# THE TYPE DISCIPLINE OF BEHAVIORAL SEPARATION 

Luís Caires<br>(joint work with João C. Seco)<br>Universidade Nova de Lisboa CITI@DI

Set 2012 IFIP WG 2.2 Meeting CWI - Amsterdam

## OVERVIEW

## OVERVIEW

- Statically checking that ho imperative programs don't go wrong in the presence of interference is notoriously hard


## OVERVIEW

- Statically checking that ho imperative programs don't go wrong in the presence of interference is notoriously hard
- Key problem: rule out "bad" interference, allow "good" interference, ensuring program correctness invariants


## OVERVIEW

- Statically checking that ho imperative programs don't go wrong in the presence of interference is notoriously hard
- Key problem: rule out "bad" interference, allow "good" interference, ensuring program correctness invariants
- Recent progress: separation logics, substructural types. Extending these approaches to general ho imperative concurrency is promising but still very challenging


## OVERVIEW

- Statically checking that ho imperative programs don't go wrong in the presence of interference is notoriously hard
- Key problem: rule out "bad" interference, allow "good" interference, ensuring program correctness invariants
- Recent progress: separation logics, substructural types. Extending these approaches to general ho imperative concurrency is promising but still very challenging
- We intro behavioral separation as a general principle for disciplining interference in higher-order imperative concurrent programs (and illustrate with a type system)


## KEY IDEAS

## KEY IDEAS

- Depart from a state-based view towards a behavioral ("process description") view of assertions


## KEY IDEAS

- Depart from a state-based view towards a behavioral ("process description") view of assertions
- Take inspiration on sep logics and beh types but shifting the focus from the separation of (static) state properties to the separation of (dynamic) usage behaviors of individual values


## KEY IDEAS

- Depart from a state-based view towards a behavioral ("process description") view of assertions
- Take inspiration on sep logics and beh types but shifting the focus from the separation of (static) state properties to the separation of (dynamic) usage behaviors of individual values
- classical "structural" operators (usage) + "temporal" operators (traces) + "spatial" operators (aliasing / sharing)


## KEY IDEAS

- Depart from a state-based view towards a behavioral ("process description") view of assertions
- Take inspiration on sep logics and beh types but shifting the focus from the separation of (static) state properties to the separation of (dynamic) usage behaviors of individual values
- classical "structural" operators (usage) + "temporal" operators (traces) + "spatial" operators (aliasing / sharing)
- We carry out our development within a clean substructural type theory based on a lambda calculus with references and concurrency constructs


## PROGRAMMING LANGUAGE

$e, f \quad::=\quad x$
$\lambda x . e$
$e_{1} e_{2}$
let $x=e_{1}$ in $e_{2}$
var $a$ in $e$
$a:=v$
$a$
$\left[l_{1}=e_{1}, \ldots\right]$
e.l
$l(e)$
case $e$ of $l_{i}\left(x_{i}\right) \rightarrow e_{i}$ $\operatorname{rec}(X) e$
X
fork $e$ wait $e$ $\boldsymbol{\operatorname { s y n c }}(a) e$
(Variable)
(Abstraction)
(Application)
(Definition)
(Heap variable decl)
(Assignment)
(Dereference)
(Tupling)
(Selection)
(Variant)
(Conditional)
(Recursion)
(Recursion variable)
(New thread)
(Wait)
(Synchronized block)

## A COLLECTION ADT

let $n e w N o d e=\lambda[]$.var next, elt in

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { setElt }=\lambda e .(\text { elt }:=e), \\
\text { getElt }=\text { elt }, \\
\text { setNext }=\lambda p .(n e x t:=p), \\
\text { getNext }=\text { next }] \text { in }
\end{array}\right.}
\end{aligned}
$$

```
let newColl =
    \(\lambda[] . \operatorname{var} h d, i d\) in
        \([\) init \(=\lambda i .(h d:=\) NULL; \(i d:=i)\)
        getId \(=i d\),
        \(a d d=\lambda e\).let \(n=(n e w N o d e ~ n i l)\) in
                            ((n.setElt e); (n.setNext hd);hd:=NODE(n)),
        scan \(=\mathbf{v a r} s\) in
        \(s:=h d ;\)
        rec \(L\).case \(s\) of
                                    NULL \(\rightarrow\) nil
                                    \(\operatorname{NODE}(n) \rightarrow(s:=n . g e t N e x t ; L))]\)
```


