The Session Abstract Machine

Luís Caires

IFIP WG2.2. Meeting Bologna, September 2023

CLASS code (arithmetic server)

```
type tmenu {
    offer of {
        I#Neg: recv ~lint; send lint; close
        #Add: recv ~lint; recv ~lint; send lint; close
    }
};;
proc server(s:!tmenu) {
    !s(c);
    case c of {
        l#Neg: recv c(n);
                send c(v. let v -n);
                close c
        l#Add: recv c(n1);
                recv c(n2);
                send c(v. let v n1 + n2);
                close c
    }
};;
proc client1( ; s:~tmenu){
    call s(c);
    #Neg c;
    send c (v:lint. let v 2);
    recv c(m);
    wait c:
    println("CLIENT1 GOT NEG 2 = " + m);
    ()
};;
```

```
proc client1( ; s:~tmenu){
    call s(c);
    #Neg c;
    send c (v:lint. let v 2);
    recv c(m);
    wait c;
    println("CLIENT1 GOT NEG 2 = " + m);
    ()
};;
```

```
proc client2( ; s:~tmenu){
    call s(c);
    #Add c;
    send c(2);
    send c(3);
    recv c(m);
    wait c;
    println("CLIENT2 GOT ADD 2 3 = " + m);
    O
};;
proc system(){
    cut{
        server(s)
        ls:?~tmenul
        par{
            client1(;s) || client2(;s)
        }
    }
};;
```


CLASS code (hoare-like monitor**)**

};;

```
type corec CIncI {
        coaffine IncI }
and IncI {
        offer of {
        | #Inc: CIncI
        | #End: wait
        }
};;
type corec CDecI { coaffine DecI }
and DecI {
        offer of {
        | #Dec: coaffine recv ContDec; wait
        | #Share: recv CDecI; CDecI
        | #End: wait
        3
} and ContDec { coaffine send CDecI; close
};;
type rec Rep {
        send !lint:
        affine send WaitQ(DecI); WaitQ(IncI)
} and WaitO(I) {
  affine choice of {
        #Next: NodeO(I)
        | #Null: close
        }
} and ContW(I) {
        affine recv ~affine Rep;
                                      ``ne I; wait
           send affine <sup>-</sup>
} and NodeO(I) {
        state send Contwill, warty(1)
};;
```

```
proc rec decloop(dv:DecI, m:usage ~Rep)
        case dv of {
        l#Share:
                   recv dv (dvn);
                   share m { decloop(dvn,m) || decloop(dv,m) }
        l#Dec:
                recv dv(acc);
                wait dv:
                take m(n);
                recv n(val);
                if (val>0) {
                        put m(v. affine v; send v (val-1); fwd n v);
                        println "Dec "+val;
                        send acc (coo. decloop(coo,m));
                        close acc
                        } {
                        recv n(ad);
                        println "Dec put on Wait "+val;
                        letc | decc: ~ContW(DecI) |
                                awaitNZ(m, val, qd, n, decc)
                        in
                                 affine decc;
                                recv decc(s0);
                                recv s0(v):
                                send decc(s.affine s; send s (v-1); fwd s0 s);
                                println "Dec";
                                 fwd acc decc
                        }
        I#End: wait dv; release m
        }
```

Propositions-as-Types

- Bridge between Logic, Programming Languages, and Computation.
- Programs are proofs in a logic, according to a Curry-Howard correspondence
 - program as a typed semantically well-behaved object (a function or a process)
 - proof simplification as computation =
 - preservation, progress, confluence
 - computation as cut-elimination ➡
 - logical relations semantics, termination
 - equational reasoning about observational equivalence

Propositions-as-Types for Concurrency

- Linear Logic and Session Types [CairesPfenning10,Wadler12]
- modular extensions (logically inspired connectives "automatically" socialize)
 - ho-functions / polymorphism / recursion [ToninhoCairesPfenning13]
 - **dependent types** (assertions, certificates, ...) [ToninhoCairesPfenning11]
 - effects (discardable resources, exceptions, non-determinism) [CairesPerez17]
 - **shared state** [BalzerPfenning19,RochaCaires21]
- Towards shared state programs that can prove themselves
 - CLASS (RochaCaires23)

