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This talk in a nutshell

Generalised stochastic Petri nets (GSPNs) [Ajmone Marsan et al, 1984]

� Places
� Timed transitions (rates)

� Immediate transitions
� Input, output, inhibitor arcs
� Tokens •

Semantics: play token game
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Resolving the conflict?

� So far: use weightsweights
� Drawbacks: Which weights? Strange effects! Trustworthy analysis?
� New: Don’t care. Keep it as is. (without abandoning weights)
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Generalised Stochastic Petri Nets

Historical perspective

1973 Timed Petri Nets [Noe & Nutt]

1980 Stochastic Petri Nets [Molloy, Natkin, Symons]

1984 Generalized Stochastic Petri Nets [Ajmone Marsan, Conte & Balbo]

1991 GSPN Reward Nets [Ciardo, Muppala & Trivedi]

1994 Non-Markovian Stochastic Petri Nets [Bobbio, German et al.]

1995 Modeling with Generalized Stochastic Petri Nets [Ajmone Marsan et al.]
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Generalised Stochastic Petri Nets

Generalised stochastic Petri nets

� Places
� Timed transitions
� Immediate transitions
� Weights
� Input, output, inhibitor arcs
� Tokens •
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Maximal progress: immediate transitions have priority over timed ones.

Removal of reachable vanishing markings in marking graph yields a
continuous-time Markov chain.
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Generalised Stochastic Petri Nets

Applicability

Quantitative measures

1. the reachability probability of a given marking
2. the probability to be in a marking after t time units transient

3. the probability to be in a marking on the long run stationary

4. the probability to satisfy a temporal logic formula CSL model checking

All these quantities can be computed efficiently and are tool-supported.
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Generalised Stochastic Petri Nets

A caveat

The presence of confused subnets
of immediate transitions within a GSPN
is an undesirable property of the model.

Ajmone Marsan et al. (1995)
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Generalised Stochastic Petri Nets

Confusion

What is confusion?
Confusion arises if there is a reachable marking in which multiple
non-conflicting immediate transitions are simultaneously enabled.

A simple confused GSPN
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� Transitions t0 and t2 are concurrent

� If t2 fires first, no conflict arises

� If t0 fires first, a conflict t1 � t2 arises

In marking p1 + p6 one cannot conclude whether a conflict had to be resolved.

This situation is called confusion.
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Generalised Stochastic Petri Nets

Why is confusion problematic?

No stochastic process

The reachability graph of a confused net is not a continuous-time Markov
chain but a stochastic decision process. Standard CTMC analysis is not
possible.

It is meaningless to consider

1. the reachability probability of a given marking
2. the probability to be in a marking after t time units
3. the probability to be in a marking on the long run

These quantities are all subject to the resolution of nondeterminism.

Classical GSPN approach: resolve nondeterminism by using weights.
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Generalised Stochastic Petri Nets

Weighted immediate transitions

A simple weighted GSPN
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� Transition ti has weight ki ∈ N>0

� t2 fires first with probability k2

k0+k2

� t0 fires first with probability k0

k0+k2

� Concurrency is thus resolved
probabilistically

Pr{♦(p1+p6) } =
k2

k0+k2︸ ︷︷ ︸
t2 before t0

+
k0

k0+k2
· k2

k1+k2︸ ︷︷ ︸
t0 before t2

and t2 before t1

Note the influence of k0 on this quantity.

Joost-Pieter Katoen Revisiting GSPNs 11/63



Generalised Stochastic Petri Nets

Drawbacks of weights

How to get adequate weights?

For conflicting transitions this is mostly simple, but not for confused ones.

But: weight values are fundamental for the quantitative evaluation.

Biased analysis

Quantitative results are subject to a specific weight assignment. This bias is
often neglected. (see later case study)

Unexpected effects

Splitting or deleting an immediate transition “has drastic effects on the
values of the results obtained from the quantitative evaluation”.
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Generalised Stochastic Petri Nets

Weights are not so innocent

Assume all rates and weights equal one. Then LRA(. . .+p5) =
4
11 .

