
Automata-Based Analysis of
Recursive Programs with Threads

Markus Müller-Olm

Westfälische Wilhelms-Universität Münster, Germany

IFIP`WG 2.2 Meeting

Amsterdam, September 24-26, 2012

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 3

Introduction

Threads & Recursion

Locks & monitors & joins

Optimal Analysis:

� Complete analysis of well-specified abstract model

Regular model checking

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 4

Reachability Analysis of Programs with
Procedures and Thread Creation

Theorem [Ramalingam]

Reduction of intersection problem (L1∩ L2≠ ∅) of contextfree languages L1,L2.

Proof:

⇒⇒⇒⇒ abstract from synchronous communication (for now).

Reachability is undecidable in programs with two threads, synchronous

communication, and procedures.

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 5

A Model of Recursive Programs with Thread-creation:
DPNs: Dynamic Pushdown-Networks

� A dynamic pushdown-network (DPN) over finite set of actions Act
consists of:

� P, a finite set of control symbols

� Γ, a finite set of stack symbols

� ∆, a finite set of rules of the following form

(with p,p1,p2 ∈ P, γ ∈ Γ, w1,w2∈ Γ*, a∈ Act).

� DPNs can model recursive programs with thread-creation primitives
using finite abstractions of (thread-local) global variables and local
variables of procedures.

1 1 1

1 1 2 2 1 2

[with 2]

[with 1 and 1]

a

a

p p w w

p p w p w w w

γ

γ

→ ≤

→ = =⊳

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 6

Execution-Semantics of DPNs on
Word-Shaped Configurations

A configuration of a DPN is a word in (PΓ*)+:

... an infinite state space

The transition relation of a DPN:

()1 1 1 1:γ γ→ ∈∆ →a a
p p w u p v u p w v

()1 1 2 2 2 2 1 1:γ γ→ ∈∆ →⊳a a
p p w p w u p v u p w p w v

*

1 1 2 2 (with , , 0)
k k i i

p w p w p w p P w k∈ ∈Γ >⋯

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 7

Example

Consider the following DPN with a single rule

Transitions:

γ γγ γ→ ⊳a
p p q

γp

γ γ γγγq q p

γ γγq p

γ γ γ γγγγq q q p

⋮

γ γ γ γ γγγγγq q q q p

Recursive Programs with Thread Creation

4

5

6

7

D

call Q

Q:

C

Procedures

0

1

2

33

B

call P

P:

A

spawn Q

Recursive
procedure calls

Spawn
commands

Basic
actions

Return point, xq,
of Q

Entry point, eq,
of Q

+ finite-state abstraction of (thread-local) global and local variables

Modelling Programs with DPNs

() ()() � �
#

, ' ', , if , , ', 'e
g l u g l v g l g l A→ ∈

u

v

Afor basic edge e:

init, , ,e

P
g l u g l e l v→

u

v

call Pfor call edge e:

init init, , ,e

P
g l u g l v g l e→ ⊳

u

v

spawn Pfor spawn edge e:

, ret

P
g l r g→rP

for return point of
each procedure

abstraction of
global state

abstraction of
local state current

control point

à la [Esparza/Knoop, FOSSACS’99]

Spawns are Fundamentally Different

4

5

6

7

D

call Q

Q:

C

0

1

2

3

B

call P

P:

A

spawn Q

P induces trace language: L = ∪ { An ⋅ (Bm ⊗ (Ci⋅ Dj) | n ≥ m≥ 0, i ≥ j ≥ 0 }

Cannot characterize L by constraint system with „⋅“ and „⊗“.

Trace languages of DPNs differ from those of PA processes.

[Bouajjani, MO, Touili: CONCUR 2005]

Definition

1) pre*[A*](C) is effectively regular for regular C and A ⊆ Act (in polyn. time).

*

*

pre []() : { | , : * }

post []() : { | , : * }

w

w

L C c d C w L c d

L C d c C w L c d

= ∃ ∈ ∈ →

= ∃ ∈ ∈ →

Basic Results on Reachability Analysis of DPNs

Backward-Reachability

2) post*[Act*](C) is effectively context-free for context-free C (in polyn. time).

