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Aims

Model discrete systems with multiple resources that can be consumed,
produced, or “reloaded”.

User control over the system is only partial, some states are adversarial or
stochastic.

Stochastic multi-counter games.

Questions of interest:

Can a user control the system so that the resources are never
exhausted?

What is the minimal “storage capacity” for achieving the above
objective?

Many others. . .

Can we answer such questions effectively/efficiently ?

Antonín Kučera (FI MU Brno) Counter Games IFIP WG 2.2 2012 2 / 25



Multi-counter stochastic games
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The semantics of multi-counter stochastic games

Each MCSG determines an infinite game graph which can be
infinitely-branching.

Vertices are configurations of the form p~v.

Z-semantics: ~v ∈ Zk , non-blocking transitions.

N-semantics: ~v ∈Nk , blocking transitions (Petri net style).
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An example
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Winning objectives in stochastic games (1)

We deal with infinite-state and possibly infinitely-branching stochastic
games.

Some of very basic properties of finite-state games do not carry over to
infinite-state games.

In particular, this applies to the existence and type of optimal/winning
strategies, even for simple objectives such as reachability or safety.
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Winning objectives in stochastic games (2)

Let f be a function assigning a real-valued payoff to every run if a given
game graph G.

The aim of Player �/^ is to maximize/minimize E[f ].

If f is Borel and bounded, then every vertex v has a value val(v) given by

sup
σ∈HR�

inf
π∈HR^

E[f ] = inf
π∈HR^

sup
σ∈HR�

E[f ]

This holds also for infinitely-branching games.

The existence of val(v) induces the notions of optimal and ε-optimal
strategy.
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Reachability objective in stochastic games

The aim of Player �/^ is to maximize/minimize the probability of visiting a
target vertex.

Let Reach be a function which to every run assigns either 1 or 0 depending
on whether or not the run visits a target vertex.

In finite-state stochastic games, both players have optimal MD strategies.
Hence, finite-state reachability games are determined for every strategy
class C that subsumes MD strategies:

sup
σ∈C�

inf
π∈C^

E[Reach] = inf
π∈C^

sup
σ∈C�

E[Reach]
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Reachability in infinite-state stochastic games

In infinitely-branching games:

Optimal strategies do not necessarily exist.

Even if they do exist, they may require infinite memory.

The games are not determined for finite-memory strategies.

In finitely-branching games:

An optimal strategy for Player � (Max) does not necessarily exist.

Player ^ (Min) has an optimal MD strategy.

The games are determined for any strategy type that subsumes MD
strategies, and the value is the same.

Similar results hold also for the (unbounded!) total accumulated reward payoff
function (Brázdil, K, Novotný; MEMICS 2012).
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Counterexamples (1)

Player � (Max) does not necessarily have an optimal strategy, even in
finitely-branching MDPs.
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Counterexamples (2)

An optimal strategy for Player � (Max) may require infinite memory, even in
finitely-branching games.
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Counterexamples (3)

Optimal minimizing strategies do not necessarily exist, and (ε-) optimal
minimizing strategies may require infinite memory.
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Counterexamples (4)

Infinitely-branching games are not determined for finite-memory strategies.
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Existing results about multi-counter games

Only for restricted models:

non-stochastic games with multiple counters;

stochastic games with only one counter.

Objectives:

zero-safety

(selective) zero-reachability

expected zero-termination time
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Non-stochastic eVASS games

Let G be an eVASS game, i.e., a non-stochastic multi-counter game with
k counters where update vectors belong to {0,1,−1, ω}k . We consider
N-semantics.

The aim of Player � is to avoid visiting configurations with zero in some
counter. Player ^ aims at the opposite.

Let safe be the set of all configurations where Player � has a winning
strategy.
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Non-stochastic eVASS games (2)

Observation 1
The set safe is upwards-closed w.r.t. component-wise ordering. Hence, it is
fully characterized by its finitely many minimal elements. Consequently, the
membership to safe is semi-decidable.

Observation 2
Suppose that the update vectors of G do not contain any ω’s. Then the game
graph of G is finitely-branching, and a winning strategy for Player ^ can be
encoded by a finite tree. Consequently, the non-membership to safe is
semi-decidable.
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Non-stochastic eVASS games (2)

Theorem 3 (Brázdil, Jančar, K.; Icalp 2010)
The set of minimal elements of safe is computable in k−1-EXPTIME. The
membership problem for safe is EXPSPACE-hard.

