Deductive Verification of Probabilistic Programs

Joost-Pieter Katoen

malagen der Programmicha 3

Probabilistic programs

Programs with random assignments and conditioning

- naturally code up randomised algorithms
- represent probabilistic graphical models beyond Bayesian networks
- model controllers for autonomous robots
- key to describe security mechanisms
-

Programming languages: R2, STAN, Pyro, PyMC, WebPPL, Fabular, ...

"Probabilistic programming aims to make probabilistic modeling and machine learning accessible to the programmer."

1

¹[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

```
x := 1;
while (x > 0) {
    x := x+2 [1/2] x := x-1
}
```


Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

```
x := 1;
while (x > 0) {
    x := x+2 [1/2] x := x-1
}
```

If not, what is its probability to diverge?

Even if all loops are bounded

[Flajolet et al., 2009]

```
x := geometric(1/4);
y := geometric(1/4);
t := x+y;
t := t+1 [5/9] skip;
r := 1;
for i in 1..3 {
   s := iid(bernoulli(1/2), 2t); \leftarrow
   if (s != t) \{ r := 0 \} else skip
                                              for j:=1 to 2t {

5++ [2] skip
```

Even if all loops are bounded

```
x := geometric(1/4);
y := geometric(1/4);
t := x+y;
t := t+1 [5/9] skip;
r := 1;
for i in 1..3 {
   s := iid(bernoulli(1/2), 2t);
   if (s != t) { r := 0 } else skip
}
```

What is the probability that r equals one on termination?

Positive almost-sure termination

```
int x := 1;
bool c := true;
while (c) {
    c := false [0.5] c := true;
    x := 2*x
}
```

Finite expected termination time?

$$E[X] = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot 2^k$$

```
while (x > 0) {
    x--
}
```

Finite termination time!

Expected runtime of these programs in sequence?

Our objective

A powerful, simple proof calculus for probabilistic programs.

At the source code level.

No "descend" into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!

Typically "more undecidable" than deterministic programs

Overview

- Motivation
- Verifying probabilistic programs
- Proof rules
- A syntax for weakest expectations
- 6 Automation

Expectation transformers

The set of expectations¹ (read: random variables):

$$\mathbb{E} = \left\{ f \mid f: \underset{\text{states}}{\mathbb{S}} \to \mathbb{R}_{\geq 0} \cup \{\infty\} \right\}$$

$$\leq S \in \mathbb{S} : \forall \alpha r \to \forall \alpha L$$

¹≠ expectations in probability theory.

Expectation transformers

The set of expectations¹ (read: random variables):

$$\mathbb{E} = \left\{ f \mid f : \underbrace{\mathbb{S}}_{\text{states}} \to \mathbb{R}_{\geq 0} \cup \{\infty\} \right\}$$

 (\mathbb{E}, \subseteq) is a complete lattice where $f \subseteq g$ if and only if $\forall s \in \mathbb{S}$. $f(s) \leq g(s)$

¹ # expectations in probability theory.

Expectation transformers

The set of expectations¹ (read: random variables):

$$\mathbb{E} = \left\{ f \mid f : \underbrace{\mathbb{S}}_{\text{states}} \to \mathbb{R}_{\geq 0} \cup \{\infty\} \right\}$$

 $(\mathbb{E}, \sqsubseteq)$ is a complete lattice where $f \sqsubseteq g$ if and only if $\forall s \in \mathbb{S}$. $f(s) \le g(s)$

The function $\Phi : \mathbb{E} \to \mathbb{E}$ is an expectation transformer

expectations are the quantitative analogue of predicates

¹≠ expectations in probability theory.

