
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Towards a Theory of Architectural Contracts:
Schemes and Patterns

of
Assumption/Promise Based System Specification

Manfred Broy

 Manfred Broy 2 IFIP W.G. 2.2. Amsterdam September 2012

What is a (discrete) system?

A system
•  has a scope (a boundary)
•  a behaviour

◊  black box view: interface
•  syntactic interface: defines the discrete events at the system boundary by

input and output via ports, channels, messages (events, signals)
•  dynamic interface, interface behaviour: the processes of interaction in terms

of discrete events at the system boundary
◊  glass/white box view: an internal structure (state and/or distribution into

sub-systems)
•  architecture in terms of sets of sub-systems and their relationships

(communication connections)
•  state space

 and a behaviour
•  state transition relation with input and output
•  interactions between components

•  properties
◊  quality profile (performance, ...)
◊  ...

 Manfred Broy 3 IFIP W.G. 2.2. Amsterdam September 2012

Systems: the model

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface (I ! O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

C= {C → STREAM[T]}

interface behavior for syn. interface (I ! O)

[I ! O] = {

I→ ℘(

O)}

interface specification

p: I∪O → IB

represented as interface assertion S - logical formulae with
channel names as attributes of type stream

F: System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

channel name channel type

 Manfred Broy 4 IFIP W.G. 2.2. Amsterdam September 2012

Causality

Definition. Causal Behavior
For a mapping

 F : → ℘()
the set
 dom(F) = {x: F(x) � ∅}

is called the domain of F.

F is called total, if dom(F) = , otherwise F is called partial.

F is called causal, if for all t ∈ IN and all input histories x, z ∈ :
 x, z ∈ dom(F) ∧ x↓t = z↓t ⇒ {y↓t: y ∈ F(x)} = {y↓t: y ∈ F(z)}

F is called strongly causal, if (for all t ∈ IN and all input histories x, z ∈):
x, z ∈ dom(F) ∧ x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

€

I

€

O

€

I

€

I

€

I

 Manfred Broy 5 IFIP W.G. 2.2. Amsterdam September 2012

Realizability

For an interface behaviour F:

€

I → ℘(

€

O)

a strongly causal total function f:

€

I →

€

O such that

 ∀ x ∈

€

I : f(x) ∈ F(x)

is called realisation.

F is called realizable if there exists a realisation for F.

Realisation f:

€

I →

€

O provides a deterministic strategy to calculate

for every input history x a particular output history f(x) with
 f(x) ∈ F(x)

f essentially defines a deterministic Mealy machine.

 Manfred Broy 6 IFIP W.G. 2.2. Amsterdam September 2012

Example: Nonrealizable strongly causal behaviour

Consider
 F(x) = {y: x ≠ y}

Note that F is strongly causal but not realizable.

 Manfred Broy 7 IFIP W.G. 2.2. Amsterdam September 2012

Full Realizability

Let [F] denote the set of realisations for F.

Definition: Full Realizability

 An interface behaviour F is called fully realizable if it is
realizable and for all input histories x:
 F(x) = {f(x): f ∈ [F]}
 holds.

 Manfred Broy 8 IFIP W.G. 2.2. Amsterdam September 2012

Realizability and state machines

Theorem:
 A strongly causal behaviour F is realizable iff there exists
a deterministic Moore machine with f as its interface
abstraction that is a realisation of F.