Propositions-as-Types for Concurrency

- Bridge between Logic, Programming Languages, and Computation.
- Bringing together process algebra and classical computation theory
 - Connecting session types to the trunk of "classical" type theory
 - typed **λ**-calculus: **sequential** ho computation with **pure values**
 - typed session calculus: **concurrent** ho computation with **linear resources**
 - latter subsumes former, via exponentials and sharing constructs
 - foundational infrastructure for safe concurrent programming (cf. Rust, Move)
- **THIS TALK**: Abstract Machine Semantics (**new**)

A Session Programming Language from Linear Logic

Process expressions (basic)

Logical Type	PL type	PL construct	
1	close	close <i>x</i>	
上	wait	wait $x; P$	
A & B	offer { #inl : \hat{A}	case $x \{ inl : P \}$	
	$ \#$ inr $: \hat{B}$ }	$ inr:Q\}$	
$A \oplus B$	$case\{ \texttt{\#inl}: \hat{A} \}$	#inl <i>x</i> ; <i>P</i>	
	$ $ #inr $: \hat{B}$ }	#inr x; P	
$A \otimes B$	send $\hat{A};\hat{B}$	send $x(y.P);Q$	
$A \otimes B$	recv $\hat{A};\hat{B}$	recv $x(y); P$	
!A	!Â	!x(y);P	
?A	$?\hat{A}$?x;P	
		call $x(y); P$	

Close *x*.

Wait on x, continue as P.
Case on x: left and continue as P; or right and continue as Q.
Choose left on x, continue as P.
Choose right on x, continue as P.
Send y on x, continue as Q.
Receive y on x, continue as P.

Process expressions (basic)

L	.ogical Type	PL type	PL construct
	1	close	close <i>x</i>
	\perp	wait	wait x;P
	$A \otimes B$	offer { $ $ #in $: \hat{A}$	case $x \{ inl : P \}$
		$ \#$ inr $: \hat{B}$ }	$ inr:Q\}$
	$A \oplus B$	$case\{ \texttt{\#inl}: \hat{A} \}$	#inl x; P
		$ $ #inr $: \hat{B}$ }	#inr x; P
	$A \otimes B$	send Â; Â	send $x(y.P); Q$
	$A \otimes B$	recv $\hat{A};\hat{B}$	recv $x(y); P$
	!A	!Â	!x(y);P
	?A	$?\hat{A}$?x; P
			call $x(y); P$

Close *x*.

Wait on x, continue as P.
Case on x: left and continue as P; or right and continue as Q.
Choose left on x, continue as P.
Choose right on x, continue as P.
Send y on x, continue as Q.
Receive y on x, continue as P.

Process expressions (basic)

	ogical	PL	PL
	Туре	type	construct
	1	close	close <i>x</i>
	\bot	wait	wait x;P
	$A \otimes B$	offer { $ $ #in $ $: \hat{A}	case $x \{ inl : P \}$
		$ \#$ inr $: \hat{B}$ }	$ inr:Q\}$
	$A \oplus B$	$case\{ \texttt{#inl}: \hat{A}$	#inl <i>x</i> ; <i>P</i>
_		$ $ #inr $: \hat{B}$ }	#inr <i>x</i> ; <i>P</i>
	$A \otimes B$	send $\hat{A};\hat{B}$	send $x(y.P); Q$
	$A \otimes B$	recv $\hat{A};\hat{B}$	recv $x(y); P$
	!A	!Â	!x(y);P
	?A	?Â	?x; P
			call $x(y); P$

Close x. Wait on x, continue as P. Case on x: left and continue as P; or right and continue as Q. Choose left on x, continue as P. Choose right on x, continue as P. Send y on x, continue as Q. Receive y on x, continue as P.