1) post*[Act*](C) is in general non-regular for regular C.

2) Membership in pre*[L](C) is in general undecidable for regular L.

1) pre*[A](C) and post*[A](C) are effectively regular for regular C and A ⊆ Act

(in polyn. time).

Single Steps

3) Membership in post*[L](C) is in general undecidable for regular L.

Forward-Reachability

[Bouajjani, MO, Touili, CONCUR 2005]

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 12

Example: Backward Reachability Analysis for DPNs

Consider again DPN with the rule

Analysis problem: can Bad be reached from pγ ?

()Bad ()q q p L Aγ γ γ
+

+= =

and the infinite set of states

γ γγ γ→ ⊳a
p p q

Example: Backward Reachability Analysis for DPNs

1. Step: Saturate automaton for Bad with the DPN rule:

Resulting automaton Apre* represents pre*(Bad) !

p

q

p

q

p

qγ γ

γ

γ

γ γγ γ→ ⊳a
p p q

2. Step: Check, whether pγ is accepted by Apre* or not

Result: Bad is reachable from pγ, as Apre* accepts pγ !

γ

γ

a
up v uq p vγ γ γγ→

Generalization of [Bouajjani/Esparza/Maler, CONCUR`97]

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 14

Some Applications of pre*-Computations with
unrestricted L (i.e. L = Act*)

Reachability of regular sets of configurations

Set Bad of configurations is reachable from initial configuration p0γ0

iff

p0γ0 ∈ pre*[Act*](Bad)

Bounded model checking

By iterated pre*-computations alternating with single steps

corresponding to synchronizations/communications

Bit-vector data-flow analysis problems

Variable x is live at program point u

iff

()()*[*] *[*] *[]()Main u x xe pre Act At pre NonDef pre Use Conf∈ ∩

à la [Esparza/Knoop, FOSSACS’99]

used in JMoped of Schwoon/Esparza

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 15

Exploiting a Tree-Shaped View of Configurations
CDPNs: Constrained Dynamic Pushdown-Networks

Idea:

Add (regular, stable) pre-conditions over current control symbols of
children threads to DPN rules.

A constrained dynamic pushdown-network (CDPN) consists of:

� P, a finite set of control symbols

� Γ, a finite set of stack symbols

� ∆, a finite set of rules of the following form

(with p,p1,p2 ∈ P, γ ∈ Γ, w1,w2∈ Γ*, a∈ Act)

1 1

1 1 2 2

: where *

: where *

a

a

p p w

p w Pp w p

Pφ φ

φ φ

γ

γ

→

 →

⊆

⊆ ⊳

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 17

Example: A CDPN

0

1 2 2

1. Phase:

: ' with (())*

2. Phase: ' '

a

b

c

p p q

p p q q q

p p

γ γγ γ

φ γ φ

γ

→

→ = +

→

⊳ 0 1

1 2

d

e

q q

q q

γ γ

γ γ

→

→

pγ pγγ pγγ pγγγ pγγγ pγγγa a edd

'p

b

1q γ 2q γ

'p γγ
b

1q γ 2q γ1q γ 1q γ1q γ 0q γ1q γ0q γ

. . .

b b b b

Constraint means: Proceed to second phase only if:

 - an even number of children threads has been created,

 - each second child has terminated, and

 - each child has perfo

φ

rmed at least one step.

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 18

Definition

pre*[Act*](C) is effectively regular for regular C and A ⊆ Act,

if all constraints φ occuring in rules of the CDPN are regular and stable for ∆.

Problem at least PSPACE-hard

Reachability Analysis of CDPNs

Theorem for CDPNs [Bouajjani, MO, Touili, CONCUR 2005]

1 1 1

1 1 2 2 1

Constraint is called if:

 , (:) implies , and

 , (:

stable

) implies

for
a

a

upv p p w upv

upv p p w p w upv

φ

φ ψ γ φ

φ ψ γ φ

∈ → ∈∆ ∈

∈

∆

→ ∈∆ ∈⊳

Parallel procedure calls, various join-statements, return values from parallel

procedure calls, phased execution.

