Deductive Verification of Probabilistic Programs

Joost-Pieter Katoen

European

Q Research
rc Council

RWNTH

wwagen der Frogrammi.. ..

o

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Probabilistic programs

Programs with random assignments and conditioning

naturally code up randomised algorithms

>
P represent probabilistic graphical models beyond Bayesian networks
» model controllers for autonomous robots

>

key to describe security mechanisms

Programming languages: R2, STAN, Pyro, PyMC, WebPPL, Fabular, ...

"Probabilistic programming aims to make

probabilistic modeling and machine learning accessible to the prog;rammer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {

x = x+2 [1/2] x := x-1
}

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {

x = x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Motivation

Even if all loops are bounded [Flajolet et al., 2009]

geometric(1/4);
geometric(1/4);
X+y;

t+1 [56/9] skip;
=1,

or i in 1..3 {

s := iid(bernoulli(1/2), 2t);
if (s '=t) { r := 0 } else skip
S$:=0j
Lfor &::f\ o 2k {
s++ 03] sk

X
y
t
t
r
£

}

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Even if all loops are bounded

b'e geometric(1/4);
v geometric(1/4);
t = xty;
t
r
f

t+1 [5/9] skip;
= 1;
or i in 1..3 {
s := iid(bernoulli(1/2), 2t);
if (s '=t) {r := 0 } else skip

What is the probability that r equals one on termination?

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Positive almost-sure termination ~
> 4.2k
EN] = w2
=4 2

int x := 1;

bool ¢ := true;

while (c) { e while (x > 0) {
c := false [0.5] c := true; xX—-
X 1= 2%x 5 3

}

Finite termination time!

Finite expected termination time?

Expected runtime of these programs in sequence?

Deductive Verification of Probabilistic Programs

Joost-Pieter Katoen

Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!

Typically “more undecidable” than deterministic programs

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Overview

@ Motivation

@ Verifying probabilistic programs
© Proof rules

@ A syntax for weakest expectations

© Automation

Deductive Verification of Probabilistic Programs

Joost-Pieter Katoen

Verifying probabilistic programs

Expectation transformers

The set of expectations' (read: random variables):

E = {flf: S, —>R20U{oo}}

states

S é S . \/or——e \,o-\,

4 expectations in probability theory.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Expectation transformers

The set of expectations' (read: random variables):

E = {flf: S, —>R20u{oo}}

states

(E,E) is a complete lattice where f E g if and only if Vs € S. f(s) < g(s)

4 expectations in probability theory.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Expectation transformers

The set of expectations' (read: random variables):

E = {flf: S, —>R20U{oo}}

states

(E,E) is a complete lattice where f E g if and only if Vs € S. f(s) < g(s)

The function ® : [E - [E is an expectation transformer

expectations are the quantitative analogue of predicates

4 expectations in probability theory.

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Weakest pre-expectations
For prob. program P, let wp[[P]] : E - E an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:
For|P:: x := x+5 [4/5] x := 10| we have:

welPI0) = 246 and walP([x = 10) = %
—— N
ey-pe,c\tb qu 0\3‘\\:\\3 k\ne\'.‘
vele ofF X
A =A0

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Weakest pre-expectations
For prob. program P, let wp[[P]] : E - E an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

wp B3 (T4

Examples:
For P:: x := x+5 [4/5] x :=

4x 4-[x=5]+1

%6 G

wp[P](x) = and wp[P]([x = 10]) =

wp[[P]]([é]) is the probability of predicate F on P’s termination

—

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Kozen’s duality theorem

If up is the distribution over the final states obtained by running P on the initial state s, then
for post-expectation f:

> wp(t)- £(t) = wp[PT(F)(s)
teS

[backward
forward

)
Pictorially: T ccwvgk Ron

e S ree

a0

Xty ey u o

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Expectation transformer semantics

Syntax probabilistic program P Semantics wp[[P]|(f)
skip £
x:i=E f[x := E]
X As. [@ (v F(sx = v])) dpse
P; Q wpl[PT (wp[QT(f))
if (p) P else Q [e]- wpl PI() + [~¢]- wpl Q1(f)
Plp]Q p - wpl PI(f) + (1-p) - wpl QI(f)
while (o) {P} Ifp X. (L] - wpl PTI(X)) + [-¢] - f)

loop characteristic function ®¢(X)