Process expressions (intro / slim)

	PL	PL construct
Туре	type	construct
1	close	close <i>x</i>
\perp	wait	wait x;P
A & B	offer { $ $ #in $: \hat{A}$	case $x \{ inl : P \}$
	$ $ #inr $: \hat{B}$ }	$ inr:Q\}$
$A \oplus B$	$case\{ \texttt{\#inl}: \hat{A} \}$	#inl x;P
	$ $ #inr $: \hat{B}$ }	#inr <i>x</i> ; <i>P</i>
$A \otimes B$	send $\hat{A};\hat{B}$	send $x(y.P); Q$
$A \otimes B$	recv $\hat{A}; \hat{B}$	recv $x(y); P$
!A	!Â	!x(y);P
?A	$?\hat{A}$?x;P
		call $x(y); P$

Close x. Wait on x, continue as P. Case on x: left and continue as P; or right and continue as Q. Choose left on x, continue as P. Choose right on x, continue as P. Send y on x, continue as Q. Receive y on x, continue as P.

Process expressions (composition)

fwd *x y*

cut {*P* | x : A | *Q*}

 $\mathbf{par}\left\{ P\mid\mid Q\right\}$

 $\overline{\underline{1}} \triangleq \bot$ $\overline{A \otimes B} \triangleq \overline{A} \otimes \overline{B}$ $\overline{A \oplus B} \triangleq \overline{A} \otimes \overline{B}$ $\overline{A \oplus B} \triangleq \overline{A} \otimes \overline{B}$ $\overline{!A} \triangleq ?\overline{B}$

Duality

Congruence / Reduction Semantics

 $\operatorname{cut} \{P \mid x : A \mid Q\} \equiv \operatorname{cut} \{Q \mid x : A \mid P\}$ $\operatorname{cut} \{P \mid x \mid \operatorname{cut} \{Q \mid y \mid R\}\} \equiv \operatorname{cut} \{\operatorname{cut} \{P \mid x \mid Q\} \mid y \mid R\}$

cut {fwd x y |y| P} $\rightarrow \{x/y\}P$ cut {close x |x| wait x;P} $\rightarrow P$ cut {send x(y.P);Q |x| recv x(z);R} \rightarrow cut {Q |x| cut {P |y| {y/z}R}} cut {case x {|inl : P | inr : Q} |x| x.inl;R} \rightarrow cut {P |x| R} cut {case x {|inl : P | inr : Q} |x| x.inr;R} \rightarrow cut {Q |x| R}

Linear Logic as a Session Programming Language

- Computational Interpretation of Linear Logic: congruence \equiv , reduction \rightarrow .
- Type Preservation: If $P \vdash \Delta; \Gamma$ and $P \rightarrow Q$, then $Q \vdash \Delta; \Gamma$.
- Deadlock-Freedom: Let $P \vdash \emptyset$; \emptyset be a live process. Then, P reduces.

• Confluence (with sums): If $R \stackrel{*}{\leftarrow} P \stackrel{*}{\rightarrow} Q$, then exists S s.t. $R \equiv \stackrel{*}{\rightarrow} S \stackrel{*}{\leftarrow} \equiv Q$.

- Normalisation: If $P \vdash \Delta; \Gamma$, then exists a normal form Q s.t. $P \approx Q$.
- Strong Normalisation: If $P \vdash \emptyset; \emptyset$ then P is strongly normalising.

