Bidimensional fixpoint operators IFIP 2023

Zeinab GALAL

September 8, 2023

Fixpoints

- For an endo-map $f: A \rightarrow A$, a fixpoint is an element $x \in A$ such that

$$
f(x)=x
$$

Fixpoints

- For an endo-map $f: A \rightarrow A$, a fixpoint is an element $x \in A$ such that

$$
f(x)=x
$$

- For a program M, a fixpoint is an input x such that there is a calculation sequence between $M(x)$ and x

Fixpoints

- For an endo-map $f: A \rightarrow A$, a fixpoint is an element $x \in A$ such that

$$
f(x)=x
$$

- For a program M, a fixpoint is an input x such that there is a calculation sequence between $M(x)$ and x
- \mathbf{Y} fixpoint combinator in untyped λ-calculus:

$$
\mathbf{Y} M=_{\beta} M(\mathbf{Y} M)
$$

- fixpoint operator in PCF

$$
\frac{\Gamma, A \vdash M: A}{\Gamma \vdash \mathrm{Y} M: A} \mathrm{FIX}
$$

Categorical fixpoint operators

Definition

Let \mathbb{C} be a category with a terminal object 1 , a fixed-point operator on \mathbb{C} is family of functions

$$
\begin{aligned}
(-)_{A}^{*}: \mathbb{C}(A, A) & \rightarrow \mathbb{C}(1, A) \\
f & \mapsto f^{*}
\end{aligned}
$$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f: A \rightarrow A$,

Categorical fixpoint operators

Definition

Let \mathbb{C} be a category with a terminal object 1 , a fixed-point operator on \mathbb{C} is family of functions

$$
\begin{aligned}
(-)_{A}^{*}: \mathbb{C}(A, A) & \rightarrow \mathbb{C}(1, A) \\
f & \mapsto f^{*}
\end{aligned}
$$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f: A \rightarrow A$,

Categorical fixpoint operators

Definition

Let \mathbb{C} be a category with a terminal object 1 , a fixed-point operator on \mathbb{C} is family of functions

$$
\begin{aligned}
(-)_{A}^{*}: \mathbb{C}(A, A) & \rightarrow \mathbb{C}(1, A) \\
f & \mapsto f^{*}
\end{aligned}
$$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f: A \rightarrow A$,

Categorical fixpoint operators

Definition

Let \mathbb{C} be a category with a terminal object 1 , a fixed-point operator on \mathbb{C} is family of functions

$$
\begin{aligned}
(-)_{A}^{*}: \mathbb{C}(A, A) & \rightarrow \mathbb{C}(1, A) \\
f & \mapsto f^{*}
\end{aligned}
$$

indexed by the objects A of \mathbb{C} verifying that for all morphisms $f: A \rightarrow A$,

Example: for a domain D and a Scott-continuous map $f: D \rightarrow D$,

$$
f\left(\bigvee_{n \in \omega} f^{n}(\perp)\right)=\bigvee_{n \in \omega} f^{n}(\perp)
$$

Dinatural fixpoint operators

- A fixpoint operator $(-)^{*}$ on \mathbb{D} is dinatural if for every $f: A \rightarrow B$ and $g: B \rightarrow A$ in \mathbb{D},

- For $J: \mathbb{C} \rightarrow \mathbb{D}$ an identity-on-objects functor preserving terminal objects, a fixpoint operator $(-)^{*}$ on \mathbb{D} is said to be uniform with respect to J if:

- + naturality and diagonal axioms for parameterized fixpoints...

Replace equalities by arrows

- In λ-calculus, reductions are directed:

$$
\mathbf{Y} M \quad \longrightarrow \quad M(\mathbf{Y} M)
$$

- Initial algebra and final coalgebra semantics

$$
F(X) \xrightarrow{\cong} X \quad X \xrightarrow{\cong} F(X)
$$

Replace equalities by arrows

- In λ-calculus, reductions are directed:

$$
\mathbf{Y} M \quad \longrightarrow \quad M(\mathbf{Y} M)
$$

- Initial algebra and final coalgebra semantics

$$
F(X) \xrightarrow{\cong} X \quad X \xrightarrow{\cong} F(X)
$$

Use 2-morphisms in a 2-category/bicategory to model fixpoint reductions

What is a 2-dimensional fixpoint operator?

for $f: A \rightarrow A$
for a square

for $f: A \rightarrow B$ and $g: B \rightarrow A$

What is a 2-dimensional fixpoint operator?

for $f: A \rightarrow A$
for a square

$$
f^{*} \stackrel{\mathrm{fix}}{\Longrightarrow} f \circ f^{*}
$$

What is a 2-dimensional fixpoint operator?

for $f: A \rightarrow A$
for a square

$$
\begin{aligned}
& A \xrightarrow{f} A
\end{aligned}
$$

$$
f^{*} \stackrel{\mathrm{fix}}{\Longrightarrow} f \circ f^{*}
$$

What is a 2-dimensional fixpoint operator?

```
for \(f: A \rightarrow A\)
```

for a square
$A \xrightarrow{f} A$
$J(s) \downarrow \nVdash \gamma$ $\downarrow J(s)$
$B \underset{g}{\longrightarrow} B$

