
Geometry of Interaction and
Principal Types

Furio Honsell
(20/8/58-14/9/2044 (14/8/2040))

University of Udine (leave of absence)
elected Member of the Assembly of the

Friuli Venezia Giulia Autonomous Region (ITALY)

joint work with Marina Lenisa and Ivan Scagnetto

IFIP WG 2.2 Bologna 6-8/9/7E7, (9+8)x7x(6x5-4x3-2+1)



Mathematics and Politics: the issue of inequity

In 2022, the Region FVG has had a significant increase in fiscal
revenues. Last December we had over 750 million Euros more
than expected. How should we use them?
Wait a minute! How much of this comes from VAT, which is an
indirect tax, and hence it has an inversely proportional impact
on household incomes, therefore unconstitutional, strictu
sensu?
Actually, how much of this comes just from inflation?
I asked the question and computed the answer: 150 million
Euros!
MORAL: the cost of bread increases because of inflation, the
government gets richer?
How should the Region use this extra profit?



A little history and my IFIP WG 2.2. CV

“Formal Language description Languages” 1966
Corrado Böhm, CUCH Machine,
LCF, ISWIM, OWHY Dana Scott,
Peter Landin, The Next 700 Programming Languages
. . .

first invitation - Palo Alto 1989
member - Hamilton (CA) 1993
local organizer IFIP WG 2.2- Udine 1999 and Udine 2006



A question at the Semantics of Data Types
Symposium, Sophia-Antipolis, June 27-29, 1984.

I asked D.Scott, G.Plotkin, etc. :“Are any two λ-terms
equated in all Scott Domain Models β-convertible?”
The Completeness issue: let C be a class of models of T ;
and let F be a set of sentences, C is F-complete if

∀φ ∈ F .(∀M ∈ C.M |= φ) =⇒ (∀M |= T .M |= φ)

The reverse issue is F-consistency of C.
Inconsistency has been gradually settled in the negative:
F.Honsell, S.Ronchi (quantifier-free 1992), P.Selinger
(2003), F.H. G.Plotkin (Π2(Eq), 2009), A.Salibra, A.Carraro
(equational 2013, using unsolvable terms);
Π1(POS)-completeness holds (F.H.-G.P. 2009)
Σ1(Eq)-completeness fails (P.Selinger 2001);
Equational completeness, original question, is still
open! (YES, for ω1-continuous functions in NJC1992 P.Di
Gianantonio-F.H.-G.P. .)



Girard’s “Geometry of Interaction” Semantics

Linear Logic: make multiple occurrences of variables
explicit;
decompose application [[MN]]= [[M]]•linear !([[N]]);
introduce two abstractions λx .x and λ!x .xx and pattern
matching reduction,
i.e. (λ!x .M)N is stuck but (λ!x .M)!N → M[N/x ]

Many game (interaction) models were developed since the
early ‘90’s.
Equational Completeness is even more problematic, in TLCA
1999 P.D.G.- G.Franco - F.H. essentially only one theory is
modeled.



Girard’s GoI - Abramsky’s version in MSCS (2002)

derived from approach using traced monoidal categories;
TΣ, the language of moves, is defined by the signature
Σ0= {ε}∪Vars, Σ1 = {l,r}, Σ2 = {〈 , 〉};
r(t) are output words, terms l(t) are input words ;
I is the set of strategies i.e. partial involutions over TΣ:
partial functions f : TΣ ⇀ TΣ such that

f (t) = t ′ ⇔ f (t ′) = t ;
the operation of replication is defined by
!f = {(〈t , t1〉, 〈t , t2〉) | t ∈ TΣ ∧ (t1, t2) ∈ f};
the notion of linear application is defined by
f · g = frr ∪ (frl ; g; (fll ; g)∗; flr ), where
fij = {(t1, t2) | (i(t1), j(t2)) ∈ f}, for i , j ∈ {r , l}

in // • frr //

frl
��

• // out

•
g // •
fll
oo

flr

OO



Models: Affine, Light, Elementary, Linear λ-Calculi via
Combinators

affine λA: no !-abstraction no multiple occurrences of vars;
the calculus terminates in linear time and models
Grzegorczyk E1.

