
Computation Theory
in Sets with Atoms

Bartek Klin
University of Oxford

IFIP WG 2.2
Bologna, 5-8/09/23

A puzzle

2

Is it 3-colorable?

cabe

db

ab

bc

- edges: a 6= cab bc

An infinite graph:
- nodes: ab

<latexit sha1_base64="X57zTI6fXVQXktTDwDWgKx8Jyfc=">AAACOXicbVDLThRBFK1GQRgeDsrOTcUJCatJNyHqkujGlcGEAZLpzuR29Z2ZCvVoqm47jp3+F7f6C36JS3bELT9g9TALAU9SlZNz7q06OXmppKc4/h2tPHm6uvZsfaOzubW987y7++LM28oJHAirrLvIwaOSBgckSeFF6RB0rvA8v/zQ+udf0HlpzSnNS8w0TIwcSwEUpFF3D1KDVzxPpUk10DTP60/NqNuL+/EC/DFJlqTHljgZ7UbbaWFFpdGQUOD9MIlLympwJIXCppNWHksQlzDBYaAGNPqsXsRv+H5QCj62LhxDfKH+u1GD9n6u8zDZRvQPvVb8nzesaPwuq6UpK0Ij7j4aV4qT5W0XvJAOBal5ICCcDFm5mIIDQaGxey+BUln9dd50OqGumbBagynqlMg24Z7ZKULh5GRK4JydtQUmD+t6TM4O+8mbfvL5qHf8flnlOnvFXrMDlrC37Jh9ZCdswAT7xr6zH+xn9Cu6jm6iP3ejK9Fy5yW7h+j2L5UNrcQ=</latexit>

a 6= b 2 N

cabe

db

ab

bc

cdde

ea

ad

ec

No.

Is it k-colorable?

Is 3-colorability decidable?

General theme

3

Replace finite structures
with infinite, but highly symmetric ones
in:

- automata theory
- computability theory
- modelling / verification
- algorithms
...

- all the way down to set theory

Plan

4

1. Register automata

2. Sets with atoms

-- Turing machines with atoms

-- Linear algebra with atoms

-- Constraint satisfaction problems with atoms

-- ...

-- Temporal logics with atoms

3. Programming with atoms

 1
Register automata

Finite automata

6

A finite automaton is:
 - a set of states

 - an alphabet

 - initial state , accepting states

 - transition function

 (or relation)

Q

⌃

q0 2 Q F ✓ Q

� : Q⇥ ⌃ ! Q

� ✓ Q⇥ ⌃⇥Q

fi

Example language:
[

a2⌃

a(⌃ \ a)⇤

What about infinite alphabets?

7

A register automaton is:
 - a set of statesQ

 - initial state , accepting statesq0 2 Q F ✓ Q

fi

 - an alphabet (or) infiA ⌃⇥ A
- a set of registersR

 - configurations: � = Q⇥ (A [{?})R

 - transition function
 (or relation)

� : �⇥ A ! �

� ✓ �⇥ A⇥ �

that only checks for equality.A ?

8

Every transition:

q
a // q0

is guarded by a Boolean combination of conditions:

a = ri a = r0j ri = r0jri = rj

a(so is a “letter variable”, not an actual letter)

- old i-th register
- new i-th register

ri
r0i

“Only checking for equality”, syntactically

Example

9

[

a2A
a(A \ a)⇤

q0
a=r01 // q1

a 6=r1

XX
a=r1 // q2

>

XX

This is a deterministic register automaton.

10

Every bijection acts on configurations:

“Only checking for equality”, semantically

⇡ : A ! A

(q, a1, . . . , ak) · ⇡ = (q,⇡(a1), . . . ,⇡(ak))

This defines a group action of on .Aut(A) �

We require to be equivariant:�

if then (�, a, �0) 2 � (� · ⇡,⇡(a), �0 · ⇡) 2 �

for all .⇡

Fact: The syntactic and the semantic conditions
are equivalent.