Weakest pre-expectations

For prob. program P, let $wp[\![P]\!]: \mathbb{E} \to \mathbb{E}$ an expectation transformer

$$g = wp[P](f)$$
 is P 's weakest pre-expectation w.r.t. post-expectation f iff the expected value of f after executing P on input s equals $g(s)$

Examples:

For
$$P:: x := x+5$$
 [4/5] $x := 10$ we have:

$$wp[P](x) = \frac{4x}{5} + 6 \text{ and } wp[P]([x = 10]) = \frac{4 \cdot [x = 5] + 1}{5}$$

expected

value of x

Weakest pre-expectations

For prob. program P, let $wp[\![P]\!]: \mathbb{E} \to \mathbb{E}$ an expectation transformer

g = wp[P](f) is P's weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:

up [F] ([thie])

For
$$P:: x := x+5 [4/5] x := 10$$
, we have:

$$wp[P](x) = \frac{4x}{5} + 6$$
 and $wp[P]([x = 10]) = \frac{4 \cdot [x = 5] + 1}{5}$

wp[P]([f]) is the probability of predicate f on f's termination

Kozen's duality theorem

If μ_P^s is the distribution over the final states obtained by running P on the initial state s, then

for post-expectation f:

$$\underbrace{\sum_{t \in \mathbb{S}} \mu_P^s(t) \cdot f(t)}_{\text{forward}} = \underbrace{wp \llbracket P \rrbracket (f)(s)}_{\text{backward}}$$

Pictorially:

f(b₁) b₂

Expectation transformer semantics

Syntax probabilistic program P

Semantics wp[P](f)

skip

$$x := E$$

if
$$(\varphi)$$
 P else Q

while
$$(\varphi)$$
 { P }

$$f[x := E]$$

$$\lambda s. \int_{\mathbb{Q}} (\lambda v. f(s[x := v])) d\mu_s$$

$$wp\llbracket P \rrbracket (wp\llbracket Q \rrbracket (f))$$

$$[\varphi] \cdot wp \llbracket P \rrbracket (f) + [\neg \varphi] \cdot wp \llbracket Q \rrbracket (f)$$

$$p \cdot wp \llbracket P \rrbracket (f) + (1-p) \cdot wp \llbracket Q \rrbracket (f)$$

Ifp X.
$$(([\varphi] \cdot wp[P](X)) + [\neg \varphi] \cdot f)$$
loop characteristic function $\Phi_f(X)$

Examples

```
weakest pre-expectation: \frac{\sqrt{5}-1}{2}

x := 1;

while (x > 0) {

x +:= 2 [1/2] x -:= 1

}
```

post-expectation: 1

```
x := geometric(1/4);
y := geometric(1/4);
t := x+y;
t := t+1 [5/9] skip;
r := 1;
for i in 1..3 {
   s := iid(bernoulli(1/2),2t);
   if (s != t) { r := 0 }
}
```

Examples

```
weakest pre-expectation: \frac{\sqrt{5}-1}{2} x := 1; while (x > 0) { x +:= 2 [1/2] x -:= 1 } post-expectation: 1
```

weakest pre-expectation: $\frac{1}{\pi}$

```
x := geometric(1/4);
y := geometric(1/4);
t := x+y;
t := t+1 [5/9] skip;
r := 1;
for i in 1..3 {
   s := iid(bernoulli(1/2),2t);
   if (s != t) { r := 0 }
}
```

post-expectation: [r = 1]

Extensions of probabilistic wp

..... for weighted programs

LICS 2016]

► for exact inference [TOPLAS 2018]

> for continuous distributions [SETTS 2019]

▶ for expected runtime analysis [JACM 2018]

► for probabilistic separation logic [POPL 2019]

..... for amortised complexity analysis

[POPL 2023]

[OOPSLA 2022]

"How long does your program take on average?"

EXPECTED RUNTIMES

Hanne Riis Nielson: Hoare Logic for Deterministic Runtimes (1984)

Expected runtimes

Expected runtime of program *P* on input *s*:

$$\sum_{i=1}^{\infty} i \cdot Pr \left(\begin{array}{c} "P \text{ terminates after} \\ i \text{ steps on input } s" \end{array} \right)$$

ert[P](t)(s) = expected runtime of P on s where t is runtime after P

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by

P. ERDŐS and A. RÉNYI

Joost-Pieter Katoen

Coupon collector's problem

Coupon collector's problem

```
cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {
    while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
    }
    cp[i] := 1; // coupon i obtained
    x++; // one coupon less to go
}</pre>
```

The expected runtime of this program is in $\Theta(N \cdot \log N)$.

