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OVERVIEW

Statically checking that ho imperative programs don’t go 
wrong in the presence of interference is notoriously hard 

Key problem: rule out "bad" interference, allow "good" 
interference, ensuring program correctness invariants

Recent progress: separation logics, substructural types. 
Extending these approaches to general ho imperative 
concurrency is promising but still very challenging

We intro behavioral separation as a general principle 
for disciplining interference in higher-order imperative 
concurrent programs (and illustrate with a type system)
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KEY IDEAS

Depart from a state-based view towards a behavioral 
(“process description”) view of assertions

Take inspiration on sep logics and beh types but shifting the 
focus from the separation of (static) state properties to the 
separation of (dynamic) usage behaviors of individual values

classical “structural” operators (usage) + "temporal" 
operators (traces) + "spatial" operators (aliasing / sharing)

We carry out our development within a clean substructural 
type theory based on a lambda calculus with references and 
concurrency constructs
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PROGRAMMING LANGUAGE

e, f ::= x (Variable)
| �x.e (Abstraction)
| e1e2 (Application)
| let x = e1 in e2 (Definition)
| var a in e (Heap variable decl)
| a := v (Assignment)
| a (Dereference)
| [l1 = e1, . . .] (Tupling)
| e.l (Selection)
| l(e) (Variant)
| case e of li(xi) ! ei (Conditional)
| rec(X)e (Recursion)
| X (Recursion variable)
| fork e (New thread)
| wait e (Wait)
| sync(a)e (Synchronized block)
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A COLLECTION ADT

let newNode = �[].var next , elt in
[ setElt = �e.(elt := e),

getElt = elt ,
setNext = �p.(next := p),
getNext = next ] in

let newColl =
�[].var hd , id in

[ init = �i.(hd := NULL; id := i)
getId = id ,
add = �e.let n = (newNode nil) in

((n.setElt e); (n.setNext hd);hd:=NODE(n)),
scan = var s in (

s := hd;
rec L.case s of

NULL ! nil

NODE(n) ! (s := n.getNext ;L))]
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A COLLECTION ADT

let newNode = �[].var next , elt in
[ setElt = �e.(elt := e),

getElt = elt ,
setNext = �p.(next := p),
getNext = next ] in

let newColl =
�[].var hd , id in

[ init = �i.(hd := NULL; id := i)
getId = id ,
add = �e.let n = (newNode nil) in

((n.setElt e); (n.setNext hd);hd:=NODE(n)),
scan = var s in (

s := hd;
rec L.case s of

NULL ! nil

NODE(n) ! (s := n.getNext ;L))]

CC , (init :str|!0) ;(!getId :str |(!scan:0 ; add:nat|!0)⇤)
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TYPING THE COLLECTION

CC , (init :str|!0) ;(!getId :str |(!scan:0 ; add:nat|!0)⇤)

newColl : 0 |!�CC
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USING THE COLLECTION

let c = newColl [] in (c.init “my”); c.scan; (c.add 1)

let c = newColl [] in (c.init “my”); (c.add 1); c.getId ; c.scan

CC , (init :str|!0) ;(!getId :str |(!scan:0 ; add:nat|!0)⇤)
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BORROWING

let c = newColl [] in
let f = �x.(x.init “your”) in (f c); (c.add 2)

let c = newColl [] in
let g = �x.(x.scan) in

(c.init “my”); (g c); c.scan; (c.add 2); (g c)

let c = newColl [] in
let h = �x.(x.init “your”) in (c.add 2); (h c)
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BORROWING THROUGH
THE STORE

let c = newColl [] in var a in
(a := c; (a.init “my”); (a.add 1); (a.add 1); c.scan))

let c = newColl [] in ((c.init “my”);
var a in (a := c.add ; (a 1); c.scan))
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FRAMING

let c = newColl [] in let m = c.init in c.scan

let c = newColl [] in
var a in let f = �x.a := x in ((f c); (a.init “y”))

var s in (s := “hi”;
let F = �x.(let c = newColl [] in (c.init x; c)) in
(let u = (F s) in (s := “ok”;u.add 1)))
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CONCURRENCY

let c = newColl [] in
((c.init “my”); (c.add 1); (c.scankc.scan))