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Verifying probabilistic programs

Examples
x := geometric(1/4);
weakest pre-expectation: —‘/32_1 y = geometric(1/4);
t = xty;
X :=1; .
H t := t+1 [5/9 kip;
while (x > 0) { roi=1: 6/91 sxip
x +:= 2 [1/2] x -:= 1 for i in 1..3 {
} s := iid(bernoulli(1/2),2t);
if (s !'=t) {r =071}

post-expectation: 1 3

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Examples

weakest pre-expectation: %

x := geometric(1/4);
weakest pre-expectation: @ Z j ii?etﬁcw@;
ihi:eléx > 0) { 11': : 1:-1 [6/9] skip;
x +i= 2 /2l x = for i in 1..3 {
’ s := iid(bernoulli(1/2),2t);
post-expectation: 1 }if (s!'=t) {r:=01}

post-expectation: [r=1]

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Extensions of probabilistic wp

> ... for recursion [LICS 2016]
> ... for exact inference [TOPLAS 2018]
> ... for continuous distributions [SETTS 2019]
| for expected runtime analysis [JACM 2018]
> ... for probabilistic separation logic [POPL 2019]
> ... for weighted programs [OOPSLA 2022]
> ... for amortised complexity analysis [POPL 2023]

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Reasoning about expected runtimes

“How long does your program take on average?”

EXPECTED RUNTIMES

Hanne Riis Nielson: Hoare Logic for Deterministic Runtimes (1984)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Expected runtimes

Expected runtime of program P on input s:

2 (“P terminates after
2 i+ Pr

=l i steps on input s”
=

ert P](t)(s) = expected runtime of P on s where t is runtime after P

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by
P. ERDOS and A. RENYI

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILI™"

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Coupon collector’s problem

= [0,...,0]; // mo coupons yet
i:=

; // coupon to be collected newt
X := O // number of coupons collected
while (x < N) {

while (cpli]

1= 0) {
i := uniform(1..N) // next coupon
}
cpli]l :=1; // coupon i obtained
x++; // one coupon less to go
}

The expected runtime of this program is in ©(N-log N)

Joost-Pieter Katoen

Can one formally derive such results by a syntax-directed program analysis?

Deductive Verification of Probabilistic Programs

Some hurdles in runtime analysis
1. Programs may diverge despite having a finite expected runtime:

while (x > 0) { x—- [1/2] skip }

2. Expected runtimes are extremely sensitive

while (x > 0) { x— [1/2-e] x++ } // -1/2 <= e <= 1/2

» e =0: almost-sure termination, infinite expected runtime
» e > 0: not almost-sure termination, infinite expected runtime
» e < 0: almost-sure termination, finite expected runtime (= PAST)

3. Having a finite expected time is not compositional

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Counterexample: why ghost code fails

while(true) { skip; x++ }

P Post: x, as seemingly x counts #loop iterations

P Characteristic function: ®,(Y) = Y(x+» x+1)

» Candidate upper bound: /| = 0

» Induction: ®,(/) = O(x» x+1) =0 =1/ c |/

» By Park induction: ®,(/) E I implies wp[loop]l(x) E /

We — wrongly — get runtime 0. wp is unsound for expected runtimes.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Reasoning about expected runtimes

Expected run-time transformer semantics

Syntax P Runtime-semantics ert] P]|(f)
skip P
x:=E fx = E]
X i% g As. [@ (v F(s[x := v])) de
P;Q ert P] (ert[Q1I(f))
f (¢) P else @Q [¢]- ert[PI(f) + [~]- ert QII(F)
Pp] @ p-ert[PI(f) + (1-p) - ert QII(f)
while (o) {P} ifpX. (([p]- er[PI(X)) + [-] - f)

loop characteristic function ®¢(X)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Reasoning about expected runtimes

Expected run-time transformer semantics
Syntax P Runtime-semantics ert] P]|(f)

skip @ f
E (1) flx = £]

X ® @ As. / (Av.f(s[x = v])) dus
P;Q ert] P (ertl QTI(f))
£ () P else Q (1) [6]- er PI(F) + [~¢]- ert [QT()
PIP1Q @p-ert[[P]] + (1-p) - ert QT(F)
while (¢) {P} it X(L> (([]- erI PT(X)) + [-¢]-)

loop characterlstlc function ®¢(X)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Reasoning about expected runtimes