Modelling power of stable constraints:

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 19

Modelling Power
of

Stable Regular Constraints

As a preparation: Indicate termination of son threads by a special control state §:

init init, , , $e

P
g l u g l v g l e→ ⊳

u

v

spawn Pfor spawn edge e:

$ §e
p →one special type of rules:

Model parallel call to two procedures:

u

v

pcall(P,Q)for parallel call edge e:

||. 1

init init

.||1 2

init init

||2

, , , $

, , , $

*§§: , ,

P

P

Q

Q

P Q

g l u g l u g l e

g l u g l u g l e

P g l u g l v

→

→

→

⊳

⊳

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 20

Modelling Power
of

Stable Regular Constraints (Ctd.)

Model various types of join-statements:

� proceed if all children have terminated: §*: ...

� proceed if last child has terminated: P*§: ...

� proceed if some child has terminated: P*§P*: ...

� proceed if every second child has terminated: (P§)*(P+ε): ...

� ...

Model return values of parallel procedures (beyond PA!):

Model phased execution

...

||2*§ § : , ,P Q

p q pq
P g l u g l v→

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 21

Synchronization via Locks

� Assume finite set of locks

� Have acquire- and release actions

� acq L, rel L ∈ Act f.a. locks L

� Intuition: At any time a lock can be hold by at most one thread

� Goal of lock-sensitive analysis

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 22

The Results of Kahlon and Gupta

Reachability is undecidable for two pushdown-systems running in parallel

and synchronizing by release- and acquire-operations used in an

unstructured way.

Idea: Can simulate synchronous communication

Theorem 1 [Kahlon/Gupta, LICS 2006]

Reachability is decidable for two pushdown-systems running in parallel and

synchronizing by release- and acquire-operations used in a nested fashion.

Idea: Collect information about lock usage of each process in „acquisition
histories“ and check mutual consistency of the collected histories.

Theorem 2 [Kahlon/Gupta, LICS 2006]

Our goal: Lock-sensitive analysis for systems with thread creation

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 23

Example: Locksets are not Precise Enough

Thread 1:

acquire L1

acquire L2

release L2

X:

Must-Lockset computed at X: { L1 }

Thread 2:

acquire L2;

acquire L1;

release L1;

Y:

Must-Lockset computed at Y: { L2 }

We have disjoint locksets at X and Y: { L1 } ∩ { L2 } = { } .

Nevertheless, X and Y are not reachable simultaneously !

A Tree-Based View of Executions: Action Trees

A DPN: 0

sp
p p qγ γ γ→ ⊳ 0 1

1 2

d

e

q q

q q

γ γ

γ γ

→

→

pγ
0q pγ γ 0 0q q pγ γ γ 1 0q q pγ γ γ 2 0q q pγ γ γ 2 1q q pγ γ γ

1q pγ γ 2q pγ γ

0 1q q pγ γ γ 1 1q q pγ γ γ

sp

sp

d

ed

ε ε

ε

sp

sp

d

d

d

d

d

d

e

e

e

sp

sp

Action sequences:

Action tree:

2 1q q pγ γ γpγ T *We write:

T:

Definition

preT*[M](C) is effectively regular for regular C and regular M (on trees).

A Tree-Based View of Executions

Theorem for DPNs [Lammich, MO, Wenner, CAV 2009]

*

*

pre []() : { | , : * } where *

preT []() : { | , : * } where ()

w

T

L C c d C w L c d L Act

M C c d C T M c d M Trees Act

= ∃ ∈ ∈ → ⊆

= ∃ ∈ ∈ → ⊆

Recall:

Membership in pre*[L](C) is undecidable for regular L already for very simple

languages C (e.g. singletons).

In a DPN that uses locks in a well-nested and non-reentrant fashion:

Set of tree-shaped executions having a lock-sensitive schedule is regular.

Idea of proof: Generalize Kahlon and Gupta‘s acquisition histories.

Size of automaton exponential in number of locks...