## A COLLECTION ADT

let $n e w N o d e=\lambda[]$.var next, elt in

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { setElt }=\lambda e .(\text { elt }:=e) \\
\text { getElt }=\text { elt }, \\
\text { setNext }=\lambda p .(\text { next }:=p), \\
\text { getNext }=n e x t] \text { in }
\end{array}\right.}
\end{aligned}
$$

let $n e w$ Coll $=$ $\lambda[]$.var $h d, i d$ in
$[$ init $=\lambda i .(h d:=$ NULL; $i d:=i)$ getId $=i d$, $a d d=\lambda e$.let $n=($ newNode nil $)$ in
((n.setElt e); (n.setNext hd); hd:=NODE $(n))$,
$s c a n=\mathbf{v a r} s$ in (
$s:=h d ;$
rec $L$.case $s$ of
NULL $\rightarrow$ nil

$$
\operatorname{NODE}(n) \rightarrow(s:=n . g e t N e x t ; L))]
$$

$S C \triangleq$ init :str $\mapsto 0 ;($ getId $:$ str \& add:nat $\rightarrow 0$ \& scan:0)*

## A COLLECTION ADT

let $n e w N o d e=\lambda[]$.var next, elt in

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { setElt }=\lambda e .(\text { elt }:=e) \\
\text { getElt }=\text { elt }, \\
\text { setNext }=\lambda p .(\text { next }:=p), \\
\text { getNext }=n e x t] \text { in }
\end{array}\right.}
\end{aligned}
$$

```
let newColl \(=\)
        \(\lambda[]\). var \(h d, i d\) in
            \([\) init \(=\lambda i .(h d:=\) NULL; \(i d:=i)\)
                getId \(=i d\),
                \(a d d=\lambda e\).let \(n=(n e w N o d e ~ n i l)\) in
                    ((n.setElt e); (n.setNext hd); hd:=NODE \((n))\),
            \(s c a n=\mathbf{v a r} s\) in \((\)
                \(s:=h d ;\)
                    rec \(L\).case \(s\) of
                    NULL \(\rightarrow \mathbf{n i l}\)
                        \(\operatorname{NODE}(n) \rightarrow(s:=n . g e t N e x t ; L))]\)
```

$C C \triangleq($ init $:$ str $\mapsto 0) ;\left(!\right.$ getId:str $\left.\mid(!\text { scan:0 } ; \text { add:nat } \mapsto 0)^{*}\right)$

## TYPING THE COLLECTION

$$
C C \triangleq(\text { init }: \text { str } \mapsto 0) ;\left(!\text { getId }: \text { str } \mid(!\text { scan }: 0 ; \text { add:nat } \mapsto 0)^{*}\right)
$$

$$
\text { newColl : } 0 \mapsto \circ C C
$$

## USING THE COLLECTION

## USING THE COLLECTION

let $c=$ newColl [] in (c.init "my"); c.scan; (c.add 1)
let $c=$ newColl [] in (c.init "my"); (c.add 1$) ;$ c.getId; c.scan
$C C \triangleq($ init $:$ str $\mapsto 0) ;\left(!\right.$ getId $:$ str $\left.\mid(!\text { scan }: 0 ; \text { add:nat } \mapsto 0)^{*}\right)$

## BORROWING

let $c=$ newColl [] in let $f=\lambda x$.(x.init "your") in $(f c) ;(c . a d d 2)$
let $c=$ newColl [] in
let $g=\lambda x .(x . s c a n)$ in
(c.init "my"); (gc); c.scan; (c.add 2); (gc)
let $c=$ newColl [] in
let $h=\lambda x .(x . i n i t$ "your") in $(c . a d d 2) ;(h c)$

## BORROWING THROUGH THE STORE

let $c=$ newColl [] in var $a$ in

$$
(a:=c ;(\text { a.init "my" }) ;(\text { a.add } 1) ;(\text { a.add } 1) ; c . s c a n))
$$

let $c=$ newColl [] in ((c.init "my"); var $a$ in $(a:=c . a d d ;(a 1) ; c . s c a n))$

