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Finite heaps

Finite model theory =
non-compactness =
no finitary sound and complete logic

But, oh sorry ...
For me, the finiteness of the heap is one of the fundamen-
tal decisions about separation logic. Of course, it is very
natural to try to see what happens if some assumption
is weakened or removed. Sometimes one finds something
very interesting, sometimes less so.
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Semantics Separation Logic
We have the following main cases (M = (D, I ) denotes a
first-order model).

▶ M, h, s |= (t ↪→ t ′) if and only if ⟨Is(t), Is(t ′)⟩ ∈ h.

▶ M, h, s |= (p ∗ q) if and only if M, h1, s |= p and M, h2, s |= q,
for some heaps h1, h2 ⊆ D × D such that h = h1 ∪ h2 and
h1 ⊥ h2.

▶ M, h, s |= (p −∗ q) if and only if M, h′, s |= p implies
M, h ∪ h′, s |= q, for all heaps h′ ⊆ D × D such that h ⊥ h′.

... you also make use of the affine version of the points-to
predicate (p 7→ v * true). ... You need to be a lot more
precise about what it does. At any rate, this is sometimes
called “a poor man’s garbage collector” as p 7→ v * q7→
w * true ⊢ p 7→ v * true and by using it you have moved
into an affine logic where it’s possible to forget resources.

Non-compactness

∃x1, . . . , xn((x1 ↪→ −) ∗ . . . ∗ (xn ↪→ −))
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General Model theory: Finiteness and Countability

▶ expressibility finiteness of first-order models

▶ existence of both countably infinite and uncountable
first-order models



The Transcendental Magic Wand
(or the Baron von Münchhausen effect)

Let □p abbreviate

true ∗ (emp ∧ (true −∗ p))

We have
M, h, s |= □p if and only if
M, h′, s |= p, for every h′ ⊆ D × D.

The box modality effectively universally quantifies over all
R ′ ⊆ D × D. So it is a bit strange that we want to
write M,R, s |= □ p. The R to the left of |= is clearly
superfluous (I’d even say misleading), since □p doesn’t
care about a specific interpretation of R at all.

So why introduce the box modality at all and then use it
in a way that refers to a superfluous interpretation of R?
Why not just say M, ∅, s |= (true −∗ p)?
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Finiteness

Total, injective heap

▶ ∀x∃y(x ↪→ y)

▶ ∀x , y , z((x ↪→ z ∧ y ↪→ z) → x = y)

Every total, injective heap is a surjection

M, h, s |= □(inj → ∀x∃y(y ↪→ x))



Well-foundedness

Let ■p abbreviate
¬(true ∗ ¬p)

We have
M, h, s |= ■p if and only if
M, h′, s |= p, for every sub-heap h′ of h.

Every non-empty sub-heap has a minimal element

■(emp ∨ ∃x((x ↪→ −) ∧ ∀y((y ↪→ −) → (y ̸↪→ x)))

Consequently, SL without −∗ is already non-compact (xn+1 ↪→ xn,
n ∈ N)



Countable first-order models

Heap enumeration

▶ total and injective

▶ unique minimal element: ∃!x∀y(y ↪̸→ x)

▶ well-founded

Countability

♢enum

Uncountable models
¬(♢enum ∨ fin)



Separation Logic vs Second-Order Logic

Binding operator ↓ R(p)

M,R, s |= ↓R(p) if and only if M,R, s[R := R] |= p

Translation second-order dyadic logic

T (∃R(ϕ)) = ♢(↓R(T (ϕ)))

Weak SL = weak second-order logic

Stéphane Demri and Morgan Deters. Expressive completeness of
separation logic with two variables and no separating conjunction.
ACM Trans. Comput. Log., 17(2):12, 2016.



Some Open Problems

▶ finiteness heaps

▶ general expressiveness SL

But, oh sorry (again) ...

the author(s) present several problems claimed to be open
(I’m not claiming I have solutions to these). Are these
to be considered as contributions? I would strongly vote
against this.

The examples used in the non-compactness arguments are
fairly standard and straightforward.

Further, the authors have strongly rebutted that compact-
ness of consequence relation holds for FOL. Let us consider
the same kind counterexample they have provided for their
variant of SL in the paper.
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Proof Theory: The Binding Operator p@q

M,R, s |= p@q(x , y) if and only if M,R′, s |= p
where
R′ = {(d , d ′) | M,R, s[x , y := d , d ′] |= q}

Axioms
▶ p = p@(x ↪→ y)

▶ (e ↪→ e ′)@r = r(e, e ′)

▶ (p ◦ q)@r = p@r ◦ q@r
▶ (¬p)@r = ¬(p@r)
▶ (∀xp)@r = ∀x(p@r)
▶ p@(q@r) = (p@q)@r



Sequent calculus

Separating conjunction

L∗

Γ, r = R1 ⊎ R2, p@R1, q@R2 ⇒ ∆

Γ, (p ∗ q)@r ⇒ ∆

R∗

Γ ⇒ ∆, r = r1 ⊎ r2 Γ ⇒ ∆, p@r1 Γ ⇒ ∆, q@r2
Γ ⇒ ∆, (p ∗ q)@r

Separating implication

L−∗

Γ ⇒ ∆, r ⊥ r ′ Γ ⇒ ∆, p@r ′ Γ, q@(r ∨ r ′) ⇒ ∆

Γ, (p −∗ q)@r ⇒ ∆

R−∗

Γ,R ⊥ r , p@R ⇒ ∆, q@(r ∨ R)

Γ ⇒ ∆, (p −∗ q)@r



Soundness and Completeness

General models
M = (D, I , J), where J ⊆ P(D × D)

Comprehensive models

{(d , d ′) | M,R, s[x , y := d , d ′] |= p(x , y)} ∈ J
for every R ∈ J and p(x , y)

Γ |= p ⇔ Γ ⊢ p

Arithmetic comprehension axiom

♢(∀x , y((x ↪→ y) ↔ ϕ(x , y)))

where ϕ(x , y) is a pure first-order formula
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Conclusion: The Killer Application

{(u ↪→ −) ∧ (z = 0 ◁ u = v ▷ v ↪→ z)}
[u] := 0
{v ↪→ z}

versus
{(u 7→ −) ∗ (u 7→ 0 −∗ v ↪→ z)}

[u] := 0
{v ↪→ z}



Odysseus: The Sirens of Abstraction


