Revisiting Generalised Stochastic Petri Nets New Semantics and Analysis Algorithms

Joost-Pieter Katoen

RWTH Aachen University, Germany University of Twente, The Netherlands

IFIP WG 2.2 Meeting, Amsterdam, The Netherlands

This talk in a nutshell

Generalised stochastic Petri nets (GSPNs)

[Ajmone Marsan et al, 1984]

- Places
- Timed transitions (rates)
- Immediate transitions
- Input, output, inhibitor arcs
- Tokens •

Semantics: play token game

Resolving the conflict?

- So far: use weightsweights
- Drawbacks: Which weights? Strange effects! Trustworthy analysis?
- New: Don't care. Keep it as is. (without abandoning weights)

Joost-Pieter Katoen

Revisiting GSPNs

Outline of the talk

Generalised Stochastic Petri Nets

What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata

Expected Reachability Times Long Run Average Timed Reachability

Case Study and Tool Support

Epilogue

Overview

Generalised Stochastic Petri Nets What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata Expected Reachability Times Long Run Average Timed Reachability

Case Study and Tool Support

Epilogue

Historical perspective

- 1973 Timed Petri Nets
- 1980 Stochastic Petri Nets
- 1984 Generalized Stochastic Petri Nets
- 1991 GSPN Reward Nets
- 1994 Non-Markovian Stochastic Petri Nets
- 1995 Modeling with Generalized Stochastic Petri Nets

A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems

MARCO AJMONE MARSAN and GIANNI CONTE Politecnico di Torino, Turin, Italy and GIANFRANCO BALBO Universita' di Torino, Turin, Italy [Noe & Nutt]

[Molloy, Natkin, Symons]

[Ajmone Marsan, Conte & Balbo]

[Ciardo, Muppala & Trivedi]

[Bobbio, German et al.]

[Ajmone Marsan et al.]

Generalised stochastic Petri nets

- Places
- Timed transitions
- Immediate transitions
- Weights
- Input, output, inhibitor arcs
- Tokens •

Maximal progress: immediate transitions have priority over timed ones.

Removal of reachable vanishing markings in marking graph yields a continuous-time Markov chain.

Applicability

Quantitative measures

- 1. the reachability probability of a given marking
- 2. the probability to be in a marking after t time units
- 3. the probability to be in a marking on the long run
- 4. the probability to satisfy a temporal logic formula CSL m

CSL model checking

transient

stationary

All these quantities can be computed efficiently and are tool-supported.

GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets

Generalised Stochastic Petri Nets

A caveat

The presence of confused subnets of immediate transitions within a GSPN is an undesirable property of the model.

Ajmone Marsan et al. (1995)

Confusion

What is confusion?

Confusion arises if there is a reachable marking in which multiple non-conflicting immediate transitions are simultaneously enabled.

A simple confused GSPN

In marking $p_1 + p_6$ one cannot conclude whether a conflict had to be resolved. This situation is called confusion.

Why is confusion problematic?

No stochastic process

The reachability graph of a confused net is not a continuous-time Markov chain but a stochastic decision process. Standard CTMC analysis is not possible.

It is meaningless to consider

- 1. the reachability probability of a given marking
- 2. the probability to be in a marking after t time units
- 3. the probability to be in a marking on the long run

These quantities are all subject to the resolution of nondeterminism.

Classical GSPN approach: resolve nondeterminism by using weights.

Weighted immediate transitions

A simple weighted GSPN

- Transition t_i has weight $k_i \in \mathbb{N}_{>0}$
- t_2 fires first with probability $\frac{k_2}{k_0+k_2}$
- t_0 fires first with probability $\frac{k_0}{k_0+k_2}$
- Concurrency is thus resolved probabilistically

$$\Pr\{\Diamond(p_1+p_6)\} = \underbrace{\frac{k_2}{k_0+k_2}}_{t_2 \text{ before } t_0} + \underbrace{\frac{k_0}{k_0+k_2} \cdot \frac{k_2}{k_1+k_2}}_{t_0 \text{ before } t_2}$$
and t_2 before t_1

Note the influence of k_0 on this quantity.

Drawbacks of weights

How to get adequate weights?

For conflicting transitions this is mostly simple, but not for confused ones.

But: weight values are fundamental for the quantitative evaluation.