## FRAMING

let $c=n e w C o l l[]$ in let $m=c . i n i t$ in $c . s c a n$
var $s$ in $(s:=" h i " ;$
let $F=\lambda x$.(let $c=$ newColl [] in $(c$. init $x ; c))$ in (let $u=(F s)$ in $(s:=" o k " ; u . a d d 1))$ )
let $c=$ newColl [] in
var $a$ in let $f=\lambda x . a:=x$ in $((f c) ;($ a.init " $y "))$

## CONCURRENCY

let $c=$ newColl [] in
((c.init "my");(c.add 1); (c.scan \|c.scan))
let $c=$ newColl [] in let $f=\lambda x$.(x.scan) in

$$
((c . i n i t " m y ") ;((f c) \| c . s c a n) ;(c . g e t I d \|(c . a d d 2)) ;(f c))
$$

let $c=$ newColl [] in ((c.init "my"); ((c.add 1)\|(c.scan))
let $c=$ newColl [] in let $f=\lambda x .((x . a d d 0) \|(c . a d d 1))$ in $((c . i n i t " m y ") ;(f c))$

## CONCURRENCY

let $c=$ newColl [] in let $f=\lambda x$. $(x . s c a n \| c . s c a n)$ in $((c . i n i t " m y ") ;(f c))$
let $c=$ newColl [] in ((c.init "my");
var $a$ in $(a:=$ fork $(c . s c a n) ; c . s c a n ;$ wait $(a) ;(c . a d d 1)))$
let $c=$ newColl [] in ((c.init "my");
var $a$ in $(a:=$ fork $(c . s c a n) ;($ c.add 1$)$; wait $(a)))$

## INVARIANT-BASED SEPARATION

let $n e w C o l l=$ $\lambda[] . \operatorname{var} h d, i d, i n v$ in
[ init $=\lambda i .(h d:=$ NULL; $i d:=i)$ getId $=i d$, $a d d=\lambda e . \operatorname{sync}(i n v)($ let $n=(n e w N o d e$ nil) in
$((n . s e t E l t e) ;(n . s e t N e x t h d) ; h d:=\operatorname{NODE}(n)))$,
$\operatorname{scan}=\mathbf{\operatorname { s y n c }}(i n v)(\mathbf{v a r} s \mathbf{i n}($
$s:=h d ;$
rec $L$.case $s$ of

$$
\text { NULL } \rightarrow \text { nil }
$$

$\operatorname{NODE}(n) \rightarrow(s:=n$. getNext $; L)))]$
$C \triangleq($ init :str $\mapsto 0) ;(!$ getId:str $\mid!$ scan $: 0 \mid!$ add $:$ nat $\mid \rightarrow 0)$

## BEHAVIORAL SEPARATION TYPES

## BEHAVIORAL SEPARATIONTYPES

$$
\begin{array}{ccc|l|l|}
T, U & :=: & 0 & \text { (stop) } & T \mapsto V \\
& T ; U & \text { (function) } \\
& \text { (sequential) } & T \mid U & \text { (parallel) } \\
& T \& U & \text { (intersection) } & l: T & \text { (qualification) } \\
& \oplus_{l \in I} l: T_{l} & \text { (sum) } & !T & \text { (shared) } \\
& \circ T & \text { (isolated) } & \tau(T) & \text { (thread) } \\
& \operatorname{rec}(X) T & \text { (recursion) } & X & \text { (recursion var) }
\end{array}
$$

## SEQUENTIAL AND PARALLEL

$$
U ;(V ; T) \text { <:> }(U ; V) ; T \quad U ; 0 \text { <:> } U \quad 0 ; U \text { <>> } U
$$

$$
U \mid(V \mid T) \text { <:> }(U \mid V)|T \quad U| V \text { <:> } V|U \quad U| 0 \text { <:> } U
$$

$$
(A ; C) \mid(B ; D)<:(A \mid B) ;(C \mid D)
$$

## INTERSECTION

$$
\begin{aligned}
& U \& V<: U \\
& U \& V<: V \\
& U<: U \& U
\end{aligned}
$$

## SHARED

$$
\begin{gathered}
!U<: U \\
!U<:!U \\
0<:!0 \\
!U \mid!V<:!(U \mid V) \\
!U<: 0 \\
!U<:!U \mid!U
\end{gathered}
$$