 1I
Sets with Atoms

Slogans

12

X with atoms

We can compute on them

X = set, function, relation, automaton,
Turing machine, grammar, graph,
system of equations...

Infinite but with lots of symmetries

Infinite but symbolically finitely presentable

orbit-finite

U0 = ;
U↵+1 = PU↵ + A

U� =
S

↵<� U↵

A hierarchy of universes:

Sets with atoms

13

A - a countable set of atoms

A canonical group action:

· : U ⇥Aut(A) ! U

Elements of sets with atoms are atoms
or other sets with atoms, in a well founded way

Finite support

14

S ✓ A supports ifX

8a 2 S.⇡(a) = a x · ⇡ = ximplies

A legal set with atoms:
- has a finite support,
- every element has a finite support,
- and so on.

A set is equivariant if it has empty support.

Examples

15

{a}a 2 A is supported by

SS ✓ A is supported by

A \ S Sis supported by

A is equivariant

Fact: is fin. supp. iff it is finite or co-finiteS ✓ A

A(2) = {(d, e) | d, e 2 A, d 6= e} is equivariant
✓
A
2

◆
= {{d, e} | d, e 2 A, d 6= e} is equivariant

Closure properties

16

Legal sets with atoms are closed under:
- unions, intersections, set differences
- Cartesian products
- taking finitely supported subsets
- quotienting by finitely supported

equivalence relations

BUT not under powersets!

P(A) is equivariant but not legal.

They are closed under finite powersets Pfin(A)
and finitely supported powersets Pfs(A)

Relations and functions

17

Relations and functions are sets too, so:

R ✓ X ⇥ Y is equivariant iff

xRy (x · ⇡)R(y · ⇡)implies for all ⇡

⇡

f : X ! Y is equivariant iff

f(x · ⇡) = f(x) · ⇡ for all

Examples

18

R = {(5, 2)} ⇥ {(2, d) | d �= 5} ⇥ {(d, d)}

2

5

5

2

R
2

5

5

2

R⇤

For fixed :2, 5 2 A

R , are supported byR⇤ {2, 5}

Examples ctd.

19

Equivariant binary relations on :A
- empty - total
- equality - inequality

No equivariant function from to , but
�A
2

�
A

{({a, b}, a) | a, b 2 A}
is an equivariant relation.

Only equiv. functions from to are projections A2

Only equiv. function from to is the diagonal

A
A A2

Orbits

20

The orbit of is the setx {x · ⇡ | ⇡ 2 Aut(A)}
Every equivariant set is a disjoint union of orbits.

Orbit-finite set if the union is finite.

More generally: the -orbit of isxS

{x · ⇡ | ⇡ 2 AutS(A)}

Fact: An orbit-finite set is -orbit-finite
for every finite .

S
S

Examples

21

Orbit-finite sets:

A An

✓
A
n

◆

- closed under finite union, intersection
difference, finite Cartesian product

Not orbit-finite:

Pfin(A)A⇤

A/ = {{(a, b, c), (b, c, a), (c, a, b)} | a, b, c � A}

- but not under (even finite) powerset!

Finite presentation

22

A set-builder expression:

{e | a1, . . . , an 2 A, �[a1, . . . , an, b1, . . . , bm]}

expression bound variables

FO()-formula =

free variables

Add also and .; [

Fact: s.-b. e. + interpretation of free vars. as atoms
= a hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.

Ordered atoms

23

A = {a, b, c, d, . . .}

Q
can be replaced by

Aut(A)

Aut(Q, <)

New legal sets:

{(a, b) : a, b 2 A : a < b}

- orbit-finite sets remain orbit-finite
- equivariant functions are monotone-equivariant

Automata with atoms

24

A automaton with atoms is:
 - a set of states

 - an alphabet

 - initial state , accepting states

 - transition function

 (or relation)

Q

⌃

q0 2 Q F ✓ Q

� : Q⇥ ⌃ ! Q

� ✓ Q⇥ ⌃⇥Q

orbit-fi

equivariant

Fact: these are expressively equivalent to reg. aut.