Deleting p2 and immediate transition t2 yields LRA(. . .+p5) =
4
10 .
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Generalised Stochastic Petri Nets

Workarounds

Some approaches

1. Net-level reasoning [Chiola et al., 1993]
� signals which immediate transitions may become in conflict
� simple and efficient, but incomplete
� translational semantics rely on this: no confusion-free proof

2. State-space reasoning [Ciardo et al., 1996]
� exact but computationally involved

3. Net-level restrictions [Teruel et al., 2003]
� ensure different priorities for conflicting transitions
� but can provide false (“spurious”) alarms

“Well-specified” checks exist for SANs [Deavours & Sanders, 1999]

Our approach: no checks. No restrictions. All nets are well-defined.
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Markov Automata

Recent developments

2010 Markov Automata [Eisentraut et al.]
2011 Semantics of Markov Automata [Deng & Hennessy]
2012 Quantitative Analysis of Simple MA [Katoen et al.]
2012 Weak Bisimulation Minimisation of MA [Turrini & Hermanns]
2012 Quantitative Analysis of MA [Guck & Katoen]
2012 Efficient Generation of MA [Timmer et al.]
today New GSPN Semantics, Analysis Algorithms, and Tool
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Markov Automata

Markov automata [Eisentraut et al., LICS 2010]

A Markov automaton M is a tuple (S ,Act, −→, ⇒, s0) where
� S is a nonempty set of states with initial state s0 ∈ S
� Act is a finite set of actions; τ is an internal action
� −→ ⊆ S × Act × Dist(S) is a set of action transitions, and
� ⇒ ⊆ S × R>0 × S is a set of Markovian transitions

such that there is at most one r ∈ R>0 such that s
r⇒ s ′

s0 s1

s2

α
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0.6

3

1

β, 1
γ, 1
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Markov Automata

Déjà vu?

s0 s1

s2

α
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� ⇒ = ∅ yields probabilistic automata.
� ⇒ = ∅ and −→ is deterministic yields Markov decision processes.
� ⇒ = ∅, −→ is deterministic, and |Act| = 1 yields Markov chains.
� ⇒ = ∅ and −→ is Dirac yields labeled transition systems.
� −→ is Dirac yields interactive Markov chains.
� −→ = ∅ yields continuous-time Markov chains.
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Markov Automata

Semantics

� s is Markovian if s ⇒ and s −−→/
� s is probabilistic if s �⇒ and s −→
� s is hybrid if s ⇒ and s −→
� s is timelock if s �⇒ and s −−→/

s0 s1

s2

α

0.4

0.6

3

1

β, 1
γ, 1

For Markovian s, let:

� r(s, s ′) be the rate to move from s to s ′,

� E (s) =
∑

s′∈S r(s, s ′) be the exit rate of s

� p(s, s ′) = r(s,s′)
E (s) is the probability to move from s to s ′

r(s1, s0) = 3, E (s1) = 1 + 3 = 4 and p(s1, s0) = 3
4 and p(s1, s2) = 1

4 .
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Markov Automata

Maximal progress assumption

Justification

1. Internal (action) transitions are labeled with the action τ .
2. These transitions will not be subject to interaction.
3. They cannot be delayed by other components.
4. Thus, internal interactive transitions can trigger immediately.
5. But, almost surely no Markovian transition occurs immediately.