## ISOLATED

$$
\begin{gathered}
0<: \circ 0 \\
\circ A \mid \circ B<: \circ(A \mid B) \\
\circ A<: A \\
\circ A<: \circ \circ A \\
\circ A<: 0 \\
!\circ A<: \circ!A \\
(\circ A \mid B) ; C<: \circ A \mid(B ; C)
\end{gathered}
$$

## TYPES FOR HEAP REFERENCES

var <: use; var
use <: use ; use use <: wr $(U) \operatorname{rd}(U)$
$\operatorname{wr}(0)<: 0 \operatorname{rd}(0)<: 0$
$\operatorname{rd}(U ; V)<: \operatorname{rd}(U) ; \operatorname{rd}(V)$
$\operatorname{rd}(U \mid V)<: \operatorname{rd}(U) \mid \operatorname{rd}(V)$
$\operatorname{rd}(!U)<:!r d(!U)$
$r d(\circ U) ; \operatorname{var}<: \circ(r d(\circ U) ; \operatorname{var})$

## KEY ALGEBRAIC STRUCTURE

- symmetric monoidal closed

$$
(T, 0,(-\mid-), \mapsto)
$$

- concurrent Kleene algebra

$$
(T,(-\&-),(-\mid-),(-;-), 0)
$$

- monoidal co-monads

$$
\begin{aligned}
& \circ(-) \\
& !(-)
\end{aligned}
$$

## REMARKS

- interleaving

$$
U \mid V<: V ; U
$$

- isolation

$$
(\circ U) ; V<:(\circ U) \mid V \quad(\circ A) ; B<: B ;(\circ A)
$$

- shared isolated types
let $T=!\circ U$. Then $T$ <:> $T \mid T$ and $T<:>\circ T$.
include "pure" basic types, such as nat, bool, etc


## REMARKS

- arrow types
shared $\quad(U \mapsto V)$
iterated $(U \mapsto V)^{*}$
pure $\quad!\circ(T \mapsto T)$


## TYPE SYSTEM

## TYPE ASSERTIONS

$$
A, B::=x: T|A ; B| A|B| A \& B|!A| \circ A|X| \operatorname{rec}(X) A
$$

## TYPE ASSERTIONS

$$
A, B::=x: T|A ; B| A|B| A \& B|!A| \circ A|X| \operatorname{rec}(X) A
$$

$$
(f: U \mapsto V ; y: U) \mid z: U \quad(f z) \quad y: U
$$

$$
(f: U \mapsto V ; y: U) \mid z: U \quad(f y) \quad \text { invalid for precondition }
$$

## TYPING JUDGMENTS

## $A<: B \quad(A$ is a subtype of $B)$

$A \vdash_{z} e:: B \quad(e$ types from $A$ to $z$ in $B)$

## TYPING JUDGMENTS

## $A<: B \quad(A$ is a subtype of $B)$

$$
A \vdash_{z} e:: B \quad(e \text { types from } A \text { to } z \text { in } B)
$$

## example

$a:$ use $\vdash_{z}(\lambda x . a:=x):: z: \circ U \mapsto 0 ; a: r d(\circ U)$

## STRUCTURAL

$$
\begin{gathered}
x: U \vdash_{z} x:: z: U(I d) \quad \frac{A \vdash_{x} e_{1}:: B \quad B \vdash_{y} e_{2}:: C}{A \vdash_{y} \text { let } x=e_{1} \text { in } e_{2}:: C}(\text { Let }) \\
\frac{A<: A^{\prime} \quad A^{\prime} \vdash_{x} e:: B^{\prime} \quad B^{\prime}<: B}{A \vdash_{x} e:: B}(\text { Sub }) \\
\frac{A \vdash_{x} e:: B}{A\left|C \vdash_{x} e:: B\right| C}(\text { Par }) \frac{A \vdash_{x} e:: B}{A ; C \vdash_{x} e:: B ; C}(\text { Seq })
\end{gathered}
$$

## ARROW TYPE

$$
\frac{A \mid x: U \vdash_{y} \text { e }:: y: T}{A \vdash_{z} \lambda x . e:: z: U \mapsto T}(\text { VAbs })
$$

$$
\frac{A \vdash_{z} e_{1}:: z: U \vdash T \quad B \vdash_{x} e_{2}:: x: U}{A \mid B \vdash_{y} e_{1} e_{2}:: y: T}(A p p)
$$