Can one formally derive such results by a syntax-directed program analysis?

Some hurdles in runtime analysis

1. Programs may diverge despite having a finite expected runtime:

```
while (x > 0) \{ x-- [1/2] \text{ skip } \}
```

2. Expected runtimes are extremely sensitive

while
$$(x > 0) \{ x-- [1/2-e] x++ \} // -1/2 <= e <= 1/2$$

- e = 0: almost-sure termination, infinite expected runtime
- \triangleright e > 0: not almost-sure termination, infinite expected runtime
- e < 0: almost-sure termination, finite expected runtime (= PAST)
- 3. Having a finite expected time is not compositional

Counterexample: why ghost code fails

- ▶ Post: x, as seemingly x counts #loop iterations
- ► Characteristic function: $\Phi_{\mathbf{x}}(Y) = Y(x \mapsto x + 1)$
- Candidate upper bound: / = 0
- Induction: $\Phi_{\mathbf{x}}(I) = \mathbf{0}(x \mapsto x + 1) = \mathbf{0} = I \subseteq I$
- ▶ By Park induction: $\Phi_{\mathbf{x}}(I) \subseteq I$ implies $wp[[loop]](\mathbf{x}) \subseteq I$

We — wrongly — get runtime **0**. wp is unsound for expected runtimes.

Expected run-time transformer semantics

Syntax P

skip

$$x := F$$

if
$$(\varphi)$$
 P else Q

while
$$(\varphi)$$
 { P }

Runtime-semantics ert[P](f)

,

$$f[x \coloneqq E]$$

$$\lambda s. \int_{\mathbb{Q}} (\lambda v. \mathbf{f}(s[x \coloneqq v])) d\mu_s$$

$$ert[\![P]\!](ert[\![Q]\!](f))$$

$$[\varphi] \cdot ert[P](f) + [\neg \varphi] \cdot ert[Q](f)$$

$$p \cdot ert[P](f) + (1-p) \cdot ert[Q](f)$$

Ifp
$$X$$
.
$$(([\varphi] \cdot ert[P](X)) + [\neg \varphi] \cdot f)$$

loop characteristic function $\Phi_f(X)$

Expected run-time transformer semantics

Syntax P

skip

$$x := F$$

if
$$(\varphi)$$
 P else Q

while
$$(\varphi)$$
 { P }

Runtime-semantics ert[P](f)

$$1 + f[x := E]$$

$$ert[\![P]\!](ert[\![Q]\!](f))$$

1 -
$$[\varphi] \cdot ert[P](f) + [\neg \varphi] \cdot ert[Q](f)$$

1 +
$$p \cdot ert[P](f) + (1-p) \cdot ert[Q](f)$$

Ifp
$$X$$
 1 + $(([\varphi] \cdot ert[P](X)) + [\neg \varphi] \cdot f)$

loop characteristic function $\Phi_f(X)$

Expected run-time transformer semantics

Syntax P

skip

$$x := E$$

if
$$(\varphi)$$
 P else Q

while
$$(\varphi)$$
 $\{P\}$

Runtime-semantics ert[P](f)

$$1 + f$$

$$1 + f[x \coloneqq E]$$

 $ert \parallel P \parallel (ert \parallel Q \parallel (f))$

$$1 + \lambda s. \int_{\mathbb{Q}} (\lambda v. f(s[x := v])) d\mu_s$$

$$1 + \lceil \varphi \rceil \cdot ert \lceil P \rceil | (f) + \lceil \neg \varphi \rceil \cdot ert \lceil Q \rceil | (f)$$

$$1 + p \cdot ert[P](f) + (1-p) \cdot ert[Q](f)$$

$$\mathsf{lfp}\,X.\,\mathbf{1} + \underbrace{(([\varphi] \cdot \mathit{ert}[\![P]\!](X)) + [\neg \varphi] \cdot \mathbf{f})}_{}$$

loop characteristic function $\Phi_f(X)$

Very simple, but/and sound!