The Session Abstract Machine

Towards the Session Abstract Machine

- Cf, the SECD [Landin64], LAM [Lafont88, Abramsky93], CAM [Curien86], KM[07]
- Key insights (coming from playing around with many concurrent CLASS programs)
 - Execute session terms **sequentially** whenever possible (except for Mix and Share)
 - Replace busy waiting message passing by single threaded co-routining
 - Heap-allocated mutable session object frames
 - exploit connective polarities (cf. focusing)
 - schedule positive constructs (send, select, close, bang) first
 - Split interactions in write / read moves (cf. game-semantics and SACDS)
 - respect std synchronous semantics (even if relying on buffered communication)

The Session Abstract Machine

С	::=	$(\mathcal{E}, P, \mathcal{H})$	State
Val		$clos(x, \mathcal{E}, P)$ s OK #lab	Closure SessionRef CloseTok Choice label
${\mathcal E}, {\mathcal G}$::=	$Name \rightarrow SessionRef \cup Closure$	Environment
SessionRec	::=	$s\langle q, \mathcal{E}, P angle$	
q	::=	nil $Val q@q$	Queue

SAM (close / wait)

 $(\mathcal{E}, \mathsf{close}\; n, \mathcal{H}[s\langle q, \mathcal{G}, P\rangle]) \mapsto (\mathcal{G}, P, \mathcal{H}[s\langle q@\mathsf{OK}, \mathcal{E}, -\rangle])$

 $(\mathcal{E}, \mathsf{wait}\ n; P, \mathcal{H}[s\langle \mathsf{OK}, \mathcal{E}', -\rangle]) \mapsto (\mathcal{E} \setminus n, P, \mathcal{H})$

where $s = \mathcal{E}(n)$

SAM (cut)

 $\begin{array}{ll} (\mathcal{E}, \mathsf{cut} \ \{ \ P \ | x : T | \ Q \}, \mathcal{H}) & \mapsto (\mathcal{G}, Q, \mathcal{H}[\ s \langle \mathsf{nil}, \mathcal{G}, P \rangle]) & \mathsf{T} \ \mathsf{positive} \\ (\mathcal{E}, \mathsf{cut} \ \{ \ P \ | x : T | \ Q \}, \mathcal{H}) & \mapsto (\mathcal{G}, P, \mathcal{H}[\ s \langle \mathsf{nil}, \mathcal{G}, Q \rangle]) & \mathsf{T} \ \mathsf{negative} \\ where \\ s = \mathsf{new}(\mathcal{H}) \\ \mathcal{G} = \mathcal{E}\{s/x\} \end{array}$

SAM (send / receive)

 $\begin{aligned} (\mathcal{E}, \mathsf{send} \; n(y.Q); P, \mathcal{H}[s\langle q, \mathcal{E}', R\rangle]) & \mapsto \\ (\mathcal{E}, P, \mathcal{H}[s\langle q@\mathsf{clos}(y, Q, \mathcal{E}), \mathcal{E}', R\rangle]) \end{aligned}$

n:send A;B (B positive)

 $\begin{aligned} (\mathcal{E}, \mathsf{send} \; n(y.Q); P, \mathcal{H}[s\langle q, \mathcal{E}', R\rangle]) & \mapsto \\ (\mathcal{E}', R, \mathcal{H}[s\langle q@\mathsf{clos}(y, Q, \mathcal{E}), \mathcal{E}, P\rangle]) \end{aligned}$

n:send A;B (B negative)

where $s = \mathcal{E}(n)$

SAM (send / receive)

$$(\mathcal{E}, \mathsf{recv}\; n(x); P, \mathcal{H}[s\langle\mathsf{clos}(y, Q, \mathcal{F}) :: q, \mathcal{G}, R\rangle]) \mapsto (\mathcal{E}_r, P, \mathcal{H}[s\langle q, \mathcal{G}, R\rangle][k\langle\mathsf{nil}, \mathcal{E}_s, Q\rangle]$$

n:recv A;B (A positive)

$$(\mathcal{E}, \operatorname{recv} n(x); P, \mathcal{H}[s\langle \operatorname{clos}(y, Q, \mathcal{F}) :: q, \mathcal{G}, R\rangle]) \mapsto (\mathcal{E}_s, Q, \mathcal{H}[s\langle q, \mathcal{G}, R\rangle][k\langle \operatorname{nil}, \mathcal{E}_r, P\rangle]$$

n:recv A;B (A negative)

where $s = \mathcal{E}(n)$ $\mathcal{E}_s = \mathcal{F}\{k/y\}$ $\mathcal{E}_r = \mathcal{E}\{k/x\}$