## TUPLETYPE

$$
\begin{gathered}
\frac{A \vdash_{x} e:: x: U}{A \vdash_{z}[\ldots l=e \ldots]:: z: l: U}(\text { Tuple }) \\
\frac{A \vdash_{z} e:: z: l: T}{A \vdash_{x} e . l:: x: T}(\text { Sel })
\end{gathered}
$$

## INTERSECTION TYPE

$$
\begin{aligned}
& \frac{A \vdash_{y} e:: B \quad A \vdash_{y} e:: C}{A \vdash_{y} e:: B \& C}(A n d) \\
& \frac{A \vdash_{y} e:: B_{1} \& B_{2}}{A \vdash_{y} e:: B_{i}}(A n d E)
\end{aligned}
$$

## BEHAVIORAL SEPARATION TYPES

$$
0 \vdash_{y} v:: 0(\text { VStop }) \quad \frac{A \vdash_{y} v:: C \quad B \vdash_{y} v:: D}{A ; B \vdash_{y} v:: C ; D}(V S e q)
$$

$$
\frac{!A_{1}|\ldots|!A_{n} \vdash_{x} v:: B}{!A_{1}|\ldots|!A_{n} \vdash_{x} v:!!B}(\text { VShr }) \quad \frac{A \vdash_{y} v:: C \quad B \vdash_{y} v:: D}{A\left|B \vdash_{y} v:: C\right| D}(\text { VPar })
$$

## BEHAVIORAL SEPARATIONTYPES

$$
A \vdash_{y} v:: A(V I d) \frac{B \vdash_{y} v:: C}{A ; B \vdash_{y} v:: A ; C}(V L P a r)
$$

## ISOLATED TYPE

$$
\frac{\circ A_{1}|\ldots| \circ A_{n} \vdash_{x} e:: B}{\circ A_{1}|\ldots| \circ A_{n} \vdash_{x} e:: \circ B}(\text { Iso })
$$

## SUM TYPE

$$
\frac{A \vdash_{y} e_{c}:: y: \oplus_{l \in I} l: T_{l} \quad x_{i}: T_{i} \mid B \vdash_{z} e_{i}:: C}{A \mid B \vdash_{z} \text { case } e_{c} \text { of } l(x) \rightarrow e:: C}(\text { Case })
$$

$$
\frac{A \vdash_{z} e:: z: T_{i}}{A \vdash_{z} l_{i}(e):: z: \oplus_{l \in I} l: T_{l}} \text { (Option) }
$$

## HEAP REFERENCES

$$
\frac{a: \operatorname{var} \mid A \vdash_{x} e:: C}{A \vdash_{x} \operatorname{var} a \operatorname{in} e:: C}(\text { Var })
$$

## HEAP REFERENCES (DEREF)

$$
\begin{gathered}
a: r d(U) \vdash_{x} a:: x: U(R d V B) \\
a: \operatorname{rd}(U) ; \text { use } \vdash_{x} a:: x: U \mid a: \text { use }(R d V F)
\end{gathered}
$$

## HEAP REFERENCES (ASSIGN)

$$
\begin{gathered}
\frac{A \vdash_{z} v:: z: o U \mid a: w r(\circ U)}{A \vdash_{z} a:=v:: 0}(W r V F) \\
\frac{A \vdash_{z} v:: z: U \mid a: u s e}{A \vdash_{z} a:=v:: a: \operatorname{rd}(U)}(W r V B)
\end{gathered}
$$

## EXAMPLE (WRONG)

$$
\begin{aligned}
& r: U\left|a: \mathrm{wr}(U) \vdash_{x} r:: x: U\right| a: \mathrm{wr}(U) \\
& r: U \mid a: \mathrm{wr}(U) \vdash_{x} a:=r:: 0 \\
& r: U ; V \mid a: \mathrm{wr}(U) \vdash_{x} a:=r:: r: V \\
& r: U ; V \mid a: \operatorname{wr}(U) ; \operatorname{rd}(U) \vdash_{x} a:=r:: r: V ; a: \operatorname{rd}(U) \\
& r: U ; V \mid a: \text { use } \vdash_{x} a:=r:: r: V ; a: \operatorname{rd}(U)
\end{aligned}
$$