 A strongly causal behaviour F is fully realizable iff there
exists a Moore machine with F as its interface abstraction.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Designing Architectures:
Composing and Decomposing Systems

 Manfred Broy 10 IFIP W.G. 2.2. Amsterdam September 2012

Fk ∈ IF[Ik!Ok] for k = 1, 2
where O1 ∩ O2 = ∅, Ik ∩ Ok = ∅
shared channels :
C1 = O1 ∩ I2
C2 = O2 ∩ I1
I = I1\C2 ∪ I2\C1
O = O1\C1 ∪ O2\C2
F1×F2 ∈ IF[I ! C], where C = (O1 ∪ O2 ∪ C1 ∪ C2)
 z ∈ IH[I1 ∪ I2 ∪ O1 ∪ O2]
(F1×F2).(x) = {z|C: x = z|I ∧ z|O1 ∈ F1(z|I1) ∧ z|O2 ∈ F2(z|I2)}

F1⊗F2 ∈ IF[I ! O]
(F1⊗F2).(x) = {y|O: y ∈ (F1×F2).(x) } „closed view“

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2

Composition and Decomposition of Systems

 Manfred Broy 11 IFIP W.G. 2.2. Amsterdam September 2012

Interface specification composition rule (closed form: Hiding Internal Channels)

F1⊗F2
Hiding internal
channels

 Manfred Broy 12 IFIP W.G. 2.2. Amsterdam September 2012

Interface specification composition rule (open form)

 F1×F2

x2

y2 z12

z21 y1

x1
F1 F2

F1×F2
 in x1, x2: T
 out y1, y2, z12, z21: T
 P1 ∧ P2

F1×F2
Visibility of
internal channels

 Manfred Broy 13 IFIP W.G. 2.2. Amsterdam September 2012

Remarks Composition

•  Given a set of components K with Fk ∈ IF we write
⊗ {Fk: k ∈ K }

 for the interface behaviour of the architecture formed by
F1 ⊗ F2 ⊗ F3 ⊗ F4 ...

•  Operator ⊗ is parallel composition including feedback
•  Operator ⊗ is logically represented by logical conjunction

for interface assertions and existential quantification for
channel hiding

•  Strong causality
◊  reflects the flow of time
◊  guarantees unique fixpoints of feedback loops in the case of

deterministic systems

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Contracts
Assumption/Promise

 Manfred Broy 15 IFIP W.G. 2.2. Amsterdam September 2012

Contracts

An interface specification can be seen as a contract
between
•  the user of a system
◊  interacting with the system
◊  using the system as sub-system (“component”) in a larger

system

•  the implementer of a system

Key idea:
The contract includes all information needed
•  for proper use
•  for correct implementation
of the SuC (system under consideration)

 Manfred Broy 16 IFIP W.G. 2.2. Amsterdam September 2012

Composition
 y‘

x‘ y

x S E

y

x

S E

E⊗S
Hiding internal channels

E×S
Visibility of internal channels

 Manfred Broy 17 IFIP W.G. 2.2. Amsterdam September 2012

A/P-Pattern

•  Let System be the set of all systems.
•  Composing system S ∈ System with environment E ∈ Env(S) ⊆

System results in

 E×S ∈ System

•  Based on composition operator × we formulate contracts by
assumptions and promises:

 Con(S) ≡ ∀ E ∈ Env(S): Asu(E) ⇒ Pro(E×S)
 where
◊  Con(S) is a system specification called contract,
◊  Asu(E) is an environment specification called assumption and

◊  Pro(E×S) is a specification about the system E×S called a promise.

•  The predicates specify system properties
 Con, Asu, Pro: System → IB

 Manfred Broy 18 IFIP W.G. 2.2. Amsterdam September 2012

Semantics of Assumption/Promise: Interface Assertions

Given a syntactic interface (I!O) an interface assertion

is a Boolean expression p(x, y) where p is a predicate

 p:

€

I ×

€

O → IB .

and x ∈

€

I and y ∈

€

O are input and output histories

 Manfred Broy 19 IFIP W.G. 2.2. Amsterdam September 2012

Semantics of Contracts by Logical Implication

•  Interface assertions structured into following pattern:
 assumption: asu(x, y)
 promise: pro(x, y)
 with the meaning: if the environment fulfils the assumption
 asu(x, y)
 then the system fulfils the promise
 pro(x, y)

•  We require of environment E the assumption specified by
 Asu(E) ≡ [∀ x, y: x ∈ E(y) ⇒ asu(x, y)]
 and of the system S and its environment E the promise is specified by

 Pro(E, S) ≡ [∀ x, y: y ∈ (E×S)(x) ⇒ pro(x, y)]
 The combination of these predicates then specifies a contract
 Con(S) ≡ [∀ E: Asu(E) ⇒ Pro(E, S)]
 This defines the meaning of a functional contract.