SAM (select / case)

 $(\mathcal{E}, \# 1 \; n; P, \mathcal{H}[s\langle q, \mathcal{E}', R\rangle]) \mapsto (\mathcal{E}, P, \mathcal{H}[s\langle q@\# 1, \mathcal{E}', R\rangle])$ where $s = \mathcal{E}(n)$ n:select {#I: B, ... } (B positive)

 $(\mathcal{E}, \# 1 n; P, \mathcal{H}[s\langle q, \mathcal{E}', R\rangle]) \mapsto (\mathcal{E}', R, \mathcal{H}[s\langle q@\# 1, \mathcal{E}, P\rangle])$ where n:select {#I: B, ... } (B negative)

 $s = \mathcal{E}(n)$

SAM (select / case)

 $\begin{aligned} & (\mathcal{E}, \text{case } n \text{ of } \{\dots, \# \mathbf{l}_k : P_k, \dots\}, \mathcal{H}[s \langle \# \mathbf{l}_k :: q, \mathcal{G}, R \rangle]) & \mapsto \\ & (\mathcal{E}_r, P_k, \mathcal{H}[s \langle q, \mathcal{G}, R \rangle] \\ & where \\ & s = \mathcal{E}(n) \end{aligned}$

SAM (fwd)

$$\begin{array}{l} (\mathcal{E}, \mathsf{fwd} \ m \ n, \mathcal{H}[w\langle \mathsf{q}_w, \mathcal{E}_w, P \rangle][r\langle \mathsf{q}_r, \mathcal{E}_r, Q \rangle]) \\ & \mapsto (\mathcal{E}_w, P, \mathcal{H}[\ w\langle \mathsf{q}_w@\mathsf{q}_r, \mathcal{E}_r\{r \to w\}, Q \rangle]) \end{array} \qquad \text{n:T negative} \end{array}$$

where $w = \mathcal{E}(m); r = \mathcal{E}(n)$

SAM (! / ? / call)

 $(\mathcal{E}, !n(x); P, \mathcal{H}[s\langle q, \mathcal{G}, R\rangle]) \mapsto (\mathcal{G}, R, \mathcal{H}[s\langle q@\mathsf{clos}(x, \mathcal{E}, P), \mathcal{E}, -\rangle]$

where $s = \mathcal{E}(n)$

SAM (! / ? / call)

 $(\mathcal{E}, ?n; P, \mathcal{H}[s\langle \mathsf{clos}(x, \mathcal{G}, R), \mathcal{F}, -\rangle]) \mapsto (\mathcal{E}', P, \mathcal{H})$

where $s = \mathcal{E}(n)$ $\mathcal{E}' = \mathcal{E}\{\operatorname{clos}(x, \mathcal{G}, R)/n\}$

SAM (! / ? / call)

 $(\mathcal{E}, \mathsf{call}\ n(y); P, \mathcal{H}) \mapsto (\mathcal{E}', P, \mathcal{H}[s\langle \mathsf{nil}, \mathcal{G}', R\rangle])$

n: ?A (A positive)

where $s = \operatorname{new}(\mathcal{H})$ $\mathcal{E}(n) = \operatorname{clos}(x, \mathcal{G}, R)$ $\mathcal{E}' = \mathcal{E}\{s/y\}$ $\mathcal{G}' = \mathcal{G}\{s/y\}$

Correctness

Let $P \vdash \emptyset; \emptyset$.

Completeness

If live(P) then there is \mathcal{C} such that $Comp(P) \rightleftharpoons_{e}^{*} \bowtie_{d} \mathcal{C}$.

Soundness

If $Comp(P) \rightleftharpoons_{e} \bowtie_{d} C$ then there is Q such that $P \to Q$ and $Comp(Q) \rightleftharpoons_{e} C$.