Maximal progress assumption

Internal action transitions take precedence over Markovian ones.
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Markov Automata

Maximal progress assumption

s0

s1

s2

λ

τ reduces to

s0

s1

s2

τ

But as visible actions may be subject to delaying by other components:

s0

s1

s2

λ

α remains

s0

s1

s2

λ

α
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Markov Automata

Parallel composition

The composition of M1 and M2 wrt. A ⊆ (Act1 ∪ Act2) \ { τ } is:

M1 ||A M2 = (S1 × S2,Act1 ∪ Act2, −→ , ⇒ , (s0,1, s0,2))

where −→ and ⇒ are defined as the smallest relations satisfying:

(SYNC)
s1 α−−→1 µ1 and s2 α−−→2 µ2 and α ∈ A

(s1, s2) α−−→µ1·µ2

(ASYNC)
s1 α−−→1 µ1 and α �∈ A
(s1, s2) α−−→µ1 ·∆s2

(DELAY)
s1

λ⇒1 s ′1

(s1, s2)
λ⇒ (s ′1, s2)

and
s1

λ⇒1 s1 and s2
λ′
⇒2 s2

(s1, s2)
λ+λ′

⇒ (s1, s2)
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Markov Automata

Déjà vu?

� if M1 and M2 are LTSs, ||A is TCSP-composition
� if M1 and M2 are PA, ||A is PA-composition
� if M1 and M2 are MCs over Act, ||Act is PCCS-composition
� if M1 and M2 are CTMCs, ||∅ is independent parallelism
� if M1 and M2 are IMCs, ||A is IMC-composition

Thus:
Parallel composition of MA is backward compatible with well-understood
composition operators.
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Markov Automata

Hiding

What is hiding?

Hiding the actions A ⊆ Act \ { τ } in M = (S ,Act, −→ , ⇒ , s0) yields
M \ A = (S ,Act \ A, −→′, ⇒ , s0) where −→′ is defined by:

1. s α−−→µ and α �∈ A implies s α−−→′ µ, and
2. s α−−→µ and α ∈ A implies s τ−→′ µ.

� Hiding transforms α-transitions with α ∈ A into τ -transitions.
� This may enable maximal progress reduction.
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Markov Automata

Hiding and maximal progress
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hiding {α, β } yields

s0
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λ
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τ

Applying maximal progress reduction yields:
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λ

τs3

τ

reduces to
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τs3

τ
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Markov Automata

Bisimulation
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Bisimulation
Equivalence R ⊆ S × S is a bisimulation if for all (s, t) ∈ R :

∀δ ∈ Act ∪R>0: s δ−→µ implies t δ−→ ν with ∀C ∈ S/R : µ(C ) = ν(C ).
Let ∼ be the largest bisimulation relation.

Congruence

∼ is a congruence wrt. parallel composition and hiding.
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Markov Automata

Déjà vu?

� if M is an LTS, ∼ is Milner’s bisimulation
� if M is a PA, ∼ is Segala’s bisimulation
� if M is an MCs, ∼ is lumpability
� if M is a CTMC, ∼ is lumping equivalence
� if M is an IMC, ∼ is Hermanns’ bisimulation

Thus:
∼ on MA is backward compatible with well-understood bisimulations.

Variants like weak bismulation, simulation pre-orders can also be defined.
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Markov Automata

GSPN marking graphs are Markov automata!

A confused GSPN:
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Markov Automata

Adding some weights

A confused GSPN with weights:
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Claim:
This yields a truly simple GSPN semantics.
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Markov Automata

New GSPN semantics

Advantages

� It is truly simple
� It is intuitive
� It is compositional
� It is backward compatible
� Allows compositional reduction
� No restrictions on net level

But:
How to quantitatively analyse these stochastic decision processes?
Steady-state? Transient? Expected time?
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Analysing Markov Automata

Closed Markov automata

Model to be analysed

Typical structure: (
M1 ||A1 M2 ||A2 . . . ||An−1 Mn

) \ A

where A is the union of all visible actions, i.e., A =
⋃n−1

i=1 Acti \ { τ }.
It is closed, as no action is subject to further interaction.

States have either only Markovian or only action transitions.