 Manfred Broy 20 IFIP W.G. 2.2. Amsterdam September 2012

Deriving Implicative Assertions from Contracts

•  Consider
 Asu(E) ≡ [∀ x, y: x ∈ E(y) ⇒ asu(x, y)]

 Pro(E, S) ≡ [∀ x, y: y ∈ (E×S)(x) ⇒ pro(x, y)]
 Con(S) ≡ [∀ E: Asu(E) ⇒ Pro(E, S)]
 which unfolds into
 Con(S) ≡
 [∀ E: [∀ x, y: x ∈ E(y) ⇒ asu(x, y)] ⇒

 [∀ x, y: y ∈ (E×S)(x) ⇒ pro(x, y)]]
•  The restriction of causality and realizability for

environment E and S allows us to derive further contract
properties.

 Manfred Broy 21 IFIP W.G. 2.2. Amsterdam September 2012

Causality and Realizability

•  In case assertion asu(x, y) is causal and fully realizable there exists a
most general environment Egen such the following property holds :
 ∀ x, y: x ∈ Egen(y) ⇔ asu(x, y)

•  If a most general environment exists, then

 Con(S) ≡ [∀ x, y: y ∈ (Egen×S)(x) ⇒ pro(x, y)]
 This semantic interpretation of the A/P pattern is equivalent to
 Con(S) ≡ [∀ x, y: y ∈ S(x) ∧ x ∈ Egen(y) ⇒ pro(x, y)]
 which leads by the specification of Egen to the following contract:
 Con(S) ≡ ∀ x, y: asu(x, y) ⇒ (y ∈ S(x) ⇒ pro(x, y))
 and to interface assertion con(x, y) for contract Con(S)
 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]

 Manfred Broy 22 IFIP W.G. 2.2. Amsterdam September 2012

Why Assumptions have to Speak about System Output

•  Consider a system with input channel x and output
channel y which numbers as messages specified by
 asu(x, y) ≡ ∀ t: ∀ n ∈ IN: n#(x↓t) ≤ (n#y↓t)+1
 pro(x, y) ≡ ∀ n ∈ IN: n#x = n#y

•  We get the specification in terms of an interface assertion
 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]

•  The promise is only guaranteed if a next copy of a

number n is never sent to the system before the copy
previously sent has been forwarded.

 Manfred Broy 23 IFIP W.G. 2.2. Amsterdam September 2012

Implicative interface assertions

con(x, y) asu(x, y) pro(x, y) Interpretation

true true true for system S history output y is a
correct output for legal input history x

false true false for system S history y is an incorrect
output for legal input history x

true false true for system S and output history y
input history x is illegal, environments
that produce y in reaction to x are
illegal, y is irregular output

true false false

Tab. 1 Cases of Validity of con(x, y), asu(x, y), and pro(x, y)

 Manfred Broy 24 IFIP W.G. 2.2. Amsterdam September 2012

Architectural Contracts & Implicative Assertions

•  Given an A/P specification
 assumption: asu(x, y)
 promise: pro(x, y)
 one interpretation is that the system S is only used in environments E
for which assumption asu(x, y) holds. Then we get
 asu(x, y) ∧ pro(x, y)
 This interpretation is called architectural contract.

•  The implicative assertion
 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]
 specifies the properties implied for system S by the A/P specification.

•  If system S is used in environments E with specifying assertion env(x,
y) we get by composition for the composite system E×S
 env(x, y) ∧ (asu(x, y) ⇒ pro(x, y))
 which is different to the architectural contract interpretation.