• NB. Comp(P) essentially decomposes cuts and fwd to expose a first action pref

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    l a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    l b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    l c: close |
    println("go close"); close c|
};;
```

a b c nil nil nil

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

a b c nil nil nil

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

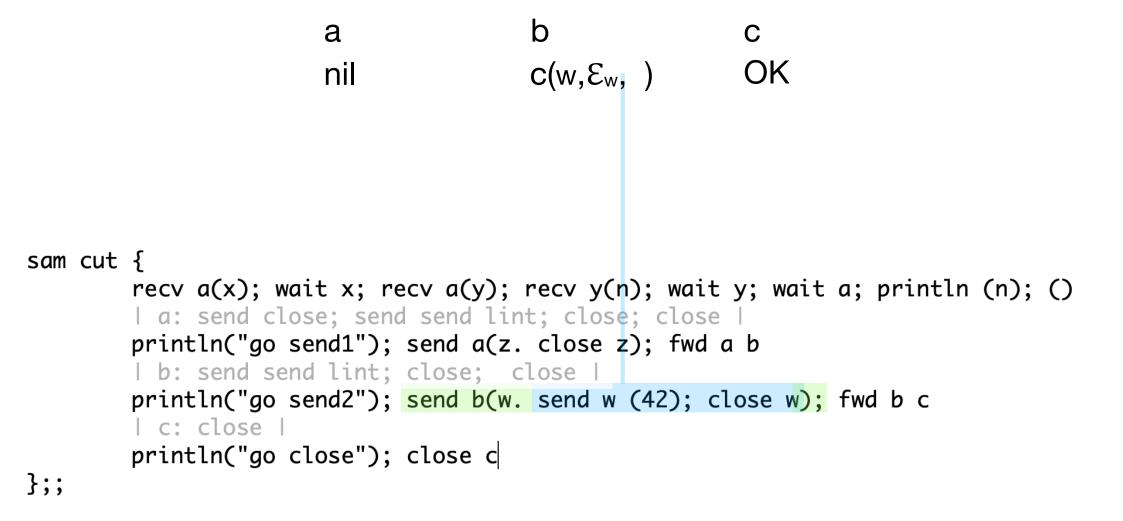
a b c nil nil OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c
};;
```

a b c nil nil OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

```
SAM (example)
```



```
SAM (example)
```

```
b
                        a
                                        C(w, \mathcal{E}_w, )
                        nil
                                        . .
                                        OK
sam cut {
        recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
        | a: send close; send send lint; close; close |
        println("go send1"); send a(z. close z); fwd a b
        | b: send send lint; close; close |
        println("go send2"); send b(w. send w (42); close w); fwd b c
        | c: close |
        println("go close"); close c
};;
```

```
SAM (example)
```

```
b
                       a
                                        C(w, \mathcal{E}_w, )
                       nil
                                        . .
                                        OK
sam cut {
        recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
        | a: send close; send send lint; close; close |
        println("go send1"); send a(z. close z); fwd a b
        b: send send lint; close; close |
        println("go send2"); send b(w. send w (42); close w); fwd b c
        | c: close |
        println("go close"); close c
};;
```

```
SAM (example)
```

```
b
                        a
                        C(z, \mathcal{E}_z, ) C(w, \mathcal{E}_w, )
                                        ••
                                         OK
sam cut {
        recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
        | a: send close; send send lint; close; close |
        println("go send1"); send a(z. close z); fwd a b
        | b: send send lint; close; close |
        println("go send2"); send b(w. send w (42); close w); fwd b c
        | c: close |
        println("go close"); close c
};;
```

```
a
                            \begin{array}{c} C(z, \mathcal{E}_z, \ )\\ \vdots\\ C(w, \mathcal{E}_w, \ )\\ \vdots\end{array}
                             OK
sam cut {
          recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
          | a: send close; send send lint; close; close |
          println("go send1"); send a(z. close z); fwd a b
          | b: send send lint; close; close |
          println("go send2"); send b(w. send w (42); close w); fwd b c
          | c: close |
          println("go close"); close c
};;
```