Biased analysis

Quantitative results are subject to a specific weight assignment. This bias is often neglected. (see later case study)

Unexpected effects

Splitting or deleting an immediate transition "has drastic effects on the values of the results obtained from the quantitative evaluation".

Weights are not so innocent

Assume all rates and weights equal one. Then $LRA(...+p_5) = \frac{4}{11}$. Deleting p_2 and immediate transition t_2 yields $LRA(...+p_5) = \frac{4}{10}$.

Workarounds

Some approaches

1.	Net-level reasoning	[Chiola et al., 1993]
	 signals which immediate transitions may bec simple and efficient, but incomplete translational semantics rely on this: no confu 	ome in conflict sion-free proof
2.	State-space reasoning	[Ciardo et al., 1996]
	 exact but computationally involved 	
3.	Net-level restrictions	[Teruel et al., 2003]
	 ensure different priorities for conflicting trans but can provide false ("spurious") alarms 	itions
	"Well-specified" checks exist for SANs	[Deavours & Sanders, 1999]

Our approach: no checks. No restrictions. All nets are well-defined.

Overview

Generalised Stochastic Petri Nets What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata Expected Reachability Times Long Run Average Timed Reachability

Case Study and Tool Support

Epilogue

Recent developments

2010 Markov Automata

- 2011 Semantics of Markov Automata
- 2012 Quantitative Analysis of Simple MA
- 2012 Weak Bisimulation Minimisation of MA
- 2012 Quantitative Analysis of MA
- 2012 Efficient Generation of MA

```
[Eisentraut et al.]
[Deng & Hennessy]
[Katoen et al.]
[Turrini & Hermanns]
[Guck & Katoen]
[Timmer et al.]
```

today New GSPN Semantics, Analysis Algorithms, and Tool

```
NetOne(P0 : Nat, P1 : Nat, P2 : Nat, P3 : Nat) =
                                                                             ((P0 = 0) \& (P1 = 0) \& (P2 = 0) \& (P3 = 1) => reached
                                                                           + (P0 >= 1 => (1.0) . NetOne(P0 := P0 - 1, P1 := P1 +
                                                                           + (P0 >= 1 => (1.0) . NetOne(P0 := P0 - 1, P2 := P2 +
                                                                           + (P0 >= 1 => (1.0) . NetOne[P0 := P0 - 1, P2 := P2 +
                                                                           + (P3 >= 1 => (1.0) . NetOne[P1 := P1 + 2, P3 := P3 -
              2010 25th Annual IEEE Symposium on Logic in Computer Science
                                                                           + ((P1 \ge 1) | (P1 \ge 1) | (P2 \ge 1) | ((P2 \ge 1) \& (1))
             On Probabilistic Automata in Continuous Time
                                                                      Initial state: NetOne(1, 0, 0, 0)
                                                                       Number of states: 10
Christian Eisentraut
                           Holger Hermanns
                                                          Lijun Zhang
                                                                      Number of transitions: 12
Saarland University -
                   Saarland University - Computer Science,
                                                         DTU Informatics
```

Joost-Pieter Katoen

Revisiting GSPNs

A Markov automaton *M* is a tuple $(S, Act, \rightarrow, \Longrightarrow, s_0)$ where

- ▶ *S* is a nonempty set of states with initial state $s_0 \in S$
- Act is a finite set of actions; τ is an internal action
- $\rightarrow \subseteq S \times Act \times Dist(S)$ is a set of action transitions, and
- $\blacktriangleright \implies \subseteq S \times \mathbb{R}_{>0} \times S \text{ is a set of Markovian transitions}$

such that there is at most one $r \in \mathbb{R}_{>0}$ such that $s \xrightarrow{r} s'$

Markov Automata

Déjà vu?

- $\Rightarrow = \emptyset$ yields probabilistic automata.
- ▶ \implies = \emptyset and \rightarrow is deterministic yields Markov decision processes.
- ▶ \implies = \emptyset , \rightarrow is deterministic, and |Act| = 1 yields Markov chains.
- ▶ \implies = \emptyset and \rightarrow is Dirac yields labeled transition systems.
- \blacktriangleright \rightarrow is Dirac yields interactive Markov chains.
- $\rightarrow = \emptyset$ yields continuous-time Markov chains.

