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Motivation

C

Input

Output

Church, “Applications of recursive
arithmetics to the problem of circuit
synthesis”, 1957
Controlling finite automata with
input/output.

Emerson & Clarke, “Using branching
time temporal logic to synthesize
synchronization skeletons” 1982

a

a
b

b

Plant Controller

Ramadge & Wonham, “The control of
discrete event systems”, 1987-89
Finite automata from control theory
perspective.

Goal: A satisfactory framework for distributed synthesis
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Plan

Ramadge and Wonham setting for control.

Ramadge & Wonham for asynchronous automata.

Decidability and complexity for the acyclic case (and reachability conditions).
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Part I

RAMADGE AND WONHAM FORMULATION
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Ramadge and Wonham formulation

a

a
b

b

Plant Controller

•

•

•

•

(•, •)

(•, •)
a a a× iff

Definition
A plant is a deterministic automaton over an alphabet A of actions:

AP = 〈A,SP , s0
P , δP : S ×A ·→ S〉

or equivalently a regular prefix-closed language P.

Definition (Control problem)
Given AP , a specification α, and constraint β find a controller AC such that AC � β
and AP ×AC � α.
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Uncontrollable actions

Definition (Uncontrollable actions)
We can divide A into Actr and Auctr of controllable and uncontrollable actions.
We have additional condition:

θuctr : there are always transitions on all actions in Auctr

δ(s, a) defined for all s ∈ S and a ∈ Auctr

a

a
b

b

Plant Controller

Separation between plant and controller makes it possible to state controlability
property.
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“The true” Ramadge and Wonham

Formulation
Fix an alphabet A, divided into Actr and Auctr .

We are given P,K ⊆ A∗ that are respectively plant language and specification
language (prefix closed).

We want C ⊆ A∗ such that :
P ∩ C ⊆ K

This would be too simple

C ⊆ K ∪ (A∗ − P).

Additional requirements on C
prefix C is prefix closed.

control If w ∈ C , a ∈ Auctr then wa ∈ C .
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Solution

Solution
Take a deterministic automaton AP for P.

Suppose that K is determined by a subset E of states of AP .

The controller will be a sub-automaton of AP obtained by removing E and all
states from which E can be reached by a sequence of uncontrollable actions.

(We may also need to add some uncontrollable actions)

Fact
C = L(AC ) is a solution to the control problem.
P ∩ C ⊆ K and C satisfies (CONTROL).
Moreover it is the biggest solution. For every other solution C ′: P ∩ C ′ ⊆ C .
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Blocking

Problem
In P ∩ C we can have behaviours that block.

Example
Suppose a, c are controllable, but b is not.

Plant

Controller 1 Controller 2

Solution 1 Solution 2

Second solution is avoids blocking.

Some more conditions on a controller
non-blocking Every word in C ∩ P has a prolongation in C ∩ P.

marking We fix a marked language PM ⊆ P. We require that every word in
C ∩ P can be (strictly) prolonged to a word in C ∩ PM .
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Solution avoiding blocking

Solution
Take automaton AC constructed for control.

A state p is blocked if there are no transitions from p.

Remove all blocked states. Remove all uncontrollable states.

Repeat the last step until no new states are removed.

Automaton Ab
C is the restriction of AC to states that are not removed.

Proposition
Cb = L(Ab

C ) is a solution to the problem and it is the biggest one.
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Summing up

Ramadge and Wonham formulation

a

a
b

b

Plant Controller

Uncontrollable actions: controller can see them but cannot prevent them.

Avoiding blocking: controller should not block the system.

Solutions in polynomial time using simple graph algorithms.

Extensions
Unobservable action.

With unobservable actions, the complexity of finding the biggest controller
becomes exponential.

Many other extensions for particular properties or particular restrictions.

A more general approach through a division operation on the mu-calculus
formulas. Extension of the mu-calculus with 	a and ↓↓a,b to talk about
unobservable and indistinguishable actions.
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Part II

RAMADGE AND WONHAM FOR
ASYNCHRONOUS AUTOMATA
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Ramadge and Wonham for distributed systems

a

a
b

b

Plant Controller

We want the plant and the controller to be distributed devices
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Asynchronous automaton

c

b

c

a

d

b b

d

a

p

q

r

Local states sets Sp,Sq,Sr .

