration of) the loop. In particular, we introduce a new
construct, end(ih, ⌘).M , to indicate the end of an iteration
of a loop. We provide rules for while and end in Figure 11,
where h<ih denotes the heap h restricted to domain of location
smaller than ih. Similarly, if ⇣ is a partial map from indexed
names, and ⌘ maps base names to indices, we write ⇣⌘ to mean
⇣ restricted to indexed names f

i for which i < ⌘(f). We will
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⌘ is a function from base names to the next available index,
which we call the (next) index component. ih is the (next)

location component, the next available location. µ is the reset

component, a partial map from (indexed) level-2 thunk names
and O-continuation names to the value of (ih, ⌘) prior to the
move that introduced the name. l is a binary flag used to
indicate whether a marked name has been produced in the
trace so far.

We now need to define initial configurations. Let
� `c

M : F� be a PTR computation and � =
(TB,CB, ⇢, c0, SucT, SucC) be a (�, F�)-name scheme. Let
⇢
0 = [xi 7! ⇢(xi)0], NO = ⌫(⇢) [ {c0} and N
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O = {n0 |n 2
N0}. Then the active initial configuration CPTR,�

M is defined
to be

(hM{⇢0}, c0
0
, ;, ;, [N0

O 7! ;], 0, ⌘, ;, 0i,?)

where ⌘ = [NO, c0 7! 1] · [(TB [ CB) \ (NO [ {c0}) 7! 0].
The main change to the LTS, is to ‘recycle’ the indices, so

as to keep the space of reachable configurations finite. This is
the role of the µ component, based on the properties identified
in Lemmata 41 and 42. In particular, after a PA-action (other
than on the initial continuation name), we ‘prune’ the domains
of the components to the index names and locations introduced
before the OQ-action being answered. Similarly, after a PQ-
action on a level-2 name f , we split the components between
the index names and locations introduced before the OQ-action
introducing the originator of f , and those after. Those from
before the OQ-action become part of the next configuration,
whereas those from after are stored on the stack until they can

be restored after the matching OA-action. Let Tr�
PTR

(C) be
the set of base traces generated from C in L�

PTR
.

Definition 44. The PTR-trace semantics of a
PTR-computation � `c

M : F� is defined to be
TrPTR(� `c

M : F�) , { (�, t) | � is a (�, F�)-name
scheme, t 2 Tr�
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M ) = Rename�(TrCBPV(C
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Lemma 45 with Corollaries IV and 39 imply the following.

Theorem 46 (PTR Full Abstraction). For any PTR com-
putations � ` M1,M2 : F�, then � ` M1 .CBPV

ter M2 iff
TrPTR(� ` M1) ✓ TrPTR(� ` M2).

L�
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turns out to be a VPA for any PTR-computation.

In general, it inherits the non-elementary bounds from the �-
calculus but, for terms in canonical form (see Figure 13), we
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is finite. If M is in canonical form, it is exponential

in the size of M .

Lemma 48. For PTR-computation � `c
M : F� and (�,�)-

name scheme �, one can effectively construct a deterministic
VPA accepting Tr�

PTR
(CPTR,�

M ). If M is in canonical form,
the construction can be carried out in exponential time.

VII. DECIDABILITY, COMPLEXITY AND TRANSLATIONS

Theorem 49. Contextual approximation for the PTR-
fragment of CBPV is decidable. For computations in canon-
ical form, it is decidable in exponential time.

Proof. From Theorem 46, testing two computations � `c

M1,M2 : F� for contextual approximation can be done by
comparing the complete traces generated by L�

PTR
for every

possible name scheme �. As choice of base names in �,�
is arbitrary, we need only care about the Ints occurring in
�, which gives exponentially many �. By Lemma 48, each
comparison reduces to a language equivalence test. For canon-
ical forms, the two VPA’s are constructible in exponential
time. In particular, they will be of exponential size. Because
language equivalence is in P for deterministic VPA, the lemma
follows.

One can show that it is the use of level-2 names that forces
us to make use of an unbounded stack. The computations that
omit level-2 names are of the form � `c

M : F�
1, where

each type in � is a �
2 type according to the grammar given

below.
�
2 , �

1 | U⌧
1

�
1 , �
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TOWARDS A DFA

!e using the rule

(M,h) ! (M 0
, h

0)

(M,h, ih, ⌘) !e (M 0, h0, ih, ⌘)
.

The reduction rule for handling new references is replaced
by (K[ref V ], h, ih, ⌘) !e (K[ih], h · [ih 7! V ], ih + 1, ⌘). It
uses ih as the location for the new reference, and then sets the
next location to be ih+1. This gives an operational semantics
which is behaviorally the same as generating a fresh location,
so long as ih is larger than any name appearing in h.

We also make changes to handle the while do construct.
The idea is to reset both ih and ⌘ back to the value before the
loop once we reach the end of the loop. This is due to the fact
that, by the way the scopes work in the language, any name
or location generated in the loop cannot be used outside of
(that iteration of) the loop. In particular, we introduce a new
construct, end(ih, ⌘).M , to indicate the end of an iteration
of a loop. We provide rules for while and end in Figure 11,
where h<ih denotes the heap h restricted to domain of location
smaller than ih. Similarly, if ⇣ is a partial map from indexed
names, and ⌘ maps base names to indices, we write ⇣⌘ to mean
⇣ restricted to indexed names f

i for which i < ⌘(f). We will
use h�ih and ⇣�⌘ analogously.