Expected run-time transformer semantics

Syntax P Runtime-semantics ert] P]|(f)
skip 1+f1
x:=E 1+ f[x:= E]
X i 1+)s. /@ (v F(s[x := v])) de
P;Q ert P (er[QT(7))
f (p) P else Q 1+ [p]- e[PI(F) + [-¢] - ert[QT(f)
Plp]@Q 1+ p-ert[PT(f) + (1-p) - ertf[Q]()
while (p) {P} Ifp X. 1+ (([¢p] - ert[PTI(X)) + [-¢] - f)

loop characteristic function ®¢(X)

I Very simple, but/and sound! I

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proving PAST

The ert-transformer enables to prove
that a program is positively almost-surely terminating
in a compositional manner,

although PAST itself is not compositional.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Relevance

P Expected runtime analysis of randomised algorithms

» Proving positive almost-sure termination

P Basis for amortised expected runtimes

P Generalised to expected runtimes of quantum programs

P Automated resource analysis of probabilistic programs

More details in the next parts

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Overview

© Proof rules

Joost-Pieter Katoen Deductive Verification of Probal

Verifying probabilistic programs

Loops

/ body-
wp[while (2){ P}I(F) = Ifp X. ([]- wpllbody[(X) + [~]- f)

loop characteristic function ®¢(X)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Verifying probabilistic programs
Loops

wpl[while (¢) { P}](f) = Ifp X. ([«£]- wp[[body](X) + [-¢] - f)

loop characteristic function ®¢(X)

» Function ®; : E - E is Scott continuous on (E, E)

» By Kleene's fixed point theorem, it follows: Ifp ®; = sup,ey ©7(0)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Upper bounds

Recall:

wp[[while () {body }]I(f) = IfpX. ([¢]- WP[[bOdy:l](X) + [-p]- 1)
®£(X)

Park induction:

o) E | implies \Wpﬂ:while(ga){body}]](f)’ =y

an “upper” invariant Ifp &

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Upper bounds

Recall:
wp[[while () { body }]I(f) = Ifp X. ﬁ[w]~wp[[body]](X) + [-p]- 1)
®¢(X)

Park induction:

o) E | implies \Wpﬂ:while(ga){body}]](f)’ =y

an “upper” invariant Ifp &

Example: ~ While(c = 0) { x++ [p] ¢ := 1}

I = x+[c=0]: & is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Lower bounds for PAST loops [Hark, K., et al., POPL 2020]

(/ C O() A side conditions) implig

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Lower bounds for PAST loops [Hark, K., et al., POPL 2020]
(/ C O() A side conditions) implies | E Ifp &

where the side conditions -
PAST
@While(go){body} terminates in finite expected time, and

@ for any s F ¢, wp[[body]l(|/(s) = /|)(s) < c for some c € Ryq

conditional difference boundedness

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Proof rules

Lower bounds for PAST loops [Hark, K., et al., POPL 2020]

(/ C O() A side conditions) implies | E Ifp &

where the side conditions *

@While(go){body} terminates in finite expected time, and

@for any s E ¢, wp[[body]|(|/(s)=1])(s) = ¢ for some c € Ry

conditional difference boundedness

Example. while(c = 0){ x++[p]c:=1}is PAST, and

I = x+[c=0]- % is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Proof rules

Proving PAST [Chakarov & Sankaranarayan, CAV 2013]

Consider the loop while(p){ body} and let:
ViSo>R with [V <0]=[-¢]

That is, V <0 indicates termination.