(B)λ = λxyz.x(yz) (C)λ = λxyz.(xz)y (I)λ = λx .x (K)λ = λxy .x

light λL . . . terminates in polynomial time and models E2;
elementary λE : variables !-abstracted only if they occur in
the scope of a single !; terminates in elementary time and
models E3

(W)λ = λx!y .x!y !y (F)λ = λ!x!y .!(xy)

full λ!: no restrictions on !-abstractions

(D)λ = λ!x .x (δ)λ = λ!x .!!x



The interpretation of Combinators in I

[[B]] = {r3x ↔ lrx , l2x ↔ rlrx , rl2x ↔ r2lx}
[[I]] = {lx ↔ rx}
[[C]] = {l2x ↔ r2lx , lrlx ↔ rlx , lr2x ↔ r3x}
[[K]] = {lx ↔ r2x}
[[F]] = {l〈i , rx〉 ↔ r2〈i , x〉 , l〈i , lx〉 ↔ rl〈i , x〉}
[[W]] = {r2x ↔ lr2x , l2〈i , x〉 ↔ rl〈li , x〉 , lrl〈i , x〉 ↔ rl〈ri , x〉}
[[δ]] = {l〈〈i , j〉, x〉 ↔ r〈i , 〈j , x〉〉}
[[D]] = {l〈ε, x〉 ↔ rx}

where {ui [x ]↔ vi [x ] | i ∈ I} denotes the partial involution
{(ui [t ], vi [t ]) | i ∈ I, t ∈ TΣ}



What is this all about? What are strategies? What are
moves? What is G.o.I.? (λA-case)

understanding this is essential for studying the fine
structure of models
strategies are principal types,
moves are occurrences of variables in principal types;
Types TΣ are binary trees whose leaves are variables
α, β, . . . ∈ TVar , and nodes are denoted by(, i.e.

(TΣ 3) σ, τ ::= α | β | . . . | σ( τ .

A type σ is binary if each variable in σ occurs at most twice.
Occurrences of variables in types are denoted by:

(OΣ 3) u[α] ::= [α] | lu[α] | ru[α] ,

[α] denotes the occurrence of the variable α in the type α,
if u[α] denotes an occurrence of α in σ1 (σ2), then lu[α]
(ru[α]) denotes the corresponding occurrence of α in
σ1 ( σ2.



Correspondence between types and partial involutions

A type τ gives rise to a set of variable occurrences

O(τ) = {u[α] | u[α] is an occurrence of α in τ}.

A binary type τ gives rise to a partial involution on OΣ

R(τ) = {〈u[α], v [α]〉 | u[α], v [α] are different occurrences of α in τ}

Vice versa, from a set of variable occurrences, such that
no path is the initial prefix of any other path of a different
occurrence, we can build the tree of a type, by tagging
possible missing leaves with fresh variables in
Z = {ζ1, . . . , ζi , . . .}.

TZ (S) =


ζ if S = ∅
α if S = {[α]}
TZ ({u | lu ∈ S})( TZ ({u | ru ∈ S}) otherwise,

For all type σ, we have TZ (O(σ)) = σ;



Two Perspectives on Unification - the top-down
perspective of types

The perspectve of Types

A unification algorithm à la Martelli Montanari: it unifies
simultaneously sets of pairs of types.

Let E be a set of pairs of types:

U({〈σ1 ( σ2, τ1 ( τ2〉} ∪ E)→ U({〈σ1, τ1〉, 〈σ2, τ2〉} ∪ E)
U({〈α, α〉} ∪ E) → E
U({〈σ1 ( σ2, α〉} ∪ E) → U({〈α, σ1 ( σ2〉} ∪ E)
U({〈α, σ〉} ∪ E) → U({〈α, σ〉} ∪ E [σ/α]), if α 6∈σ ∧ α∈Var(E)
U({〈α, σ〉} ∪ E) → fail, if α ∈ σ ∧ α 6= σ



The Bottom-up Perspective of Type-Variable
Occurrences

Definition (Occurrence Unifiers)
Let σ, τ be types.
(i) Two occurrences u[α] ∈ σ and v [β] ∈ τ are unifiable if u is a
prefix of v , i.e. there exists w such that uw = v , or vice versa.
(ii) If two occurrences u[α] ∈ σ and v [β] ∈ τ are unifiable, their
occurrence unifier (occ-unifier) is the most general unifier of
TZ ({u[α]}) and TZ ({v [β]}).



The Bottom-up Perspective of Type Variable
Occurrences

GoI application gives rise to a variable-occurrence oriented
alternate characterization of unification. (Case of binary types
where each variable occurs exactly twice).