## EXAMPLE (RIGHT)

$$
\begin{aligned}
& r: U \mid a: \text { use } \vdash_{x} r:: x: U \mid a: \text { use } \\
& r: U \mid a: \text { use } \vdash_{x} a:=r:: a: \operatorname{rd}(U) \\
& r: U ; V \mid a: \text { use } \vdash_{x} a:=r:: a: \operatorname{rd}(U) ; r: V
\end{aligned}
$$

## A COLLECTION ADT

let $n e w N o d e=\lambda[]$.var next, elt in

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { setElt }=\lambda e .(\text { elt }:=e), \\
\text { getElt }=\text { elt }, \\
\text { setNext }=\lambda p .(\text { next }:=p), \\
\text { getNext }=\text { next }] \text { in }
\end{array}\right.}
\end{aligned}
$$

```
let newColl =
    \(\lambda[] . \operatorname{var} h d, i d\) in
        \([\) init \(=\lambda i .(h d:=\) NULL; \(i d:=i)\)
        getId \(=i d\),
        \(a d d=\lambda e\).let \(n=(n e w N o d e ~ n i l)\) in
                            \(((n . s e t E l t ~ e) ;(n . s e t N e x t h d) ; h d:=\operatorname{NODE}(n))\),
        scan \(=\mathbf{v a r} s\) in (
        \(s:=h d ;\)
        rec \(L\).case \(s\) of
                                    NULL \(\rightarrow\) nil
                                    \(\operatorname{NODE}(n) \rightarrow(s:=n . g e t N e x t ; L))]\)
```


## TYPING THE COLLECTION ADT

InitNode $\triangleq$ setElt:(nat $\rightarrow 0) ;$ setNext: $(!$ oPNode $\rightarrow 0)$
INode $\triangleq$ !getNext:PNode|!getElt:nat
Node $\triangleq$ InitNode ; !oINode
PNode $\triangleq!O p t($ INode)
$C C \triangleq($ init $:$ str $\mapsto 0) ;\left(!g e t I d: s t r \mid(!\text { scan:0; } \text { add:nat } \mapsto 0)^{*}\right)$

## INVARIANT-BASED SEPARATION

## INVARIANT-BASED SEPARATION

- "external usage" view of $(-\mid-)$ naturally enables behavioral separation to conceal (abstract) "good" interference
- relax "internal physical" separation (disjointness) to "external observable" safe usage separation
- typed atomicity construct ( $\boldsymbol{\operatorname { s y n c } ( i n v ) e}$ ) to force behavioral separation (cf. the Hoare monitor principle)
- typed atomicity construct already useful in non-concurrent
- serialization invariant $\iota(i n v)$ must be an isolated assertion $\circ R$


## INVARIANT-BASED SEPARATION

$$
A \vdash_{z}^{\iota} e:: B \quad(e \text { types from } A \text { to } z \text { in } B \text { under } \iota)
$$

- $\iota$ invariant mapping
- assigns a "lock" invariant to each heap variable (cf. Java)
- a lock invariant is any assertion $R$ s.t. $R$ <: $\circ R$


## INVARIANT-BASED SEPARATION

$$
\frac{A<: B|R \quad a: \operatorname{var}| B \vdash_{x}^{\iota\{R / a\}} e:: C}{A \vdash_{x}^{\iota} \operatorname{var} a \operatorname{in} e:: C}(\text { Var })
$$

$$
\frac{\iota(a)\left|A \vdash_{x}^{\iota \backslash a} e:: \iota(a)\right| B}{A \vdash_{x}^{\iota} \operatorname{sync}(a) e:: B}(\text { Sync })
$$

## "ATOMIC" MEMORY CELL

let atomic $=\lambda v$.
var $s$ in $s:=v$;
var lock in $[$ set $=\lambda x . \operatorname{sync}($ lock $) s:=x$, get $=\mathbf{s y n c}($ lock $) s] \mathbf{i n} \ldots$
atomic: $U \mapsto($ !set: $(U \mapsto 0) \mid$ !get: $U)$

## FIFO QUEUE ON LINKED LIST

let $n e w=$
$\lambda[]$.var next in
next $:=$ NULL;
var $s h r$ in
[ unLink $=\mathbf{s y n c}(s h r)$ let $x=n e x t$
in $(n e x t:=$ NULL; $x)$
link $=\lambda x \cdot \operatorname{sync}(s h r) n e x t:=x]$

