The Value Problem for Multiple-Environment MDPs with Parity Objectives

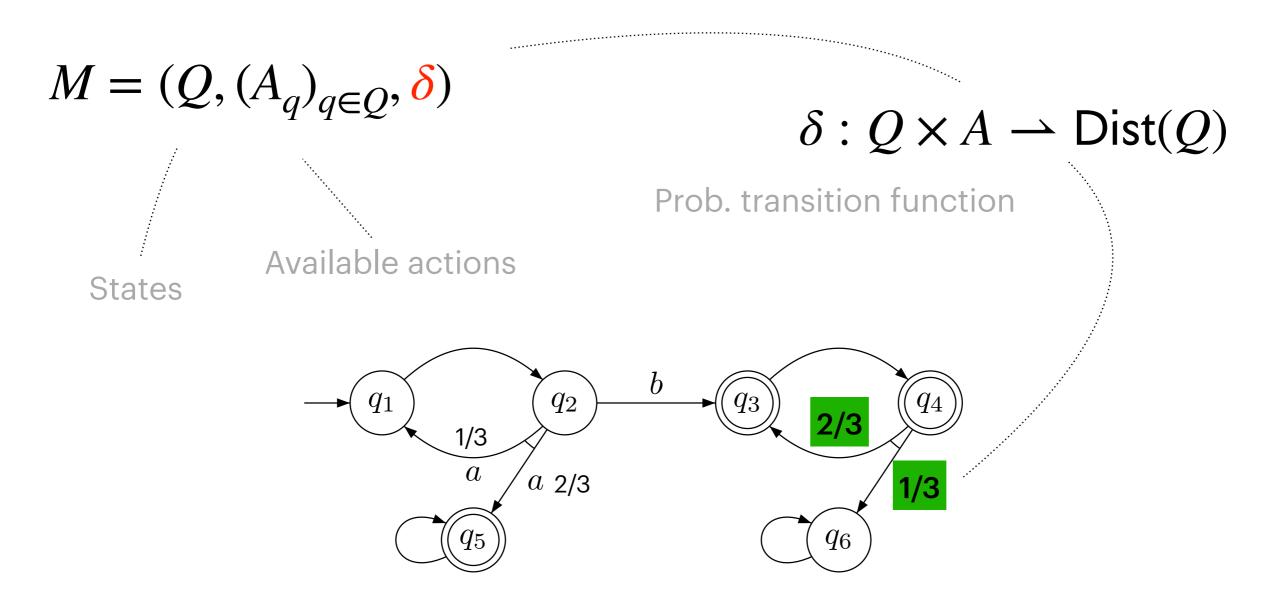
IFIP Meeting - Aachen - September 2025

originally presented at ICALP 2025, Aarhus, Denmark

Krishnendu Chatterjee, Laurent Doyen, Jean-François Raskin and Ocan Sankur

Markov Decision Processes

The classical model

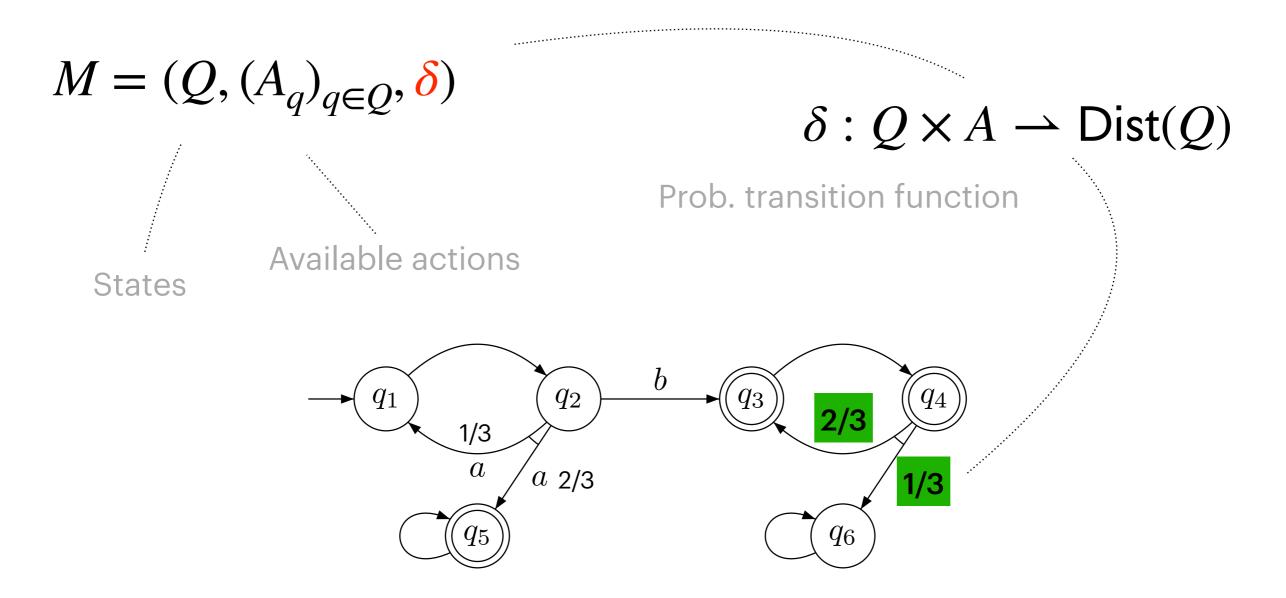


Q: \exists **strategy** $\sigma: \mathbb{Q}^* \to A$ to visit Büchi states (parity condition) ∞ -often with prob. at least α from q?

Let
$$\sigma$$
 be s.t. $\sigma(h\cdot q_2)=a$ then $M_q\times \sigma\models \mathbb{P}\left(\Box\lozenge\{q_3,q_4,q_5\}=1\right)$

Markov Decision Processes

The classical model

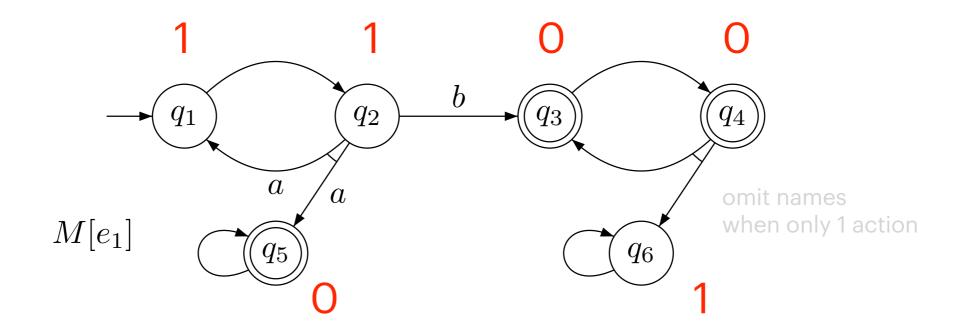


 $\mathbf{Q}: \exists \mathbf{strategy} \ \sigma: \mathbf{Q}^* \to A$ to visit Büchi states (parity condition) ∞ -often with prob. at least α from q?

Let
$$\sigma$$
 be s.t. $\sigma(h \cdot q_2) = a$ then $\mathbb{P}_q^{\sigma}(M, \square \lozenge \{q_3, q_4, q_5\}) = 1$