Semantics

- s is Markovian if $s \Longrightarrow$ and $s \longrightarrow$
- s is probabilistic if $s \Rightarrow$ and $s \rightarrow$
- s is hybrid if $s \Longrightarrow$ and $s \rightarrow$
- s is timelock if $s \rightarrow$ and $s \rightarrow$

For Markovian s, let:

- r(s, s') be the rate to move from s to s',
- $E(s) = \sum_{s' \in S} \mathbf{r}(s, s')$ be the exit rate of s
- $\mathbf{p}(s,s') = \frac{\mathbf{r}(s,s')}{E(s)}$ is the probability to move from s to s'

Maximal progress assumption

Justification

- 1. Internal (action) transitions are labeled with the action τ .
- 2. These transitions will not be subject to interaction.
- 3. They cannot be delayed by other components.
- 4. Thus, internal interactive transitions can trigger immediately.
- 5. But, almost surely no Markovian transition occurs immediately.

Maximal progress assumption

Internal action transitions take precedence over Markovian ones.

Markov Automata

Maximal progress assumption

But as visible actions may be subject to delaying by other components:

Parallel composition

The composition of M_1 and M_2 wrt. $A \subseteq (Act_1 \cup Act_2) \setminus \{\tau\}$ is:

$$M_1 \mid \mid_A M_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, \Longrightarrow, (s_{0,1}, s_{0,2}))$$

where \rightarrow and \Longrightarrow are defined as the smallest relations satisfying:

$$(\mathsf{SYNC}) \xrightarrow{\mathbf{s}_1 \xrightarrow{\alpha} 1 \mu_1 \text{ and } \mathbf{s}_2 \xrightarrow{\alpha} 2 \mu_2 \text{ and } \alpha \in A} (\mathbf{s}_1, \mathbf{s}_2) \xrightarrow{\alpha} \mu_1 \cdot \mu_2}$$

$$(\mathsf{ASYNC}) \xrightarrow{\mathbf{s}_1 \stackrel{\alpha}{\longrightarrow} _1 \mu_1 \text{ and } \alpha \notin A} (\mathbf{s}_1, \mathbf{s}_2) \stackrel{\alpha}{\longrightarrow} \mu_1 \cdot \Delta_{\mathbf{s}_2}$$

$$(\mathsf{DELAY}) \xrightarrow{s_1 \stackrel{\lambda}{\Longrightarrow}_1 s'_1}_{(s_1, s_2) \stackrel{\lambda}{\Longrightarrow} (s'_1, s_2)} \quad \text{and} \quad \xrightarrow{s_1 \stackrel{\lambda}{\Longrightarrow}_1 s_1 \text{ and } s_2 \stackrel{\lambda'}{\Longrightarrow}_2 s_2}_{(s_1, s_2) \stackrel{\lambda+\lambda'}{\longrightarrow} (s_1, s_2)}$$

Déjà vu?

- if M_1 and M_2 are LTSs, $||_A$ is TCSP-composition
- if M_1 and M_2 are PA, $||_A$ is PA-composition
- if M_1 and M_2 are MCs over Act, $||_{Act}$ is PCCS-composition
- if M_1 and M_2 are CTMCs, $||_{\emptyset}$ is independent parallelism
- if M_1 and M_2 are IMCs, $||_A$ is IMC-composition

Thus:

Parallel composition of MA is backward compatible with well-understood composition operators.

Hiding

What is hiding?

Hiding the actions $A \subseteq Act \setminus \{\tau\}$ in $M = (S, Act, \rightarrow, \Rightarrow, s_0)$ yields $M \setminus A = (S, Act \setminus A, \rightarrow', \Rightarrow, s_0)$ where \rightarrow' is defined by: 1. $s \xrightarrow{\alpha} \mu$ and $\alpha \notin A$ implies $s \xrightarrow{\alpha}' \mu$, and 2. $s \xrightarrow{\alpha} \mu$ and $\alpha \in A$ implies $s \xrightarrow{\tau}' \mu$.

- Hiding transforms α -transitions with $\alpha \in A$ into τ -transitions.
- This may enable maximal progress reduction.

Markov Automata

Hiding and maximal progress

Applying maximal progress reduction yields:

Markov Automata

Bisimulation

Bisimulation

Equivalence $R \subseteq S \times S$ is a *bisimulation* if for all $(s, t) \in R$: $\forall \delta \in Act \cup \mathbb{R}_{>0}$: $s \xrightarrow{\delta} \mu$ implies $t \xrightarrow{\delta} \nu$ with $\forall C \in S/R : \mu(C) = \nu(C)$. Let \sim be the largest bisimulation relation.