If for some € > 0:
(0] wellbody[(V) < V-c

«

expected value of V decreases by at least ¢

Then:
the loop is PAST

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Lower bounds on AST [Mclver, K., et al., POPL 2018]

Consider the loop while(p){ body} and let:
> V:S > Ry with [V =0]=[-¢] V =0 indicates termination
» p:Ryo - (0,1] antitone probability
» d:R.y - R, antitone decrease

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Lower bounds on AST [Mclver, K., et al., POPL 2018]

Consider the loop while(p){ body} and let:
> V:S > Ry with [V =0]=[-¢] V =0 indicates termination
» p:Ryo - (0,1] antitone probability
> d:R,y = R.g antitone decrease

If:

(1] wellbody (V) = V

expected value of V' does not increase

and
[p]-(po V) < As.wp[[body](|V < V(s) - d(V(s))])(s)

.

with at least prob. p, V decreases at least by d

Then:
wp[[loop](1) = 1 i.e., loopis AST

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely, but with infinite expected runtime

P Witness of almost-sure termination:

> V=x
» p=1/2and
> d=1

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Proof rules

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely, but with infinite expected runtime

P Witness of almost-sure termination:

> V=x 5 cenm e
» p=1/2 and Q_A\\
> d=1 cM}f,.,..e)\-cc\

(Aedoec)

That's all you need to prove almost-sure termination!

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

Overview

@ A syntax for weakest expectations

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Relative complete verification

Ordinary Programs

F € FO-Arithmetic
implies

wp[[P](F) € FO-Arithmetic

G = wp[P](F)
is effectively decidable

modulo an oracle for deciding =

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[PTI(f) € SomeSyntax

implies

wp[[P](F) € FO-Arithmetic

G = wp[P](F) g E wp[PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding C
modulo an oracle for deciding =

between two syntactic expectations.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[PTI(f) € SomeSyntax

implies

wp[[P](F) € FO-Arithmetic

G = wp[P](F) g E wp[PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding C

modulo an oracle for deciding = . .
between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

50 years of Hoare logic

“Completeness is a subtle manner and requires a careful analysis”

Krzysztof R. Apt Ernst-Riidiger Olderog

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

A syntax for expectations
P Expectations

f —> a arithmetic expressions
| [(p - f guarding
| F+f addition
| a-f scaling by arithmetic expressions
| ex:f supremum over variable x
| ¢{x:f infimum over variable x

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

A syntax for expectations
P Expectations

f —> a arithmetic expressions

| [(p - f guarding

| F+f addition

| a-f scaling by arithmetic expressions

| ex:f supremum over variable x

| ¢{x:f infimum over variable x

» Examples:

exix-x<yl-x = Jy 2z (x+1)=1]-z = ——
_ x+1

1-X

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

A syntax for expectations
P Expectations

f —> a arithmetic expressions

| [e]-f guarding E
X
| F+f addition £
| a-f scaling by arithmetic expressions
| ex:f supremum over variable x
| ¢x:f infimum over variable x
» Examples:
1
exi[x-x<y]-x =y 2zi(z-(x+1)=1]-z =]

» f € [E is syntactic, if f is expressible in this syntax, i.e., if f € Exp

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

A syntax for weakest expectations

Examples
» polynomials y + 2P+ x -7 widely used as templates
x*—3x+4
» rational functions ————
y2x =3y +1

P square roots /x

X
: 1
» Harmonic numbers Hx = X T used in run-time/termination analysis

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Expressiveness theorem [Batz, K. et al., POPL 2021]

For every pGCL program P and expectation f € Exp:

wp PI(I7D) = [el

for some syntactic expectation g € Exp.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Overview

\—_—W:Ao&\‘ 0N

: {~vero~tS
e Automation / — \lenfl)\\r\% ~

\ Sav-s‘c\«\ es \‘s\'r\a_ AU 6n e ks

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

The Amber tool [Moosbrugger, Kovacs, K., et al., 2021]

» Simple loops with

» loop guard (: strict inequalities over polynomials
» loop body: a sequence of random polynomial assignhments

P Supports four martingale-based proof rules:
» PAST, AST, non-AST and non-PAST

Automating checking AST
and PAST for all inputs

» And mild relaxed versions thereof

P Key algorithmic techniques:
P Algebraic recurrence equations
» Approximations of polynomial expressions
» Exact moment-based generation techniques

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Program syntax

Programs over m real-valued program variables x(), ..., X(m):

Init; while(@){ P}

where:
» Init: a sequence of m (random) assignments x(; := r(;) with r;) € R
P ¢: astrict inequality X > Y with X, Y € R[xq), ..., X(m)]

P Loop body P: a sequence of m probabilistic assignments of the form:
X(j) := probabilistic choice over terms of the form a;;-x(;) + Xj;

where Xj € R[xqu),...,Xi-1)]and agj € IR are constants
%—l
vars preceding x(;) in P

