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What is a (discrete) system? 

A system 
•  has a scope (a boundary) 
•  a behaviour  

◊  black box view: interface 
•  syntactic interface: defines the discrete events at the system boundary by 

input and output via ports, channels, messages (events, signals) 
•  dynamic interface, interface behaviour: the processes of interaction in terms 

of discrete events at the system boundary 
◊  glass/white box view: an internal structure (state and/or distribution into 

sub-systems) 
•  architecture in terms of sets of sub-systems and their relationships 

(communication connections) 
•  state space 

 and a behaviour  
•  state transition relation with input and output 
•  interactions between components  

•  properties 
◊  quality profile (performance, ... ) 
◊  ... 
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Systems: the model 

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface        (I ! O) 

data stream of type T 

STREAM[T] = {IN\{0} → T*}  

valuation of channel set C  

C= {C → STREAM[T]} 

interface behavior for syn. interface (I ! O) 

[I ! O] = {

I→ ℘(


O )} 

interface specification 

p: I∪O   → IB 

represented as interface assertion S - logical formulae with 
channel names as attributes of type stream 

F: System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

channel name channel type 
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Causality 

Definition. Causal Behavior  
For a mapping 

 F :  → ℘( ) 
the set  
 dom(F) = {x: F(x) � ∅}  

is called the domain of F.  
 
F is called total, if dom(F) = , otherwise F is called partial.  
 
F is called causal, if for all t ∈ IN and all input histories x, z ∈ :  
 x, z ∈  dom(F) ∧ x↓t = z↓t ⇒ {y↓t: y ∈ F(x)} = {y↓t: y ∈ F(z)}  

F is called strongly causal, if (for all t ∈ IN and all input histories x, z ∈ ):  
x, z ∈  dom(F) ∧ x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)} 
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Realizability 

For an interface behaviour F:     

€ 

 
I  → ℘(    

€ 

 
O )  

a strongly causal total function f:     

€ 

 
I  →     

€ 

 
O  such that 

 ∀ x ∈     

€ 

 
I : f(x) ∈ F(x) 

is called realisation. 
 
F is called realizable if there exists a realisation for F. 
 
Realisation f:     

€ 

 
I  →     

€ 

 
O  provides a deterministic strategy to calculate 

for every input history  x a particular output history f(x) with 
 f(x) ∈ F(x) 
 
f essentially defines a deterministic Mealy machine.  
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Example: Nonrealizable strongly causal behaviour 

Consider 
  F(x) = {y: x ≠ y} 

Note that F is strongly causal but not realizable. 
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Full Realizability 

Let [F]  denote the set of realisations for F. 
 
Definition: Full Realizability 

 An interface behaviour F is called fully realizable if it is 
realizable and for all input histories x: 
  F(x) = {f(x): f ∈ [F]}  
 holds. 
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Realizability and state machines 

Theorem: 
 A strongly causal behaviour F is realizable iff there exists 
a deterministic Moore machine with f as its interface 
abstraction that is a realisation of F. 

 
 A strongly causal behaviour F is fully realizable iff there 
exists a Moore machine with F as its interface abstraction. 
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Designing Architectures: 
Composing and Decomposing Systems 
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Fk ∈ IF[Ik!Ok] for k = 1, 2  
where O1 ∩ O2 = ∅,   Ik ∩ Ok = ∅  
shared channels :  
C1 = O1 ∩ I2  
C2 = O2 ∩ I1  
I = I1\C2 ∪ I2\C1 
O =  O1\C1 ∪ O2\C2 
F1×F2 ∈ IF[I ! C], where C = (O1 ∪ O2 ∪ C1 ∪ C2) 
                                         z ∈ IH[I1 ∪ I2 ∪ O1 ∪ O2] 
(F1×F2).(x) = {z|C: x = z|I ∧ z|O1 ∈ F1(z|I1) ∧ z|O2 ∈ F2(z|I2)} 
 
F1⊗F2 ∈ IF[I !  O] 
(F1⊗F2).(x) = {y|O: y ∈ (F1×F2).(x) }     „closed view“ 

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2

Composition and Decomposition of Systems 
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Interface specification composition rule (closed form: Hiding Internal Channels) 