Congruence

 \sim is a congruence wrt. parallel composition and hiding.

Déjà vu?

- if *M* is an LTS, \sim is Milner's bisimulation
- if M is a PA, \sim is Segala's bisimulation
- if *M* is an MCs, \sim is lumpability
- if *M* is a CTMC, \sim is lumping equivalence
- if *M* is an IMC, \sim is Hermanns' bisimulation

Thus:

 \sim on MA is backward compatible with well-understood bisimulations.

Variants like weak bismulation, simulation pre-orders can also be defined.

Markov Automata

GSPN marking graphs are Markov automata!

Adding some weights

Claim:

This yields a truly simple GSPN semantics.

De alument a sur a stillite

Joost-Pieter Katoen

Revisiting GSPNs

New GSPN semantics

Advantages

- It is truly simple
- It is intuitive
- It is compositional
- It is backward compatible
- Allows compositional reduction
- No restrictions on net level

But:

How to quantitatively analyse these stochastic decision processes? Steady-state? Transient? Expected time?

Overview

Generalised Stochastic Petri Nets What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata

Expected Reachability Times Long Run Average Timed Reachability

Case Study and Tool Support

Epilogue

Closed Markov automata

Model to be analysed

Typical structure:

$$\left(M_1 \mid\mid_{A_1} M_2 \mid\mid_{A_2} \ldots \mid\mid_{A_{n-1}} M_n\right) \setminus A$$

where A is the union of all visible actions, i.e., $A = \bigcup_{i=1}^{n-1} Act_i \setminus \{\tau\}$. It is closed, as no action is subject to further interaction. States have either only Markovian or only action transitions.

Every GSPN yields a closed Markov automaton.

Analysing Markov Automata

Expected time

- Start state s₀
- Goal states $G = \{ s_3 \}$
- Expected time from s_0 to G?
- $eT^{\max}(s_0, \Diamond G) = \infty$

•
$$eT^{\min}(s_0, \Diamond \mathbf{G}) = \frac{2}{5} \cdot \mathbf{0} + \frac{3}{5} \cdot \frac{1}{3}$$

Nondeterminism

Due to nondeterminism, the expected time to reach G is not uniquely defined. It depends on the choices in states s_0 and s_2 . Approach: consider expected time under all policies! This yields bounds. Adding weights yields tighter bounds.

- ► A policy describes how all nondeterminism is resolved.
- It maps any finite path onto an enabled transition in its last state.
- A policy may make a choice on the basis of all information in a path: the visited states, their order, the state delays, and so on.
- We use deterministic positional policies.
- They always take the same decision in a state.

Expected time

For path π let the random variable V_G be the first hitting time of G:

$$V_{G}(\pi) = \min\{ t \in \mathbb{R}_{\geq 0} \mid G \cap \pi @t \neq \emptyset \}$$

Expected time

The expected time to reach G from s for policy P is:

$$eT_P(s, \Diamond G) = \mathbb{E}_{s,P}(V_G) = \int_{Paths(s)} V_G(\pi) \Pr_{s,P}(d\pi)$$

The minimal expected time to reach G from s is:

$$eT^{\min}(s,\Diamond G) = \inf_{P} eT_{P}(s,\Diamond G)$$

Fixpoint theorem

$$eT^{\min}(s, \Diamond G) = \inf_{P} eT_{P}(s, \Diamond G) = \inf_{P} \int_{Paths(s)} V_{G}(\pi) \Pr_{s,P}(d\pi)$$

Theorem

 $eT^{\min}(s, \Diamond G)$ is the unique fixpoint of the Bellman operator:

$$[L(v)](s) = \begin{cases} \frac{1}{E(s)} + \sum_{s' \in S} \mathbf{p}(s, s') \cdot v(s') & \text{if } s \in MS - G\\ \min_{\alpha \in Act(s)} \sum_{s' \in S} \mu_{\alpha}(s') \cdot v(s') & \text{if } s \in PS - G\\ 0 & \text{if } s \in G \end{cases}$$

Exceptions

States on Zeno cycles and states that cannot reach G yield value ∞ .

