Computation Theory in Sets with Atoms

Bartek Klin
University of Oxford

IFIPWG 2.2
Bologna, 5-8/09/23

A puzzle

An infinite graph:

- nodes:
$a b$
$a \neq b \in \mathbb{N}$
- edges: $a b — b c$
$a \neq c$

Is it 3-colorable?

Is it k-colorable?

No.

Is 3-colorability decidable?

General theme

Replace finite structures
with infinite, but highly symmetric ones in:

- automata theory
- computability theory
- modelling / verification
- algorithms
- all the way down to set theory
I. Register automata

2. Sets with atoms
-- Constraint satisfaction problems with atoms
-- Turing machines with atoms
-- Temporal logics with atoms
-- Linear algebra with atoms
3. Programming with atoms

I

Register automata

Finite automata

A finite automaton is:
finite

- a set Q of states
- an alphabet Σ
- initial state $q_{0} \in Q$, accepting states $F \subseteq Q$
- transition function $\delta: Q \times \Sigma \rightarrow Q$
(or relation $\delta \subseteq Q \times \Sigma \times Q$)

Example language: $\bigcup_{a \in \Sigma} a(\Sigma \backslash a)^{*}$

What about infinite alphabets?

A register automaton is:

finite

- a set Q of states
- a set R of registers
- an alphabet $\mathbb{A}($ or $\Sigma \times \mathbb{A}) \longleftarrow \quad$ infinite
- initial state $q_{0} \in Q$, accepting states $F \subseteq Q$
- configurations: $\Gamma=Q \times(\mathbb{A} \cup\{\perp\})^{R}$
- transition function $\delta: \Gamma \times \mathbb{A} \rightarrow \Gamma$ (or relation $\delta \subseteq \Gamma \times \mathbb{A} \times \Gamma$) that only checks \mathbb{A} for equality.

"Only checking for equality", syntactically

Every transition:

$$
q \xrightarrow{a} q^{\prime}
$$

is guarded by a Boolean combination of conditions:

$$
a=r_{i} \quad a=r_{j}^{\prime} \quad r_{i}=r_{j} \quad r_{i}=r_{j}^{\prime}
$$

(so a is a "letter variable", not an actual letter) r_{i} - old i-th register
r_{i}^{\prime} - new i -th register

Example

$$
\bigcup_{a \in \mathbb{A}} a(\mathbb{A} \backslash a)^{*}
$$

This is a deterministic register automaton.

"Only checking for equality", semantically

Every bijection $\pi: \mathbb{A} \rightarrow \mathbb{A}$ acts on configurations:

$$
\left(q, a_{1}, \ldots, a_{k}\right) \cdot \pi=\left(q, \pi\left(a_{1}\right), \ldots, \pi\left(a_{k}\right)\right)
$$

This defines a group action of $\operatorname{Aut}(\mathbb{A})$ on Γ.
We require δ to be equivariant:

$$
\begin{array}{r}
\text { if }\left(\gamma, a, \gamma^{\prime}\right) \in \delta \text { then }\left(\gamma \cdot \pi, \pi(a), \gamma^{\prime} \cdot \pi\right) \in \delta \\
\text { for all } \pi
\end{array}
$$

Fact:The syntactic and the semantic conditions are equivalent.

II
 Sets with Atoms

X = set, function, relation, automaton, Turing machine, grammar, graph, system of equations...

X with atoms

Infinite but with lots of symmetries

```
orbit-finite
```

Infinite but symbolically finitely presentable
We can compute on them

Sets with atoms

\mathbb{A} - a countable set of atoms
A hierarchy of universes:

$$
\begin{aligned}
\mathcal{U}_{0} & =\emptyset \\
\mathcal{U}_{\alpha+1} & =\mathcal{P} \mathcal{U}_{\alpha}+\mathbb{A} \\
\mathcal{U}_{\beta} & =\bigcup_{\alpha<\beta} \mathcal{U}_{\alpha}
\end{aligned}
$$

Elements of sets with atoms are atoms or other sets with atoms, in a well founded way

A canonical group action:

$$
{ }_{-} \cdot_{-}: \mathcal{U} \times \operatorname{Aut}(\mathbb{A}) \rightarrow \mathcal{U}
$$

$S \subseteq \mathbb{A}$ supports X if
$\forall a \in S . \pi(a)=a \quad$ implies $\quad x \cdot \pi=x$

A legal set with atoms:

- has a finite support,
- every element has a finite support,
- and so on.

A set is equivariant if it has empty support.