F1⊗F2 
Hiding internal 
channels 
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Interface specification composition rule (open  form) 
 
 
 F1×F2 

x2 

y2 z12 

z21 y1 

x1 
F1 F2 

  
F1×F2 
  in    x1, x2: T 
  out  y1, y2, z12, z21: T 
 P1 ∧ P2 

 

F1×F2 
Visibility of 
internal channels 
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Remarks Composition 

•  Given a set of components K with Fk ∈  IF we write 
⊗ {Fk: k ∈ K }  

 for the interface behaviour of the architecture formed by 
F1 ⊗  F2 ⊗  F3 ⊗   F4 ... 

•  Operator ⊗ is parallel composition including feedback 
•  Operator ⊗ is logically represented by logical conjunction 

for interface assertions and existential quantification for 
channel hiding 

•  Strong causality    
◊  reflects the flow of time 
◊  guarantees unique fixpoints of feedback loops in the case of 

deterministic systems 
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Contracts 

An interface specification can be seen as a contract 
between 
•  the user of a system 
◊  interacting with the system 
◊  using the system as sub-system (“component”) in a larger 

system 

•  the implementer of a system 
 
Key idea:  
The contract includes all information needed 
•  for proper use  
•  for correct implementation 
of the SuC (system under consideration) 
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Composition 
  y‘ 

x‘ y 

x S E 

  
y 

x 

S E 

E⊗S 
Hiding internal channels 

E×S 
Visibility of internal channels 
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A/P-Pattern 

•  Let System be the set of all systems.  
•  Composing system S ∈ System with environment E ∈ Env(S) ⊆ 

System results in 

  E×S ∈ System 

•  Based on composition operator × we formulate contracts by 
assumptions and promises: 

  Con(S) ≡ ∀ E ∈ Env(S): Asu(E) ⇒ Pro(E×S) 
 where  
◊  Con(S) is a system specification called contract,  
◊  Asu(E) is an environment specification called assumption and  

◊  Pro(E×S) is a specification about the system E×S called a promise.  

•  The predicates specify system properties 
  Con, Asu, Pro: System  →  IB 
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Semantics of Assumption/Promise: Interface Assertions 

 
Given a syntactic interface (I!O) an interface assertion  

is a Boolean expression p(x, y) where p is a predicate 

   p:     

€ 

 
I  ×     

€ 

 
O  → IB  .   

and x ∈     

€ 

 
I  and y ∈     

€ 

 
O  are input and output histories 
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Semantics of Contracts by Logical Implication  

•  Interface assertions structured into following pattern: 
  assumption:  asu(x, y) 
  promise:  pro(x, y) 
 with the meaning: if the environment fulfils the assumption 
  asu(x, y)  
 then the system fulfils the promise 
  pro(x, y)  

•  We require of environment E the assumption specified by 
  Asu(E) ≡ [∀ x, y: x ∈ E(y) ⇒ asu(x, y)] 
 and of the system S and its environment E the promise is specified by 

  Pro(E, S) ≡ [∀ x, y: y ∈ (E×S)(x) ⇒ pro(x, y)] 
 The combination of these predicates then specifies a contract  
  Con(S) ≡ [∀ E: Asu(E) ⇒ Pro(E, S)]  
 This defines the meaning of a functional contract. 
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Deriving Implicative Assertions from Contracts 

•  Consider 
  Asu(E) ≡ [∀ x, y: x ∈ E(y) ⇒ asu(x, y)] 

  Pro(E, S) ≡ [∀ x, y: y ∈ (E×S)(x)  ⇒ pro(x, y)] 
  Con(S) ≡ [∀ E: Asu(E) ⇒ Pro(E, S)]  
 which unfolds into 
  Con(S) ≡  
   [∀ E: [∀ x, y: x ∈ E(y) ⇒ asu(x, y)] ⇒  