 Manfred Broy 25 IFIP W.G. 2.2. Amsterdam September 2012

Example: General Implicative Assertions

•  Let n be a given natural number.
•  Given system contract with input channel x and output

channel y, both carrying natural numbers
 con(x, y) ≡ [n#y = 0 ⇒ n#x = 0]

•  The premise is not a meaningful assumption, since
◊  there does not exist an environment that guarantees assertion

n#y = 0
◊  it does not speak about input x but only about output y.

•  Assertion n#y = 0 is not causal in history y, since
 y↓t = y’↓t ⇒ ∀ x: (n#y = 0) ≡ (n#y’ = 0)
 which does not hold.

•  Assertion n#y = 0 is not a healthy assumption, since it is
not realizable by any environment.

 Manfred Broy 26 IFIP W.G. 2.2. Amsterdam September 2012

Example: Implicative Assertions (ctd)

•  Assertion
 con’(x, y) ≡ [n#x > 0 ⇒ n#y > 0]
 is equivalent to assertion con(x, y) by contraposition

•  Assertion n#x > 0 is causal in history y since the formula
 y↓t = y’↓t ⇒ ∀x: (n#x↓t > 0) ≡ (n#x↓t > 0)
 holds.

•  This assertion may be interpreted as an A/P-format
 assumption: n#x > 0
 promise: n#y > 0
 which is a meaningful (but rather simple) contract.

 Manfred Broy 27 IFIP W.G. 2.2. Amsterdam September 2012

Non-satisfiable Specifications

•  We call assumption Asu(E) about environment E non-
satisfiable if there does not exist some environment E
such that Asu(E) holds.
 Then contract Con(S) is trivial.

•  Let Asu be specified based on asu as defined above.
◊  If asu(x, y) is false, then Asu is non-satisfiable.
◊  Even in cases where asu(x, y) is not identical to false, predicate

Asu may be non-satisfiable.

 Manfred Broy 28 IFIP W.G. 2.2. Amsterdam September 2012

Non-satisfiable Specifications

Theorem:
•  If every environment E can be represented by a total

Mealy machine, then Asu(E) is satisfiable if and only if
asu(x, y) is realizable (for the environment with input y
and output x).

•  Proof:
For a specification asu(x, y) there exists a Mealy machine
that satisfies asu(x, y) if and only if asu(x, y) is realizable.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Safety and Liveness of Interface Assertions

 Manfred Broy 30 IFIP W.G. 2.2. Amsterdam September 2012

Notation

s↓t prefix of length t ∈ IN of the stream s (which is a
sequence of length t),

z↓t history of streams prefix of length t ∈ IN of the history
z ∈

C

 (z↓t)(c) = (z(c))↓t

Notation: Given a predicate
 p:

C → IB

we specify for every time t ∈ IN
 p(z↓t) ≡ ∃ z’ ∈

C : z↓t = z’↓t ∧ p(z’)

!

 Manfred Broy 31 IFIP W.G. 2.2. Amsterdam September 2012

Safety & Liveness

A predicate R is a pure safety property if the following
equivalence holds for all histories x and y:

 R(x, y) ≡ ∀ t: R(x↓t, y↓t)

R is a pure liveness property if

 ∀ t: R(x↓t, y↓t)

 Manfred Broy 32 IFIP W.G. 2.2. Amsterdam September 2012

Canonical Decomposition Assertions into Safety and Liveness Parts

•  The safety part R* of an interface assertion R(x, y) is given by the
following equation
 R*(x, y) ≡ ∀ t: R(x↓t, y↓t)

•  R is called safety realizable if:

 ∀ x: ∃ y: R*(x, y)

•  For predicate R we get liveness property R∞ included in property R by

 R∞(x, y) ≡ (¬R*(x, y) ∨ R(x, y))

•  To show that R∞ is a liveness property we have to prove

 ∀ t: R∞(x↓t, y↓t)

•  Theorem: R(x, y) ≡ R*(x, y) ∧ R∞(x, y)

 Manfred Broy 33 IFIP W.G. 2.2. Amsterdam September 2012

Assumption/Promises as Safety and Liveness Properties

•  We consider the interface assertion con(x, y) with
 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]

•  The liveness conditions in assertion asu(x, y) for input
history x may depend on safety properties of y.