Every GSPN yields a closed Markov automaton.
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Analysing Markov Automata

Expected time

s0

s2

s1 s3

s4 s5 s6

α β

3

5

2

5

α α

α
β

1

3

1

� Start state s0
� Goal states G = { s3 }
� Expected time from s0 to G?
� eTmax(s0,♦G ) = ∞
� eTmin(s0,♦G ) = 2

5 ·0 + 3
5 ·13

Nondeterminism
Due to nondeterminism, the expected time to reach G is not uniquely
defined. It depends on the choices in states s0 and s2. Approach: consider
expected time under all policies! This yields bounds. Adding weights yields
tighter bounds.
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Analysing Markov Automata

Policies

� A policy describes how all nondeterminism is resolved.
� It maps any finite path onto an enabled transition in its last state.
� A policy may make a choice on the basis of all information in a path:

the visited states, their order, the state delays, and so on.
� We use deterministic positional policies.
� They always take the same decision in a state.
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Analysing Markov Automata

Expected time

For path π let the random variable VG be the first hitting time of G :

VG (π) = min{ t ∈ R�0 | G ∩ π@t �= ∅ }

Expected time

The expected time to reach G from s for policy P is:

eTP(s,♦G ) = Es,P(VG ) =

∫
Paths(s)

VG (π) Pr
s,P

(dπ)

The minimal expected time to reach G from s is:

eTmin(s,♦G ) = inf
P

eTP(s,♦G )
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Analysing Markov Automata

Fixpoint theorem

eTmin(s,♦G ) = inf
P

eTP(s,♦G ) = inf
P

∫
Paths(s)

VG (π) Pr
s,P

(dπ)

Theorem
eTmin(s,♦G ) is the unique fixpoint of the Bellman operator:

[L(v)](s) =




1
E (s)

+
∑
s′∈S

p(s, s ′) · v(s ′) if s ∈ MS − G

min
α∈Act(s)

∑
s′∈S

µα(s ′) · v(s ′) if s ∈ PS − G

0 if s ∈ G

Exceptions

States on Zeno cycles and states that cannot reach G yield value ∞.
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Analysing Markov Automata

Reduction to SSP problem

Example Markov automaton:

s0 s1

s2

s3 s4

α
2

5

3

5

1

13

β
1

2

1

2

2

p(s, σ, s ′) =

{ r(s,s′)
E (s) if σ = ⊥
µ(s ′) if s σ−→µ

0 otherwise

Its induced SSP instance:

s0 s1

s2

s3 s4

α

0

2

5

3

5

⊥, 10

⊥ 1

4

3

4

1

4

β

0

1

2

1

2

⊥, 11

2

c(s, σ) =
{

1
E (s) if s �∈ G , σ = ⊥
0 otherwise
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Analysing Markov Automata

Solving SSP

[L(v)](s) =




1
E (s) +

∑
s′∈S p(s, s ′) · v(s ′) if s ∈ MS − G

minα∈Act(s)
∑

s′∈S µα(s) · v(s ′) if s ∈ PS − G

0 if s ∈ G

LP problem [Bertsekas & Tsitsiklis, 1991]

eTmin(s,♦G ) is the solution of the following LP problem:

max
∑
s∈S

xs

xsi � 1
E (si)

+
∑
s′∈S

p(si ,⊥, s ′) · xs′ if si ∈ MS − G

xsi � min
α∈Act(si )

∑
s′∈S

p(si , α, s ′) · xs′ if si ∈ PS − G

xsi = 0 if si ∈ G
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Analysing Markov Automata

Expected time analysis: synopsis

Minimal and maximal expected time

1. Make all states in G absorbing
2. Transform the Markov automaton to an SSP problem
3. Solve the SSP problem by linear programming

Positional policies suffice

There is a positional policy that yields eTmin(s,♦G ).
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Analysing Markov Automata

Long run average

AG ,t is the fraction of time spent in G ⊆ MS up to time t along path π:

AG ,t(π) =
1
t

∫ t

0
1G (π@u) du and AG (π) = lim

t→∞AG ,t(π)