Examples

$a \in \mathbb{A} \quad$ is supported by $\quad\{a\}$
$\mathbb{A} \quad$ is equivariant
$S \subseteq \mathbb{A} \quad$ is supported by $\quad S$
$\mathbb{A} \backslash S \quad$ is supported by $\quad S$
Fact: $S \subseteq \mathbb{A}$ is fin. supp. iff it is finite or co-finite
$\mathbb{A}^{(2)}=\{(d, e) \mid d, e \in \mathbb{A}, d \neq e\}$ is equivariant $\binom{\mathbb{A}}{2}=\{\{d, e\} \mid d, e \in \mathbb{A}, d \neq e\}$ is equivariant

Closure properties

Legal sets with atoms are closed under:

- unions, intersections, set differences
- Cartesian products
- taking finitely supported subsets
- quotienting by finitely supported equivalence relations
BUT not under powersets!
$\mathcal{P}(\mathbb{A})$ is equivariant but not legal.
They are closed under finite powersets $\mathcal{P}_{\text {fin }}(\mathbb{A})$ and finitely supported powersets $\mathcal{P}_{\mathrm{fs}}(\mathbb{A})$

Relations and functions

Relations and functions are sets too, so:
$R \subseteq X \times Y$ is equivariant iff $x R y$ implies $(x \cdot \pi) R(y \cdot \pi)$ for all π

$$
\begin{aligned}
& f: X \rightarrow Y \text { is equivariant iff } \\
& \qquad f(x \cdot \pi)=f(x) \cdot \pi \text { for all } \pi
\end{aligned}
$$

Examples

For fixed $2,5 \in \mathbb{A}$:

$$
R=\{(5,2)\} \cup\{(2, d) \mid d \neq 5\} \cup\{(d, d)\}
$$

R, R^{*} are supported by $\{2,5\}$

Examples ctd.

Equivariant binary relations on \mathbb{A} :

- empty
- equality
- total
- inequality

No equivariant function from $\binom{\mathbb{A}}{2}$ to \mathbb{A}, but

$$
\{(\{a, b\}, a) \mid a, b \in \mathbb{A}\}
$$

is an equivariant relation.
Only equiv. functions from \mathbb{A}^{2} to \mathbb{A} are projections
Only equiv. function from \mathbb{A} to \mathbb{A}^{2} is the diagonal

The orbit of x is the set $\{x \cdot \pi \mid \pi \in \operatorname{Aut}(\mathbb{A})\}$
Every equivariant set is a disjoint union of orbits.
Orbit-finite set if the union is finite.

More generally: the S-orbit of x is

$$
\left\{x \cdot \pi \mid \pi \in \operatorname{Aut}_{S}(\mathbb{A})\right\}
$$

Fact: An orbit-finite set is S-orbit-finite for every finite S.

Examples

Orbit-finite sets:

$$
\begin{aligned}
& \mathbb{A} \mathbb{A}^{n} \quad\binom{\mathbb{A}}{n} \\
& \mathbb{A}^{\triangleleft}=\{\{(a, b, c),(b, c, a),(c, a, b)\} \mid a, b, c \in \mathbb{A}\}
\end{aligned}
$$

- closed under finite union, intersection difference, finite Cartesian product
- but not under (even finite) powerset!

Not orbit-finite:

$$
\mathbb{A}^{*} \quad \mathcal{P}_{\mathrm{fin}}(\mathbb{A})
$$

Finite presentation

A set-builder expression:
$\left\{e \mid a_{1}, \ldots, a_{n} \in \mathbb{A}, \phi\left[a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right]\right\}$
expression bound variables
free variables

$$
\mathrm{FO}(=) \text {-formula }
$$

Add also \emptyset and \cup.
Fact: s.-b. e. + interpretation of free vars. as atoms $=\mathrm{a}$ hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.

Ordered atoms

$$
\mathbb{A}=\{a, b, c, d, \ldots\} \quad \operatorname{Aut}(\mathbb{A})
$$

can be replaced by

$$
\mathbb{Q} \quad \operatorname{Aut}(\mathbb{Q},<)
$$

New legal sets:

$$
\{(a, b): a, b \in \mathbb{A}: a<b\}
$$

- orbit-finite sets remain orbit-finite
- equivariant functions are monotone-equivariant

Automata with atoms

A automaton with atoms is:

orbit-finite

- a set Q of states
- an alphabet Σ
- initial state $q_{0} \in Q$, accepting states $F \subseteq Q$
- transition function $\delta: Q \times \Sigma \rightarrow Q$
(or relation $\delta \subseteq Q \times \Sigma \times Q$)

Fact: these are expressively equivalent to reg. aut.