Joost-Pieter Katoen

Reduction to SSP problem

Solving SSP

$$[L(v)](s) = \begin{cases} \frac{1}{E(s)} + \sum_{s' \in S} \mathbf{p}(s, s') \cdot v(s') & \text{if } s \in MS - G\\ \min_{\alpha \in Act(s)} \sum_{s' \in S} \mu_{\alpha}(s) \cdot v(s') & \text{if } s \in PS - G\\ 0 & \text{if } s \in G \end{cases}$$

LP problem

[Bertsekas & Tsitsiklis, 1991]

 $eT^{\min}(s, \Diamond G)$ is the solution of the following LP problem:

$$\max \sum_{s \in S} x_s$$

$$x_{s_i} \leq \frac{1}{E(s_i)} + \sum_{s' \in S} \mathbf{p}(s_i, \bot, s') \cdot x_{s'} \quad \text{if } s_i \in MS - G$$

$$x_{s_i} \leq \min_{\alpha \in Act(s_i)} \sum_{s' \in S} \mathbf{p}(s_i, \alpha, s') \cdot x_{s'} \quad \text{if } s_i \in PS - G$$

$$x_{s_i} = 0 \qquad \text{if } s_i \in G$$

Expected time analysis: synopsis

Minimal and maximal expected time

- 1. Make all states in G absorbing
- 2. Transform the Markov automaton to an SSP problem
- 3. Solve the SSP problem by linear programming

Positional policies suffice

There is a positional policy that yields $eT^{\min}(s, \Diamond G)$.

Long run average

 $A_{G,t}$ is the fraction of time spent in $G \subseteq MS$ up to time t along path π :

$$A_{G,t}(\pi) = \frac{1}{t} \int_0^t \mathbf{1}_G(\pi \mathbb{Q} u) \, du \quad \text{and} \quad A_G(\pi) = \lim_{t \to \infty} A_{G,t}(\pi)$$

Long run average

The long-run average time spent in G starting from s under policy P:

$$LRA_P(s, G) = \mathbb{E}_{s,P}(A_G) = \int_{Paths(s)} A_G(\pi) \Pr_{s,P}(d\pi)$$

The minimal long-run average time spent in G from s is:

$$LRA^{\min}(s, G) = \inf_{P} LRA_{P}(s, G)$$

Joost-Pieter Katoen

Unichain Markov automata

MA M is unichain iff for all positional policies, M is strongly connected.

•
$$P(s_0) = \alpha$$
 yields $\{s_0, s_1, s_4\}$

$$\blacktriangleright P(s_0) = \beta$$

P(s₂) = α yields S \ { s₆ }
 P(s₂) = β yields { s₀, s₂, s₃, s₆ }

⇒ this is a unichain

Reduction to long-run ratio objectives

Recall the Markov decision process, and consider the two cost functions:

$$c_G(s,\sigma) = \begin{cases} \frac{1}{E(s)} & \text{if } s \in MS \cap G, \sigma = \bot \\ 0 & \text{otherwise} \end{cases} c(s,\sigma) = \begin{cases} \frac{1}{E(s)} & \text{if } s \in MS, \sigma = \bot \\ 0 & \text{otherwise} \end{cases}$$

Reduction to long-run ratio objective

For unichain MA *M*, $LRA^{\min}(s, G)$ equals the minimal long-run ratio between the accumulated costs over c_G and c.

Corollary

For every unichain MA, there is a positional policy that yields $LRA^{\min}(G)$.

Long-run ratio objectives

Long-run ratio

The long-run ratio between costs k and c along path π is:

$$R(\pi) = \lim_{n \to \infty} \frac{\sum_{i=0}^{n-1} k(s_i, \sigma_i)}{\sum_{i=0}^{n-1} c(s_i, \sigma_i)}$$

where $k(s_i, \sigma_i)$ is the cost k in state s_i on selecting σ_i (and similar for c).

Example							
steps <i>n</i>	0	1	2	3	4	5	
costs <mark>k</mark>	0	2	4	4	10	2	
costs <mark>c</mark>	0	4	2	2	0	3	
ratio <i>R</i> up to <i>n</i>		$\frac{1}{2}$	1	<u>5</u> 4	<u>5</u> 2	2	

If it is not a unichain

Theorem

Let M_1, \ldots, M_k be the maximal end components of MA M with state space S_1, \ldots, S_k . Then:

$$\mathsf{LRA}^{\min}(s, \mathbf{G}) = \mathit{inf}_{P} \sum_{i=1}^{k} \mathit{LRA}_{i}^{\min}(\mathbf{G}) \cdot \Pr_{P}(s \models \Diamond \Box S_{i})$$

Algorithm

Joost-Pieter Katoen

- 1. Determine the maximal end components $\{M_1, \ldots, M_k\}$ of the MA M.
- 2. Determine $LRA^{\min}(G)$ for each M_i .
- 3. Solve a stochastic shortest path problem.

