
Workshop Transactions Co-operating Transactions TransCCS

Communicating Transactions
a survey

Matthew Hennessy

joint work with Edsko de Vries, Vasileois Koutavas

WG 2.2, Amsterdam, September 2012

1/25

Workshop Transactions Co-operating Transactions TransCCS

Outline

A workshop

Transactions

Co-operating Transactions

TransCCS

2/25

Workshop Transactions Co-operating Transactions TransCCS

Workshop announcement

1st Workshop on Optimistic Cooperation in Concurrent
Programming
(OCCP 2013)

I Location: Rome, Italy (co-located with ETAPS 2013)

I Date: Saturday March 16th, 2013

I Submissions: 14th Dec (abstracts) 21st Dec (Papers)

Details: http://www.cs.tcd.ie/Vasileios.Koutavas/occp-workshop

3/25

Workshop Transactions Co-operating Transactions TransCCS

Database Transactions

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I Guarantees:
I Atomicity: Each transaction either runs in its entirety

(commits) or not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent

Multiple transactions run

I concurrently

I optimistically: hoping no interference will occur

4/25

http://www.cs.tcd.ie/Vasileios.Koutavas/occp-workshop

Workshop Transactions Co-operating Transactions TransCCS

STM: Software Transactional Memory

I Database technology applied to software

I concurrency control: atomic memory transactions

I lock-free programming in multithreaded programmes

I threads run optimistically

I conflicts are automatically rolled back by system

Implementations:

I Haskell, OCaml

I C,C++,Csharp

I Java, Scala

I Intel Haswell architecture

I . . .

5/25

Workshop Transactions Co-operating Transactions TransCCS

STM: An example

atomic JPK || atomic JQK

I P: y ::= x ; y ::= y + 1; x ::= y ; y ::= 0

I Q: y ::= x ; y ::= y + 2; x ::= y ; y ::= 0

Result: x increased by

I 3

I not 0

Issues:

I Language Design

I Implementation strategies

I Semantics what should happen when programs are run

6/25

Workshop Transactions Co-operating Transactions TransCCS

Standard Transactions

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I Guarantees:
I Atomicity: Each transaction either runs in its entirety

(commits) or not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent

I Isolation:
I good: provides coherent semantics
I bad: limits concurrency
I bad: limits co-operation between transactions and their

environments

7/25

Workshop Transactions Co-operating Transactions TransCCS

Communicating/Co-operating Transactions

I We drop isolation to increase concurrency
I There is no limit on the communication between a transaction

and its environment

I These new transactional systems guarantee:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: When faults are detected the transaction is

automatically rolled-back, together with all effects of the
transaction on its environment

I Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

8/25

Workshop Transactions Co-operating Transactions TransCCS

An example

Forwd

Even

Odd

b

b

in

out

out

Forwd⇐ in?(x) .b!〈x〉 .Forwd

Even⇐ atomicJb?(x) .if even(x) then out!〈f (x)〉 .(commit | Even)
else abrt&retryK

Odd⇐ atomicJb?(x) .ifOdd(x) then out!〈g(x)〉 .(commit | Odd)
else abrt&retryK

9/25

Workshop Transactions Co-operating Transactions TransCCS

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Problem:

I Pi process/transaction subject to failure

I Some three Pi should decide to collaborate

Result:

I Each Pj in the coalition outputs id of its partners on channel
outj

10/25

Workshop Transactions Co-operating Transactions TransCCS

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Algorithm for Pn:

I Broadcast id n randomly to two arbitrary partners
b!〈n〉 | b!〈n〉

I Receive ids from two random partners b?(y) .b?(z)

I Propose coalition with these partners sy !〈n, z〉 .sz !〈n, y〉
I Confirm that partners are in agreement:

I if YES, commit and report
I if NO, abort&retry

11/25

Workshop Transactions Co-operating Transactions TransCCS

Example: three-way rendezvous

P1 ||P2 ||P3 ||P4

Pn ⇐ b!〈n〉 | b!〈n〉 |
atomicJb?(y) .b?(z) .

sy !〈n, z〉 .sz !〈n, y〉 . proposing

sn?(y1, z1) .sn?(y2, z2) . confirming

if {y , z} = {y1, z1} = {y2, z2}
then commit | outn!〈y , z〉
else abrt&retry K

12/25

Workshop Transactions Co-operating Transactions TransCCS

Communicating Transactions: Issues

I Language Design
I Transaction Synchronisers (Luchangco et al 2005)

I Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)

I Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)

I . . .

I Implementation strategies

I See above

I Semantics what should happen when programs are run

I TransCCS (Concur 2010, Aplas 2010)

13/25

Workshop Transactions Co-operating Transactions TransCCS

Communication Memory Transactions Lesani Palsberg

I Builds on optimistic semantics of memory transactions O’Herlihy et

al 2010

I Adds asynchronous channel-based message passing as in Actors CML

etc

I Formal reduction semantics

I Formal properties of semantics proved

I Implementation as a Scala library

I Performance evaluation using benchmarks

14/25

Workshop Transactions Co-operating Transactions TransCCS

TransCCS

An extension of CCS with communicating transactions.