Proving PAST

The ert-transformer enables to prove that a program is positively almost-surely terminating in a compositional manner, although PAST itself is not compositional.

Relevance

- Expected runtime analysis of randomised algorithms
- ▶ Proving positive almost-sure termination
- ▶ Basis for amortised expected runtimes
- Generalised to expected runtimes of quantum programs
- Automated resource analysis of probabilistic programs
-

More details in the next parts

Overview

- Motivation
- Verifying probabilistic programs
- Proof rules
- A syntax for weakest expectations
- 6 Automation

Loops

$$wp[[\text{while } (\varphi) \{ P \}]](\mathbf{f}) = \text{lfp } X. \underbrace{([\varphi] \cdot wp[[\text{body}]](X) + [\neg \varphi] \cdot \mathbf{f})}_{\text{loop characteristic function } \Phi_{\mathbf{f}}(X)}$$

Loops

$$wp[\![\text{while } (\varphi) \{ P \}]\!](\mathbf{f}) = \text{Ifp } X. \underbrace{([\varphi] \cdot wp[\![\text{body}]\!](X) + [\neg \varphi] \cdot \mathbf{f})}_{\text{loop characteristic function } \Phi_{\mathbf{f}}(X)}$$

- ▶ Function $\Phi_f : \mathbb{E} \to \mathbb{E}$ is Scott continuous on $(\mathbb{E}, \sqsubseteq)$
- ▶ By Kleene's fixed point theorem, it follows: Ifp $\Phi_f = \sup_{n \in \mathbb{N}} \Phi_f^n(\mathbf{0})$

Upper bounds

Recall:

$$wp[[while (\varphi) \{ body \}]](f) = Ifp X. \underbrace{([\varphi] \cdot wp[[body]](X) + [\neg \varphi] \cdot f}_{\Phi_f(X)}$$

Park induction:

```
 \underbrace{\Phi_f(I) \sqsubseteq I}_{\text{an "upper" invariant}} \text{ implies } \underbrace{wp[\![\text{while}(\varphi)\{\text{body}\}]\!](f)}_{\text{lfp}\,\Phi_f} \sqsubseteq I
```

Upper bounds

Recall:

$$wp[[while (\varphi) \{ body \}]](f) = Ifp X. \underbrace{([\varphi] \cdot wp[[body]](X) + [\neg \varphi] \cdot f)}_{\Phi_f(X)}$$

Park induction:

$$\underbrace{\Phi_{\mathbf{f}}(I) \sqsubseteq I}_{\text{an "upper" invariant}} \quad \text{implies} \quad \underbrace{wp[\![\text{while}(\varphi)\{\text{body}\}]\!](\mathbf{f})}_{\text{lfp}\,\Phi_{\mathbf{f}}} \sqsubseteq I$$

Example: while(c = 0) { x++ [p] c := 1 }
$$I = x + [c = 0] \cdot \frac{p}{1-p} \text{ is an "upper"-invariant w.r.t. } f = x$$

Lower bounds for PAST loops

[Hark, K., et al., POPL 2020]

$$(I \sqsubseteq \Phi_f(I) \land \text{ side conditions})$$
 implies $I \sqsubseteq \text{lfp } \Phi_f$

Lower bounds for PAST loops

[Hark, K., et al., POPL 2020]

$$(I \subseteq \Phi_f(I) \land \text{ side conditions})$$
 implies $I \subseteq \text{lfp } \Phi_f$

where the side conditions:

- 1.) while (φ) {body} terminates in finite expected time, and
- 2. for any $s \models \varphi$, $wp[body](|/(s) /|)(s) \le c$ for some $c \in \mathbb{R}_{\geq 0}$ conditional difference boundedness

Lower bounds for PAST loops

[Hark, K., et al., POPL 2020]

$$(I \subseteq \Phi_f(I) \land \text{ side conditions})$$
 implies $I \subseteq \text{lfp } \Phi_f$

where the side conditions:

- 2. for any $s \models \varphi$, $wp[body](|/(s) /|)(s) \le c$ for some $c \in \mathbb{R}_{\geq 0}$ conditional difference boundedness

Example. while
$$(c = 0)\{x++[p]c := 1\}$$
 is PAST, and
$$I = x + [c = 0] \cdot \frac{p}{1-p}$$
 is a "lower"-invariant w.r.t. $f = x$

Proving PAST

[Chakarov & Sankaranarayan, CAV 2013]

Consider the loop while (φ) { body} and let:

$$V: \mathbb{S} \to \mathbb{R}$$
 with $[V \le 0] = [\neg \varphi]$

That is, $V \leq 0$ indicates termination.

