

Automata-Based Analysis of Recursive Programs with Threads

Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany

IFIP`WG 2.2 Meeting Amsterdam, September 24-26, 2012

Introduction

Threads & Recursion

Locks & monitors & joins

Optimal Analysis:

• Complete analysis of well-specified abstract model

Regular model checking

Reachability Analysis of Programs with Procedures and Thread Creation

Theorem [Ramalingam]

Reachability is undecidable in programs with two threads, synchronous communication, and procedures.

Proof:

Reduction of intersection problem $(L_1 \cap L_2 \neq \emptyset)$ of contextfree languages L_1, L_2 .

 \Rightarrow abstract from synchronous communication (for now).

A Model of Recursive Programs with Thread-creation: DPNs: Dynamic Pushdown-Networks

- A dynamic pushdown-network (DPN) over finite set of actions Act consists of:
 - P, a finite set of control symbols
 - Γ, a finite set of stack symbols
 - Δ , a finite set of rules of the following form

 $p\gamma \xrightarrow{a} p_1 w_1 \qquad [\text{ with } |w_1| \le 2]$ $p\gamma \xrightarrow{a} p_1 w_1 \triangleright p_2 w_2 \qquad [\text{ with } |w_1| = 1 \text{ and } |w_2| = 1]$

(with $p, p_1, p_2 \in \mathsf{P}, \gamma \in \Gamma, w_1, w_2 \in \Gamma^*$, $a \in \mathsf{Act}$).

• DPNs can model recursive programs with thread-creation primitives using finite abstractions of (thread-local) global variables and local variables of procedures.

Execution-Semantics of DPNs on Word-Shaped Configurations

A configuration of a DPN is a word in $(P\Gamma^*)^+$:

 $p_1 w_1 p_2 w_2 \cdots p_k w_k \qquad (\text{with } p_i \in P, w_i \in \Gamma^*, k > 0)$

... an infinite state space

The transition relation of a DPN:

 $(p\gamma \xrightarrow{a} p_1 w_1) \in \Delta: \qquad u p \gamma v \xrightarrow{a} u p_1 w_1 v$ $(p\gamma \xrightarrow{a} p_1 w_1 \triangleright p_2 w_2) \in \Delta: \qquad u p \gamma v \xrightarrow{a} u p_2 w_2 p_1 w_1 v$

Example

Consider the following DPN with a single rule

 $p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q\gamma$

Transitions:

ΡΥ *ϤΥΡΥΥ ϤΥϤΥΡΥΥΥ ϤΥϤΥϤΥΡΥΥΥΥ ϤΥϤΥϤΥΡΥΥΥΥ*

- •
- •

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Amsterdam, September24-26, 2012

P induces trace language: $L = \bigcup \{ A^n \cdot (B^m \otimes (C^i, D^j) \mid n \ge m \ge 0, i \ge j \ge 0 \}$

Cannot characterize L by constraint system with "·" and " \otimes ". Trace languages of DPNs differ from those of PA processes. [Bouajjani, MO, Touili: CONCUR 2005]

Basic Results on Reachability Analysis of DPNs

[Bouajjani, MO, Touili, CONCUR 2005]

Definition

 $\operatorname{pre}^{*}[L](C) := \{c \mid \exists d \in C, w \in L : c \xrightarrow{w} * d\}$ $\operatorname{post}^{*}[L](C) := \{d \mid \exists c \in C, w \in L : c \xrightarrow{w} * d\}$

Forward-Reachability

- 1) post*[Act*](C) is in general non-regular for regular C.
- 2) post*[Act*](C) is effectively context-free for context-free C (in polyn. time).
- 3) Membership in post*[L](C) is in general undecidable for regular L.

Backward-Reachability

- 1) pre^{*}[A^{*}](C) is effectively regular for regular C and A \subseteq Act (in polyn. time).
- 2) Membership in pre*[L](C) is in general undecidable for regular L.

Single Steps

 pre^{*}[A](C) and post^{*}[A](C) are effectively regular for regular C and A ⊆ Act (in polyn. time).

Example: Backward Reachability Analysis for DPNs

Consider again DPN with the rule

 $p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q\gamma$

and the infinite set of states

Bad =
$$(q\gamma q\gamma p\gamma^{+})^{+} = L(A)$$

Analysis problem: can Bad be reached from $p\gamma$?