Definition (GoI-unification)
Let σ, τ ∈ TΣ be types. The types σ and τ GoI-unify if
(i) for every 〈u[α], v [α]〉 ∈ R(σ) there exists
〈u′[γ], v ′[γ]〉 ∈ R(τ )̂;(R(σ)̂;R(τ))∗, such that uw = u′ and
vw = v ′, and
(ii) for every (u[α], v [α]) ∈ R(τ) there exists
〈u′[γ], v ′[γ]〉 ∈ R(σ)̂;(R(τ )̂;R(σ))∗, such that uw = u′ and
vw = v ′.
I.e.:

R(τ)⊆̂R(σ)̂;(R(τ )̂;R(σ))∗ and R(σ)⊆̂R(τ )̂;(R(σ)̂;R(τ))∗

where ⊆̂ denotes “inclusion up-to substitution”.



Proposition
Let σ, τ ∈ TΣ be binary types where each variable occurs
exactly twice. Then σ, τ unify if and only if σ, τ GoI unify.

Proof.
Let σ[α, α] be σ where we have highlighted the two occurrences
of a variable α, u[α], v [α], and consider the new type
σ[α1, α2]( α1 ( α2. Now compute
R(σ[α1, α2]( α1 ( α2) · R(τ). Then σ and τ unify with unifier
U if and only if, by Propositions below, for some fresh variable ξ,

α1 // •
{〈α1,u[α1]〉,〈α2,v [α2]〉}

��

• // w [ξ]

•
R(τ)

(( •
R(σ[α1,α2])

hh

{〈α1,u[α1]〉,〈α2,v [α2]〉}

OO

If S is the collection of all such possible outcomes we have
U(α) = TZ (S), for a suitable set Z of fresh variables.



GoI using binary types -
http://158.110.146.197:31780/automata/

(i) I is the set of partial involutions induced by binary types, i.e.
I = {R(τ) | τ ∈ TΣ ∧ τ binary}. (ii) The notion of linear
application is defined, for f ,g ∈ I, by

f · g = frr ∪ (frl ;̂ g ;̂ (fll ;̂ g)∗ ;̂ flr ) ,

where fij = {〈u, v〉 | 〈i(u), j(v)〉 ∈ f}, for i , j ∈ {r , l}. Variables
in different pairs of f · g to be disjoint.
(iii) O(f · g) = {u | ∃v . 〈u, v〉 ∈ f · g}.

in // • frr //

frl
��

• // out

•
g // •
fll
oo

flr

OO



Principal Type Assignment System 
 for λA

x : α 
A x : α (var)

Γ, x : σ 
A M : τ
Γ 
A λx .M : σ( τ

(abs) Γ 
A M : σ α fresh
Γ 
A λx .M : α( σ

(abs∅)

Γ 
A M : σ ∆ 
A N : τ
(dom(Γ) ∩ dom(∆)) = ∅ (TVar(Γ) ∩ TVar(∆)) = ∅
(TVar(σ) ∩ TVar(τ)) = ∅ U ′ = U(σ, α( β)

U = U(U ′(α), τ) α, β fresh
U ◦ U ′(Γ,∆) 
A MN : U ◦ U ′(β)

(app)



Principal Types for Affine Combinators

[[I]] = α( α
[[B]] = (α( β)( (γ ( α)( γ ( β
[[C]] = (α( β( γ)( β( α( γ
[[K]] = α( β( α



Resolution of principal types is G.o.I. application

Proposition

Let f ,g ∈ I. Then 〈u, v〉 ∈ f · g if and only if there exists an
even sequence, 〈u1[α1],u′1[α1]〉, . . . , 〈un+1[αn+1],u′n+1[αn+1]〉:

either n = 0 and 〈u1[α1],u′1[α1]〉 ∈ frr or n > 0,
〈u1[α1],u′1[α1]〉 ∈ frl , 〈un+1[αn+1],u′n+1[αn+1]〉 ∈ flr ,
〈ui [αi ],u′i [αi ]〉 ∈ g, for i < n, i even, and 〈ui [αi ],u′i [αi ]〉 ∈ fll ,
for 1 < i < n + 1, i odd;
the set of types
Π = {〈TZ (u′i [αi ]), TZ (ui+1[αi+1])〉 | 1 ≤ i ≤ n} (where
Z-variables used in different types are different) is unifiable

The sequence 〈u1[α1],u′1[α1]〉, . . . , 〈un+1[αn+1],u′n+1[αn+1]〉 is
called a trajectory and 〈u, v〉 its output.



Resolution of principal types is G.o.I. application

Proposition

Let σ1 ( σ2 and τ be binary types, let Θ be the set of
type-variables in TVar(σ1 ( σ2, τ) which are not involved in
any trajectory of R(σ1 ( σ2) · R(τ), and let Uπ1 , . . . ,Uπn be the
unifiers arising from all trajectories π1, . . . , πn of

R(σ1 ( σ2) · R(τ).