Theorem 2 [Lammich, MO, Wenner, CAV 2009]

Which of these trees
have a lock-sensitive schedule?

acq X

spawn

acq X

rel X

ε

ε

acq X

spawn

acq X

rel X

ε

ε

rel X

spawn

acq Y

rel X

ε ε

acq X

acq X

rel Y

acq Y

No!
Yes: (0,acq X),(0,sp),(0,rel X),

(1,acq X),(1,rel X)
No!

YX
YX YX

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 27

Applications

Lock-(join-)sensitive ...

� ... reachability analysis to regular sets of configurations

� ... bounded model checking

� ... DFA of bitvector problems

Lock-join-sensitive Analysis

0

3

4

5

9

output (x)

acquire l

output (x)

spawn P

Main:

0

1

2

4

acquire l

x := secret

release l

P:

2

release l

1

2

3

4

6

7
output (x)

join

x := 05

Power of different analyses:

� Pure lock sets: 3

� Analysis sensitive to thread creation, e.g., [BMOT05],

[LMO07]: 1,2

� Lock-sensitive analysis [LMO08], [LMOW09]: 1,2,3,4

� Lock-join-sensitive analysis [GLMOSW11]: 1,2,3,4,5, 6

Of course, also treat branching, loops, recursion !

3

6

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 30

More Recent Work (VMCAI 2011):
An Even More Regular View to Executions:

Execution Trees

Joint work with:

� Thomas Gawlitza, Helmut Seidl (TU München)

� Peter Lammich, Alexander Wenner (WWU Münster)

Realised for Java analysis: Benedikt Nordhoff‘s diploma thesis

Example:

2

3

0

1

2

3

: '

: '

: ''

: '' ''

cl

sp

ret

ret

Call p p

Spawn p p q

Ret p p

Ret p p

γ γγ

γ γ γ

γ

γ

→

→

→

→

⊳

4

4 : ret
Ret q qγ →

2

3

0

1

2

3

: '

: '

: ''

: '' ''

cl

sp

ret

ret

Call p p

Spawn p p q

Ret p p

Ret p p

γ γγ

γ γ γ

γ

γ

→

→

→

→

⊳
cl

sp

ret4

ret4

ε

ε

ret2

Execution Tree vs. Action Tree

The DPN:

4

4 : ret
Ret q qγ →

Action tree:

ε

cl

sp

ret3

ret3Call0

Spawn1

Ret2

Execution tree:

Call0

Spawn1

Ret3

Ret4

Ret3

Ret4

Execution Trees

Recall: post*[Act*](p0γ0) is non-regular in general.

Set of execution trees that have a lock-sensitive schedule is regular, e.g. for:

• nested non-reentrant locking with structured form of joins

• reentrant block-structured locking (monitors, synchronized-blocks)

Observation 2:

Set of all execution trees from given initial config., postE*(p0γ0), is regular !

Observation 1:

Obtain homogenous approach to, e.g., lock-sensitive reachability:

Reg. set C is lock-sensitively reachable from start config p0γ0

iff

postE*(p0γ0) ∩ LockSensTrees ∩ ExecTrees(C) is non-empty.

Set of execution trees reaching a given regular set C of configs is regular

Observation 3:

Definition

(Finite) Tree-Automata

Let Σ be a finite ranked alphabet.

(Finite bottom-up) tree automaton (over ΣΣΣΣ))))::::

A structure T = (Q,QF,δ) with:
• Q: finite set of states

• QF ⊆ Q: accepting states

• δ: set of rules of the form:

f(q1,...,qk) → q with q,q1,...,qk∈ Q, f∈ Σ of rank k ≥ 0

Acceptance:
a) If

• T accepts trees t1,...,tk in states q1,...,qk and

• T has rule f(q1,...,qk) → q
then

• T accepts tree f(t1,...,tk) in state q

b) T accepts a tree t

if T accepts t in an accepting state q∈ QF

f

t1 tk

q1 qk

q

...