If for some $\varepsilon > 0$:

$$[\varphi] \cdot wp[body](V) \leq V - \varepsilon$$

expected value of V decreases by at least ε

Then:

the loop is PAST

Example: symmetric 1D random walk

```
while (x > 0) {
    x := x-1 [1/2] x := x+1
}
```

Lower bounds on AST

Consider the loop while (φ) { body} and let:

- $V: \mathbb{S} \to \mathbb{R}_{\geq 0}$ with $[V = 0] = [\neg \varphi]$
- $\triangleright p: \mathbb{R}_{\geq 0} \rightarrow (0, 1]$ antitone
- $ightharpoonup d: \mathbb{R}_{\geq 0}
 ightharpoonup \mathbb{R}_{\geq 0}$ antitone

[McIver, K., et al., POPL 2018]

V = 0 indicates termination

probability

decrease

Lower bounds on AST

[McIver, K., et al., POPL 2018]

Consider the loop while (φ) { body} and let:

- $V: \mathbb{S} \to \mathbb{R}_{\geq 0}$ with $[V = 0] = [\neg \varphi]$
- $\triangleright p: \mathbb{R}_{\geq 0} \rightarrow (0, 1]$ antitone
- $d: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ antitone

V = 0 indicates termination

probability

decrease

lf:

$$[\varphi] \cdot wp[body](V) \leq V$$

expected value of $\stackrel{\smile}{V}$ does not increase

and

$$[\varphi] \cdot (p \circ V) \leq \lambda s. wp[body](|V \leq V(s) - d(V(s))|)(s)$$

with at least prob. p, V decreases at least by d

Then:

$$wp[[loop]](1) = 1$$
 i.e., loop is AST

Example: symmetric 1D random walk

```
while (x > 0) {
     x := x-1 [1/2] x := x+1
```

- Terminates almost surely, but with infinite expected runtime
- Witness of almost-sure termination:

 - V = x p = 1/2 and

Example: symmetric 1D random walk

```
while (x > 0) {
    x := x-1 [1/2] x := x+1
}
```

- ▶ Terminates almost surely, but with infinite expected runtime
- Witness of almost-sure termination:
 - V = x
 - p = 1/2 and
 - d=1

can be fully automated (Amber)

That's all you need to prove almost-sure termination!

Overview

- Motivation
- Verifying probabilistic programs
- Proof rules
- A syntax for weakest expectations
- 6 Automation

Relative complete verification

Ordinary Programs

$$F \in FO$$
-Arithmetic implies $wp[P](F) \in FO$ -Arithmetic

$$G \Longrightarrow wp \llbracket P \rrbracket (F)$$

is effectively decidable

modulo an oracle for deciding \Rightarrow

Relative complete verification

Ordinary Programs

 $F \in FO$ -Arithmetic implies $wp[P](F) \in FO$ -Arithmetic

$$G \Longrightarrow wp \llbracket P \rrbracket (F)$$
is effectively decidable
modulo an oracle for deciding \Rightarrow

Probabilistic Programs

 $f \in SomeSyntax$ implies $wp[P](f) \in SomeSyntax$

 $g \subseteq wp[P](f)$ is effectively decidable modulo an oracle for deciding \subseteq between two syntactic expectations.

