
The next 700 cryptosystems

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Based on joint work with:
Benjamin Grégoire (INRIA Sophia Antipolis, France)
César Kunz (U. Politecnica Madrid/IMDEA, Spain)
Yassine Lakhnech (U. de Grenoble/CNRS, France)
Santiago Zanella Béguelin (MSR Cambridge, UK)

Historical perspective

Propose a scheme

Nobody finds an attack

Before 1980

Historical perspective

Propose a scheme

Nobody finds an attack

Attack!

Before 1980

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Before 1980

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

How much time is enough?

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

1 year? 5 years? 10 years?

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Prove a scheme secure

Before 1980 After 1980

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Prove a scheme secure

Nobody finds a mistake

Mistake!

Before 1980 After 1980

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Prove a scheme secure

Nobody finds a mistake

The scheme is provably secure

Mistake!

Enough waiting

Before 1980 After 1980

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Prove a scheme secure

Nobody finds a mistake

The scheme is provably secure

Mistake!

Enough waiting

How much time is enough?

Historical perspective

Propose a scheme

Nobody finds an attack

The scheme is secure

Attack!

Enough waiting

Prove a scheme secure

Nobody finds a mistake

The scheme is provably secure

Mistake!

Enough waiting

1 week? 1 year? 5 years? 10 years? 20 years?

A famous example: RSA-OAEP

Oracle Encpk (m) :

r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s) ⊕ r ;
return fpk (s ‖ t)

Oracle Decsk (c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if [s ⊕G(r)]k1=0k1 then return [s ⊕G(r)]n

else return ⊥

A famous example: RSA-OAEP

Oracle Encpk (m) :

r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s) ⊕ r ;
return fpk (s ‖ t)

Oracle Decsk (c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if [s ⊕G(r)]k1=0k1 then return [s ⊕G(r)]n

else return ⊥

Game IND-CCA2 :
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c∗ ← Enc(pk ,mb);
b′ ← A2(pk , c∗, σ);
return b = b′

A famous example: RSA-OAEP

Oracle Encpk (m) :

r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s) ⊕ r ;
return fpk (s ‖ t)

Oracle Decsk (c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if [s ⊕G(r)]k1=0k1 then return [s ⊕G(r)]n

else return ⊥

Oracle G(x) :
if x /∈ dom(LG) then LG[x] $← {0, 1}n+k1 ;
return LG[x]

Oracle H(x) :
if x /∈ dom(LH) then LH [x] $← {0, 1}k0 ;
return LH [x]

Game IND-CCA2 :
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c∗ ← Enc(pk ,mb);
b′ ← A2(pk , c∗, σ);
return b = b′

Game POW :
(sk , pk)← KG();
y $← {0, 1}n+k1 ;
z $← {0, 1}k0 ;
y ′ ← I(fpk (y ‖z));
return y = y ′

A famous example: RSA-OAEP

For every IND-CCA2 adversary A there exists an inverter I s.t.

AdvIND-CCA2(A) =
∣

∣PrIND-CCA2[b = b′]− 1
2

∣

∣

≤ Succ POW
f (I) +

3qDqG+q2
D+4qD+qG

2k0
+ 2qD

2k1

where
Succ POW

f = PrPOW
[

y = y ′
]

A famous example: RSA-OAEP

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

1994 Purported proof of chosen-ciphertext security

2001 Proof establishes a weaker security notion, but desired
security can be achieved

1 ...for a modified scheme, or
2 ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof

2009 Security definition needs to be clarified

2010 Filled gaps and improved bounds from 2004 proof

2012 Improved bound from 2010 proof

Provable security as program verification!
CertiCrypt/EasyCrypt project, 2006-

High-assurance cryptographic proofs
◮ based on rigorous methods from programming languages

program verification
compiler verification

◮ with machine support building upon off-the-shelf tools

Code-based game-playing proofs
(Bellare & Rogaway 2004, Halevi 2005)

Games as probabilistic programs

C ::= V ← E assignment
| V $← D random sampling
| C; C sequence
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

◮ For cryptographers: rigorous notation for games
◮ In our work: rigorous justification of game-based proofs

E ::= E ⊕ E xor
| E || E concatenation

. . .

The game-playing approach
(Shoup 2004, Bellare & Rogaway 2004, Halevi, 2005)

For every feasible adversary A against scheme S (wrt goal G)
there exists a feasible adversary B against assumption H st

PrGa [A breaks S] ≤ h(PrGh
[B breaks H])

The game-playing approach
(Shoup 2004, Bellare & Rogaway 2004, Halevi, 2005)

For every feasible adversary A against scheme S (wrt goal G)
there exists a feasible adversary B against assumption H st

PrGa [A breaks S] ≤ h(PrGh
[B breaks H])

Game Ga :
. . .
. . .← A(. . .);
. . .