Local transitions
δc : Sp → Sp
δb : Sq × Sr → Sq × Sr , . . .

Process p executes local action c,

Processes evolve asynchronously.
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Asynchronous automaton

Distributed alphabet
P: finite set of processes.

A: finite set of letters.

loc : A→ (2P \ ∅): distribution of
letters over processes.

a1 a1

a2 a2

a3
d

P1

P2

P3

A (deterministic) asynchronous automaton

A = 〈{Sp}p∈P, sin , {δa}a∈A,F〉

Sp states of process p
sin ∈

∏
p∈P Sp is a (global) initial state,

δa :
∏

p∈loc(a) Sp
·→

∏
p∈loc(a) Sp is a transition relation. Information exchange!

F ⊆
∏

p∈P Sp is a set of (global) final states.
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Ramadge & Wonham for asynchronous automata

Ramadge & Wonham

Our setting

??

P1

P2 P3

??

?? ??

X

XP
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Ramadge & Wonham for asynchronous automata

Alphabet
Fix an alphabet (P,A, loc : A→ (2P \ ∅)) with A divided into Actr and Auctr .
We require that every a ∈ Auctr is local: loc(a) is a singleton.

Formulation
We are given implementable languages P,K ⊆ A∗ that are respectively plant
language and specification language.

We want a language C ⊆ A∗ such that

P ∩ C ⊆ K or equivalently C ⊆ K ∪ (A∗ − P)

Additional requirements on C
implementable C is implementable.

control If w ∈ C , a ∈ Auctr then wa ∈ C .

Remark: “Implementable” plays the role of “prefix-closed”.
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Language of an asynchronous automaton

The language of the
automaton
The (regular) language of the product
automaton.

a1 a1

a2 a2

a3
d

P1

P2

P3

Independence
Function loc : A→ (2P \ ∅) implies some independence on letters:

(a, b) ∈ I iff loc(a) ∩ loc(b) = ∅

So the language is a closed under permutations of independent letters:

wabv ∈ L(A) implies wbav ∈ L(A)
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Zielonka’s Theorem

Fix a distribution loc : A→ (2P \ ∅)
Distribution induces closure under permutations of independent letters:

if aIb and wabv ∈ L(A) then wbav ∈ L(A)

A language is trace closed if it is closed under permutations of independent letters.

Question
Can every trace closed regular language be recognized by an asynchronous
automaton (with the same distribution)?

Zielonka’s Theorem
Yes. The proof gives a finite asynchronous automaton.
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Trombones

Four automata: p, q, r , s.

Communicating on common actions: {p, q}, {p, r}, {q, s}, {r , s}.
We want sequences w1w2 . . . with wi ∩ wi+1 6= ∅.

r s

p q

p q1

2

r s

p q

3

r s

p q

4r s

p q
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Information flow

Bad Good

1

1
2

2
3 3

4 4

p pq q

r rs s

If no additional information is transmitted process r and s cannot detect a bad situation

Additional information (like time-stamps on blocks) makes it possible.
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Characterizing languages of implementations

Implementations
We want to take asynchronous automata as our notion of implementation. What are
languages of such automata?

Closure properties for aIb
diamond If wabv ∈ L then wbav ∈ L.

FD If wa,wb ∈ L then wab ∈ L.

a

b

b

a

Fact
L is recognizable by a (det.) asynchronous automaton with all states accepting

iff
L is FD, diamond and prefix closed.

Implementable language
We say that a language is implementable iff it is FD, trace and prefix closed.
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Ramadge & Wonham for asynchronous automata

?? ?? ??p q r X

Alphabet
Fix an alphabet (P,A, loc : A→ (2P \ ∅)) with A divided into Actr and Auctr .
We require that every a ∈ Auctr is local: loc(a) is a singleton.

Formulation
We are given implementable languages P,K ⊆ A∗ that are respectively plant
language and specification language.

We want a language C ⊆ A∗ such that

P ∩ C ⊆ K or equivalently C ⊆ K ∪ (A∗ − P)

Additional requirements on C
implementable C is implementable.

control If w ∈ C , a ∈ Auctr then wa ∈ C .