Relative complete verification

Ordinary Programs

 $F \in FO$ -Arithmetic implies $wp[P](F) \in FO$ -Arithmetic

$$G \Longrightarrow wp \llbracket P \rrbracket (F)$$
 is effectively decidable

modulo an oracle for deciding ⇒

Probabilistic Programs

 $f \in SomeSyntax$ implies $wp[P](f) \in SomeSyntax$

$$g \sqsubseteq wp[[P]](f)$$

is effectively decidable modulo an oracle for deciding ⊆ between two syntactic expectations.

Q: How does the SomeSyntax look like?

50 years of Hoare logic

"Completeness is a subtle manner and requires a careful analysis"

Krzysztof R. Apt

Ernst-Rüdiger Olderog

A syntax for expectations

Expectations

A syntax for expectations

Expectations

$$f \longrightarrow a \qquad \qquad \text{arithmetic expressions}$$

$$\mid \left[\varphi\right] \cdot f \qquad \qquad \text{guarding}$$

$$\mid f + f \qquad \qquad \text{addition}$$

$$\mid a \cdot f \qquad \text{scaling by arithmetic expressions}$$

$$\mid \mathcal{Z}x \colon f \qquad \qquad \text{supremum over variable } x$$

$$\mid \mathcal{L}x \colon f \qquad \qquad \text{infimum over variable } x$$

Examples:

$$2x:[x \cdot x < y] \cdot x \equiv \sqrt{y}$$
 $2z:[z \cdot (x+1) = 1] \cdot z \equiv \frac{1}{x+1}$

A syntax for expectations

Expectations

Examples:

$$2x:[x \cdot x < y] \cdot x \equiv \sqrt{y}$$
 $2z:[z \cdot (x+1) = 1] \cdot z \equiv \frac{1}{x+1}$

 $f \in \mathbb{E}$ is syntactic, if f is expressible in this syntax, i.e., if $f \in \mathsf{Exp}$

Examples

$$\triangleright$$
 polynomials $y + x^3 + 2x^2 + x - 7$

rational functions
$$\frac{x^2 - 3x + 4}{y^2 \cdot x - 3y + 1}$$

- ightharpoonup square roots \sqrt{x}
- ► Harmonic numbers $H_{X} = \sum_{k=1}^{x} \frac{1}{k}$

widely used as templates

used in run-time/termination analysis

Expressiveness theorem

[Batz, K. et al., POPL 2021]

For every pGCL program P and expectation $f \in Exp$:

$$wp[\![P]\!]([\![f]\!]) = [\![g]\!]$$

for some syntactic expectation $g \in Exp$.

Overview

- A syntax for weakest expectation
- Automation

termination

verifying invariants

synthesising invariate

The Amber tool

[Moosbrugger, Kovacs, K., et al., 2021]

- Simple loops with
 - loop guard φ : strict inequalities over polynomials
 - loop body: a sequence of random polynomial assignments
- Supports four martingale-based proof rules:
 - ► PAST, AST, non-AST and non-PAST
- And mild relaxed versions thereof
- Key algorithmic techniques:
 - ► Algebraic recurrence equations
 - Approximations of polynomial expressions
 - Exact moment-based generation techniques

Automating checking AST and PAST for all inputs

Program syntax

Programs over m real-valued program variables $x_{(1)}, \ldots, x_{(m)}$:

$$\mathit{Init}$$
 ; $\mathtt{while}(arphi)$ { P }

where:

- ▶ Init: a sequence of m (random) assignments $x_{(i)} := r_{(i)}$ with $r_{(i)} \in \mathbb{R}$
- \triangleright φ ; a strict inequality X > Y with $X, Y \in \mathbb{R}[x_{(1)}, \dots, x_{(m)}]$
- ▶ Loop body *P*: a sequence of *m* probabilistic assignments of the form:

$$x_{(i)} := \text{probabilistic choice over terms of the form } a_{(ij)} \cdot x_{(i)} + X_{ij}$$

where
$$X_{ij} \in \mathbb{R}[\underbrace{x_{(1)}, \dots, x_{(i-1)}}_{\text{vars preceding } x_{(i)}}]$$
 and $a_{(ij)} \in \mathbb{R}$ are constants