A symbolic configuration is a pair p~v where ~vi ∈N ∪ {∗}. The precision of
p~v is the number of non-∗ elements in ~v.

An instance of a symbolic configuration p~v is obtained by substituting all
∗-elements in ~v with concrete values. The component-wise ordering is
extended to symbolic configurations by stipulating n < ∗ for all n ∈N.

For j = 0,1,2, . . . , k , we inductively compute

the set Cj of all minimal symbolic configurations p~v of precision j such
that some instance of p~v is safe.

a bound Bj such that for every p~v ∈ Cj we have that the instance
obtained by substituting every ∗ in ~v with Bj is safe.

Clearly, Ck is the set of all minimal safe configurations.
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Non-stochastic eVASS games (3)

Further remarks.

For k = 2 and no ω components, the complexity has been improved from
EXPTIME to P by Chaloupka (RP 2010).

The exact complexity classification for a fixed number of counters is open.
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Consumption games

Let G be an consumption game, i.e., a non-stochastic multi-counter game
with k counters where the components of update vectors are non-positive
integers or ω’s.

Let S be the set of states of G, and ` the maximal absolute value of a
counter update.

Theorem 4 (Brázdil, Chatterjee, K., Novotný; CAV 2012)
The problem whether p~v ∈ safe is PSPACE-hard and solvable in time
|~v | · (k · ` · |S |)O(k). Further, the set of minimal elements of safe is computable
in time (k · ` · |S |)O(k).
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Consumption games (2)

Let G be an consumption game.

Let cover be the set of all p~v where Player � can play so that

all counters stay positive;

every visited configuration q~u satisfies ~u ≤ ~v.

Clearly, cover ⊆ safe, and the set cover is upwards closed.

Theorem 5 (Brázdil, Chatterjee, K., Novotný; CAV 2012)
The problem whether p~v ∈ cover is PSPACE-hard and solvable in O(Λ2

· |S |2)
time, where Λ = Πk

i=1
~vi . Further, the set of all minimal elements of cover is

computable in (k · ` · |S |)O(k ·k !) time.
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Multiweighted energy games

Let G be a multiweighted (or generalized) energy game, i.e., a
non-stochastic multicounter game with Z-semantics with no ω-components
in update vectors.

Let b ∈N. For every control state p, let boundb(p) be the set of all ~v ∈Nk

where Player � can play so that all counters stay non-negative and
bounded by b.

Theorem 6 (Fahrenberg, Juhl, Larsen, Srba; ICTAC 2011)
The problem whether ~v ∈ boundb(p) is EXPTIME-complete. If all control
states belong to Player �, then the problem is PSPACE-complete.
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Stochastic games with one counter

Solvency games (Berger, Kapur, Schulman, Vazirani; FST& TCS 2008)
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One-counter games and MDPs

Let G be a one-counter game, i.e., a multi-counter game with one counter
and Z-semantics where the counter updates range over {0,1,−1}.

So far, the following payoff functions have been studied for one-counter
games:

Cover negatives (CN), which to every run assigns 1 or 0 depending on
whether or not lim inf of all counter values visited along the run is equal
to −∞.

Zero reachability (Z), which to every run assigns 1 or 0 depending on
whether or not the run visits a configuration with zero counter.

Selective zero reachability (SZ), which to every run assigns 1 or 0
depending on whether or not the run visits a configuration with zero
counter in one of the selected control states, and the counter stays
positive in all preceding configurations.

Termination time (T), which to every run assigns the number of
transitions performed before visiting a configuration with zero counter.
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One-counter games and MDPs (2)

The results concern the following problems:

Qualitative questions:

Is the value of a given configuration equal to one?

Is there a strategy for Player � which achieves the outcome one
against every strategy of Player ^?

Quantitative questions:

Can we compute/approximate the value of a given configuration?

Can we compute (ε-optimal) strategies?

Many answers exist and many questions remain open. The underlying
analytical tools are nontrivial.
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Open problems

The tractability frontier for non-stochastic multi-counter games is still not
well understood, and only very basic payoff functions have been studied.

The structure of optimal strategies in one-counter games and MDPs is
unclear. Are optimal strategies in solvency games “ultimately periodic”?

What can be done for stochastic games with multiple counters?
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