Some Applications of pre*-Computations with unrestricted L (i.e. L = Act*)

Reachability of regular sets of configurations

Set Bad of configurations is reachable from initial configuration $p_0\gamma_0$ iff

 $p_0\gamma_0 \in \text{ pre*}[\text{Act*}](\text{Bad})$

Bounded model checking

used in JMoped of Schwoon/Esparza

By iterated pre*-computations alternating with single steps corresponding to synchronizations/communications

Bit-vector data-flow analysis problems à la

à la [Esparza/Knoop, FOSSACS'99]

Variable x is live at program point u

iff

$$e_{Main} \in pre^{*}[Act^{*}](At_{u} \cap pre^{*}[NonDef_{x}^{*}](pre^{*}[Use_{x}](Conf)))$$

Exploiting a Tree-Shaped View of Configurations CDPNs: Constrained Dynamic Pushdown-Networks

Idea:

Add (regular, stable) pre-conditions over current control symbols of children threads to DPN rules.

A constrained dynamic pushdown-network (CDPN) consists of:

- P, a finite set of control symbols
- Γ, a finite set of stack symbols
- Δ , a finite set of rules of the following form

 $\phi: p\gamma \xrightarrow{a} p_1 w_1 \qquad \text{where } \phi \subseteq P^*$ $\phi: p\gamma \xrightarrow{a} p_1 w_1 \triangleright p_2 w_2 \qquad \text{where } \phi \subseteq P^*$ $(\text{with } p, p_1, p_2 \in \mathsf{P}, \gamma \in \Gamma, w_1, w_2 \in \Gamma^*, a \in \mathsf{Act})$

Example: A CDPN

1. Phase:
$$p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q_0\gamma$$

 $\phi: p\gamma \xrightarrow{b} p'$ with $\phi = ((q_1 + q_2)q_2)^*$
2. Phase: $p'\gamma \xrightarrow{c} p'$

$$q_0 \gamma \xrightarrow{d} q_1 \gamma$$
$$q_1 \gamma \xrightarrow{e} q_2 \gamma$$

Constraint ϕ means: Proceed to second phase only if:

- an even number of children threads has been created,
- each second child has terminated, and
- each child has performed at least one step.

Reachability Analysis of CDPNs

Definition

Constraint ϕ is called stable for Δ if:

 $upv \in \phi$, $(\psi: p\gamma \xrightarrow{a} p_1 w_1) \in \Delta$ implies $up_1 v \in \phi$, and

 $upv \in \phi$, $(\psi: p\gamma \xrightarrow{a} p_1w_1 \triangleright p_2w_2) \in \Delta$ implies $up_1v \in \phi$

Theorem for CDPNs [Bouajjani, MO, Touili, CONCUR 2005]

pre*[Act*](C) is effectively regular for regular C and A \subseteq Act, if all constraints ϕ occuring in rules of the CDPN are regular and stable for Δ .

Problem at least PSPACE-hard

Modelling power of stable constraints:

Parallel procedure calls, various join-statements, return values from parallel procedure calls, phased execution.

Modelling Power of Stable Regular Constraints

As a preparation: Indicate termination of son threads by a special control state §:

for spawn edge e: spawn P

$$g\left\langle l,u\right\rangle \xrightarrow{e} g\left\langle l,v\right\rangle \rhd g_{\text{init}}\left\langle l_{\text{init}},e_{P}\right\rangle$$

one special type of rules:

$$p$$
\$ \xrightarrow{e} \$

Model parallel call to two procedures:

for parallel call edge e:

$$\begin{array}{c}
u \\
pcall(P,Q) \\
v\end{array}
\qquad g \langle l,u \rangle \xrightarrow{PIL} g \langle l,u^1 \rangle \triangleright g_{init} \langle l_{init},e_P \rangle \$ \\
g \langle l,u^1 \rangle \xrightarrow{IIQ} g \langle l,u^2 \rangle \triangleright g_{init} \langle l_{init},e_Q \rangle \$ \\
P^*\$\$:g \langle l,u^2 \rangle \xrightarrow{PIQ} g \langle l,v \rangle
\end{array}$$

}

Modelling Power of Stable Regular Constraints (Ctd.)

Model various types of join-statements:

- proceed if all children have terminated: §*: ...
- proceed if last child has terminated:
- proceed if some child has terminated: P*\$P*: ...
- proceed if every second child has terminated: $(P \S)^*(P + \varepsilon)$: ...
- ...

Model return values of parallel procedures (beyond PA!):

$$P^* \$_p \$_q : g \left\langle l, u^2 \right\rangle \xrightarrow{P \parallel Q} g_{pq} \left\langle l, v \right\rangle$$

P*§: ...

Model phased execution

Synchronization via Locks

- Assume finite set of locks
- Have acquire- and release actions
 - $acq L, rel L \in Act$ f.a. locks L
- Intuition: At any time a lock can be hold by at most one thread
- Goal of lock-sensitive analysis

The Results of Kahlon and Gupta

Theorem 1 [Kahlon/Gupta, LICS 2006]

Reachability is undecidable for two pushdown-systems running in parallel and synchronizing by release- and acquire-operations used in an unstructured way.