Markov Decision Processes Parity objectives

- A parity objective φ is defined by a coloring function $p:Q\to \mathbb{N}$
- The color of a path $\rho=q_1q_2...q_n...$, noted $p(\rho)$, is the **minimal** color that appears **infinitely many times** along ρ , and $\rho \models_p \varphi$ is winning iff $p(\rho) \in Even$
- Given a MDP M, a state q, and a threshold $\alpha : \exists ? \sigma \cdot \mathbb{P}_q^{\sigma}(M, \varphi) \geq \alpha$ can be decided in **PTime**

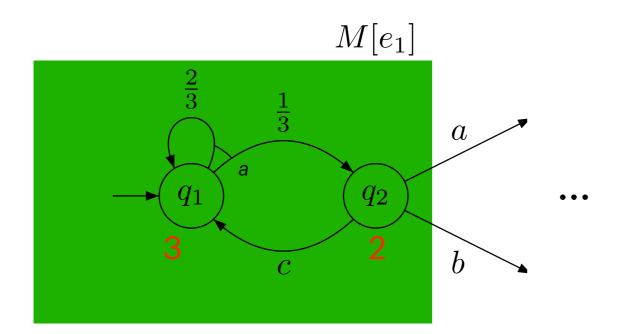


Markov Decision Processes

Solving parity objectives - End Components

Let $M=(Q,(A_q)_{q\in Q}, \delta)$, an End-Component (EC) of M is a pair $(S,(B_q)_{q\in S})$ where:

- the graph induced by S and $(B_q)_{q\in S}$ is strongly connected
- $\forall q \in S \cdot \forall a \in B_q : \text{Supp}(\delta(s, a)) \subseteq S$



$$\left(\{q_1,q_2\},B_{q_1}=\{a\},B_{q_2}=\{c\}\right) \text{ is a EC }$$

Playing all actions in $(B_q)_{q \in S}$ uniformly at random ensures to visit all states of the EC with probability 1.