             [∀ x, y: y ∈ (E×S)(x)  ⇒ pro(x, y)]]  
•  The restriction of causality and realizability for 

environment E and S allows us to derive further contract 
properties.  
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Causality and Realizability 

•  In case assertion asu(x, y) is causal and fully realizable there exists a 
most general environment Egen such the following property holds : 
  ∀ x, y: x ∈ Egen(y) ⇔ asu(x, y)  

•  If a most general environment exists, then   

  Con(S) ≡ [∀ x, y: y ∈ (Egen×S)(x)  ⇒ pro(x, y)] 
 This semantic interpretation of the A/P pattern is equivalent to  
  Con(S) ≡ [∀ x, y: y ∈ S(x) ∧ x ∈ Egen(y) ⇒ pro(x, y)]  
 which leads by the specification of Egen to the following contract: 
  Con(S) ≡ ∀ x, y: asu(x, y) ⇒ (y ∈ S(x) ⇒ pro(x, y)) 
 and to interface assertion con(x, y) for contract Con(S)  
  con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)] 
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Why Assumptions have to Speak about System Output 

•  Consider a system with input channel x and output 
channel y which numbers as messages specified by 
  asu(x, y) ≡ ∀ t: ∀ n ∈ IN: n#(x↓t) ≤ (n#y↓t)+1 
  pro(x, y) ≡ ∀ n ∈ IN: n#x = n#y 

•  We get the specification in terms of an interface assertion 
  con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)] 

 
•  The promise is only guaranteed if a next copy of a 

number n is never sent to the system before the copy 
previously sent has been forwarded.   
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Implicative interface assertions 

 
con(x, y)  asu(x, y) pro(x, y) Interpretation  

true true true for system S history output y is a 
correct output for legal input history x  

false true false for system S history y is an incorrect 
output for legal input history x 

true false true for system S and output history y 
input history x is illegal, environments 
that produce y in reaction to x are 
illegal, y is irregular output 

true false false 

 
 

Tab. 1 Cases of Validity of con(x, y), asu(x, y), and pro(x, y) 
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Architectural Contracts & Implicative Assertions 

•  Given an A/P specification 
  assumption:  asu(x, y) 
  promise:  pro(x, y) 
 one interpretation is that the system S is only used in environments E 
for which assumption asu(x, y) holds. Then we get  
  asu(x, y) ∧ pro(x, y)  
 This interpretation is called architectural contract. 

•  The implicative assertion  
  con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)] 
 specifies the properties implied for system S by the A/P specification.  

•  If system S is used in environments E with specifying assertion env(x, 
y) we get by composition for the composite system E×S 
  env(x, y) ∧ (asu(x, y) ⇒ pro(x, y)) 
 which is different to the architectural contract interpretation.  
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Example: General Implicative Assertions 

•  Let n be a given natural number. 
•  Given system contract with input channel x and output 

channel y, both carrying natural numbers 
  con(x, y) ≡ [n#y = 0 ⇒ n#x = 0] 

•  The premise is not a meaningful assumption, since 
◊  there does not exist an environment that guarantees assertion 

n#y = 0 
◊  it does not speak about input x but only about output y.  

•  Assertion n#y = 0 is not causal in history y, since 
  y↓t = y’↓t ⇒ ∀ x: (n#y = 0) ≡ (n#y’ = 0) 
 which does not hold.  

•  Assertion n#y = 0 is not a healthy assumption, since it is 
not realizable by any environment. 
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Example: Implicative Assertions (ctd) 

•  Assertion 
  con’(x, y) ≡ [n#x > 0 ⇒ n#y > 0] 
 is equivalent to assertion con(x, y) by contraposition  

•  Assertion n#x > 0 is causal in history y since the formula 
  y↓t = y’↓t ⇒ ∀x: (n#x↓t > 0) ≡ (n#x↓t > 0) 
 holds.  

•  This assertion may be interpreted as an A/P-format 
  assumption:  n#x > 0 
  promise:   n#y > 0 
 which is a meaningful (but rather simple) contract.   
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Non-satisfiable Specifications 

•  We call assumption Asu(E) about environment E non-
satisfiable if there does not exist some environment E 
such that Asu(E) holds.  
 Then contract Con(S) is trivial. 