•  A typical example would be

◊  If y(t) is a query, then

◊  there exists a time t' > t such that x(t') is a reply to this query.

 Manfred Broy 34 IFIP W.G. 2.2. Amsterdam September 2012

Assumption asu and promise pro are both safety property

•  Then the A/P-scheme is equivalent to the following
assertion:
 con(x, y) ≡ ∀ t: [asu(x↓t, y↓t) ⇒ pro(x↓t, y↓t)]
 This is the consequence of the required causality of
con(x, y).

 Manfred Broy 35 IFIP W.G. 2.2. Amsterdam September 2012

Assumption asu is safety, promise pro is liveness property

• Then the A/P-specification con(x, y) is equivalent
to the following assertion:
 con(x, y) ≡ [∀ t: asu(x↓t, y↓t)] ⇒ pro(x, y)
 This is the consequence of the required causality
of con(x, y).

 Manfred Broy 36 IFIP W.G. 2.2. Amsterdam September 2012

Assumption asu is liveness, promise pro is safety property:

•  In this case we can strengthen the specification according
to the realizability on con(x, y)
 con(x, y) ≡ pro(x, y)

•  Since the violation of assumption asu(x, y) cannot be

observed in finite time, but promise pro can only be
violated in finite time, a computation strategy has to
observe promise pro in any case.

 Manfred Broy 37 IFIP W.G. 2.2. Amsterdam September 2012

An example

 asu(x, y) ≡ (true#x = ∞)
 pro(x, y) ≡ (true#y = 0)
 Assume a realization f that
 fulfils true#f(x) > 0 for some x with true#x = n ∈ IN.
 This leads to a contradiction since by

 true#f(x) > 0 there exists some t with
 true#f(x)↓t > 0 and thus for history x’ with

 x↓t = x’↓t and true#x’ > ∞
 we get true#f(x’) > 0 which violates the specification
 true#x = ∞ ⇒ true#f(x) = 0

 Manfred Broy 38 IFIP W.G. 2.2. Amsterdam September 2012

Assumption asu and promise pro as liveness properties

•  In this case the condition
 asu(x, y) ⇒ pro(x, y)
 can be fulfilled by fulfilling promise pro(x, y) in any case.

•  Otherwise, the liveness condition have to fit together.

 Manfred Broy 39 IFIP W.G. 2.2. Amsterdam September 2012

An example

 asu(x, y) ≡ (true#x = ∞)
 pro(x, y) ≡ (true#y < ∞)

 Manfred Broy 40 IFIP W.G. 2.2. Amsterdam September 2012

Decomposing A/P Specification Into Safety and Liveness

•  We decompose assumption asu and promise pro into pure
safety properties asuS, proS and pure liveness properties
asuL and proL such that
 con(x, y) ≡

[asuS(x, y) ∧ asuL(x, y) ⇒ proS(x, y) ∧ proL(x, y)]
•  For a strongly causal and realizable specification con(x, y)

we can derive specific assertions
 asuS(x, y) ⇒ proS(x, y)
 asuS(x, y) ∧ asuL(x, y) ⇒ proL(x, y)

 Manfred Broy 41 IFIP W.G. 2.2. Amsterdam September 2012

Conclusion

•  Analysing the assumption/promise pattern additional
consequences are derived by
◊  Causality and realizability requirements
◊  Safety and liveness considerations

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Contracts and Architectures

 Manfred Broy 43 IFIP W.G. 2.2. Amsterdam September 2012

ias

From interaction assertions ias to contracts

•  Let ias(x, y) be an assertion that characterizes the
interaction between system S and its environment E,
called interaction assertion.

