Computation Theory
in Sets with Atoms

Bartek Klin
University of Oxford

IFIPWG 2.2
Bologna, 5-8/09/23

An infinite graph:

- hodes: ab a#beN
- edges: ab—Dbc a #
Is it 3-colorable? ﬂll?\
be ca— No.
e
Nilal,
ec
Is it k-colorable? de”” Scd

Is 3-colorability decidable!?

Replace structures
with ones

In:
- automata theory
- computability theory
- modelling / verification

- algorithms

- all the way down to set theory

|. Register automata

2. Sets with atoms

3. Programming with atoms

|
Register automata

A finite automaton is: finite
- a set () of states

- an alphabet 2.
- initial state qo € (), accepting states F' C ()

- transition function 0 : () X X — ()
(or relation 0 C () X X2 X Q)

Example language: U a(X\ a)”
ac’

A register automaton is: finite

- a set () of states
- a set 7 of registers

- an alphabet A (or X x A) infinite
- initial state qp € (), accepting states F' C ()
- configurations: I' = Q x (AU {L1})"
- transition function 0 : I' X A — T’

(or relation 0 C I' X A x T')

that‘f

Every transition:

a /
q >~ q
is guarded by a Boolean combination of conditions:

(so a is a “‘letter variable”, not an actual letter)
r; - old i-th register

r’ - new i-th register

acA
/
a:frl a=T71
qo ~.41 > {2
a#ri T

This is a deterministic register automaton.

Every bijection m: A — A acts on configurations:

(q,a1,...,ar) ™= (q,7(ay),...,7(ag))
This defines a group action of Aut(A) on I.
We require 0 to be equivariant:

if (%aﬁl) € 0 then (AY ' 7-‘-77-‘-(&)77/ ' 7T) € 0

for all 7.

Fact: The syntactic and the semantic conditions
are equivalent.

| |
Sets with Atoms

X = set, function, relation, automaton,
Turing machine, grammar, graph,
system of equations...

X with atoms

Infinite but with lots of symmetries

orbit-finite

Infinite but symbolically finitely presentable

We can compute on them

12

A - a countable set of atoms

A hierarchy of universes:

Uy =
U1 = PU, + A
Z/[@ — Uoz<[3 Ua

Elements of sets with atoms are atoms
or other sets with atoms, in a well founded way

A canonical group action:

U X Aut(A) - U

S CA X if

Va € Sm(a) =a implies z-m=u

A legal

- has a finite support,

- every element has a finite support,
- and so on.

A set is if it has empty support.

a € A issupported by {a}
A is equivariant
S C A is supported by S

A\S issupportedby S

Fact: S C A is fin. supp. iff it is finite or co-finite

AP ={(d e)|dec A d+#e} isequivariant

A
(2) = {{d,e} | d,e € A,d # e} is equivariant

|5

Legal sets with atoms are closed under:

- unions, intersections, set differences
- Cartesian products

- taking finitely supported subsets

- quotienting by finitely supported
equivalence relations

BUT not under powersets!
P(A) is equivariant but not legal.

They are closed under finite powersets Pg, (A)
and finitely supported powersets Pis(A)

|6

Relations and functions are sets too, so:

R C X XY is equivariant iff

rRy implies (x-m)R(y-7m) forall 7

f : X =Y s equivariant iff
flrx-m)= f(x) -7 forall w

For fixed 2,5 € A:

e
|

1(5,2); U{(2,d) | d # 57 U{(d,d)}

R, R" are supported by {2,5}

Equivariant binary relations on A:

- empty - total
- equality - inequality

No equivariant function from (‘g) to A, but
1({a,b},a) | a,b € A}

is an equivariant relation.

Only equiv. functions from A? to A are projections

Only equiv. function from A to AZis the diagonal

19

The orbit of = istheset {x -7 | m € Aut(A)}
Every equivariant set is a disjoint union of orbits.

Orbit-finite set if the union is finite.

More generally: the S -orbit of x is

{x-m|me Autg(A)}

Fact: An orbit-finite set is S-orbit-finite
for every finite S'.

20

Orbit-finite sets:
A
A A7 ()
n
A% ={{(a,b,c), (b,c,a),(c,a,b)} | a,b,cec A}

- closed under finite union, intersection
difference, finite Cartesian product
- but not under (even finite) powerset!

Not orbit-finite;
A* Phin(A)

21

A set-builder expression:

{6|a1,...,an EA, ¢[a1,...,an,b1,...,bm]}

expression bound variables free variables
FO(=)-formula
Add also () and U.