PrGa [A breaks S] ≤

Game G1 :
. . .
. . .
. . .

h1(PrG1
[E1]) ≤

· · ·

. . . ≤

Game Gh :
. . .
. . .← B(. . .);
. . .

h(PrGh
[B breaks H])

pRHL: a Relational Hoare Logic for pW HILE
(after Benton 2004)

◮ Judgment:
c1 ∼ c2 : P ⇒ Q

where P and Q are relations on memories
◮ Validity:

� c1 ∼ c2 : P ⇒ Q

iff for all memories m1 and m2

(m1,m2) � P → (Jc1Km1 , Jc2Km2) � Q♯

◮ Lifting Q♯ asserts existence of maximal flow in flow
network (beware of existential quantification)

pRHL captures common patterns of reasoning in crypto proofs

Conditionals

� c1 ∼ c : P ∧ e〈1〉 ⇒ Q � c2 ∼ c : P ∧ ¬e〈1〉 ⇒ Q
� if e then c1 else c2 ∼ c : P ⇒ Q

Assignment

� x ← e ∼ nil : Q{x〈1〉 := e〈1〉} ⇒ Q

Random assignment

f is 1-1 and Q′ def
= ∀v ,Q{x〈1〉 := f v , x〈2〉 := v}

� x $← A ∼ x $← A : Q′ ⇒ Q

Adversary calls

∀O. � z ← O(~w) ∼ z ← O(~w) : Q∧ =W ⇒ Q∧ ={z}

� x ← A(~y) ∼ x ← A(~y) : Q∧ =Y ⇒ Q∧ ={x}

Tool support and examples

CertiCrypt: formally verified C OQ libraries
◮ Optimizations and probabilistic relational Hoare logic
◮ Verified against operational semantics based on ALEA

EasyCrypt: SMT-based verification tool
◮ Probabilistic relational Hoare logic
◮ Verification condition generation + why3 back-end
◮ Accessible to cryptographers

Examples
◮ Crypto: public-key encryption, block ciphers, signatures,

hash designs, zero-knowledge proofs of knowledge,
authenticated key exchange protocols

◮ Differential privacy: continuous statistics, approximation
algorithms, synthetic databases, 2-party computation

A simple example: BR93 encryption

Game IND-CPA :
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c∗ ← Enc(pk ,mb);
b′ ← A2(pk , c∗, σ);
return b = b′

Encpk (m) :
r $← {0, 1}ℓ;
s ← G(r)⊕m;
y ← fpk (r)‖s;
return y

G(x) :
if x /∈ dom(LG) then LG[x] $← {0, 1}k ;
return LG[x]

Game OW :
(sk , pk)← KG();
y $← {0, 1}ℓ;
y ′ ← I(fpk (y));
return y = y ′

For every IND-CPA adversary A making at most qG queries to
G, there exists an inverter I against OW such that

∣

∣

∣

∣

PrIND-CPA
[

b = b′
]

−
1
2

∣

∣

∣

∣

≤ qG Succ OW
f (I)

Step 1: failure event

Game G0 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g ← G(r);
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game G1 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g $← {0, 1}k ;
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Step 1: failure event

Game G0 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g ← G(r);
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game G1 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g $← {0, 1}k ;
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

The games are equivalent until the adversary queries G with r
∣

∣PrIND-CPA
[

b = b′
]

− PrG1

[

b = b′
]∣

∣ ≤ PrG1
[r ∈ QG]

Step 2: optimistic sampling

Game G1 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g ← {0, 1}k ;
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game G2 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
s $← {0, 1}k ;
g ← s ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Step 2: optimistic sampling

Game G1 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
g ← {0, 1}k ;
s ← g ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game G2 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
r $← {0, 1}ℓ;
s $← {0, 1}k ;
g ← s ⊕mb;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Games are equivalent and c∗ is independent from b, hence
∣

∣

∣

∣

PrIND-CPA
[

b = b′
]

−
1
2

∣

∣

∣

∣

≤ PrG2
[r ∈ QG]

Step 3: reduction

Game G2 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
r $← {0, 1}ℓ;
s $← {0, 1}k ;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game OW :
(sk , pk)← KG();
y $← {0, 1}ℓ;
y ′ ← I(fpk (y));
return y = y ′

Adversary I(x) :
LG ← ∅;QG ← [];
(m0,m1, σ)← A1(pk);
s $← {0, 1}k ; y ← x ‖s;
b′ ← A2(pk , y , σ);
i $← [1, |QG|];
return QG[i];

Step 3: reduction

Game G2 :
LG ← ∅; QG ← [];
(sk , pk)← KG();
(m0,m1, σ)← A1(pk);
r $← {0, 1}ℓ;
s $← {0, 1}k ;
c∗ ← fpk (r)‖s;
b′ ← A2(pk , c∗, σ);

Game OW :
(sk , pk)← KG();
y $← {0, 1}ℓ;
y ′ ← I(fpk (y));
return y = y ′

Adversary I(x) :
LG ← ∅;QG ← [];
(m0,m1, σ)← A1(pk);
s $← {0, 1}k ; y ← x ‖s;
b′ ← A2(pk , y , σ);
i $← [1, |QG|];
return QG[i];

Inverter wins with probability 1
qG

if r ∈ QG, and 0 otherwise

∣

∣

∣

∣

PrIND-CPA
[

b = b′
]

−
1
2

∣

∣

∣

∣

≤ qG Succ OW
f (I)

Beyond OAEP

Over 100 variants of OAEP in the literature
◮ Are they all secure?
◮ Are there common patterns in proofs?
◮ Can proofs be automated?