If σ1 and τ are unifiable with m.g.u. U, then:
1 Uπi ≤ U for all i ;
2
⊕

i Uπi = U�(TVar\Θ);
3 TZ (O(R(σ1 ( σ2) · R(τ))) = U(σ2).



G.o.I. application is Resolution of (ancestral) types

Proposition
Let σ1 ( σ2 and τ be binary types such that σ1 and τ are
unifiable with m.g.u. U, then

R(σ1 ( σ2) · R(τ) = R(U(σ2)) .

Theorem (A.C. - F.H.- M.L. - I.S. 2018)

For any closed term M of affine combinatory logic, {I, B, C, K },
we have: [[M]]I = R(σ), where σ is the principal type of (M)λ.

The above theorem provides a partial answer to a problem
raised by Abramsky in Structural Approach to Reversible
Computation (2011)



Ancestral types

No full resolution can apply to the following two types
τ ≡ ((α( β)( (γ ( (γ ( δ)( δ))( α( β
σ ≡ (α( α)( (γ ( γ)
but,
R(σ) = {rlx↔ lllx , rrx↔ llrx , lrlx↔ lrrlx , lrrlrx↔ lrrrx}
R(τ) = {llx ↔ lrx , rlx ↔ rrx}
R(σ) · R(τ) = {lx ↔ rx}

lxOO
R(σ)rl

��

rx

llx oo
R(τ) // lrx

��
R(σ)lr

OO

Exact resolution can be obtained considering ancestral types:
σ′ ≡ ((α( β)( γ)( α( β
τ ′ ≡ (α( α)( γ
R(σ′) = {rlx↔ lllx , rrx↔ llrx}
R(τ ′) = {llx ↔ lrx}



Beyond λA:
Coppo -Dezani Intersection Types with Modalities

Finitary logical description of λ-models: M. Coppo, M.
Dezani-Ciancaglini, F. Honsell, G. Longo. Extended type
structures and filter lambda models. Logic Colloquium
’82, North Holland, Amsterdam, (1984).
P. Di Gianantonio, F. Honsell, M. Lenisa. A type
assignment system for game semantics. Theor. Comput.
Sci. 398 (1-3), (2008).
A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, I.
Scagnetto, λ!-calculus, Intersection Types, and Involutions.
FSCD 2019, LIPIcs 131, (2019).
Antonio Bucciarelli, Delia Kesner, Simona Ronchi Della
Rocca - Inhabitation for Non-idempotent Intersection
Types, Logical Methods in Computer Science, 14(3),
(2018).
Many papers by Delia Kesner et al.



The language of types and indices

The language of types, Type!, is a two sorted language given
by the following grammars
(Type! 3) σ, τ ::= ω | α | . . . | σ( τ | σ̂
(T̂ype! 3) σ̂, τ̂ ::= !uσ | σ̂ ∧ τ̂
(Index ! 3) u, v ::= ε | i | j | . . . | 〈u, v〉.

i , j , . . . are index variables.
The syntactic category σ̂-types isolates types whose main
constructor is ! or ∧.
The equivalence relation on types ∼ is induced by ω ∼ σ,
for any type σ which contains only the constant ω and no
type variables.



Principal Types for non-linear Combinators

[[F]] = !i(α( β)(!iα(!iβ
[[W]] = (!iα(!jβ( γ)( (!iα∧!jβ)( γ
[[D]] = !εα( α
[[δ]] = !〈j,i〉α(!i !jα



General Principal Type Assignment System 


x : α 
 x : α (var)

Γ, x : σ 
 M : τ
Γ 
 λx .M : σ( τ

(abs) Γ 
 M : σ α fresh
Γ 
 λx .M : α( σ

(abs∅)

Γ 
 M : σ
!̂i(Γ) 
!M :!i(σ)

(!-Intro) Γ 
 !M :!εσ !(Γ)
Γ 
 M : σ

(!-Elim)

Γ, !x : σ̂, !y : τ̂ 
 M[x , y ] : ρ
Γ, !x : σ̂ ∧ τ̂ 
 M[x , x ] : ρ

(∧-Intro-L)

Γ 
 M : σ ∆ 
 N : τ
(dom(Γ) ∩ dom(∆)) = ∅ (TVar(Γ) ∩ TVar(∆)) = ∅
(TVar(σ) ∩ TVar(τ)) = ∅ U ′ =M(〈 . . . , σ, α( β)