Fact: s.-b.e. + interpretation of free vars. as atoms
= a hereditarily orbit-finite set with atoms

Fact: Every h. o.-f. set is of this form.

22

A ={a,b,c,d,...} Aut(A)

can be replaced by

9 Aut(Q, <) l&u.u. x

{(a,b) :a,be A:a <b}

- orbit-finite sets remain orbit-finite

- equivariant functions are monotone-equivariant

23

A automaton with atoms is: orbit-finite
- a set () of states

- an alphabet .
- initial state qo € (), accepting states F' C ()
- transition function 0 : () X X — ()

(or relation 0 C () X2 X Q)

equivariant

Fact: these are expressively equivalent to reg. aut.

24

Sets with atoms are a topos

A lot of mathematics can be done with atoms

4 , I
set —P set with atoms

finite —P orbit-finite
function —p equivariant function

\ y

EXCEPT:

- axiom of choice fails, even orbit-finite choice
- powerset does not preserve orbit-finiteness

25

Programming
with Atoms

Haskell syntax used
type Set a = [a]

empty :: Set a

insert :: a -> Set a -> Set a

map :: (a -> b) -> Set a -> Set b
filter :: (a -> Bool) -> Set a -> Set a

sum :: Set (Set a) -> Set a

27

comp :: Set (a,b) -> Set (b,c) -> Set (a,c)

comp s r =

transCl :: Set (a,a) -> Set (a,a)

transCl r =

let rl = comp r r 1in
if 1sSubsetOf rl r
then r

else transCl (union rl r)

' > transCl [(1,2),(2,3)]

[(1,2),(2,3),(1,3)]

28

|. Graph 2-colorability

twoColorable :: Set (a,a) -> Bool

- look for cycles of odd length

2. Graph 3-colorability

threeColorable :: Set (a,a) -> Bool

- generate all 3-partitions of vertices

- for each of them, check legality

29

type Atom

type Set a = ...

empty :: Set a

atoms :: Set Atom

insert :: a -> Set a -> Set a

map :: (a -> b) -> Set a -> Set b
sum :: Set (Set a) -> Set a

1sEmpty :: Set a -> Formula

1> atoms

{a : for a 1in A}

B map (\a -> map (\b -> (a,b)) atoms)

{{(a,b) : for b in A} : for a in A}

> sum 1t
{(a,b) : for a,b in A}

> filter (\(a,b) -> eq a b) it

\ {(a,a) : for a in A}

> forAll (\a -> member a atoms) atoms

|
| True

- Orbit-finite sets internally represented

by FO formulas and set-builder expressions

- Condition evaluation delayed when possible:

— - — —

(eq a b) (singleton c) atoms

a=b, d : al!l=b for d in A}

' > 1sEmpty atoms

False

——— e e e

comp :: Set (a,b) -> Set (b,c) -> Set (a,c)

comp S r = ...

transCl :: Set (a,a) -> Set (a,a)

transCl r =
let rl = comp r r 1n
1f (1sSubsetOf rl r)
r
(transCl (union rl r))

g)

The same code!*
_ Y,

“essentially

33

- Graph 2-colorability

twoColorable :: Set (a,a) -> Bool

- Angluin algorithm for automata learning

- interact with a teacher to learn an automaton

- Moerman, Sammartino, Silva, K., Szynwelski:
Learning nominal automata, POPL | 7

Also the same code®

“essentially

34

threeColorable :: Set (a,a) -> Bool

- generate all 3-partitions of vertices ...

[Cannot be done!]

Different code:

- if coloring exists then an one exists

- generate 3-partitions of

supports :: NType a => [Atom] -> a -> Bool
orbits :: NType a => Set a -> Set (Set a)

[Ordered atoms needed]

35

COde COPIed ve I"batlm* *essentially

transCl :: Set (a,a) -> Set (a,a)

twoColorable Set (a,a) -> Bool

learnAngluin :

Hard: supports, orbits etc. required

threeColorable :: Set (a,a) -> Bool

Impossible: atom enumeration
toList :: Set a -> [a]
foldl :: (b -> a ->b) -> b -> Set a -> b

36

A recipe for adding atoms to everything:

|. Take your favourite definition.
2. Replace all sets (relations, functions etc.)
with sets with atoms (equivariant if you wish).

3. Replace every “finite” with “orbit-finite”.

4. Check if your favourite theorems still hold.

(take with a pinch of salt)
S e —— e —