Long run average

The long-run average time spent in G starting from s under policy P :

LRAP(s,G ) = Es,P(AG ) =

∫
Paths(s)

AG (π) Pr
s,P

(dπ)

The minimal long-run average time spent in G from s is:

LRAmin(s,G ) = inf
P

LRAP(s,G )
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Analysing Markov Automata

Unichain Markov automata

MA M is unichain iff for all positional policies, M is strongly connected.

s0

s2

s1 s3

s4 s5 s6

α β

3

5

2

5

1 5

α
β

1

3

1

� P(s0) = α yields { s0, s1, s4 }
� P(s0) = β

� P(s2) = α yields S \ { s6 }
� P(s2) = β yields { s0, s2, s3, s6 }

⇒ this is a unichain
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Analysing Markov Automata

Reduction to long-run ratio objectives

Recall the Markov decision process, and consider the two cost functions:

cG (s, σ) =
{ 1

E (s) if s ∈ MS ∩ G , σ = ⊥
0 otherwise

c(s, σ) =
{ 1

E (s) if s ∈ MS, σ = ⊥
0 otherwise

Reduction to long-run ratio objective

For unichain MA M, LRAmin(s,G ) equals the minimal long-run ratio
between the accumulated costs over cG and c .

Corollary

For every unichain MA, there is a positional policy that yields LRAmin(G ).
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Analysing Markov Automata

Long-run ratio objectives

Long-run ratio

The long-run ratio between costs k and c along path π is:

R(π) = lim
n→∞

∑n−1
i=0 k(si , σi )∑n−1
i=0 c(si , σi )

where k(si , σi ) is the cost k in state si on selecting σi (and similar for c).

Example
steps n 0 1 2 3 4 5 . . . . . .

costs k 0 2 4 4 10 2 . . . . . .

costs c 0 4 2 2 0 3 . . . . . .

ratio R up to n 1
2 1 5

4
5
2 2 . . . . . .

Reduction to LP problem [De Alfaro, 1997]Joost-Pieter Katoen Revisiting GSPNs 43/63



Analysing Markov Automata

If it is not a unichain

Theorem
Let M1, . . . ,Mk be the maximal end components of MA M with state
space S1, . . . ,Sk . Then:

LRAmin(s,G ) = infP
k∑

i=1

LRAmin
i (G ) · Pr

P
(s |= ♦�Si)

Algorithm

1. Determine the maximal end components {M1, . . . ,Mk} of the MA M.
2. Determine LRAmin(G ) for each Mj .
3. Solve a stochastic shortest path problem.

Corollary
Joost-Pieter Katoen Revisiting GSPNs 44/63



Analysing Markov Automata

Example

s0

s1

s2

s3s4s5

s6 s7 s8

s9

s10

α

β

4 4

α

0.5

0.5

6

3

β

γ20γ

5

5 4
4

α

β

0.5
0.5

0.5

0.5

2

� LRAmin
1 (G) = 2

3

� LRAmin
2 (G) = 9

25

� LRAmin(s0,G) = 9
25

� P(s0) = β and P(s9) = α

� LRAmax
1 (G ) = 4

5

� LRAmax
2 (G ) = 5

9

� LRAmax(s0,G) = 1
2 · 45 + 1

2 · 59 = 61
90

� P(s0) = α, P(s9) = β and P(s4) = γ
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Analysing Markov Automata

Timed reachability

What is timed reachability?

Given a set G of goal states, start state s and time interval I , what is the
minimal (or maximal) probability to reach G at some time point in I?

Remark
LRAmin(G ) is the counterpart of stationary probabilities in CTMCs; timed
reachability for I = [t, t] corresponds to transient probabilities in CTMCs.