•  Let Asu be specified based on asu as defined above.  
◊  If asu(x, y) is false, then Asu is non-satisfiable.  
◊  Even in cases where asu(x, y) is not identical to false, predicate 

Asu may be non-satisfiable. 
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Non-satisfiable Specifications 

Theorem: 
•  If every environment E can be represented by a total 

Mealy machine, then Asu(E) is satisfiable if and only if 
asu(x, y) is realizable (for the environment with input y 
and output x). 

•  Proof:  
For a specification asu(x, y) there exists a Mealy machine 
that satisfies asu(x, y) if and only if asu(x, y) is realizable. 
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Notation 

s↓t  prefix of length t ∈ IN of the stream s (which is a 
sequence of length t), 

z↓t  history of streams prefix of length t ∈ IN of the history 
z ∈ 


C   

 (z↓t)(c) = (z(c))↓t 

Notation: Given a predicate 
 p: 


C  →  IB 

we specify for every time t ∈ IN 
 p(z↓t) ≡ ∃ z’ ∈ 


C : z↓t = z’↓t ∧ p(z’) 

!
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Safety & Liveness 

A predicate R is a pure safety property if the following 
equivalence holds for all histories x and y: 

  R(x, y) ≡ ∀ t: R(x↓t, y↓t) 
 
R is a pure liveness property if 

    ∀ t: R(x↓t, y↓t) 
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Canonical Decomposition Assertions into Safety and Liveness Parts 

•  The safety part R* of an interface assertion R(x, y) is given by the 
following equation 
  R*(x, y) ≡ ∀ t: R(x↓t, y↓t) 

 
•  R is called safety realizable if: 

   ∀ x: ∃ y: R*(x, y) 
 
•  For predicate R we get liveness property R∞ included in property R by 

  R∞(x, y) ≡ (¬R*(x, y) ∨ R(x, y)) 
 
•  To show that R∞ is a liveness property we have to prove 

  ∀ t: R∞(x↓t, y↓t) 

•  Theorem:  R(x, y) ≡ R*(x, y) ∧ R∞(x, y)  
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Assumption/Promises as Safety and Liveness Properties 

•  We consider the interface assertion con(x, y) with 
  con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)] 

•  The liveness conditions in assertion asu(x, y) for input 
history x may depend on safety properties of y.  

 
•  A typical example would be 

◊  If y(t) is a query, then  

◊  there exists a time t' > t such that x(t') is a reply to this query. 
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Assumption asu and promise pro are both safety property  

•  Then the A/P-scheme is equivalent to the following 
assertion: 
  con(x, y) ≡ ∀ t: [asu(x↓t, y↓t) ⇒ pro(x↓t, y↓t)] 
 This is the consequence of the required causality of 
con(x, y). 
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Assumption asu is safety, promise pro is liveness property  

• Then the A/P-specification con(x, y) is equivalent 
to the following assertion: 
  con(x, y) ≡ [∀ t: asu(x↓t, y↓t)] ⇒ pro(x, y) 
 This is the consequence of the required causality 
of con(x, y). 
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Assumption asu is liveness, promise pro is safety property:  

•  In this case we can strengthen the specification according 
to the realizability on con(x, y) 
   con(x, y) ≡ pro(x, y) 

 
•  Since the violation of assumption asu(x, y) cannot be 

observed in finite time, but promise pro can only be 
violated in finite time, a computation strategy has to 
observe promise pro in any case.  
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An example 

  asu(x, y) ≡ (true#x = ∞) 
  pro(x, y) ≡ (true#y = 0) 
 Assume a realization f that  
 fulfils true#f(x) > 0 for some x with true#x = n ∈ IN.  
 This leads to a contradiction since by  

 
  true#f(x) > 0  there exists some t with  
  true#f(x)↓t > 0  and thus for history x’ with 

  
  x↓t = x’↓t and true#x’ > ∞  
 we get true#f(x’) > 0 which violates the specification 
  true#x = ∞ ⇒ true#f(x) = 0 
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Assumption asu and promise pro as liveness properties 

•  In this case the condition 
  asu(x, y) ⇒ pro(x, y) 
 can be fulfilled by fulfilling promise pro(x, y) in any case. 