1. Simple language: 2 additional language constructs and 3
additional reduction rules.

2. Intricate concurrent and transactional behaviour:
I encodes nested, restarting, and non-restarting transactions
I does not limit communication between transactions

3. Simple behavioural theory: based on properties of systems:
I Safety property: nothing bad happens
I Liveness property: something good happens

15/25

Workshop Transactions Co-operating Transactions TransCCS

TransCCS

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

Transaction JP .k QK

I execute P to completion (co k)

I subject to random aborts

I if aborted, roll back all effects of P and initiate Q

I roll back includes . . . environmental impact of P

16/25

Workshop Transactions Co-operating Transactions TransCCS

Rollbacks and Commits

Co-operating actions: a← needs co-operation of→ a

Ta | Tb | Tc | Pd | Pe

where
Ta =

q
d .b.(co k1 | a) .k1 0

y

Tb = Jc .(co k2 | b) .k2 0K
Tc = Je.c .co k3 .k3 0K
Pd = d .Rd

Pe = e.Re

I if Tc aborts, what roll-backs are necessary?

I When can action a be considered permanent?

I When can code Pd be considered permanent?

17/25

Workshop Transactions Co-operating Transactions TransCCS

Reduction semantics main rules

R-Comm
ai = bj∑

i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

Communication

R-Co

JP | co k .k QK → P
Commit

R-Ab

JP .k QK → Q
Random abort

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK
Embed

18/25

Workshop Transactions Co-operating Transactions TransCCS

Example: restarting transactions

a.c .ω + e.; | µX . Ja.c.co k + e .k X K

P1

P2

P2

P3

ω - happy

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Infinitely aborting loop

Will never be sad: ;

19/25

Workshop Transactions Co-operating Transactions TransCCS

Safety properties

Safety: “Nothing bad will happen” [Lamport’77]

I A safety property can be formulated as a safety test T ; which
signals on channel ; when it detects the bad behaviour

I P passes the safety test T ; when P | T ; can not output on ;
I This is the negation of passing a “may test” [DeNicola-Hennessy’84]

Definition (Safety Preservation)

S <∼safe
I when ∀T ;. S cannot T ; implies I cannot T ;

20/25

Workshop Transactions Co-operating Transactions TransCCS

Safety preservation: Examples

Sab = µX . Ja.b.co k .k X K

I3 = µX . Ja.b.co k + e .k X K

I4 = µX . Ja.b.co k | e .k X K

I Sab 6<∼safe
I4 use test T ; = e.; | a.b

I Sab
<∼safe

I3 – proof techniques required

I τ.P + τ.Q <∼safe
JP .k QK , for any P,Q – proof techniques rqd

21/25

Workshop Transactions Co-operating Transactions TransCCS

Liveness

Liveness: “Something good will eventually happen” [Lamport’77]

I A liveness property can be formulated as a liveness test T ω

which detects and reports good behaviour on ω.

I P passes the liveness test T ω when ω is eventually guaranteed
What does this mean? P shd T;

Definition (Liveness preservation)

S <∼live
I when ∀T ω. S shd T ; implies I shd T ω

22/25

Workshop Transactions Co-operating Transactions TransCCS

Liveness preservation:Examples

Sab = µX . Ja.b.co k .k X K

I2 = µX . Ja.b.0 .k X K

I3 = µX . Ja.b.co k + e .k X K

I Sab 6<∼live
I2 use test T ω = a.b.ω

I Sab
<∼live

I3 – proof techniques required

I µX . JP | co k .k X K hlive P, for any P
– proof techniques rqd

Proof techniques:

Require characterisations using “traces” and “refusals”

23/25

Workshop Transactions Co-operating Transactions TransCCS

Results

Characterisation of Safe Testing:

P <∼may Q iff Trclean(P) ⊆ Trclean(Q)

Trclean(R):

I sequences of communications performed by R which are
eventually committed

I Trclean

(
µX . Ja.c .co k + e .k X K

)
= {ε, a c}

I non-prefixed closed in general

Characterisation of should-testing:

S <∼live
I iff F(S) ⊇ F(I)

F(P): generalisation of CSP refusals/failures

24/25

Workshop Transactions Co-operating Transactions TransCCS

Some references

I Edsko de Vries, Vasileios Koutavas and Matthew Hennessy.
Liveness of Communicating Transactions, Proceedings of
APLAS, 2010.

I Mohsen Lesani, Jens Palsberg. Communicating memory
transactions, Proceedings of Principles and Practice of Parallel
Programming, 2011.

I Kevin Donnelly, Matthew Fluet. Transactional events, Journal
of Functional Programming, 2008.

I Tim Harris, Simon Marlow, Simon L. Peyton Jones, Maurice
Herlihy. Composable memory transactions, Communications
of ACM, 2008.

25/25

	A workshop
	Transactions
	Co-operating Transactions
	TransCCS