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Experiments: proving PAST _ &b SN

N\

B

] e = a

B g o 2 & §

> g g . @ @ % < ©

@ & % <0 8 g @ o v

o ® o O Program = E O x o
Program 2 8 5¢82°%

i t v

2d_bounded random walk v/ X NANA x x Jmear_past 1/ FE s e
e Y7 7 7 7 7 linear _past_2 v X NA X X

v v P i i AR S S

______________ nested loops NA V X Vv V /

X v X X S e e e L L e
______________________ olynomial _past_ 1 v X NANA x X

x_x Nax x PORORELPR_S L S TR L.

s~/ 7/ 7, polynomial past 2/ X NANA x X
______________________ i v v 7/

X NANA x x Sequential loops NA v X v v/ 7/
******************* tortoise_hare race v 7/ A

v Y /S VY ot =

X v v 7/ dependent _ dist* NA NA NANA X v/

X v V V / exp_rw_gauss_noise* v/ NA NA NA NA NA

/L LSS uniform_rw_ walk* v /S /7

______________________ Total / 23 9 11 12 11 13

https://github.com/probing-lab/amber

Joost-Pieter Katoen uctive Verification of Probal

Automation

Computing invariants: k-induction

Recall Park induction: ~ ®g(/) £ /| implies wp[while(p){body}](f) E/
= Ifp &y

But:
Ifp ®; C | does not imply ®¢(/) £/

/ (/)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Automation

Computing invariants: k-induction

Recall Park induction: ~ ®¢(/) £ /| implies wp[while(p){body}](f) E/
= Ifp&f

But: Pointwise minimum: grg' = As. min{g(s), g'(s)}
Ifp ®; C | does not imply ®¢(/) £/

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Automation

Computing invariants: k-induction

Recall Park induction: ®¢(/) £ | implies wp[[while(¢){body}](f) E/

= Ifp by
But: Pointwise minimum: grg' = As. min{g(s), g'(s)}
Ifp ®; C | does not imply ®¢(/) £/
2-induction:
/ (/) O(d(/)m 1) E [implies Ifp & € [
~—

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Automation

Computing invariants: k-induction

Recall Park induction: ~ ®¢(/) £ | implies wp[while(p){body}](f) E/

= Ifp df
But: Pointwise minimum: grg' = As. min{g(s), g'(s)}
Ifp ®; C | does not imply ®¢(/) £/
2-induction:
/ (/) O(d(/)m 1) E [implies Ifp & € [
o()m 3-induction:
O(S(O(/) M /) 1) E I implies Ifp & T |/

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

k-Induction for probabilistic loops

For a loop while(y){body} and expectations f, g, h, let

®¢(g) = [¢]- wplbodyl(g) + [~]-f and Wg(h) = ®(h)n g

Expectation / is a k-inductive invariant if be(\ll‘,‘-'(l)) c |/

Yk >0, if | is a k-inductive invariant, then

wp[[while(p){body}]|(f) E /

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Example
pre: s+ 1 v pre:s+1\/
post: s post: s
v (1-induction) A (2-induction)

while (¢ = 1) Iinv s+[c=1] | while (¢ = 1)

{ {

{c:=0 }[Y2]{s :=s+1} {c:=0 }[Y2]{s :=s+1}

} }

Tool: https://github.com/moves-rwth/kipro2

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Verifying discrete samplers

v:=1; c :=0; term :=0;

i Optimal Discrete Uniform Generation from
while (term = 0) {

Coin Flips, and Applications

v:i=2-v;
Jérémie Lumbroso
{c:=2-c} [V {c:=2-c+1}; April9, 2013
if (v >n){
if (c < n){ For n € {2,3,4,5}, we automatically prove
term :=1 Pr(* le fixed el K
t
e r(“sample fixed element K")
Vi=v-—n;c:=c—n = wp[C]([c=K]) < ¥n
} forall K € {0,...,n—1}

} using 2-, 3-, and 5-induction.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Inductive invariant synthesis

fail := 0;sent :=0; Question:
while (sent < 8000000 A fail < 10) { $oil:=0 ® Is the probability of failing to
{ fail :=fail +1 } [0.01] { sent := sent —m} Eransmit. at imost 0.057
failed transmission successful transmission * wp[BRP]([fail = 10]) < 0.057
} Answer:

We can prove this using the superinvariant

13067990199 . 5278689867 } <19 - 8000000 — 19 - sent >

I = |...A - fail <
280132671650 211205306866000 3820000040

+ (7 more summands)

. which fortunately has been synthesized and checked fully automatically.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

®¢(/) c land |/ E g or determine there is no such /

I is inductive for f and ¢

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Synthesising inductive invariants
Problem: find a piece-wise linear inductive invariant / s.t.