•  ias provides an observation/specification of the traffic
between E and S

•  Can we derive of a contract for S from assertion ias(x, y)
that captures the obligations of system S w.r.t. ias?

Environment
E

System
S

x

y

 Manfred Broy 44 IFIP W.G. 2.2. Amsterdam September 2012

Pathological cases

•  It is clear that we cannot expect to get a reasonable
contract from ias(x, y) in every case.

•  A simple example would be ias(x, y) = false.

 Manfred Broy 45 IFIP W.G. 2.2. Amsterdam September 2012

Separation

•  Given the healthiness condition for the interface assertion
 ∃ x, y: ias(x, y)
 we can do a separation of R into an assumption and a promise (for
the safety properties in R) as follows.

•  We specify the responsibilities of the system S that accepts the input
history x and issues and output history y such that assertion
 ias(x, y)
 holds.

•  We are looking for assertions asu(x, y) and pro(x, y) such that
 asu(x, y) ∧ pro(x, y) ⇒ ias(x, y)
 and
 assumption asu(x, y)
 promise pro(x, y)
 is a healthy assumption promise specification.

•  If ias(x, y) is strongly causal in x and fully realizable, then asu(x, y) ≡
true is a valid choice.

 Manfred Broy 46 IFIP W.G. 2.2. Amsterdam September 2012

Separation

•  If
 ∀ x: ∃ y: ias(x, y)
 does not hold, then we need to construct an assumption
asu(x, y) and a promise pro(x, y) such that

 (1) asu(x, y) is causal in y and realizable
 (2) asu(x, y) ⇒ pro(x, y) is strongly causal in x and

 realizable.
 and
 asu(x, y) ∧ pro(x, y) ⇒ R(x, y)

 Manfred Broy 47 IFIP W.G. 2.2. Amsterdam September 2012

Separating ias

•  we derive an A/P-specification for system S with the
weakest assumption by the following steps:

1.  Separate ias into a safety and a liveness part
2.  Do the canonical separation of the safety part of ias

into an assumption and a promise
3.  Separate the liveness part of ias in an assumption and

a promise
4.  Construct the A/P-specification of S from the liveness

and safety parts of the assumption and the promise.

 Manfred Broy 48 IFIP W.G. 2.2. Amsterdam September 2012

Separation: Safety part

asu(x, y) ≡
[ias(x, y↓0) ∧ (∀ t: ias(x↓t, y↓t) ⇒ ias(x↓t+1, y↓t))]

pro(x, y) ≡
(∀ t: ias(x↓t+1, y↓t) ⇒ ias(x↓t+1, y↓t+1))

Theorem:
Under the condition that assertion ias(x, y) is a pure safety
property:

 (asu(x, y) ∧ pro(x, y)) ⇔ ias(x, y)

 Manfred Broy 49 IFIP W.G. 2.2. Amsterdam September 2012

Separation: Liveness part

•  There are liveness conditions that can be seen as
assumptions as well as promises.

•  An example is the assertion
 {1}#x + {0}#y = ∞

which can either be fulfilled
◊  by assuming an infinite number of copies of 1 in input history

x or
◊  by promising an infinite number of copies of 0 in y (or both).

 Manfred Broy 50 IFIP W.G. 2.2. Amsterdam September 2012

Separation: Liveness part

Given an interaction assertion
 ias(x, y)

that is a liveness condition we define an assumption asuias
as follows

 asuias(x) ≡ ∃ y: ias(x, y)
and a promise proias by the equation

 proias(x, y) ≡ ias(x, y)
by this definition those parts of the liveness property ias
that can either be fulfilled by the environment or by the
system under consideration.
◊  In the later case they are made part of the promise.
◊  This way we get a weakest assumption and the strongest

promise.