Experiments: proving PAST Absynth Program Program linear past 1 2d bounded random walk / X NA NA X X linear_past_2 biased_random_walk_const \checkmark \checkmark \checkmark nested loops biased_random_walk_exp_ ✓ × ✓ polynomial_past_1 biased_random_walk_poly / / NA polynomial_past_2 _ < binomial_past ____ / / sequential loops NA / X / complex past tortoise hare race / / / / consecutive_bernoulli_trails \checkmark \checkmark dependent_dist* NA NA NA NA X coupon collector 4 coupon collector 5 exp_rw_gauss_noise* / NA NA NA NA NA gemoetric_gaussian* dueling cowboys race uniform noise* $exponential_past_1$ symb_2d_rw* exponential_past_2 uniform_rw_walk* / / / / / geometric geometric exp Total 🗸 23 9 11 12 11 13

https://github.com/probing-lab/amber

Recall Park induction:
$$\Phi_{\mathbf{f}}(I) \subseteq I$$
 implies $\underbrace{wp[[\text{while}(\varphi)\{\text{body}\}]](\mathbf{f})}_{= \text{lfp} \Phi_{\mathbf{f}}} \subseteq I$

But:

If
$$\Phi_f \subseteq I$$
 does not imply $\Phi_f(I) \not\subseteq I$

Recall Park induction:
$$\Phi_{\mathbf{f}}(I) \sqsubseteq I$$
 implies $\underbrace{wp[\![\text{while}(\varphi)\{\text{body}\}]\!](\mathbf{f})}_{\equiv |fp|\Phi_{\mathbf{f}}} \sqsubseteq I$

But: Pointwise minimum: $g \sqcap g' \equiv \lambda s$. $\min\{g(s), g'(s)\}$

If $p \Phi_{\mathbf{f}} \sqsubseteq I$ does not imply $\Phi_{\mathbf{f}}(I) \not\equiv I$

Recall Park induction:
$$\Phi_f(I) \subseteq I$$
 implies $wp[while(\varphi)\{body\}](f) \subseteq I$

But:

If $\Phi_f \subseteq I$ does not imply $\Phi_f(I) \not\subseteq I$

Pointwise minimum: $g \sqcap g' \equiv \lambda s$. min $\{g(s), g'(s)\}$

2-induction:

 $\Phi(\Phi(I) \sqcap I) \subseteq I$ implies If $\Phi \subseteq I$

Recall Park induction:
$$\Phi_{\mathbf{f}}(I) \subseteq I$$
 implies $\underbrace{wp[[\text{while}(\varphi)\{\text{body}\}]](\mathbf{f})}_{=|\text{fp}|\Phi_{\mathbf{f}}} \subseteq I$

But:

If $\Phi_f \subseteq I$ does not imply $\Phi_f(I) \not\subseteq I$

Pointwise minimum: $g \sqcap g' \equiv \lambda s$. $\min\{g(s), g'(s)\}$

2-induction:

$$\Phi(\Phi(I) \sqcap I) \subseteq I$$
 implies If $\Phi \subseteq I$

3-induction:

$$\Phi(\Phi(\Phi(I) \sqcap I) \sqcap I) \sqsubseteq I$$
 implies If $\Phi \sqsubseteq I$

k-Induction for probabilistic loops

For a loop while (φ) {body} and expectations f, g, h, let

$$\Phi_{\mathbf{f}}(g) = [\varphi] \cdot wp[[body]](g) + [\neg \varphi] \cdot \mathbf{f}$$
 and $\Psi_{\mathbf{g}}(h) = \Phi_{\mathbf{f}}(h) \sqcap g$

Expectation I is a k-inductive invariant if $\Phi_f(\Psi_I^{k-1}(I)) \subseteq I$

 $\forall k > 0$, if I is a k-inductive invariant, then

$$wp[[while(\varphi)\{body\}]](f) \subseteq I$$

Example

```
pre: s + 1 \checkmark post: s

while (c = 1) inv s + 1

{
c := 0 } [1/2] { s := s + 1 }
```