Remark: “Implementable” plays the role of “prefix-closed”.
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Solution

?? ?? ??p q r X

Solution
Take deterministic (standard) automata for AP and AK , for P and K respectively.
(All states accepting.)

Construct AC as for the word case.

Use Zielonka’s construction.

Fact
C = L(Ac) is implementable, and control closed.

Remark
If K is not implementable then this construction does not work. Moreover there is no
biggest solution.
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BLOCKED ON BLOCKING
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Blocking

Some more conditions on a controller
occurrence Every letter from A appears in some word of C ∩ P.

non-blocking Every word in C ∩ P has a prolongation in C ∩ P.

marking We give a marked language PM ⊆ P. We require that every word in
C ∩ P can be (strictly) prolonged to a word in C ∩ PM .

Remark
The first condition is monotone, so there is a solution if C from the previous slide is a
solution (i.e. if it is implementable).

Remark
The other two conditions take us outside implementable languages.
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Example

Example
A = {a, b, c} with aIb. All actions are
controllable

Let P = A∗ and K = (a + b)c∗ + ab.
Both languages are implementable.

The maximal non-blocking controller
(for sequential setting): C = (a + b)c∗.
But C is not FD.

Maximal FD non-blocking controllers:
Ca = ac∗ and Cb = bc∗.

. . .

. . .

Open problem
Is it possible to find algorithmically an implementable controller satisfying control and
non-blocking conditions.

Theorem (Stefanescu, Esparza, Muscholl)
Given a regular language (not necessary trace closed) it is not decidable if it contains a
(implementable) trace closed language satisfying ( OCCURRENCE) condition.
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Last year’s status

Control
Fix an alphabet A and a distribution loc : A→ 2P.

Given implementable P and K find an implementable C satisfying the control
condition and:

P ∩ C ⊆ K

Solution: take as C the solution in the word case. It is implementable.

+nonblocking
The solution from words, Cb, is not implementable as it is not forward-diamond.

Goal: Find a smaller solution that is implementable (by a deterministic device),

This approach is equivalent to deciding the winner in asynchronous games.
Shown decidable for co-graph alphabets [Gastin & Lerman & Zeitoun].

Solving such games is also known decidable for special cases of automata
[Madhusudan & Thiagarajan].
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Summing up

A framework for distributed control using asynchronous automata in Ramadge and
Wonham formulation.

Decidability of the case disregarding blocking thanks to Zielonka’s Thm.

Trombones example shows why passing additional information with a
communication is important.

The blocking condition adds new dimension to the problem.
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DECIDABILITY FOR ACYCLIC ARCHITECTURES
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Main result
Theorem
The control problem is decidable for acyclic architectures and (proper) reachability
conditions. The complexity of the problem is non-elementary.

Ramadge & Wonham

Our setting

??

P1

P2 P3

??

?? ??

X

XP

Acyclic architecture: Communication graph has no cycles.

Recall restrictions: uncontrollable actions are local, communications only binary.
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Upper bound (1/2)

?? ?? ??p q r X

How to play the control game

c

b

c

a

d

b b

d

a

p

q

r

Control strategies σp : Viewsp → 2Σp .

Environment chooses
b ∈ σq(Viewq(x)) ∩ σr(Viewr(x)).
Uncontrollable (local) actions are always
possible.

Main idea
Process q “simulates” leaf process r , by choosing r ’s strategy for the r-local run until
the next synchronization with q.
New state space of q: exponential in |Sr |.
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Upper bound (2/2)

Proof idea
Fix a leaf r with parent q.
Wlog. q’s strategy proposes one of the following:

1 only local actions,
2 only synchronizations with r ,
3 only synchronizations with processes other than r .