Finally, we present the LTS L�

PTR
in Figure 12. Active con-

figurations of L�

PTR
have the form hM, c, �, h,H, ih, ⌘, µ, li

and passive ones h�, h,H,Fn, ih, ⌘, µ, li. As described above,
⌘ is a function from base names to the next available index,
which we call the (next) index component. ih is the (next)

location component, the next available location. µ is the reset

component, a partial map from (indexed) level-2 thunk names
and O-continuation names to the value of (ih, ⌘) prior to the
move that introduced the name. l is a binary flag used to
indicate whether a marked name has been produced in the
trace so far.

We now need to define initial configurations. Let
� `c

M : F� be a PTR computation and � =
(TB,CB, ⇢, c0, SucT, SucC) be a (�, F�)-name scheme. Let
⇢
0 = [xi 7! ⇢(xi)0], NO = ⌫(⇢) [ {c0} and N

0

O = {n0 |n 2
N0}. Then the active initial configuration CPTR,�

M is defined
to be

(hM{⇢0}, c0
0
, ;, ;, [N0

O 7! ;], 0, ⌘, ;, 0i,?)

where ⌘ = [NO, c0 7! 1] · [(TB [ CB) \ (NO [ {c0}) 7! 0].
The main change to the LTS, is to ‘recycle’ the indices, so

as to keep the space of reachable configurations finite. This is
the role of the µ component, based on the properties identified
in Lemmata 41 and 42. In particular, after a PA-action (other
than on the initial continuation name), we ‘prune’ the domains
of the components to the index names and locations introduced
before the OQ-action being answered. Similarly, after a PQ-
action on a level-2 name f , we split the components between
the index names and locations introduced before the OQ-action
introducing the originator of f , and those after. Those from
before the OQ-action become part of the next configuration,
whereas those from after are stored on the stack until they can

be restored after the matching OA-action. Let Tr�
PTR

(C) be
the set of base traces generated from C in L�

PTR
.

Definition 44. The PTR-trace semantics of a
PTR-computation � `c

M : F� is defined to be
TrPTR(� `c

M : F�) , { (�, t) | � is a (�, F�)-name
scheme, t 2 Tr�

PTR
(CPTR,�

M ), t is complete}.

We can show that the new semantics agree with the full
trace semantics on PTR-computations.

Lemma 45. For any PTR-computation � ` M : F�,
a (�, F�)-name scheme � = (TB,CB, ⇢, c0, SucT, SucC),
Tr�

PTR
(CPTR,�

M ) = Rename�(TrCBPV(C
⇢,c0
M )).

Lemma 45 with Corollaries IV and 39 imply the following.

Theorem 46 (PTR Full Abstraction). For any PTR com-
putations � ` M1,M2 : F�, then � ` M1 .CBPV

ter M2 iff
TrPTR(� ` M1) ✓ TrPTR(� ` M2).

L�

PTR
turns out to be a VPA for any PTR-computation.

In general, it inherits the non-elementary bounds from the �-
calculus but, for terms in canonical form (see Figure 13), we
obtain an exponential bound.
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M : F�, (�,�)-

name scheme �, the set of of states reachable from CPTR,�
M

in L�

PTR
is finite. If M is in canonical form, it is exponential

in the size of M .

Lemma 48. For PTR-computation � `c
M : F� and (�,�)-

name scheme �, one can effectively construct a deterministic
VPA accepting Tr�

PTR
(CPTR,�

M ). If M is in canonical form,
the construction can be carried out in exponential time.

VII. DECIDABILITY, COMPLEXITY AND TRANSLATIONS

Theorem 49. Contextual approximation for the PTR-
fragment of CBPV is decidable. For computations in canon-
ical form, it is decidable in exponential time.

Proof. From Theorem 46, testing two computations � `c

M1,M2 : F� for contextual approximation can be done by
comparing the complete traces generated by L�

PTR
for every

possible name scheme �. As choice of base names in �,�
is arbitrary, we need only care about the Ints occurring in
�, which gives exponentially many �. By Lemma 48, each
comparison reduces to a language equivalence test. For canon-
ical forms, the two VPA’s are constructible in exponential
time. In particular, they will be of exponential size. Because
language equivalence is in P for deterministic VPA, the lemma
follows.

One can show that it is the use of level-2 names that forces
us to make use of an unbounded stack. The computations that
omit level-2 names are of the form � `c

M : F�
1, where

each type in � is a �
2 type according to the grammar given

below.
�
2 , �

1 | U⌧
1

�
1 , �
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1 , F�

2 | �1 ! ⌧
1

⌧
0 , F�

0 | �0 ! ⌧
0

�
0 , Int | Unit

11



CONCLUSION
•From the CBPV results, one can recover all existing results for 

Idealized Algol and RML that were based on DFA and DVPA.  
To this end, it is necessary to show that the translations are 
fully abstract.

•Arguably, the methodology is more intuitive and accessible 
than earlier results.

•The results for CBPV are already new, but there is scope for 
other new results, based on “massaging” the LTS.

•Configurations of the resultant automata contain explicit 
operational information about run-time behaviour, which 
makes them suitable for other verification tasks. 