Tool: https://github.com/moves-rwth/kipro2

Verifying discrete samplers

```
v := 1; c := 0; term := 0;
while (term = 0) {
  v := 2 \cdot v:
  \{c := 2 \cdot c\} [1/2] \{c := 2 \cdot c + 1\};
  if (v \ge n) {
    if (c < n) {
       term := 1
     }else{
       v := v - n; c := c - n
```

Optimal Discrete Uniform Generation from Coin Flips, and Applications

Jérémie Lumbroso

April 9, 2013

For $n \in \{2,3,4,5\}$, we automatically prove $\Pr(\text{"sample fixed element K"})$ $= \text{wp}[\![C]\!]([c=K]) \leq \frac{1}{n}$ for all $K \in \{0,\ldots,n-1\}$ using 2-, 3-, and 5-induction.

Inductive invariant synthesis

```
fail := 0; sent := 0; while (sent < 8000000 \land fail < 10) { foil:=0 } { fail := fail + 1 } [0.01] { sent := sent + 1 } successful transmission}
```

Question:

- Is the probability of failing to transmit at most 0.05?
- $wp[BRP]([fail = 10]) \le 0.05?$

Answer: √

We can prove this using the superinvariant

$$I = \left[\dots \wedge \frac{13067990199}{280132671650} \cdot \mathit{fail} \leq \frac{5278689867}{211205306866000} \right] \cdot \left(\frac{19 \cdot 8000000 - 19 \cdot \mathit{sent}}{3820000040} + \dots \right) \\ + \left(7 \; \mathsf{more \; summands} \right)$$

... which fortunately has been synthesized and checked fully automatically.

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

$$\Phi_f(I) \subseteq I$$
 and $I \subseteq g$ or determine there is no such I is inductive for f and g

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

$$\Phi_f(I) \subseteq I$$
 and $I \subseteq g$ or determine there is no such I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

$$T = [b_1] \cdot a_1 + \dots + [b_k] \cdot a_k$$

with

- b_i is a boolean combination of linear inequalities over program vars
- $ightharpoonup a_i$ a linear expression over the program variables with $[b_i] \cdot a_i \ge 0$
- \triangleright the b_i 's partition the state space

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

 $\Phi_f(I) \subseteq I$ and $I \subseteq g$ or determine there is no such I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

$$T = [b_1] \cdot a_1 + \dots + [b_k] \cdot a_k$$

with

- \triangleright b_i is a boolean combination of linear inequalities over program vars
- $ightharpoonup a_i$ a linear expression over the program variables with $[b_i] \cdot a_i \ge 0$
- \triangleright the b_i 's partition the state space

Example: $[c=1] \cdot (2 \cdot x + 1) + [c \neq 1] \cdot x$ is in the above form, and $[x \geq 1] \cdot x + [x \geq 2] \cdot y$ can be rewritten into it.

CEGIS for probabilistic invariants

[Batz, K. et al., TACAS 2023]

CEGIS for probabilistic invariants

[Batz, K. et al., TACAS 2023]

- ► For finite-state programs, synthesis is sound and complete
- ▶ Applicable to lower bounds: UPAST and difference boundedness
- Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

CEGIS for probabilistic invariants

[Batz, K. et al., TACAS 2023]

- ► For finite-state programs, synthesis is sound and complete
- ▶ Applicable to lower bounds: UPAST and difference boundedness
- Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

CEGISPRO2 tool: https://github.com/moves-rwth/cegispro2

Experiments

Synthesis of upper bounds for finite-state programs TO = 2h, MO = 8GB

Synthesis of lower bounds TO = 5min

Epilogue

- ▶ Weakest preconditions nicely fit analysis of probabilistic programs
- Several extensions of Kozen's seminal work have been developed expected run-times, recursion, separation logic, semi-rings, etc.
- And have been equipped with powerful proof rules lower bounds, upper bounds, (non-)AST, (non-)PAST . . .
- A syntax to express quantitative measures
- Promising results towards automated analysis of loops (and recursion)

Outlook: probabilistic Viper/Dafny?

A verification infrastructure for probabilistic programs

https:// coesarverfier.org

A big thanks to my co-workers!