Simulate r by q
p

r

q

• • • tr
a

T : Sr → 2Σq,r T ′
• •

T
• • •

A
•

(a, tr)
• •

T ′

Environment action (a, tr): choose tr ∈ dom(T) and a ∈ A ∩ T(tr).
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Acyclic architectures: proof ideas

Lower bound
Nested counters:

level 1: 0, 1, . . . , 2n − 1

a0 · · · a0︸ ︷︷ ︸
n

#b0 a0 · · · a0︸ ︷︷ ︸
n−1

#a0b0 a0 · · · a0︸ ︷︷ ︸
n−2

# · · ·# b0 · · · b0︸ ︷︷ ︸
n

#

level 2: 0, 1, . . . , 22n
− 1

a1bin(0)a1bin(1) · · · a1bin(2n − 1)#b1bin(0)a1bin(1) · · · a1bin(2n − 1)# · · ·

level k: . . .
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Level 1

Processes 1,2,3.

an
0

an
0

b0an−1
0

b0an−1
0

· · ·

· · ·

1

3

2

Environment can ask for a pair of bits: either ↑ (above) or↗.

If test initiated, then processes 1, 3 synchronize over 2 and check (e.g. for ↑):
Positions are unequal or bits are equal.

Thm.
The control problem over the architecture 1−−−−− 2−−−−− 3 is EXPTIME-complete.
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Level 2

Processes 1, 2, . . . , 7.

◦ · · · ◦

◦ · · · ◦

◦

◦

1

3

2

5
4

6
7

· · ·#

· · ·#

•

•

•

•

Processes 1,5,4 and 3,6,7 resp., check level-1 counters.

Processes 1,2,3 check level-2 counters.
Level-2 test:

Environment chooses bits.
Processes 1,3 synchronize over 2 and accept if bits are equal.
If level-1 positions are unequal processes 1,2 choose a distinguishing position • and
the game continues as if the environment had chosen that position on level 1.
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Conclusions

Synthesis of finite automata is relatively well-understood 7→ MSOL theory of trees.

Despite some effort, distributed synthesis is much less understood.

There are two families of distributed synthesis problems: based on boxes and
based on asynchronous automata.

They differ in the way information is transmitted in the system.

In the box approach we know of very few decidable cases.

The main result shows that in the asynchronous automata approach the problem
is decidable for acyclic architectures.

The decidability for all architectures is still open.
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An example
Take the alphabet {s} ∪ {ai , bi , ci , di : i = 0, 1}, where a’s and b’s are uncontrollable.

Consider linearizations of traces of the form

where x = j or y = i.

The prefix closure of this language is a trace language.
It is controllable when linearizations are concerned:

sax . . . dj . . . or sby . . . ci . . .

Can it be implemented without blocking?

Two strategies f , g : {0, 1} → {0, 1}.

Question: does there exist a winning pair of strategies?
I.e. y = f (x) or x = g(y) for every x, y ∈ {0, 1}.
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Example (cont.)

Question: Do there exist functions f , g : {0, 1} → {0, 1} such that for every for every
x, y ∈ {0, 1} either: y = f (x) or x = g(y).

First attempt
f (x) = x and g(x) = x then
when taking x = 0, y = 1 we have y 6= f (x) and x 6= g(y).Wrong

Second attempt
f (x) = x and g(y) = 1− y.
We have “y = f (x) or x = g(y)” is equivalent to “y = x or x = 1− y”. OK
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Modified example

Take the alphabet {s} ∪ {ai , bi , ci , di : i = 0, 1, 2}.

Consider linearizations of traces of the form

where x = j or y = i. We assume that ax and by are uncontrollable.

Two strategies f , g : {0, 1, 2} → {0, 1, 2}.

Question: does there exist a winning pair of strategies?
I.e. y = f (x) or x = g(y) for every x, y ∈ {0, 1, 2}.

No: Take y such that there is at most one x with f (x) = y.
There are two x such that x 6= g(y).
Take the one with f (x) 6= y.
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Example (cont.)

Take the alphabet {s} ∪ {ai , bi , ci , di : i = 0, 1, 2}.
Consider language of linearizations of traces of the form

cx ai

s
dy bj

where x = j or y = i. We assume that cx and dy are uncontrollable.
Two strategies f , g : {0, 1, 2} → {0, 1, 2}.
Executions respecting strategies:

cx af (x)

s
dy bg(y)

Question: does there exist a winning pair of strategies? I.e. y = f (x) or x = g(y) for
every x, y ∈ {0, 1}.
No: Take y such that there is at most one x with f (x) = y There are two x such that
x 6= g(y). Take the one with f (x) 6= y.
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