The next 700 cryptosystems
(After Landin, 1966)

The question arises, do the idiosyncracies reflect basic logical
properties of the situations that are being catered for? Or are
they accidents of history and personal background that may be
obscuring fruitful developments?
[...] We must think in terms, not of cryptosystems, but of
families of cryptosystems. That is to say we must systematize
their design so that a new cryptosystem is a point chosen from
a well-mapped space, rather than a laboriously devised
construction.

Generation

E ::= m input message
| 0 zero bitstring
| R uniform random bitstring
| E ⊕ E xor
| E || E concatenation
| H(E) hash
| f (E) trapdoor permutation

Filtering

Eliminate schemes that are not :
◮ invertible f (r)
◮ IND-CPA

is decryption possible without a key? m || f (r)
is encryption randomized? f (m)
is randomness extractable without a key? r || f (m ⊕ r)

◮ IND-CCA2
is encryption malleable? f (r)‖m ⊕G(r)

Deducibility relation

e ⊢ e1 e ⊢ e2

e ⊢ e1 ‖e2
[Conc]

e ⊢ e1 e ⊢ e2

e ⊢ (e1 ⊕ e2)↓
[Xor]

e ⊢ e′

e ⊢ H(e′)
[H]

e ⊢ e1 ‖e2

e ⊢ ei
[Proji]

e ⊢ e′

e ⊢ f (e′)
[f]

e ⊢ f (e′)

e ⊢ e′
[finv]

Chosen-plaintext security

Step 1: proof finding

Optimistic sampling Replace e ⊕ r , where r is fresh, by r

Permutation Replace f (r), where r is fresh, by r

Failure event Replace H(e) by fresh r

Probability Compute probability of b = b′ or e ∈ L

Step 2: proof generation and proof checking

Generation Output EasyCrypt file

Checking Independent verification of EasyCrypt file (< 120 s)

Chosen-ciphertext security
If decryption oracle is of the form

u0 . . . un, tn ← Extract(c);
for i ← n . . . 1 do ti−1 ← ui ⊕ Hi(ti);
if Test(~t , ~u, c) then GetMsg(~t) else return ⊥

and IND-CPA and IND-CPA-like properties then IND-CCA2

Proof intuition
◮ Plaintext-awareness: infeasible to get valid ciphertext

otherwise than by encrypting a known plaintext

IND-CPA + plaintext-awareness =⇒ IND-CCA2
◮ Successively modify decryption oracle to reject ciphertexts

for which corresponding hash queries have not been made
◮ Yields plaintext extractor and reduction to IND-CPA
◮ IND-CPA-like properties provide bounds for failure events

Experiments

◮ Generated over 100,000 schemes
◮ Filters leave 4,500 schemes
◮ Proved IND-CPA security of 3,000 schemes
◮ Proved IND-CCA2 security of 2,000 schemes

Assessment
◮ Systematic exploration of design space
◮ Tens of papers automated
◮ IND-CCA2 checker fails on redundant-free schemes

ZAEP
(with David Pointcheval)

Two minimal schemes

BR93 : f (r) || (G(r)⊕m) ZAEP : f (r || G(r)⊕m)

ZAEP is redundant-free

Dec(c) : r ‖ t ← f−1
sk (c);g ← G(r); return t ⊕ g

INDCCA Security of ZAEP for RSA exponent 2 and 3
∣

∣

∣

∣

PrIND-CCA2[b = b′]−
1
2

∣

∣

∣

∣

≤ Succ OW
f (I) +

qD

2n

Based on existence of two efficient algorithms:
◮ CIE: given f (r , s1), f (r , s2) with s1 6= s2, returns s1, s2 and r
◮ SIE: given f (r , s) and r returns s

Conclusion

High-assurance cryptographic proofs
◮ Rigorous proofs using PL techniques (pRHL)
◮ Independent verification and (in principle) certified proofs

Automated generation of schemes and proofs
◮ public-key encryption
◮ zero-knowledge compilers

Directions for future work
◮ Program logics, decision procedures, relational invariant

inference. . .
◮ Probabilistic encapsulation, modularity
◮ Towards implementations
◮ Synthesis: revisit classical cryptography