Node $\triangleq$ HeadT $\mid$ TailT
SHeadT $\triangleq \operatorname{Opt}(H e a d T)$
HeadT $\triangleq$ ounlink: : SHeadT
TailT $\triangleq$ olink: $:$ SHeadT $\mapsto 0$
in var head, tail in (
head $:=$ NULL; tail $:=$ NULL;
[ en $q=$ let $n=(n e w$ nil $)$ in case tail of
NULL $\rightarrow($ head $:=\operatorname{NODE}(n)$;
tail $:=\operatorname{NODE}(n))$
$\operatorname{NODE}(y) \rightarrow(y . l i n k \operatorname{NODE}(n)) ;$
tail $:=\operatorname{NODE}(n))$,
$d e q=$ case head of
NULL $\rightarrow$ head $:=$ NULL
$\operatorname{NODE}(y) \rightarrow($ head $:=y . u n L i n k ;$
case head of
NULL $\rightarrow$ tail $:=$ NULL; head $:=$ NULL $\operatorname{NODE}(y) \rightarrow$ head $:=\operatorname{NODE}(y))]$

## FIFO QUEUE ON LINKED LIST

let $n e w=$
$\lambda[]$.var next in
next $:=$ NULL;
[ unLink $=$ let $x=$ next

$$
\text { in }(n e x t:=\text { NULL } ; x)
$$

Node $\triangleq H e a d T \mid T a i l T$
SHeadT $\triangleq \operatorname{Opt}(H e a d T)$
HeadT $\triangleq$ ounlink:oSHeadT
TailT $\triangleq$ olink $: \circ S H e a d T \mapsto 0$
in var head, tail in (
head $:=$ NULL; tail $:=$ NULL;
[ en $q=$ let $n=(n e w$ nil) in case tail of

$$
\operatorname{NULL} \rightarrow(\text { head }:=\operatorname{NODE}(n) ;
$$

$$
\text { tail }:=\operatorname{NODE}(n))
$$

$$
\operatorname{NODE}(y) \rightarrow(y . \operatorname{link} \operatorname{NODE}(n)) ;
$$

$$
\text { tail }:=\operatorname{NODE}(n))
$$

$d e q=$ case head of
NULL $\rightarrow$ head $:=$ NULL
$\operatorname{NODE}(y) \rightarrow($ head $:=y . u n L i n k ;$
case head of
NULL $\rightarrow$ tail $:=$ NULL; head $:=$ NULL $\operatorname{NODE}(y) \rightarrow$ head $:=\operatorname{NODE}(y))]$

## CONCURRENT FIFO QUEUE

## var head, tail in (

$$
\text { head }:=\text { NULL; tail }:=\text { NULL; }
$$

var qinv in

$$
\begin{aligned}
{[e n q} & =\operatorname{sync}(q i n v)(\ldots) \\
d e q & =\operatorname{sync}(q i n v)(\ldots)]
\end{aligned}
$$

- invariant $\iota(q i n v)$
head:rd(oSHeadT); var|tail:rd(oSTailT); var
- concurrent FIFO Queue interface and client code
$\vdash_{q} C Q u e u e ~::!e n q: 0 \mid!q: d e q: 0$
let $q=C Q u e u e$ in ( $q . e n q ; q . e n q \| q . d e q ; q . d e q$ )


## LANDIN'S KNOT

var $a$ in $(a:=\lambda x . x$;
var linv in let $f=\lambda y .(\operatorname{sync}(\operatorname{linv})(a) y)$ in $(\operatorname{sync}(\operatorname{linv})(a:=f) ;(f$ nil $)))$

- invariant $\iota($ linv $)$

$$
a: r d(!\circ(0 \mapsto 0)) ; \operatorname{var}
$$

- type for $f:!\circ(0 \mapsto 0)$


## SUM UP

- We introduce the concept of behavioral separation as a general principle for disciplining interference in higherorder imperative concurrent programs
- We develop the concept within a clean substructural typed lambda calculus, combining ideas from separation logic and behavioral type systems for process algebras
- Expressiveness of our approach extends current static verification of aliasing and concurrency (fine-grained state manipulation, ho store, first-class threads, seq-par frame dependency, and synchronization (atomicity) constructs)
- We are investigating algorithmic properties of the system