 Manfred Broy 51 IFIP W.G. 2.2. Amsterdam September 2012

Example. From interaction to interface assertions

•  Given the specification
 ias(x, y) ≡ (x ≈ y ∧ ∀ t: (#y↓t)+b ≥ #x↓t ∧ #x↓t ≥ #y↓t)
 where x and y are streams of data and b is a given number and
 x ≈ y specifies that x and y carry the same stream of messages
(eliminating empty slots “-”)

•  We choose the assumption
 asu(x, y) ≡ ∀ t: (#y↓t)+b ≥ #x↓t

•  asu(x, y) is causal in y and realizable.
•  We choose the promise

 pro(x, y) ≡ (x ≈ y ∧ ∀ t: #x↓t ≥ #y↓t)
•  Assertion pro(x, y) is strongly causal and fully realizable.
•  We get

 pro(x, y) ∧ asu(x, y) ⇒ ias(x, y)

 Manfred Broy 52 IFIP W.G. 2.2. Amsterdam September 2012

Example. Non-realizable Specification

•  Consider a system with input channel x and output
channel y both carrying boolean messages:
 R(x, y) = [(true#x < ∞ ⇒ true#y = ∞)
 ∧ (true#x = ∞ ⇒ true#y < ∞)]

•  All the involved assertions are liveness properties. We get
 ∀ x: ∃ y: R(x, y)

•  However, there does not exist a causal function f with
 ∀ x: R(x, f(x))

•  Otherwise, there would exist a strongly causal function f
with a fixpoint y = f(y) such that R(x, y) holds which
delivers a contradiction.

•  The example suggests that non-realizable specifications
include liveness properties that cannot be realized.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Assumptions in Architectural Modelling

 Manfred Broy 54 IFIP W.G. 2.2. Amsterdam September 2012

Example: Simple Watch Guard in a Car

Car
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

doors_closed : Bool

act_speed : Real

 Manfred Broy 55 IFIP W.G. 2.2. Amsterdam September 2012

Glass Box Specification of a Car´s Architecture

Car
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

ready : Bool

act_speed : Real

doors_closed : Bool

Motor WatchDog
act_speed : Real

 Manfred Broy 56 IFIP W.G. 2.2. Amsterdam September 2012

Example: how A/P-specifications can be formulated

•  The specification
 ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0
 can only be guaranteed if the two inner components work together.
This requires
 ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0

•  Then the system specification holds if
 ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t)

•  This is logically equivalent to the A/P-specification for the WatchDog
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0
 promise: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

•  In other words,
◊  the overall system specification can be guaranteed by the watchdog
◊  only if the assumption about the behaviour of the component motor

holds.

 Manfred Broy 57 IFIP W.G. 2.2. Amsterdam September 2012

Simple Watch Guard in a Car (Continued)

Watch-Dog
assumption:
∀ t: ¬ ready(t) ⇒ act_speed(t) = 0

promise:
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

ready : Bool

act_speed : Real

doors_closed : Bool

 Manfred Broy 58 IFIP W.G. 2.2. Amsterdam September 2012

Assumption/Promise to define Architectural Design Patterns

•  A/P-specification
 assumption: ∀ t: ¬ ready(t) ⇒ act_speed(t) = 0
 promise: ∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0
 is logically guaranteed by the simple specification
 ∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t)

•  This assertion no longer speaks about the specification of
the environment, but is a pure interface specification.

•  The example shows the simplification of an A/P-
specification to a plain interface assertion.

 Manfred Broy 59 IFIP W.G. 2.2. Amsterdam September 2012

Conclusion

•  The meaning of A/P specs
◊  Simple conditionals/implication under what condition

•  A/P specs normalized by
◊  Assumption of realizability
◊  Analysis of liveness and safety – transformation of A/P specs

•  A/P specs for architecture design
◊  From interaction assertions to A/P specs
◊  From A/P specs to plain specs