®¢(/) c land |/ E g or determine there is no such /

I is inductive for f and ¢

Approach: use template-based invariants of the (simplified) form:

T = [b1]-ar+ - +[be]- ax

with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0
P the b;'s partition the state space

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

®¢(/) c land |/ E g or determine there is no such /

I is inductive for f and ¢

Approach: use template-based invariants of the (simplified) form:

T = [b1]-ar+ - +[be]- ax
with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0
P the b;'s partition the state space

Example: [c=1]:(2:x + 1) + [c#1]: x is in the above form,
and [x = 1]-x +[x = 2]y can be rewritten into it.

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

CEGIS for probabilistic invariants [Batz, K. et al., TACAS 2023]
CEGIS loop
Template T' e (i)
| L=

Template Generator
(cf. [12, Appx. D])

T —

T | Counterexample s

Synthesizer Verifier

Unsat. hint?

R

I is inductive invariant v/

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

CEGIS for probabilistic invariants [Batz, K. et al., TACAS 2023]
CEGIS loop
Template T' e (i)
| L=

Template Generator
(cf. [12, Appx. D])

T —

T | Counterexample s

Synthesizer Verifier

Unsat. hint?

I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
» Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

CEGIS for probabilistic invariants [Batz, K. et al., TACAS 2023]
CEGIS loop
Template T' e (i)
| L=

Template Generator
(cf. [12, Appx. D])

T —

T | Counterexample s

Synthesizer Verifier

Unsat. hint?

d
I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
» Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

CEGISPRO?2 tool: https://github.com/moves-rwth/cegispro2

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Experiments
A
kiOé("f‘OOO I © 00 B® @0 ° MO/TO A e
- 1000 %88 é. ‘ +
= 100 B 20 7.
O 20 i ’ a1
5L ! T I
n S8
(1
AR w% w%%ogo - mwppw\o;
22 TA [oXoke] OOOO \7‘0
CEGISPRO2 e CEGISPRO2 %

Synthesis of upper bounds
for finite-state programs
TO = 2h, MO = 8GB

Synthesis of lower bounds
TO = 5min

Joost-Pieter Katoen

Deductive Verification of Probabilistic Programs

Epilogue

P Weakest preconditions nicely fit analysis of probabilistic programs

P Several extensions of Kozen's seminal work have been developed
expected run-times, recursion, separation logic, semi-rings, etc.

P And have been equipped with powerful proof rules
lower bounds, upper bounds, (non-)AST, (non-)PAST ...

P A syntax to express quantitative measures

P Promising results towards automated analysis of Ioops(and recursion)

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

Automation

Outlook: probabilistic Viper/Dafny?

expected run-times partial correctness expected resource consumption
martingales positive almost-sure termination almost-sure terminatioxn
amortised analysis Park induction conditional expected values
total correctness k-induction probabilistic sensitivity

¥

Quantitative Intermediate Verification Language (HeyVL)

¥

VC Generator M Real-valued Logic (HeyLo) M SMT Solver

Joost-Pieter Katoen

A verification infrastructure for probabilistic programs

\\\:\:Ps ~ 4/ coesoc~ecRer. m’a__

Deductive Verification of Probabilistic Programs

Automation

A big thanks to my co-workers!

.
&

<

‘ :

Ezio Kevin Mingshuai Sebastian Benjamin Laura Lutz
Bartocci Batz Chen Junges Kaminski Kovacs Klinkenberg

Christoph Annabelle Marcel Carroll Federico Philipp Tobias
Matheja Mclver Moosbrugger Morgan Olmedo Schroer Winkler

Joost-Pieter Katoen Deductive Verification of Probabilistic Programs