•  Otherwise, the liveness condition have to fit together. 
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An example 

  asu(x, y) ≡ (true#x = ∞) 
  pro(x, y) ≡ (true#y < ∞) 
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Decomposing A/P Specification Into Safety and Liveness 

•  We decompose assumption asu and promise pro into pure 
safety properties asuS, proS and pure liveness properties 
asuL and proL such that 
  con(x, y) ≡  

[asuS(x, y) ∧ asuL(x, y) ⇒ proS(x, y) ∧ proL(x, y)] 
•  For a strongly causal and realizable specification con(x, y) 

we can derive specific assertions 
  asuS(x, y) ⇒ proS(x, y) 
  asuS(x, y) ∧ asuL(x, y) ⇒ proL(x, y) 
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Conclusion 

•  Analysing the assumption/promise pattern additional 
consequences are derived by 
◊  Causality and realizability requirements 
◊  Safety and liveness considerations 
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ias 

From interaction assertions ias to contracts 

•  Let ias(x, y) be an assertion that characterizes the 
interaction between system S and its environment E, 
called interaction assertion.  

•  ias provides an observation/specification of the traffic 
between E and S 

•  Can we derive of a contract for S from assertion ias(x, y) 
that captures the obligations of system S w.r.t. ias? 

 

Environment 
E 

System  
S 

x 

y 
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Pathological cases 

•  It is clear that we cannot expect to get a reasonable 
contract from ias(x, y) in every case.  

•  A simple example would be ias(x, y) = false.  
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Separation 

•  Given the healthiness condition for the interface assertion 
  ∃ x, y: ias(x, y) 
 we can do a separation of R into an assumption and a promise (for 
the safety properties in R) as follows.  

•  We specify the responsibilities of the system S that accepts the input 
history x and issues and output history y such that assertion 
  ias(x, y) 
 holds.  

•  We are looking for assertions asu(x, y) and pro(x, y) such that 
  asu(x, y) ∧ pro(x, y) ⇒ ias(x, y) 
 and 
  assumption  asu(x, y) 
  promise  pro(x, y) 
 is a healthy assumption promise specification.  

•  If ias(x, y) is strongly causal in x and fully realizable, then asu(x, y) ≡ 
true is a valid choice. 
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Separation 

•  If 
  ∀ x: ∃ y: ias(x, y) 
 does not hold, then we need to construct an assumption 
asu(x, y) and a promise pro(x, y) such that 

 
 (1) asu(x, y)  is causal in y and realizable 
 (2) asu(x, y) ⇒ pro(x, y)  is strongly causal in x and  

    realizable. 
 and 
  asu(x, y) ∧ pro(x, y) ⇒ R(x, y) 
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Separating ias 

•  we derive an A/P-specification for system S with the 
weakest assumption by the following steps: 

 
1.  Separate ias into a safety and a liveness part 
2.  Do the canonical separation of the safety part of ias 

into an assumption and a promise 
3.  Separate the liveness part of ias in an assumption and 

a promise 
4.  Construct the A/P-specification of S from the liveness 

and safety parts of the assumption and the  promise. 
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Separation: Safety part 

asu(x, y) ≡  
[ias(x, y↓0) ∧ (∀ t: ias(x↓t, y↓t) ⇒ ias(x↓t+1, y↓t))] 

pro(x, y) ≡  
(∀ t: ias(x↓t+1, y↓t) ⇒ ias(x↓t+1, y↓t+1)) 
 
Theorem: 
Under the condition that assertion ias(x, y) is a pure safety 
property: 

 (asu(x, y) ∧ pro(x, y)) ⇔ ias(x, y)  
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Separation: Liveness part 

•  There are liveness conditions that can be seen as 
assumptions as well as promises.  
 

•  An example is the assertion 
 {1}#x + {0}#y = ∞ 

which can either be fulfilled 
◊  by assuming an infinite number of copies of 1 in input history 

x or  
◊  by promising an infinite number of copies of 0 in y (or both). 