Policies [Miller 1969]

Positional policies are insufficient; (total) timed policies are optimal.
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Analysing Markov Automata

Why timed policies are essential
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Analysing Markov Automata

Discretisation: bounding the imprecision

Approximation theorem: [Zhang and Neuhäusser, 2010]

Let I = [ka·τ, kb·τ ] for some ka, kb ∈ N. Then:

ka·(λτ)
2

2
≤ |p∗(s, I )− p̃∗(·)| ≤ kb·(λτ)

2

2
+ λτ

where λ is the maximal rate in simple MA M,

Time complexity

Value p̃∗(·) can be obtained by value iteration for ε > 0 and sup I = b in

O(
n2.376 + (m+n2) · (λb)2

ε

)
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Analysing Markov Automata

Bisimulation

Property preservation

For two bisimilar states s and t:
1. the minimal (and maximal) expected reachability times coincide
2. the long-run average times coincide
3. timed reachability probabilities coincide.

This holds for bisimulation and weak bisimulation.

Time complexity

The quotient under ∼ can be computed in O(m log n).

Deciding ≈ can be done in polynomial time.

Given that ∼ and ≈ are congruences wrt. parallel composition, this allows
for compositional state-space reduction.
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Case Study and Tool Support

Tool support
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Tool support
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Tool support
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Tool support
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Tool support
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Case Study and Tool Support

Workstation cluster [Haverkort et al., SRDS 2000]

RightSubclusterLeftSubcluster

1

2

...

N

LeftSW

Backbone

RightSW

1

2

...

N

event duration event duration
LeftWSFail 500h LeftWSRepair 0.5h
RightWSFail 500h RightWSRepair 0.5h
LeftSWFail 4000h LeftSWRepair 4h
RightSWFail 4000h RightSWRepair 4h
BackboneFail 5000h BackboneRepair 8h
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Case Study and Tool Support

GSPN model

Due to the presence of confusion, this net is only analysable by classical GSPN
analysis techniques when introducing a repair strategy.
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Case Study and Tool Support

Expected time analysis
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Case Study and Tool Support

Long-run analysis

These results cover all possible weight assignments.
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Case Study and Tool Support

Timed reachability analysis

N k |S | quot.
t

results time
states MA weights MA weights

4 3 820 424 20 0.3797 0.3038 304s 4s
4 5 820 164 20 0.4219 0.3717 90s 4s
4 8 820 164 20 0.4278 0.4250 15m 4s
8 3 2772 1412 10 0.9319 0.7457 277s 6s
8 10 2772 316 10 0.9805 0.9178 45s 7s
8 16 2772 316 20 0.6147 0.6089 36m 123s

Property
If QoS is too low, the maximal probability to violate QoS again within t time
units.

System reliability is 18% less than predicted by standard GSPN analysis.

Explanation
The chance to go from a degraded to a degraded mode of operation is high
=⇒ the worst-case repair strategy becomes relevant.Joost-Pieter Katoen Revisiting GSPNs 60/63
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Epilogue

Concluding remarks

GSPNs := Markov Automata

� It is truly simple
� It is intuitive
� It is compositional
� It is backward compatible
� Allows compositional reduction
� No restrictions on net level

Analysis algorithms

� Expected time = SSP problem
� Long-run average

1. Graph analysis
2. Long-run ratio problem
3. SSP problem

� Timed reachability
� Discretisation

Confused GSPNs pose no problems. Neither semantically nor analysability.

Future work: efficiency gains, symbolic, abstraction, confluence reduction,
applications (railway systems, aerospace systems, cloud computing) . . .
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Epilogue

Thanks

Co-workers

Rob Bamberg (Twente), Dennis Guck (Aachen), Tingting Han (Oxford),

Holger Hermanns (Saarbrücken), Martin Neuhäusser (Siemens),

Mark Timmer (Twente) and Lijun Zhang (DTU Lyngby)

Literature
LICS’10, ICALP’11, NFM’12, CONCUR’12, ACSD’12, TACAS’13?

Tool download at:

http://wwwhome.cs.utwente.nl/~timmer/scoop/
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