Idea: Can simulate synchronous communication

Theorem 2 [Kahlon/Gupta, LICS 2006]

Reachability is decidable for two pushdown-systems running in parallel and synchronizing by release- and acquire-operations used in a nested fashion.

Idea: Collect information about lock usage of each process in **"acquisition histories**" and check mutual consistency of the collected histories.

Our goal: Lock-sensitive analysis for systems with thread creation

Example: Locksets are not Precise Enough

Thread 1:	Thread 2:
acquire L1	acquire L2;
acquire L2	acquire L1;
release L2	release L1;
X:	Y:

Must-Lockset computed at X: { L1 } Must-Lockset computed at Y: { L2 }

We have disjoint locksets at X and Y: { L1 } \cap { L2 } = { }.

Nevertheless, X and Y are not reachable simultaneously !

A Tree-Based View of Executions: Action Trees

A DPN: $p\gamma \xrightarrow{sp} p\gamma \triangleright q_0\gamma$ $q_0\gamma \xrightarrow{d} q_1\gamma$ $q_1\gamma \xrightarrow{e} q_2\gamma$

A Tree-Based View of Executions

Definition

$$\operatorname{pre}^{*}[L](C) := \{c \mid \exists d \in C, w \in L : c \xrightarrow{w} * d\} \quad \text{where } L \subseteq Act *$$
$$\operatorname{preT}^{*}[M](C) := \{c \mid \exists d \in C, T \in M : c \xrightarrow{T} * d\} \quad \text{where } M \subseteq Trees(Act)$$

Recall:

Membership in pre*[L](C) is undecidable for regular L already for very simple languages C (e.g. singletons).

Theorem for DPNs [Lammich, MO, Wenner, CAV 2009]

preT*[M](C) is effectively regular for regular C and regular M (on trees).

Theorem 2 [Lammich, MO, Wenner, CAV 2009]

In a DPN that uses locks in a well-nested and non-reentrant fashion: Set of tree-shaped executions having a lock-sensitive schedule is regular.

Idea of proof: Generalize Kahlon and Gupta's acquisition histories.

Size of automaton exponential in number of locks...

Applications

Lock-(join-)sensitive ...

- ... reachability analysis to regular sets of configurations
- ... bounded model checking
- ... DFA of bitvector problems

More Recent Work (VMCAI 2011): An Even More Regular View to Executions: Execution Trees

Joint work with:

- Thomas Gawlitza, Helmut Seidl (TU München)
- Peter Lammich, Alexander Wenner (WWU Münster)

Realised for Java analysis: Benedikt Nordhoff's diploma thesis

Example:

 $\begin{aligned} Call_{0} &: \quad p\gamma \xrightarrow{cl} p'\gamma\gamma & Ret_{4} &: \quad q\gamma \xrightarrow{ret_{4}} q \\ Spawn_{1} &: \quad p'\gamma \xrightarrow{sp} p\gamma \triangleright q\gamma \\ Ret_{2} &: \quad p\gamma \xrightarrow{ret_{2}} p'' \\ Ret_{3} &: \quad p''\gamma \xrightarrow{ret_{3}} p'' \end{aligned}$

Execution Trees

Recall: post*[Act*]($p_0\gamma_0$) is non-regular in general.

Observation 1:

Set of all execution trees from given initial config., postE*($p_0\gamma_0$), is regular !

Observation 2:

Set of execution trees that have a lock-sensitive schedule is regular, e.g. for:

- · nested non-reentrant locking with structured form of joins
- reentrant block-structured locking (monitors, synchronized-blocks)

Observation 3:

Set of execution trees reaching a given regular set C of configs is regular

Obtain homogenous approach to, e.g., lock-sensitive reachability:

Reg. set C is lock-sensitively reachable from start config $p_0\gamma_0$ iff

 $postE^*(p_0\gamma_0) \cap LockSensTrees \cap ExecTrees(C)$ is non-empty.

(Finite) Tree-Automata

Definition

Let Σ be a finite ranked alphabet.