$g^{*} \stackrel{\text { unif }}{ } J S \circ f^{*}$
for $f: A \rightarrow B$ and $g: B \rightarrow A$

$$
f^{*} \stackrel{\text { fix }}{\Longrightarrow} f \circ f^{*}
$$

What is a 2-dimensional fixpoint operator?

```
for \(f: A \rightarrow A\)
```

for a square
$A \xrightarrow{f} A$

$g^{*} \xlongequal{\text { unif }} J s \circ f^{*}$
for $f: A \rightarrow B$ and $g: B \rightarrow A$

$(f g)^{*} \stackrel{\text { dinat }}{\Longrightarrow} f \circ(g f)^{*}$

What is a 2-dimensional fixpoint operator?

for $f: A \rightarrow A$
for a square
$A \xrightarrow{f} A$
$J(s) \downarrow \nVdash \gamma \downarrow J(s)$
$B \underset{g}{\longrightarrow} B$

$$
g^{*} \stackrel{\text { unif }}{\Longrightarrow} J s \circ f^{*}
$$

for $f: A \rightarrow B$ and $g: B \rightarrow A$

$f^{*} \xrightarrow{\text { fix }} f \circ f^{*}$

$(f g)^{*} \stackrel{\text { dinat }}{\Longrightarrow} f \circ(g f)^{*}$

What axioms and coherences do they satisfy?

General strategy

- step 1 Restrict to fixpoints that are obtained via a universal property (Plotkin-Simpson theorem constructing a unique fixpoint operator when certain conditions hold)
- step 2 Categorify the Plotkin-Simpson theorem to extract the coherence equations needed to obtain the 2-categorical universal property
- step 3 Verify that the axiomatization holds for general fixpoint operators

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T: \mathbb{C} \rightarrow \mathbb{C}$ consists of an initial algebra $(X, a: T(X) \rightarrow X)$ such that its inverse a^{-1} is a final coalgebra.

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T: \mathbb{C} \rightarrow \mathbb{C}$ consists of an initial algebra $(X, a: T(X) \rightarrow X)$ such that its inverse a^{-1} is a final coalgebra.

Theorem (Plotkin-Simpson, 2000)
Let \mathbb{C} be a category equipped with a comonad (T, δ, ε) and a terminal object.

- If the endofunctor T has a bifree algebra, then the co-Kleisli \mathbb{C}_{T} has a unique fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text { free }} \mathbb{C}_{T}$.
- If \mathbb{C} is cartesian and the endofunctor $T \circ T$ has a bifree algebra, then the co-Kleisli \mathbb{C}_{T} has a unique dinatural fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text { free }} \mathbb{C}_{T}$.

Induction \Leftrightarrow coinduction

A bifree algebra for an endofunctor $T: \mathbb{C} \rightarrow \mathbb{C}$ consists of an initial algebra $(X, a: T(X) \rightarrow X)$ such that its inverse a^{-1} is a final coalgebra.

Theorem (Plotkin-Simpson, 2000)
Let \mathbb{C} be a category equipped with a comonad (T, δ, ε) and a terminal object.

- If the endofunctor T has a bifree algebra, then the co-Kleisli \mathbb{C}_{T} has a unique fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text { free }} \mathbb{C}_{T}$.
- If \mathbb{C} is cartesian and the endofunctor $T \circ T$ has a bifree algebra, then the co-Kleisli \mathbb{C}_{T} has a unique dinatural fixpoint operator uniform wrt $\mathbb{C} \xrightarrow{\text { free }} \mathbb{C}_{T}$.

Examples: the category Cppo in domain theory and the relational model in linear logic

2-categorical fixpoint operator

Definition

Let \mathscr{D} be a 2-category with a terminal object 1. A pseudo fixpoint operator on \mathscr{D} consists of a family of functors indexed by the objects A of \mathscr{D} :

$$
(-)_{A}^{*}: \mathscr{D}(A, A) \rightarrow \mathscr{D}(1, A)
$$

together with a family of natural isomorphisms fix with components

for a 1-cell $f: A \rightarrow A$ in \mathscr{D}.

Fixpoint operators form a category

Define the category $\operatorname{Fix}(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $\left((-)^{*}\right.$, fix $\left.^{*}\right) \rightarrow\left((-)^{\dagger}, \mathbf{f i x}^{\dagger}\right)$ is a family of natural transformations with components $\delta_{f}: f^{*} \Rightarrow f^{\dagger}$ for $f: A \rightarrow A$ such that:

Fixpoint operators form a category

Define the category $\operatorname{Fix}(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $\left((-)^{*}, \mathbf{f i x}^{*}\right) \rightarrow\left((-)^{\dagger}, \mathbf{f i x}^{\dagger}\right)$ is a family of natural transformations with components $\delta_{f}: f^{*} \Rightarrow f^{\dagger}$ for $f: A \rightarrow A$ such that:

least fixpoint $\quad \leadsto \quad$ initial object in $\operatorname{Fix}(\mathscr{D})$