let c = newColl [] in let f = �x.(x.scan) in
((c.init “my”); ((f c)kc.scan); (c.getIdk(c.add 2)); (f c))

let c = newColl [] in ((c.init “my”); ((c.add 1)k(c.scan))
let c = newColl [] in

let f = �x.((x.add 0)k(c.add 1)) in ((c.init “my”); (f c))
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CONCURRENCY

let c = newColl [] in
let f = �x.(x.scankc.scan) in ((c.init “my”); (f c))

let c = newColl [] in ((c.init “my”);
var a in (a := fork(c.scan); c.scan;wait(a); (c.add 1)))

let c = newColl [] in ((c.init “my”);
var a in (a := fork(c.scan); (c.add 1);wait(a)))
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INVARIANT-BASED SEPARATION

C , (init :str|!0) ;(!getId :str | !scan:0 | !add:nat|!0)

let newColl =
�[].var hd , id , inv in

[ init = �i.(hd := NULL; id := i)
getId = id ,
add = �e.sync(inv)(let n = (newNode nil) in

((n.setElt e); (n.setNext hd);hd:=NODE(n))),
scan = sync(inv)(var s in (

s := hd;
rec L.case s of

NULL ! nil

NODE(n) ! (s := n.getNext ;L)))]
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BEHAVIORAL SEPARATION TYPES

T, U ::= 0 (stop) | T |!V (function)
| T ;U (sequential) | T |U (parallel)
| T NU (intersection) | l:T (qualification)
| �l2I l:Tl (sum) | !T (shared)
| �T (isolated) | ⌧(T ) (thread)
| rec(X)T (recursion) | X (recursion var)
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SEQUENTIAL  AND PARALLEL

U ;(V ;T ) <:> (U ;V ) ;T U ; 0 <:> U 0 ;U <:> U

U |(V |T ) <:> (U |V ) |T U |V <:> V |U U | 0 <:> U

(A ;C) | (B ;D) <: (A |B) ; (C |D)
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INTERSECTION

U NV <: U

U NV <: V

U <: U NU
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SHARED

!U <: U

!U <: !!U

0 <: !0

!U | !V <: !(U | V )

!U <: 0

!U <: !U | !U
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ISOLATED

0 <: �0
�A | �B <: �(A |B)

�A <:A

�A <: ��A
�A <: 0

!�A <: �!A
(�A |B) ;C <: �A |(B ;C)
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TYPES FOR HEAP REFERENCES

var <: use ; var

use <: use ; use use <: wr(U) ; rd(U)

wr(0) <: 0 rd(0) <: 0

rd(U ;V ) <: rd(U); rd(V )

rd(U |V ) <: rd(U) | rd(V )

rd(!U) <: !rd(!U)

rd(�U) ; var <: �(rd(�U) ; var)
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KEY ALGEBRAIC STRUCTURE

symmetric monoidal closed 

concurrent Kleene algebra

monoidal co-monads

(T, (�N�), (� |�), (� ;�), 0)

(T, 0, (� |�), |!)

�(�)

!(�)
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REMARKS

interleaving

isolation

shared isolated types

let              . Then                  and              .

include “pure” basic types, such as nat, bool, etc

(�U) ;V <: (�U) |V (�A) ;B <:B ;(�A)

U |V <: V ;U

T <:> T |TT = !�U T <:> �T
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REMARKS

arrow types

shared

iterated

pure

...

!(U |!V )

(U |!V )⇤

!�(T |!T )
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TYPE SYSTEM
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TYPE ASSERTIONS

A,B ::= x:T
��
A ;B

��
A|B

��
ANB

�� !A
�� �A

��
X

�� rec(X)A
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TYPE ASSERTIONS

A,B ::= x:T
��
A ;B

��
A|B

��
ANB

�� !A
�� �A

��
X

�� rec(X)A

(f :U |!V ; y:U) | z:U (f z)

(f y)(f :U |!V ; y:U) | z:U

y:U

invalid for precondition
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TYPING JUDGMENTS

A `z e :: B (e types from A to z in B)

A <:B (A is a subtype of B)
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TYPING JUDGMENTS

A `z e :: B (e types from A to z in B)

A <:B (A is a subtype of B)

a:use `z (�x.a := x) :: z:�U |!0 ; a:rd(�U)

example
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STRUCTURAL

x:U `z x :: z:U (Id)

