Bidimensional fixpoint operators IFIP 2023

Zeinab GALAL

September 8, 2023

Fixpoints

For an endo-map $f : A \rightarrow A$, a fixpoint is an element $x \in A$ such that

f(x) = x

Fixpoints

For an endo-map $f : A \rightarrow A$, a fixpoint is an element $x \in A$ such that

f(x) = x

For a program *M*, a fixpoint is an input x such that there is a calculation sequence between *M(x)* and x

Fixpoints

For an endo-map $f : A \rightarrow A$, a fixpoint is an element $x \in A$ such that

f(x) = x

- ▶ For a program *M*, a fixpoint is an input *x* such that there is a calculation sequence between *M*(*x*) and *x*
 - **Y** fixpoint combinator in untyped λ -calculus:

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

• fixpoint operator in PCF

$$\frac{\Gamma, A \vdash M : A}{\Gamma \vdash \mathbf{Y}M : A}$$
FIX

Definition

Let $\mathbb C$ be a category with a terminal object 1, a fixed-point operator on $\mathbb C$ is family of functions

$$(-)^*_A : \mathbb{C}(A, A) \to \mathbb{C}(1, A)$$

 $f \mapsto f^*$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f : A \rightarrow A$,

Definition

Let $\mathbb C$ be a category with a terminal object 1, a fixed-point operator on $\mathbb C$ is family of functions

$$(-)^*_A : \mathbb{C}(A, A) \to \mathbb{C}(1, A)$$

 $f \mapsto f^*$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f : A \rightarrow A$,

Definition

Let $\mathbb C$ be a category with a terminal object 1, a fixed-point operator on $\mathbb C$ is family of functions

$$(-)^*_A : \mathbb{C}(A, A) \to \mathbb{C}(1, A)$$

 $f \mapsto f^*$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f : A \rightarrow A$,

Definition

Let $\mathbb C$ be a category with a terminal object 1, a fixed-point operator on $\mathbb C$ is family of functions

$$(-)^*_A : \mathbb{C}(A, A) \to \mathbb{C}(1, A)$$

 $f \mapsto f^*$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f : A \rightarrow A$,

Example: for a domain D and a Scott-continuous map $f: D \rightarrow D$,

$$f(\bigvee_{n\in\omega}f^n(\bot))=\bigvee_{n\in\omega}f^n(\bot)$$

Dinatural fixpoint operators

 A fixpoint operator (-)* on D is dinatural if for every f : A → B and g : B → A in D,
(a ∩ f)*

For J: C → D an identity-on-objects functor preserving terminal objects, a fixpoint operator (-)* on D is said to be uniform with respect to J if:

+ naturality and diagonal axioms for parameterized fixpoints...

Replace equalities by arrows

• In λ -calculus, reductions are directed:

$$\mathbf{Y}M \longrightarrow M(\mathbf{Y}M)$$

Initial algebra and final coalgebra semantics

$$F(X) \xrightarrow{\cong} X \qquad \qquad X \xrightarrow{\cong} F(X)$$

Replace equalities by arrows

• In λ -calculus, reductions are directed:

$$\mathbf{Y}M \longrightarrow M(\mathbf{Y}M)$$

Initial algebra and final coalgebra semantics

$$F(X) \xrightarrow{\cong} X \qquad \qquad X \xrightarrow{\cong} F(X)$$

Use 2-morphisms in a 2-category/bicategory to model fixpoint reductions

for $f : A \to A$ for a square for $f : A \rightarrow B$ $\xrightarrow{f} A \\ \bigcirc \\ 0 \\ J(s)$ and $g: B \to A$ J(s)В В g $(g \circ f)^*$ f* Js 1 1 B f* g* $(f \circ g)^*$

for $f : A \to A$ for a square for $f : A \rightarrow B$ $A \xrightarrow{f} A$ and $g: B \to A$ J(s)В В g $(g \circ f)^*$ f* Js $/ fix_f$ 1 1 B g* f* $(f \circ g)^*$ $f^* \xrightarrow{\text{fix}} f \circ f^*$

What axioms and coherences do they satisfy?

- step 1 Restrict to fixpoints that are obtained via a universal property (Plotkin-Simpson theorem constructing a unique fixpoint operator when certain conditions hold)
- step 2 Categorify the Plotkin-Simpson theorem to extract the coherence equations needed to obtain the 2-categorical universal property
- step 3 Verify that the axiomatization holds for general fixpoint operators

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T : \mathbb{C} \to \mathbb{C}$ consists of an initial algebra $(X, a : T(X) \to X)$ such that its inverse a^{-1} is a final coalgebra.

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T : \mathbb{C} \to \mathbb{C}$ consists of an initial algebra $(X, a : T(X) \to X)$ such that its inverse a^{-1} is a final coalgebra.

Theorem (Plotkin-Simpson, 2000)

Let \mathbb{C} be a category equipped with a comonad (T, δ, ε) and a terminal object.

- If the endofunctor T has a bifree algebra, then the co-Kleisli \mathbb{C}_T has a unique fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text{free}} \mathbb{C}_T$.
- If C is cartesian and the endofunctor T ∘ T has a bifree algebra, then the co-Kleisli C_T has a unique dinatural fixpoint operator uniform wrt C free C_T.

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T : \mathbb{C} \to \mathbb{C}$ consists of an initial algebra $(X, a : T(X) \to X)$ such that its inverse a^{-1} is a final coalgebra.

Theorem (Plotkin-Simpson, 2000)

Let \mathbb{C} be a category equipped with a comonad (T, δ, ε) and a terminal object.