U =M(. . . ,U ′(α), τ) α, β fresh
U ◦ U ′(Γ,∆) 
 MN : U ◦ U ′(β)

(app)



Notation

!(Γ) means that all variables in Γ are banged (Γ is possibly
empty);
!̂u(Γ, x : τ) = !̂u(Γ), !x :!uτ and
!̂u(Γ, !x : τ̂) = !̂u(Γ), !x : !̂u(τ̂), where

!̂u(τ̂) =

{
!〈u,v〉τ if τ̂ =!vτ

!̂u(τ̂1) ∧ !̂u(τ̂2) if τ̂ = τ̂1 ∧ τ̂2



Principal Type for 2 ≡ λ!x .λ!y .x !(x !y)

z : δ 
 z : δ
!z :!εδ 
!z :!εδ
!z :!εδ 
 z : δ

w : β 
 w : β

y : α 
 y : α

!y :!iα 
!y :!iα

w :!iα( γ, !y :!iα 
 w !y : γ

!w :!j(!iα( γ), !y :!〈j,i〉α 
!(w !y) :!jγ

!z :!ε(!jγ ( δ), w :!j(!iα( γ), !y :!〈j,i〉α 
 z!(w !y) : δ

!x :!k (!jγ ( δ)∧!j(!iα( γ), !y :!〈j,i〉α 
 x!(x!y) : δ〈〉

 λ!x .λ!y .x!(x!y) :!k (!jγ ( δ)∧!j(!iα( γ)( (!〈j,i〉α( δ)



Principal Type for 2!2 = 4

. . .〈〉

 2 :!k (!jγ ( δ)∧!j (!iα( γ) ( (!〈j,i〉α( δ)

. . .〈〉

 2 :!k (!jγ ( δ)∧!j (!iα( γ) ( (!〈j,i〉α( δ)〈〉


!2 :!m(!k (!jγ ( δ)∧!j (!iα( γ) ( (!〈j,i〉α( δ))〈〉

 2!2 :??



Duplication at work
!mτ ≡!m(!k (!jγ ( δ)∧!j (!iα( γ) ( (!〈j,i〉α( δ)))

!′k (!j′γ
′ ( δ′)∧!j′ (!i′α

′ ( γ′) ( (!〈i′,j′〉α
′ ( δ′)

duplicate !m i.e. !mτ 7→!ml τl∧!ml τr

τl ≡ !kl
(!jl
γl ( δl )∧!jl

(!il
αl ( γl ) ( (!〈il ,jj 〉

αl ( δl )

!j′γ
′ ( δ′

duplicate !j′ i.e. !j′γ
′ 7→!j′l

γ′l ∧!j′r
γ′r

!kl
(!jl
γl ( δl )∧!jl

(!il
αl ( γl )

!j l γ
1
l ∧!j r γ

1
r

but since on the right hand side we had

!mr τr ≡!mr ( !kr (!jr γr ( δr )∧!jr (!ir αr ( γr ) ( (!〈ir ,jr 〉αr ( δr ) )

!j′ ( !i′α
′ ( γ′ )

and !j′ has been duplicated we have, in fact,

!mr ( !kr (!jr γr ( δr )∧!jr (!ir αr ( γr ) ( (!〈ir ,jr 〉αr ( δr ) )

!j′l
(!i′l
α′

l ( γ′l ) ∧ !j′r
(!i′r
α′

r ( γ′r )

hence we have to duplicate also !mr τr , namely we have to meta-unify

(!mrl (!krl
(!jrl

γrl ( δrl )∧!jrl
(!irl

αrl ( γrl ) ( (!〈irl ,jrl 〉
αrl ( δrl ))) ∧

!j′l
(!i′l
α′

l ( γ′l ) ∧

(!mrr (!krr (!jrr γrr ( δrr )∧!jrr (!irr αrr ( γrr ) ( (!〈irr ,jrr 〉αrr ( δrr )))

!j′r
(!i′r
α′

r ( γ′r )

. . .



Duplication at work

Duplications triggered by !j ′ are reflected also in

!〈j ′,i ′〉α
′( δ′

which is meta-substituted into

(!〈j ′l ,i
′
l 〉α
′
l∧!〈j ′r ,i ′r 〉α

′
r )( δ′



Metaunification (in progress)

Two issues
duplication of !-indices trigger, even at-a-distance,
duplication of subtypes which they encapsulate;
the connection with the encapsulating !-indices has to be
maintained:

we need a new meta-unification judgment,M, which rewrites
sets of t-ples consisting of appropriate parameters to take care
of the above issues and two types, 〈. . . , σ, τ〉.