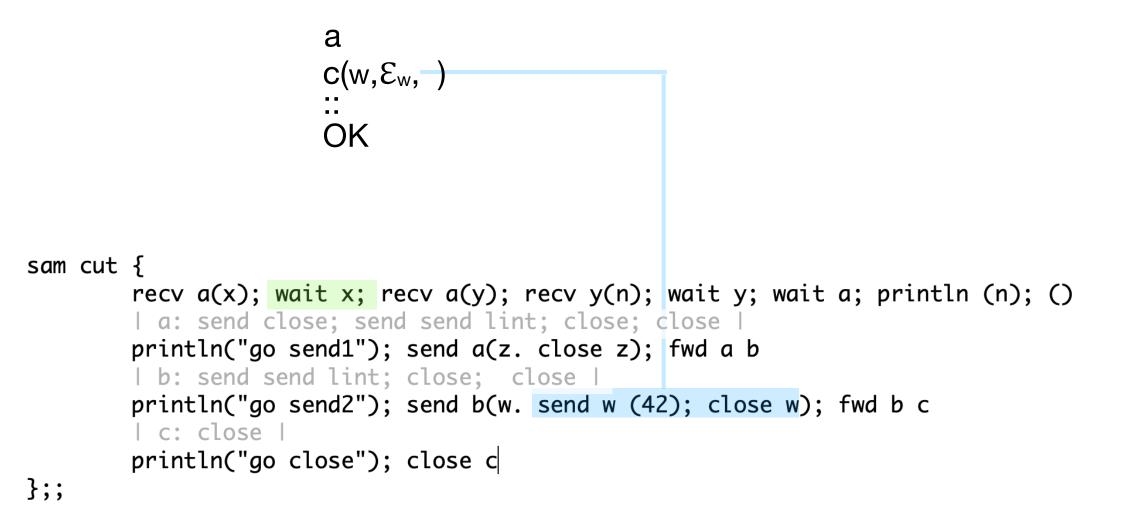
```
SAM (example)
```

S a $C(w, \mathcal{E}_w, -)$ nil . . OK sam cut { recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); () | a: send close; send send lint; close; close | println("go send1"); send a(z. close z); fwd a b | b: send send lint; close; close | println("go send2"); send b(w. send w (42); close w); fwd b c | c: close | println("go close"); close c };;

```
SAM (example)
```

S a OK $C(w, \mathcal{E}_w, -)$. . OK sam cut { recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); () | a: send close; send send lint; close; close | println("go send1"); send a(z. close z); fwd a b | b: send send lint; close; close | println("go send2"); send b(w. send w (42); close w); fwd b c | c: close | println("go close"); close c };;

```
SAM (example)
```



r a nil OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

r a 42 OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

r a 42 OK :: OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    l a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    l b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    l c: close |
    println("go close"); close c
};;
```

r a OK OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

a OK

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c
};;
```

```
sam cut {
    recv a(x); wait x; recv a(y); recv y(n); wait y; wait a; println (n); ()
    | a: send close; send send lint; close; close |
    println("go send1"); send a(z. close z); fwd a b
    | b: send send lint; close; close |
    println("go send2"); send b(w. send w (42); close w); fwd b c
    | c: close |
    println("go close"); close c|
};;
```

Concluding Remarks

- SAM, a "simple" abstract machine for linear session-based computation
 - factors-out sequential from concurrent computation on linear session calculi.
 - explicit control of memory allocation / deallocation.
- Well-typed programs respect the algebraic operational semantics
- Some "easy" optimizations
 - Queues and environments can be replaced by array-based stack frames.
 - We are on the way of implementing a compiler for CLASS targeting the LLVM.
- We expect SAM to promote adoption of safe session-based concurrent programming,