
Luís Caires

The Session Abstract Machine

IFIP WG2.2. Meeting Bologna, September 2023

July 1st 2023

CLASS code (arithmetic server)

CLASS code (hoare-like monitor)

Propositions-as-Types
• Bridge between Logic, Programming Languages, and Computation.

• Programs are proofs in a logic, according to a Curry-Howard correspondence

• program as a typed semantically well-behaved object (a function or a process)

• proof simplification as computation ➡︎

• preservation, progress, confluence

• computation as cut-elimination ➡︎

• logical relations semantics, termination

• equational reasoning about observational equivalence

Propositions-as-Types for Concurrency
• Linear Logic and Session Types [CairesPfenning10,Wadler12]

• modular extensions (logically inspired connectives “automatically” socialize)

• ho-functions / polymorphism / recursion [ToninhoCairesPfenning13]

• dependent types (assertions, certificates, …) [ToninhoCairesPfenning11]

• effects (discardable resources, exceptions, non-determinism) [CairesPerez17]

• shared state [BalzerPfenning19,RochaCaires21]

• Towards shared state programs that can prove themselves

• CLASS (RochaCaires23)

Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation.

• Bringing together process algebra and classical computation theory

• Connecting session types to the trunk of "classical" type theory

• typed λ-calculus: sequential ho computation with pure values

• typed session calculus: concurrent ho computation with linear resources

• latter subsumes former, via exponentials and sharing constructs

• foundational infrastructure for safe concurrent programming (cf. Rust, Move)

• THIS TALK: Abstract Machine Semantics (new)

A Session Programming Language from Linear Logic

Process expressions (basic)
Logical

Type
PL

type
PL

construct

Process expressions (basic)
Logical

Type
PL

type
PL

construct

Process expressions (basic)
Logical

Type
PL

type
PL

construct

Process expressions (intro / slim)
Logical

Type
PL

type
PL

construct

Process expressions (composition)

Duality

Congruence / Reduction Semantics

Linear Logic as a Session Programming Language

• Computational Interpretation of Linear Logic: congruence , reduction

• Type Preservation:

• Deadlock-Freedom:

• Confluence (with sums):

• Normalisation:

• Strong Normalisation: If then is strongly normalising.

≡ → .

If P ⊢ Δ; Γ and P → Q, then Q ⊢ Δ; Γ .

Let P ⊢ ∅; ∅ be a live process. Then, P reduces.

If R * P * Q, then exists S s.t. R ≡ * S * ≡ Q .

If P ⊢ Δ; Γ, then exists a normal form Q s.t. P ≈ Q .

The Session Abstract Machine

Towards the Session Abstract Machine
• Cf, the SECD [Landin64], LAM [Lafont88,Abramsky93], CAM [Curien86], KM[07]

• Key insights (coming from playing around with many concurrent CLASS programs)

• Execute session terms sequentially whenever possible (except for Mix and Share)

• Replace busy waiting message passing by single threaded co-routining

• Heap-allocated mutable session object frames

• exploit connective polarities (cf. focusing)

• schedule positive constructs (send, select, close, bang) first

• Split interactions in write / read moves (cf. game-semantics and SACDS)

• respect std synchronous semantics (even if relying on buffered communication)

The Session Abstract Machine

SAM (close / wait)

SAM (cut)

T positive

T negative

SAM (send / receive)

n:send A;B (B positive)

n:send A;B (B negative)

SAM (send / receive)

n:recv A;B (A positive)

n:recv A;B (A negative)

SAM (select / case)

n:select {#l: B, … } (B positive)

n:select {#l: B, … } (B negative)

SAM (select / case)

SAM (fwd)

n:T negative

SAM (! / ? / call)

SAM (! / ? / call)

SAM (! / ? / call)

n : ?A (A positive)

Correctness

• Completeness

• Soundness

• NB. Comp(P) essentially decomposes cuts and fwd to expose a first action pref

SAM (example)

SAM (example)
cba
nilnilnil

SAM (example)
cba
nilnilnil

SAM (example)
cba
OKnilnil

SAM (example)
cba
OKnilnil

SAM (example)
cba
OKnil c(w,ℇw,)

SAM (example)
ba

nil

OK

c(w,ℇw,)
::

SAM (example)
ba

nil

OK

c(w,ℇw,)
::

SAM (example)
ba

OK

c(w,ℇw,)
::

c(z,ℇz,)

SAM (example)
a
c(z,ℇz,)
::

OK

c(w,ℇw,)
::

SAM (example)
a
c(w,ℇw,)

s
nil

OK
::

SAM (example)
a
c(w,ℇw,)

s
OK

OK
::

SAM (example)
a

OK

c(w,ℇw,)
::

SAM (example)
a
OK

r
nil

SAM (example)
a
OK

r
42

SAM (example)
a
OK

r
42
::
OK

SAM (example)
a
OK

r
OK

SAM (example)
a
OK

SAM (example)

SAM (example)

Concluding Remarks
• SAM, a “simple” abstract machine for linear session-based computation

• factors-out sequential from concurrent computation on linear session calculi.

• explicit control of memory allocation / deallocation.

• Well-typed programs respect the algebraic operational semantics

• Some “easy” optimizations

• Queues and environments can be replaced by array-based stack frames.

• We are on the way of implementing a compiler for CLASS targeting the LLVM.

• We expect SAM to promote adoption of safe session-based concurrent programming,