Set theory with atoms

25

A lot of mathematics can be done with atoms

Sets with atoms are a topos

EXCEPT:
- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness

set set with atoms
finite orbit-finite

function equivariant function

III
Programming
with Atoms

Programming with finite sets

27

type Set a = [a]

empty :: Set a

insert :: a -> Set a -> Set a

filter :: (a -> Bool) -> Set a -> Set a

map :: (a -> b) -> Set a -> Set b

sum :: Set (Set a) -> Set a

...

Haskell syntax used

Example: transitive closure

28

comp :: Set (a,b) -> Set (b,c) -> Set (a,c)

comp s r = ...

transCl :: Set (a,a) -> Set (a,a)

transCl r =
 let r1 = comp r r in
 if isSubsetOf r1 r
 then r
 else transCl (union r1 r)

> transCl [(1,2),(2,3)]

[(1,2),(2,3),(1,3)]

Other examples

29

1. Graph 2-colorability

twoColorable :: Set (a,a) -> Bool

- look for cycles of odd length

2. Graph 3-colorability

threeColorable :: Set (a,a) -> Bool

- generate all 3-partitions of vertices
- for each of them, check legality

NLambda: a Haskell library

30

type Set a = ...

empty :: Set a

insert :: a -> Set a -> Set a

map :: (a -> b) -> Set a -> Set b

sum :: Set (Set a) -> Set a

...

isEmpty :: Set a -> Formula

atoms :: Set Atom

type Atom

Example

31

> atoms
{a : for a in A}

> map (\a -> map (\b -> (a,b)) atoms) atoms

{{(a,b) : for b in A} : for a in A}

> sum it
{(a,b) : for a,b in A}

> filter (\(a,b) -> eq a b) it
{(a,a) : for a in A}

> forAll (\a -> member a atoms) atoms
True

Semantics

32

- Orbit-finite sets internally represented
by FO formulas and set-builder expressions

- Condition evaluation delayed when possible:

> if (eq a b) (singleton c) atoms

{c : a=b, d : a!=b for d in A}

an SMT solver- Formulas evaluated by calling

> isEmpty atoms

False

Example: transitive closure

33

comp :: Set (a,b) -> Set (b,c) -> Set (a,c)

comp s r = ...

transCl :: Set (a,a) -> Set (a,a)

transCl r =
 let r1 = comp r r in
 if (isSubsetOf r1 r)
 r
 (transCl (union r1 r))

The same code!*

*essentially

Other examples

34

- Graph 2-colorability

twoColorable :: Set (a,a) -> Bool

Also the same code*

*essentially

- Angluin algorithm for automata learning

- interact with a teacher to learn an automaton

- Moerman, Sammartino, Silva, K., Szynwelski:
Learning nominal automata, POPL’17

3-colorability

35

threeColorable :: Set (a,a) -> Bool

- generate all 3-partitions of vertices ...

Cannot be done!

Different code:
- if coloring exists then an equivariant one exists
- generate 3-partitions of orbits ...
supports :: NType a => [Atom] -> a -> Bool

orbits :: NType a => Set a -> Set (Set a)
...

Ordered atoms needed

The easy, the hard & the impossible

36

Easy: code copied verbatim*

transCl :: Set (a,a) -> Set (a,a)

twoColorable :: Set (a,a) -> Bool
learnAngluin :: ...

*essentially

Impossible: atom enumeration
toList :: Set a -> [a]

foldl :: (b -> a -> b) -> b -> Set a -> b

threeColorable :: Set (a,a) -> Bool

Hard: supports, orbits etc. required

 X.(X with atoms)

A recipe for adding atoms to everything:

�

1. Take your favourite definition.
2. Replace all sets (relations, functions etc.)

with sets with atoms (equivariant if you wish).

3. Replace every “finite” with “orbit-finite”.

4. Check if your favourite theorems still hold.
(take with a pinch of salt)