                             Manfred Broy 50 IFIP W.G. 2.2. Amsterdam September 2012 

Separation: Liveness part 

Given an interaction assertion  
 ias(x, y) 

that is a liveness condition we define an assumption asuias 
as follows 

 asuias(x) ≡ ∃ y: ias(x, y) 
and a promise proias by the equation 

 proias(x, y) ≡ ias(x, y) 
by this definition those parts of the liveness property ias 
that can either be fulfilled by the environment or by the 
system under consideration.  
◊  In the later case they are made part of the promise.  
◊  This way we get a weakest assumption and the strongest 

promise. 
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Example. From interaction to interface assertions 

•  Given the specification 
  ias(x, y) ≡ ( x ≈ y ∧ ∀ t: (#y↓t)+b ≥ #x↓t ∧ #x↓t ≥ #y↓t) 
 where x and y are streams of data and b is a given number and 
 x ≈ y specifies that x and y carry the same stream of messages 
(eliminating empty slots “-”) 

•  We choose the assumption 
   asu(x, y) ≡ ∀ t: (#y↓t)+b ≥ #x↓t 

•  asu(x, y) is causal in y and realizable. 
•  We choose the promise 

   pro(x, y) ≡ (x ≈ y ∧ ∀ t: #x↓t ≥ #y↓t) 
•  Assertion pro(x, y) is strongly causal and fully realizable.  
•  We get 

   pro(x, y) ∧ asu(x, y) ⇒ ias(x, y) 
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Example. Non-realizable Specification 

•  Consider a system with input channel x and output 
channel y both carrying boolean messages: 
 R(x, y) =  [  (true#x < ∞ ⇒ true#y = ∞)  
   ∧ (true#x = ∞ ⇒ true#y < ∞) ] 

•  All the involved assertions are liveness properties. We get 
  ∀ x: ∃ y: R(x, y) 

•  However, there does not exist a causal function f with 
  ∀ x: R(x, f(x)) 

•  Otherwise, there would exist a strongly causal function f 
with a fixpoint y = f(y) such that R(x, y) holds which 
delivers a contradiction.  

•  The example suggests that non-realizable specifications 
include liveness properties that cannot be realized. 
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Example: Simple Watch Guard in a Car 

 
 

Car 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 

doors_closed : Bool 

act_speed : Real 
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Glass Box Specification of a Car´s Architecture 

 
 

Car 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 

ready : Bool 

act_speed : Real 

doors_closed : Bool 

Motor WatchDog 
act_speed : Real 
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Example: how A/P-specifications can be formulated 

•  The specification 
  ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0  
 can only be guaranteed if the two inner components work together. 
This requires 
  ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  

•  Then the system specification holds if 
  ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t) 

•  This is logically equivalent to the A/P-specification for the WatchDog 
  assumption: ∀ t:  ¬ ready(t) ⇒ act_speed(t) = 0  
  promise: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 

•  In other words,  
◊  the overall system specification can be guaranteed by the watchdog  
◊  only if the assumption about the behaviour of the component motor 

holds.   
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Simple Watch Guard in a Car (Continued) 
 

 

 
 

Watch-Dog 
assumption: 
∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  
 
promise: 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0  
 

ready : Bool 

act_speed : Real 

doors_closed : Bool 
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Assumption/Promise to define Architectural Design Patterns 

•  A/P-specification 
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  
 promise:  ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 is logically guaranteed by the simple specification 
  ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t) 

•  This assertion no longer speaks about the specification of 
the environment, but is a pure interface specification.  

•  The example shows the simplification of an A/P-
specification to a plain interface assertion. 
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Conclusion 

•  The meaning of A/P specs 
◊  Simple conditionals/implication under what condition 

•  A/P specs normalized by 
◊  Assumption of realizability 
◊  Analysis of liveness and safety – transformation of A/P specs 

•  A/P specs for architecture design 
◊  From interaction assertions to A/P specs 
◊  From A/P specs to plain specs 
 