Example

- $\blacktriangleright LRA_1^{\min}(G) = \frac{2}{3}$
- $\blacktriangleright LRA_2^{\min}(G) = \frac{9}{25}$
- $\blacktriangleright LRA^{\min}(s_0, G) = \frac{9}{25}$
- $P(s_0) = \beta$ and $P(s_9) = \alpha$

- $\blacktriangleright LRA_1^{\max}(G) = \frac{4}{5}$
- $\blacktriangleright LRA_2^{\max}(G) = \frac{5}{9}$
- $LRA^{\max}(s_0, G) = \frac{1}{2} \cdot \frac{4}{5} + \frac{1}{2} \cdot \frac{5}{9} = \frac{61}{90}$
- $P(s_0) = \alpha$, $P(s_9) = \beta$ and $P(s_4) = \gamma$

Timed reachability

What is timed reachability?

Given a set G of goal states, start state s and time interval I, what is the minimal (or maximal) probability to reach G at some time point in I?

Remark

 $LRA^{\min}(G)$ is the counterpart of stationary probabilities in CTMCs; timed reachability for I = [t, t] corresponds to transient probabilities in CTMCs.

Policies

[Miller 1969]

Positional policies are insufficient; (total) timed policies are optimal.

Why timed policies are essential

Discretisation: bounding the imprecision

Approximation theorem:

[Zhang and Neuhäusser, 2010]

Let $I = [k_a \cdot \tau, k_b \cdot \tau]$ for some $k_a, k_b \in \mathbb{N}$. Then:

$$k_{a} \cdot rac{(\lambda au)^2}{2} ~\leq~ |p^*(s, l) - ilde{p}^*(\cdot)| ~\leq~ k_{b} \cdot rac{(\lambda au)^2}{2} + \lambda au$$

where λ is the maximal rate in simple MA *M*,

Time complexity

Value $\tilde{p}^*(\cdot)$ can be obtained by value iteration for $\varepsilon > 0$ and sup l = b in

$$\mathcal{O}(n^{2.376} + (m+n^2) \cdot \frac{(\lambda b)^2}{\varepsilon})$$

Bisimulation

Property preservation

For two bisimilar states s and t:

- 1. the minimal (and maximal) expected reachability times coincide
- 2. the long-run average times coincide
- 3. timed reachability probabilities coincide.

This holds for bisimulation and weak bisimulation.

Time complexity

The quotient under \sim can be computed in $\mathcal{O}(m \log n)$.

Deciding \approx can be done in polynomial time.

Given that \sim and \approx are congruences wrt. parallel composition, this allows for compositional state-space reduction.

Overview

Generalised Stochastic Petri Nets What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata Expected Reachability Times Long Run Average Timed Reachability

Case Study and Tool Support

Epilogue

Tool support

http://wwwhome.cs.utwente.nl/~timmer/scoop/

Joost-Pieter Katoen

Revisiting GSPNs

Tool support

http://wwwhome.cs.utwente.nl/~timmer/scoop/

Revisiting GSPNs

Tool support

http://wwwhome.cs.utwente.nl/~timmer/scoop/

Tool support

http://wwwhome.cs.utwente.nl/~timmer/scoop/

Revisiting GSPNs

Tool support

http://wwwhome.cs.utwente.nl/~timmer/scoop/

Workstation cluster

[Haverkort et al., SRDS 2000]

GSPN model

Due to the presence of confusion, this net is only analysable by classical GSPN analysis techniques when introducing a repair strategy.