(Finite bottom-up) tree automaton (over Σ):

A structure $T = (Q, Q_F, \delta)$ with:

- · Q: finite set of states
- $Q_F \subseteq Q$: accepting states
- δ : set of rules of the form: $f(q_1,...,q_k) \rightarrow q$ with $q,q_1,...,q_k \in Q$, $f \in \Sigma$ of rank $k \ge 0$

Acceptance:

a) If

- T accepts trees t_1, \dots, t_k in states q_1, \dots, q_k and
- + T has rule $f(q_1,...,q_k) \rightarrow q$ then
 - T accepts tree $f(t_1,...,t_k)$ in state q
- b) T accepts a tree t

if T accepts t in an accepting state $q \in Q_F$

Example: (Finite) Tree-Automaton

Ranked alphabet Σ:

Rank 0: true, false	Rank 1: not
---------------------	-------------

Tree automaton:

 $T=(\;\{\perp,\top\},\,\{\top\},\,\delta\;)\;$ with

- $\delta: \text{ true } \rightarrow \top \quad \text{not}(\bot) \rightarrow \top \quad \text{or}(\bot,\bot) \rightarrow \bot$ $false \rightarrow \bot \quad \text{not}(\top) \rightarrow \bot \quad \text{or}(\bot,\bot) \rightarrow \top$
 - false $\rightarrow \bot$ not $(\top) \rightarrow \bot$ or $(\bot, \top) \rightarrow \top$

Rank 2: and, or

and(\perp, \perp) $\rightarrow \perp$
and(\perp, \top) $\rightarrow \perp$
and(\top, \perp) $\rightarrow \perp$
and $(\top,\top) \rightarrow \top$

Acceptance of example tree:

not (and (or (true, false), false))

Tree Automaton for Execution Trees of a DPN

b) c = N and T represents non-terminating executions from $p\gamma$

Rules:

Nil: $[nil_{p\gamma}] \rightarrow (p, \gamma, N)$ Base rules: $[p\gamma \xrightarrow{a} p'\gamma']((p', \gamma', c)) \rightarrow (p, \gamma, c)$ Call rules: $[p\gamma \xrightarrow{X} p'\gamma'\gamma'']((p', \gamma', p''), (p'', \gamma'', c)) \rightarrow (p, \gamma, c)$ $[p\gamma \xrightarrow{X} p'\gamma'\gamma'']((p', \gamma', N)) \rightarrow (p, \gamma, N)$ Return rules: $[p\gamma \xrightarrow{a} p'] \rightarrow (p, \gamma, p')$ Spawn rules: $[p\gamma \xrightarrow{a} p'\gamma' \triangleright p''\gamma'']((p', \gamma', c), (p'', \gamma'', _)) \rightarrow (p, \gamma, c)$

Tree Automaton for Execution Trees with Lock-Sensitive Schedule

States: (G, A, U) with $A, U \subseteq Locks, G \subseteq Locks \times Locks$, accepting if G is acyclic

Idea:
$$(G, A, U)$$
 accepts tree T

iff

- a) no lock is finally acquired more than once in T,
- b) G contains edge $x \rightarrow y$ if lock y is used in T after lock x has been finally acquired,
- c) A is the set of finally acquired locks, and
- d) U is the set of used locks.

Rules: Nil: $[nil_{p\gamma}] \rightarrow (\emptyset, \emptyset, \emptyset)$ Base rules: $[p\gamma \xrightarrow{a} p'\gamma']((G, A, U)) \rightarrow (G, A, U)$ Call rules: $[p\gamma \xrightarrow{X} p'\gamma'\gamma'']((G, A, U), (G', A', U')) \rightarrow$ if $A \cap A' = \emptyset$ $[p\gamma \xrightarrow{X} p'\gamma'\gamma'']((G, A, U)) \rightarrow (G \cup X \times A, A \cup X, U)$ if $A \cap X = \emptyset$ Return rules: $[p\gamma \xrightarrow{a} p'] \rightarrow (\emptyset, \emptyset, \emptyset)$ Spawn rules: $[p\gamma \xrightarrow{a} p'\gamma' \triangleright p''\gamma'']((G, A, U), (G', A', U')) \rightarrow (G \cup G', A \cup A', U \cup U')$ if $A \cap A' = \emptyset$

Realization for Java

Diploma thesis of Benedikt Nordhoff

Uses:

- WALA from IBM: T.J. Watson Libraries for Analysis
- XSB: A Prolog-like system with tabulating evaluation

Identifies object references that can be used as locks

For practicality:

- Pre-analysis of WALA flow graph and (massive) pruning
- Modular reformulation of automata-based analysis
- Clever evaluation strategy for tree automata construction

Experimental applications:

- Monitor-sensitive data-race analyzer for Java
- RS3 context: Improve PDG-based IFC analysis of concurrent Java

Conclusion

- Lock-join-sensitive analysis using automata
- Finite state + recursion + thread creation + locks + joins
- Experimental applications for Java
- Trees are better than words
- Keeping more structure in the trees is even better