Fixpoint operators form a category

Define the category $\operatorname{Fix}(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $\left((-)^{*}, \mathbf{f i x}^{*}\right) \rightarrow\left((-)^{\dagger}, \mathbf{f i x}^{\dagger}\right)$ is a family of natural transformations with components $\delta_{f}: f^{*} \Rightarrow f^{\dagger}$ for $f: A \rightarrow A$ such that:

$$
\begin{aligned}
\text { least fixpoint } & \leadsto \text { initial object in } \mathbf{F i x}(\mathscr{D}) \\
\text { greatest fixpoint } & \leadsto \text { terminal object in } \mathbf{F i x}(\mathscr{D})
\end{aligned}
$$

Fixpoint operators form a category

Define the category $\operatorname{Fix}(\mathscr{D})$

- objects: pseudo-fixpoint operators on \mathscr{D}
- morphisms: a morphism $\left((-)^{*}, \mathbf{f i x}^{*}\right) \rightarrow\left((-)^{\dagger}, \mathbf{f i x}^{\dagger}\right)$ is a family of natural transformations with components $\delta_{f}: f^{*} \Rightarrow f^{\dagger}$ for $f: A \rightarrow A$ such that:

least fixpoint	\leadsto initial object in $\operatorname{Fix}(\mathscr{D})$
greatest fixpoint	\leadsto terminal object in $\operatorname{Fix}(\mathscr{D})$
unique fixpoint	$\leadsto \operatorname{Fix}(\mathscr{D})$ is contractible

Dinatural fixpoints for 2-categories

A pseudo dinatural fixpoint operator on \mathscr{D} consists a pseudo fixpoint operator $\left((-)^{*}\right.$, fix $)$ on \mathscr{D} together with 2-cells

for all $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfying the axioms of a pseudo dinatural transformation:

$$
\text { dinat }: \mathscr{D}(-,-) \Rightarrow \mathscr{D}(1,-): \mathscr{D}^{o p} \times \mathscr{D} \rightarrow \mathbf{C A T}
$$

and ...

Coherence between fix and dinat

Characterizing fixpoint operators on 2-categories

Theorem
Let \mathscr{C} be a 2 -category equipped with a 2-comonad (T, δ, ε) and a terminal object. We denote by \mathscr{D} the co-Kleisli 2-category \mathscr{C}_{T} and by $J: \mathscr{C} \rightarrow \mathscr{D}$ the free functor.

- If the endofunctor T has a pseudo-bifree algebra, the category of uniform pseudo-fixpoint operators $\operatorname{Fix}(\mathscr{D}, J)$ is contractible.
- If \mathscr{C} is cartesian and the endofunctor $T \circ T$ has a pseudo-bifree algebra, then the category of dinatural uniform pseudo-fixpoint operators $\operatorname{DinFix}(\mathscr{D}, J)$ is contractible.

Examples

- The 2-category Cat ${ }_{\omega, \perp}$
objects: ω-complete categories with initial object
1-cells: functors pres. colimits of ω-chains and initial objects
2-cells: natural transformations
with the lifting 2-comonad

$$
(-)_{\perp} \circlearrowright \text { Cat }_{\omega, \perp} \xrightarrow{\text { Free }} \operatorname{Kleisli}\left(\text { Cat }_{\omega, \perp}\right) \simeq \text { Cat }_{\omega}
$$

- The bicategory Prof
objects: small categories
1-cells: profunctors
2-cells: natural transformations
with the free symmetric strict monoidal completion pseudo-comonad Sym

$$
\text { Sym } \subset \text { Prof } \xrightarrow{\text { Free }} \text { Prof }_{\text {Sym }} \simeq \text { Esp }
$$

Polynomial functors

	induction	coinduction
	W-types	M-types
	well-founded trees	non-well-founded trees
$X \mapsto 1+X$	\mathbb{N}	$\overline{\mathbb{N}}$
$X \mapsto 1+X^{2}$	finite binary trees	all binary trees
$X \mapsto 1+A \times X$	finite streams	all streams

Polynomial functors

$$
\begin{aligned}
& \text { induction } \\
& \text { W-types } \\
& \text { well-founded trees } \\
& X \mapsto 1+X \\
& X \mapsto 1+X^{2} \quad \text { finite binary trees } \\
& X \mapsto 1+A \times X \quad \text { finite streams } \\
& \text { coinduction } \\
& \text { M-types } \\
& \text { non-well-founded } \\
& \text { trees } \\
& \overline{\mathbb{N}} \\
& \text { all binary trees } \\
& \text { all streams } \\
& \text { pseudo-dinatural fixpoint } \\
& \text { uniform wrt spans }
\end{aligned}
$$

Future work

- Parameterized fixpoints operators
- Traced monoidal bicategories for cyclic λ-calculi
- Guarded recursion
- Develop the syntactic counterpart
- Coherence theorems

Thank you