Set theory with atoms

Sets with atoms are a topos

A lot of mathematics can be done with atoms

> set \rightarrow set with atoms
> finite \rightarrow orbit-finite
> function \rightarrow equivariant function

EXCEPT:

- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness

III

Programming with Atoms

Programming with finite sets

Haskell syntax used
type set $a=$ [a]
empty : : Set a
insert : : a $->$ set $a \quad->$ set a
map : : ($\mathrm{a}->\mathrm{b})$-> Set $\mathrm{a}->$ Set b
filter : : (a -> Boole) -> Set a -> Set a
sum : : Set (Set a) -> set a

Example: transitive closure

comp : : $\operatorname{Set}(\mathrm{a}, \mathrm{b}) \rightarrow \operatorname{Set}(\mathrm{b}, \mathrm{c}) \rightarrow-\operatorname{Set}(\mathrm{a}, \mathrm{c})$ comp sr = ...
transCl : : Set (ara) -> Set (ara)
transCl r =
let $r 1=$ comp rr in
if isSubsetOf ri r
then r
else transCl (union ri r)
$>$ transCl $[(1,2),(2,3)]$
$[(1,2),(2,3),(1,3)]$

Other examples

I. Graph 2-colorability
twoColorable :: Set (a,a) -> Bool

- look for cycles of odd length

2. Graph 3-colorability
threeColorable :: Set (a,a) -> Bool

- generate all 3-partitions of vertices
- for each of them, check legality

NLambda: a Haskell library

type Atom
type set $\mathrm{a}=\ldots$.
empty : : Set a
atoms :: Set Atom
insert : : a $->$ set $a \quad->$ Set a
$\operatorname{map}::(\mathrm{a}->\mathrm{b}) \rightarrow$ set $\mathrm{a}->$ set b
sum : : Set (Set a) -> Set a
isEmpty : : Set a $->$ Formula

Example

> atoms
\{a : for a in A\}
$>\operatorname{map}(\backslash a->\operatorname{map}(\backslash b->(a, b))$ atoms) atoms \{\{($\mathrm{a}, \mathrm{b})$: for b in A$\}$: for a in A$\}$
> sum it
\{(a,b) : for a, b in A$\}$
$>$ filter $(\backslash(a, b)$-> eq a b) it \{(a,a) : for a in A\}
> forAll (\a -> member a atoms) atoms True

Semantics

- Orbit-finite sets internally represented by FO formulas and set-builder expressions
- Condition evaluation delayed when possible:

$$
\begin{aligned}
& >\text { if (eq a b) (singleton c) atoms } \\
& \{c: a=b, d \text { : } a!=b \text { for } d \text { in } A\}
\end{aligned}
$$

- Formulas evaluated by calling an SMT solver
> isEmpty atoms
False

Example: transitive closure

comp : : $\operatorname{Set}(\mathrm{a}, \mathrm{b})->\operatorname{Set}(\mathrm{b}, \mathrm{c})->\operatorname{Set}(\mathrm{a}, \mathrm{c})$ comp s r = ...
transCl : : Set (a,a) -> Set (a,a)
transCl r =
let $r 1=$ comp r r in
if (isSubsetOf r1 r)
r
(transCl (union rl r))

The same code!*

*essentially

Other examples

- Graph 2-colorability
twoColorable :: Set (a,a) -> Bool
- Angluin algorithm for automata learning
- interact with a teacher to learn an automaton
- Moerman, Sammartino, Silva, K., Szynwelski:

Learning nominal automata, POPL'I7

Also the same code*

*essentially

3-colorability

threeColorable : : Set (a,a) -> Bool

- generate all 3-partitions of vertices ...

Cannot be done!

Different code:

- if coloring exists then an equivariant one exists
- generate 3-partitions of orbits ...
supports :: NType a => [Atom] -> a -> Bool
orbits :: NType a => Set a -> Set (Set a)
Ordered atoms needed

The easy, the hard \& the impossible

Easy: code copied verbatim*
transCl : : Set (ara) -> Set (ara)
twoColorable :: Set (ara) -> Bool
learnAngluin : : ..

Hard: supports, orbits etc. required
threeColorable : : Set (ara) -> Bool

Impossible: atom enumeration
toList : : Set a -> [a]
fold :: (b -> a -> b) -> b -> Set a -> b

$\lambda \mathrm{X} .(\mathrm{X}$ with atoms)

A recipe for adding atoms to everything:
I.Take your favourite definition.
2. Replace all sets (relations, functions etc.)
with sets with atoms (equivariant if you wish).
3. Replace every "finite" with "orbit-finite".
4. Check if your favourite theorems still hold.
(take with a pinch of salt)