A <:A0 A0 `
x

e :: B0 B0 <:B

A `
x

e :: B
(Sub)

A `
x

e1 :: B B `
y

e2 :: C

A `
y

let x = e1 in e2 :: C
(Let)

A `
x

e :: B

A |C `
x

e :: B |C (Par)
A `

x

e :: B

A ;C `
x

e :: B ;C
(Seq)
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ARROW TYPE

A|x:U `
y

e :: y:T

A `
z

�x.e :: z:U |!T

(VAbs)

A `
z

e1 :: z:U |!T B `
x

e2 :: x:U

A |B `
y

e1e2 :: y:T
(App)
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TUPLE TYPE

A `
x

e :: x:U

A `
z

[. . . l = e . . .] :: z:l:U
(Tuple)

A `
z

e :: z:l:T

A `
x

e.l :: x:T
(Sel)
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INTERSECTION TYPE

A `y e :: B A `y e :: C

A `y e :: B N C
(And)

A `y e :: B1 N B2

A `y e :: Bi
(AndE )
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BEHAVIORAL SEPARATION TYPES

0 `
y

v :: 0 (VStop)
A `

y

v :: C B `
y

v :: D

A ;B `
y

v :: C ;D
(VSeq)

!A1 | . . . | !An

`
x

v::B

!A1 | . . . | !An

`
x

v::!B
(VShr)

A `
y

v::C B `
y

v::D

A |B `
y

v :: C |D (VPar)
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BEHAVIORAL SEPARATION TYPES

A `y v :: A (VId)
B `y v :: C

A ;B `y v :: A ;C
(VLPar)
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ISOLATED TYPE

�A1 | . . . | �An

`
x

e :: B

�A1 | . . . | �An

`
x

e :: �B (Iso)
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SUM TYPE

A `y ec :: y : �l2I l:Tl xi:Ti |B `z ei :: C

A |B `z case ec of l(x) ! e :: C
(Case)

A `z e :: z:Ti

A `z li(e) :: z:�l2I l:Tl
(Option)
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HEAP REFERENCES

a:var |A `
x

e :: C

A `
x

var a in e :: C
(Var)
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HEAP REFERENCES (DEREF)

a:rd(U) `
x

a :: x:U (RdVB)

a:rd(U); use `
x

a :: x:U | a:use (RdVF )
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HEAP REFERENCES (ASSIGN)

A `z v :: z:�U | a:wr(�U)

A `z a := v :: 0
(WrVF )

A `z v :: z:U | a:use
A `z a := v :: a:rd(U)

(WrVB)
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EXAMPLE (WRONG)

r:U | a:wr(U) `
x

r :: x:U | a:wr(U)
r:U | a:wr(U) `

x

a := r :: 0
r:U ;V | a:wr(U) `

x

a := r :: r:V
r:U ;V | a:wr(U); rd(U) `

x

a := r :: r:V ; a:rd(U)
r:U ;V | a:use `

x

a := r :: r:V ; a:rd(U)
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EXAMPLE (RIGHT)

r:U | a:use `
x

r :: x:U | a:use
r:U | a:use `

x

a := r :: a:rd(U)
r:U ;V | a:use `

x

a := r :: a:rd(U) ; r:V
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A COLLECTION ADT

let newNode = �[].var next , elt in
[ setElt = �e.(elt := e),

getElt = elt ,
setNext = �p.(next := p),
getNext = next ] in

let newColl =
�[].var hd , id in

[ init = �i.(hd := NULL; id := i)
getId = id ,
add = �e.let n = (newNode nil) in

((n.setElt e); (n.setNext hd);hd:=NODE(n)),
scan = var s in (

s := hd;
rec L.case s of

NULL ! nil

NODE(n) ! (s := n.getNext ;L))]
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TYPING THE COLLECTION ADT

InitNode , setElt :(nat |! 0) ; setNext :(!�PNode |! 0)

INode , !getNext :PNode | !getElt :nat
Node , InitNode ; !�INode
PNode , !Opt(INode)

