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CLASS code (arithmetic server)



CLASS code (hoare-like monitor)



Propositions-as-Types
• Bridge between Logic, Programming Languages, and Computation. 


• Programs are proofs in a logic, according to a Curry-Howard correspondence


• program as a typed semantically well-behaved object (a function or a process)


• proof simplification as computation ➡︎ 


• preservation, progress, confluence


• computation as cut-elimination ➡︎


• logical relations semantics, termination


• equational reasoning about observational equivalence



Propositions-as-Types for Concurrency
• Linear Logic and Session Types [CairesPfenning10,Wadler12]


• modular extensions (logically inspired connectives “automatically” socialize) 


• ho-functions / polymorphism / recursion [ ToninhoCairesPfenning13]


• dependent types (assertions, certificates, …) [ ToninhoCairesPfenning11]


• effects (discardable resources, exceptions, non-determinism) [CairesPerez17]


• shared state [BalzerPfenning19,RochaCaires21 ]


• Towards shared state programs that can prove themselves


• CLASS (RochaCaires23)



Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation. 


• Bringing together process algebra and classical computation theory


• Connecting session types to the trunk of "classical" type theory


• typed λ-calculus: sequential ho computation with pure values


• typed session calculus: concurrent ho computation with linear resources


• latter subsumes former, via exponentials and sharing constructs


• foundational infrastructure for safe concurrent programming (cf. Rust, Move)


• THIS TALK: Abstract Machine Semantics (new)



A Session Programming Language from Linear Logic
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Process expressions (intro / slim)
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Process expressions (composition)

Duality



Congruence / Reduction Semantics



Linear Logic as a Session Programming Language

• Computational Interpretation of Linear Logic:  congruence , reduction  


• Type Preservation: 


• Deadlock-Freedom: 


• Confluence (with sums): 


• Normalisation: 


• Strong Normalisation: If                    then     is strongly normalising.

≡ → .

If P ⊢ Δ; Γ and P → Q, then Q ⊢ Δ; Γ .

Let P ⊢ ∅; ∅ be a live process. Then, P reduces.

If R * P * Q, then exists S s.t. R ≡ * S * ≡ Q .

If P ⊢ Δ; Γ, then exists a normal form Q s.t. P ≈ Q .



The Session Abstract Machine



Towards the Session Abstract Machine
• Cf, the SECD [Landin64], LAM [Lafont88,Abramsky93],  CAM [Curien86], KM[07]


• Key insights (coming from playing around with many concurrent CLASS programs)


• Execute session terms sequentially whenever possible (except for Mix and Share)


• Replace busy waiting message passing by single threaded co-routining


• Heap-allocated mutable session object frames


• exploit connective polarities (cf. focusing)


• schedule positive constructs (send, select, close, bang) first


• Split interactions in write / read moves (cf. game-semantics and SACDS)


• respect std synchronous semantics (even if relying on buffered communication)



The Session Abstract Machine



SAM (close / wait)



SAM (cut)

T positive

T negative



SAM (send / receive)

n:send A;B ( B positive )

n:send A;B ( B negative )



SAM (send / receive)

n:recv A;B ( A positive )

n:recv A;B ( A negative )



SAM (select / case)

n:select {#l: B, … } ( B positive )

n:select {#l: B, … } ( B negative )



SAM (select / case)



SAM (fwd)

n:T negative



SAM (! / ? / call)



SAM (! / ? / call)



SAM (! / ? / call)

n : ?A ( A positive )



Correctness

• Completeness


• Soundness


• NB. Comp(P) essentially decomposes cuts and fwd to expose a first action pref



SAM (example)
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Concluding Remarks
• SAM, a “simple” abstract machine for linear session-based computation


• factors-out sequential from concurrent computation on linear session calculi.


• explicit control of memory allocation / deallocation.


• Well-typed programs respect the algebraic operational semantics


• Some “easy” optimizations


• Queues and environments can be replaced by array-based stack frames.


• We are on the way of implementing a compiler for CLASS targeting the LLVM.


• We expect SAM to promote adoption of safe session-based concurrent programming,