T = ({⊥,⊤}, {⊤}, δ) with

δ : true → ⊤ not(⊥) → ⊤ or(⊥,⊥) → ⊥ and(⊥,⊥) → ⊥

false → ⊥ not(⊤) → ⊥ or(⊥,⊤) → ⊤ and(⊥,⊤) → ⊥

or(⊤,⊥) → ⊤ and(⊤,⊥) → ⊥

or(⊤,⊤) → ⊤ and(⊤,⊤) → ⊤

Ranked alphabet Σ:

Example: (Finite) Tree-Automaton

Rank 0: true, false Rank 1: not Rank 2: and, or

Tree automaton:

Acceptance of example tree:

not (and (or (true, false), false))

true

false

false

or

and

not

⊤⊤⊤⊤ ⊥⊥⊥⊥

⊥⊥⊥⊥⊤⊤⊤⊤

⊥⊥⊥⊥

⊤⊤⊤⊤

(, ,) with , , ' {N}p c p P p Pγ γ∈ ∈Γ ∈ ∪

Tree Automaton for Execution Trees of a DPN

States:

(, ,) accepts tree

iff

 a) and represents terminating executions from to , or

 b) N and represents non-terminating executions from

p c T

c P T p c

c T p

γ

γ

γ

∈

=

Idea:

Rules:

Nil : [] (, ,)

Base rules : [' ']((', ',)) (, ,)

Call rules : [' ' '']((', ', ''), ('', '',)) (, ,)

[' ' '']((', ',)) (, ,)

Return rules: ['] (, , ')

Spawn rules : [

p

a

X

X

a

nil p N

p p p c p c

p p p p p c p c

p p p N p N

p p p p

p

γ γ

γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ

γ γ

→

→ →

→ →

→ →

→ →

' ' '' '']((', ',), ('', '', _)) (, ,)a
p p p c p p cγ γ γ γ γ γ→ →⊳

(, ,) with , , , accepting if is acyclicG A U A U Locks G Locks Locks G⊆ ⊆ ×

Tree Automaton for Execution Trees
with Lock-Sensitive Schedule

States:

(, ,) accepts tree

iff

a) no lock is finally acquired more than once in ,

b) G contains edge if lock is used in after lock has been finally acquired,

c) is the set of finally acquired locks, a

G A U T

T

x y y T x

A

→

nd

d) is the set of used locks. U

Idea:

Rules: Nil : [] (, ,)

Base rules : [' ']((, ,)) (, ,)

Call rules : [' ' '']((, ,), (', ', '))

if '

[' ' '']((, ,)) (, ,)

if

Return rules: ['] (, ,)

Spawn ru

p

a

X

X

a

nil

p p G A U G A U

p p G A U G A U

A A

p p G A U G X A A X U

A X

p p

γ

γ γ

γ γ γ

γ γ γ

γ

→ ∅ ∅ ∅

→ →

→ →

∩ = ∅

→ → ∪ × ∪

∩ = ∅

→ → ∅ ∅ ∅

les : [' ' '' '']((, ,), (', ', ')) (', ', ')

if '

a
p p p G A U G A U G G A A U U

A A

γ γ γ→ → ∪ ∪ ∪

∩ = ∅

⊳

Realization for Java

Diploma thesis of Benedikt Nordhoff

Uses:

� WALA from IBM: T.J. Watson Libraries for Analysis

� XSB: A Prolog-like system with tabulating evaluation

Identifies object references that can be used as locks

For practicality:

� Pre-analysis of WALA flow graph and (massive) pruning

� Modular reformulation of automata-based analysis

� Clever evaluation strategy for tree automata construction

Experimental applications:

� Monitor-sensitive data-race analyzer for Java

� RS3 context: Improve PDG-based IFC analysis of concurrent Java

Java Data-Race Finder: Screenshot 1

Java Data-Race Finder: Screenshot 2

Java Data-Race Finder: Screenshot 3

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012 43

Conclusion

� Lock-join-sensitive analysis using automata

� Finite state + recursion + thread creation + locks + joins

� Experimental applications for Java

� Trees are better than words

� Keeping more structure in the trees is even better