- If the endofunctor T has a bifree algebra, then the co-Kleisli \mathbb{C}_T has a unique fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text{free}} \mathbb{C}_T$.
- If C is cartesian and the endofunctor T ∘ T has a bifree algebra, then the co-Kleisli C_T has a unique dinatural fixpoint operator uniform wrt C free C_T.

Examples: the category **Cppo** in domain theory and the relational model in linear logic

Definition

Let \mathscr{D} be a 2-category with a terminal object 1. A *pseudo fixpoint operator on* \mathscr{D} consists of a family of functors indexed by the objects A of \mathscr{D} :

$$(-)^*_A : \mathcal{D}(A, A) \to \mathcal{D}(1, A)$$

together with a family of natural isomorphisms $\ensuremath{\textit{fix}}$ with components

for a 1-cell $f : A \to A$ in \mathcal{D} .

Define the category $\mathbf{Fix}(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $((-)^*, \mathbf{fix}^*) \to ((-)^{\dagger}, \mathbf{fix}^{\dagger})$ is a family of natural transformations with components $\delta_f : f^* \Rightarrow f^{\dagger}$ for $f : A \to A$ such that:

Define the category $Fix(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $((-)^*, \mathbf{fix}^*) \to ((-)^{\dagger}, \mathbf{fix}^{\dagger})$ is a family of natural transformations with components $\delta_f : f^* \Rightarrow f^{\dagger}$ for $f : A \to A$ such that:

least fixpoint \rightarrow initial object in **Fix**(\mathscr{D})

Define the category $Fix(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $((-)^*, \mathbf{fix}^*) \to ((-)^{\dagger}, \mathbf{fix}^{\dagger})$ is a family of natural transformations with components $\delta_f : f^* \Rightarrow f^{\dagger}$ for $f : A \to A$ such that:

least fixpoint \rightsquigarrow initial object in $Fix(\mathscr{D})$ greatest fixpoint \rightsquigarrow terminal object in $Fix(\mathscr{D})$

Define the category $Fix(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $((-)^*, \mathbf{fix}^*) \to ((-)^{\dagger}, \mathbf{fix}^{\dagger})$ is a family of natural transformations with components $\delta_f : f^* \Rightarrow f^{\dagger}$ for $f : A \to A$ such that:

- least fixpoint → greatest fixpoint → unique fixpoint →
- initial object in $\mathsf{Fix}(\mathscr{D})$
- terminal object in $\mathsf{Fix}(\mathscr{D})$
- $Fix(\mathscr{D})$ is contractible

A pseudo dinatural fixpoint operator on \mathscr{D} consists a pseudo fixpoint operator $((-)^*, \mathbf{fix})$ on \mathscr{D} together with 2-cells

for all $f : A \rightarrow B$ and $g : B \rightarrow A$ satisfying the axioms of a pseudo dinatural transformation:

dinat :
$$\mathscr{D}(-,-) \Rightarrow \mathscr{D}(1,-) : \mathscr{D}^{op} \times \mathscr{D} \to CAT$$

and ...

Coherence between fix and dinat

=

Theorem

Let \mathscr{C} be a 2-category equipped with a 2-comonad (T, δ, ε) and a terminal object. We denote by \mathscr{D} the co-Kleisli 2-category \mathscr{C}_T and by $J: \mathscr{C} \to \mathscr{D}$ the free functor.

 If the endofunctor T has a pseudo-bifree algebra, the category of uniform pseudo-fixpoint operators Fix(D, J) is contractible.

If *C* is cartesian and the endofunctor T ∘ T has a pseudo-bifree algebra, then the category of dinatural uniform pseudo-fixpoint operators DinFix(D, J) is contractible.

Examples

► The 2-category Cat_{ω,⊥}

objects: ω -complete categories with initial object 1-cells: functors pres. colimits of ω -chains and initial objects 2-cells: natural transformations

with the lifting 2-comonad

 $(-)_{\perp} \bigcirc \operatorname{Cat}_{\omega, \perp} \xrightarrow{\operatorname{Free}} \operatorname{Kleisli}(\operatorname{Cat}_{\omega, \perp}) \simeq \operatorname{Cat}_{\omega}$

The bicategory Prof

objects: small categories 1-cells: profunctors 2-cells: natural transformations

with the free symmetric strict monoidal completion pseudo-comonad Sym

$$\mathsf{Sym} \, \overset{\mathsf{Free}}{\longrightarrow} \, \mathsf{Prof}_{\mathsf{Sym}} \cong \mathsf{Esp}$$

	induction	coinduction
	W -types	M -types
	well-founded trees	non-well-founded trees
$X \mapsto 1 + X$	N	$\overline{\mathbb{N}}$
$X\mapsto 1+X^2$	finite binary trees	all binary trees
$X \mapsto 1 + A \times X$	finite streams	all streams

	induction	coinduction	
	W -types	M -types	
	well-founded trees	non-well-founded trees	
$X \mapsto 1 + X$	N	$\overline{\mathbb{N}}$	
$X\mapsto 1+X^2$	finite binary trees	all binary trees	
$X \mapsto 1 + A \times X$	finite streams	all streams	
	pseudo-dinatural fixpoint uniform wrt <i>spans</i>	pseudo-dinatural fixpoint uniform wrt <i>monomials</i>	

- Parameterized fixpoints operators
- Traced monoidal bicategories for cyclic λ -calculi
- Guarded recursion
- Develop the syntactic counterpart
- Coherence theorems