CC , (init :str|!0) ;(!getId :str |(!scan:0 ; add:nat|!0)⇤)
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INVARIANT-BASED SEPARATION
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“external usage” view of            naturally enables behavioral 
separation to conceal (abstract) “good” interference

relax “internal physical” separation (disjointness) to 
“external observable” safe usage separation

typed atomicity construct (                 ) to force behavioral 
separation (cf. the Hoare monitor principle)

typed atomicity construct already useful in non-concurrent

serialization invariant          must be an isolated assertion

INVARIANT-BASED SEPARATION

sync(inv)e

�R

(� |�)

◆(inv)
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INVARIANT-BASED SEPARATION

A `◆
z e :: B (e types from A to z in B under ◆)

   invariant mapping 

assigns a “lock” invariant to each heap variable (cf. Java)

a lock invariant is any assertion       s.t. 

◆

R R <: �R
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INVARIANT-BASED SEPARATION

A <:B |R a:var | B `◆{R/a}
x

e :: C

A `◆

x

var a in e :: C
(Var)

◆(a) |A `◆\a
x

e :: ◆(a) |B
A `◆

x

sync(a)e :: B
(Sync)
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“ATOMIC” MEMORY CELL

let atomic = �v.

var s in s := v;
var lock in [ set = �x.sync(lock)s := x,

get = sync(lock)s ] in . . .

atomic:U |!(!set :(U 7! 0) | !get :U)
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FIFO QUEUE ON LINKED LIST

`q SQueue :: (q:enq :0N q:deq :0)⇤

let new =
�[].var next in

next := NULL;
var shr in

[ unLink = sync(shr)let x = next

in (next := NULL;x)
link = �x.sync(shr)next := x ]

in var head , tail in (
head := NULL; tail := NULL;
[ enq = let n = (new nil) in

case tail of

NULL ! (head := NODE(n);
tail := NODE(n))

NODE(y) ! (y.link NODE(n));
tail := NODE(n)),

deq = case head of

NULL ! head := NULL

NODE(y) ! (head := y.unLink ;
case head of

NULL ! tail := NULL; head := NULL

NODE(y) ! head := NODE(y)) ]

Node , HeadT |TailT
SHeadT , Opt(HeadT )
HeadT , �unlink :�SHeadT
TailT , �link :�SHeadT |! 0
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FIFO QUEUE ON LINKED LIST

`q SQueue :: (q:enq :0N q:deq :0)⇤

let new =
�[].var next in

next := NULL;

[ unLink = let x = next

in (next := NULL;x)
link = �x.next := x ]

in var head , tail in (
head := NULL; tail := NULL;
[ enq = let n = (new nil) in

case tail of

NULL ! (head := NODE(n);
tail := NODE(n))

NODE(y) ! (y.link NODE(n));
tail := NODE(n)),

deq = case head of

NULL ! head := NULL

NODE(y) ! (head := y.unLink ;
case head of

NULL ! tail := NULL; head := NULL

NODE(y) ! head := NODE(y)) ]

Node , HeadT |TailT
SHeadT , Opt(HeadT )
HeadT , �unlink :�SHeadT
TailT , �link :�SHeadT |! 0
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invariant

concurrent FIFO Queue interface and client code

CONCURRENT FIFO QUEUE

var head , tail in (
head := NULL; tail := NULL;
var qinv in
[ enq = sync(qinv)(. . .)

deq = sync(qinv)(. . .) ]

head :rd(�SHeadT ) ; var | tail :rd(�STailT ) ; var

◆(qinv)

`q CQueue :: !enq :0 | !q:deq :0
let q = CQueue in (q .enq ; q .enqkq .deq ; q .deq)
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invariant

type for

LANDIN’S KNOT

var a in ( a := �x.x;
var linv in let f = �y.(sync(linv)(a) y)

in (sync(linv)(a := f); (f nil)) )

a:rd(!�(0 |! 0)) ; var

f : !�(0 |! 0)

◆(linv)
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SUM UP

We introduce the concept of behavioral separation as 
a general principle for disciplining interference in higher-
order imperative concurrent programs

We develop the concept within a clean substructural typed 
lambda calculus, combining ideas from separation logic and 
behavioral type systems for process algebras

Expressiveness of our approach extends current static 
verification of aliasing and concurrency (fine-grained state 
manipulation, ho store, first-class threads,  seq-par frame 
dependency, and synchronization (atomicity) constructs)

We are investigating algorithmic properties of the system
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