Joost-Pieter Katoen

Revisiting GSPNs

Expected time analysis

						time (seconds)	
N	k	S	G	$eT^{\max}(s_0, \diamondsuit G)$	$eT^{\min}(s_0,\diamondsuit G)$	max	min
4	3	819	566	1125179.46	1122465.40	0.014	0.023
4	4	819	692	51704.89	51699.58	0.002	0.002
4	6	819	807	1427.22	1427.22	0.007	0.011
4	8	819	818	59.88	59.88	0.002	0.002
8	6	2771	2009	1724343.30	1719447.05	0.119	0.267
8	8	2771	2482	25610.45	25604.95	0.039	0.044
8	12	2771	2736	1428.57	1428.57	0.017	0.016
8	16	2771	2770	30.58	30.58	0.008	0.007
16	12	10131	7544	1966511.37	1963868.17	1.243	3.505
16	16	10131	9374	12751.19	12745.39	0.241	0.311
16	24	10131	10014	1428.57	1428.57	0.071	0.076
16	32	10131	10130	15.46	15.46	0.053	0.052
32	24	38675	29210	1982468.90	1978880.69	20.716	114.111
32	32	38675	36406	6642.52	6636.17	2.141	3.256
32	48	38675	38250	1428.57	1428.57	0.791	0.909
32	64	38675	38674	7.77	7.77	0.643	0.671

Long-run analysis

						time (seconds)	
N	\boldsymbol{k}	S	G	$LRA^{max}(s_0, G)$	$LRA^{min}(s_0, G)$	max	\min
4	3	819	253	0.999996	0.999996	0.323	0.284
4	4	819	127	0.999924	0.999923	0.239	0.299
4	6	819	12	0.996401	0.996401	0.321	0.319
4	8	819	1	0.988413	0.988413	0.321	0.269
8	6	2771	762	0.999998	0.999998	3.838	3.264
8	8	2771	289	0.999838	0.999836	2.607	3.418
8	12	2771	35	0.996399	0.996398	3.948	3.539
8	16	2771	1	0.980421	0.980421	3.360	3.227
16	12	10131	2587	0.999998	0.999998	86.148	49.547
16	16	10131	757	0.999655	0.999652	50.691	302.064
16	24	10131	117	0.996393	0.996392	47.571	260.782
16	32	10131	1	0.964439	0.964439	45.891	337.817
32	24	38675	9465	0.999998	0.999998	1913.229	24342.275
32	32	38675	2269	0.999306	0.999271	1345.557	7267.627
32	48	38675	425	0.996382	0.996378	1440.494	4964.068
32	64	38675	1	0.932476	0.932476	1104.782	13232.694

These results cover all possible weight assignments.

Joost-Pieter Katoen

Revisiting GSPNs

Timed reachability analysis

N	v k s quot.		+	results		time		
//	ĸ	5	states	L	MA	weights	MA	weights
4	3	820	424	20	0.3797	0.3038	304 <i>s</i>	4 <i>s</i>
4	5	820	164	20	0.4219	0.3717	90 <i>s</i>	4 <i>s</i>
4	8	820	164	20	0.4278	0.4250	15 <i>m</i>	4 <i>s</i>
8	3	2772	1412	10	0.9319	0.7457	277 <i>s</i>	6 <i>s</i>
8	10	2772	316	10	0.9805	0.9178	45 <i>s</i>	7 <i>s</i>
8	16	2772	316	20	0.6147	0.6089	36 <i>m</i>	123 <i>s</i>

Property

If QoS is too low, the maximal probability to violate QoS again within t time units.

System reliability is 18% less than predicted by standard GSPN analysis.

Explanation

The chance to go from a degraded to a degraded mode of operation is high

Joost-Pieter Katoen

Revisiting GSPNs

Overview

Generalised Stochastic Petri Nets What are GSPNs? Confusion

Markov Automata

What are Markov Automata? Bisimulation GSPNs are Markov Automata!

Analysing Markov Automata Expected Reachability Time Long Run Average

Limed Reachability

Case Study and Tool Support

Epilogue

Concluding remarks

GSPNs := Markov Automata	Analysis algorithms			
It is truly simpleIt is intuitive	 Expected time = SSP problem Long-run average 			
It is compositionalIt is backward compatible	 Graph analysis Long-run ratio problem SSP problem 			
 Allows compositional reduction No restrictions on net level 	 Timed reachability Discretisation 			

Confused GSPNs pose no problems. Neither semantically nor analysability.

Future work: efficiency gains, symbolic, abstraction, confluence reduction, applications (railway systems, aerospace systems, cloud computing) ...

Thanks

Co-workers

Rob Bamberg (Twente), Dennis Guck (Aachen), Tingting Han (Oxford), Holger Hermanns (Saarbrücken), Martin Neuhäusser (Siemens), Mark Timmer (Twente) and Lijun Zhang (DTU Lyngby)

Literature

LICS'10, ICALP'11, NFM'12, CONCUR'12, ACSD'12, TACAS'13?

Tool download at:

http://wwwhome.cs.utwente.nl/~timmer/scoop/