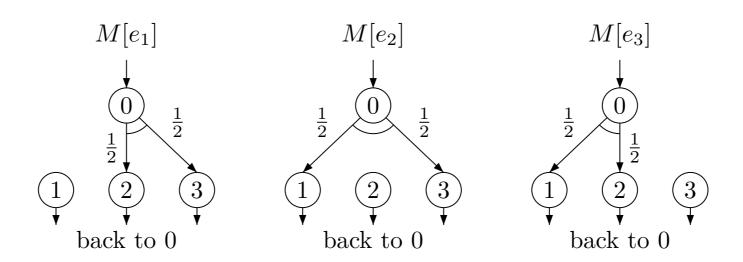
All states in an EC are either winning the parity objective with prob. 1 (if min. color in EC is even) or with prob. 0 (if min. color is odd).

Solving parity objectives in MDP reduces to maximizing the prob. of reaching EC with value 1.

The Model of Multi-env. MDPs

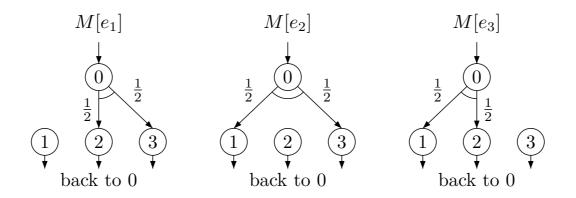
Multi-Environment MDPs The model

- A multi-env. MDP $M=(Q,(A_q)_{q\in Q},(\delta_e)_{e\in E})$ = collection of |E| MDPs
- Same state space but different next state transition functions
- The controller does **not** observe which $e \in E$ governs the dynamics but **fully observes states**



• Robust control: (unique) strategy that enforces a specification (parity condition) in all environments: $\exists^{?} \sigma \cdot \forall e \in E : \mathbb{P}_{q}^{\sigma}(M[e], \varphi_{p}) \geq \alpha$

What can be modeled?



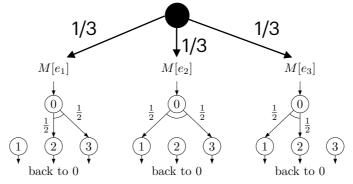
- MEMDPs can be used to model:
 - e.g. several **types** of users, different **types** of patients, etc.
 - finite number of valuations for a parametric MDP
 - an adversary playing a strategy taken from a finite set of finite memory randomized strategies

vs Partially Observable MDPs

- The states are fully observable but environment is not
- This is a variant of Partially Observable MDPs (POMPDs)
 % env. is chosen adversarially not stochastically

 Some of the problems that we want to study on MEMDP can be reduced to problems on POMDPs

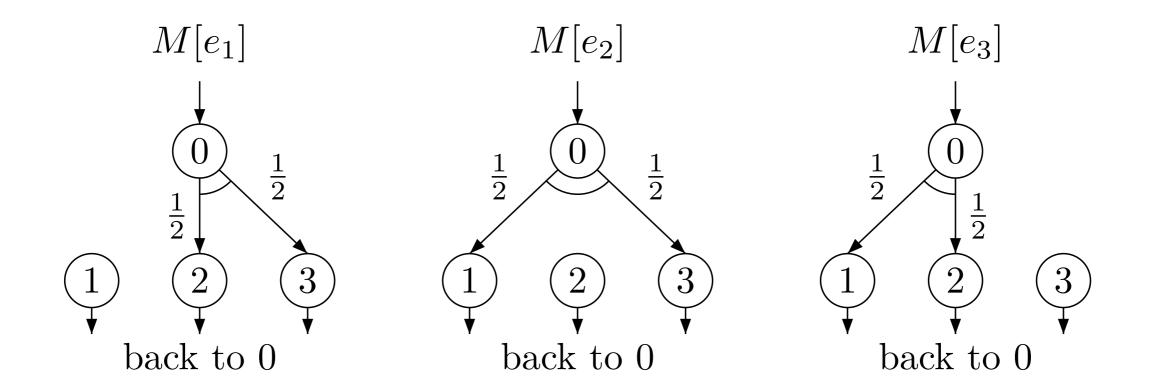
% uniformly choosing the environment



- ... but those problems are harder on POMDPs % for instance almost sure reachability is already ExpTime-C and limit-sure reachability is undecidable, almost sure co-Büchi, and so parity, are undecidable
- So, we study dedicated algorithms instead and settle the complexity of the problems

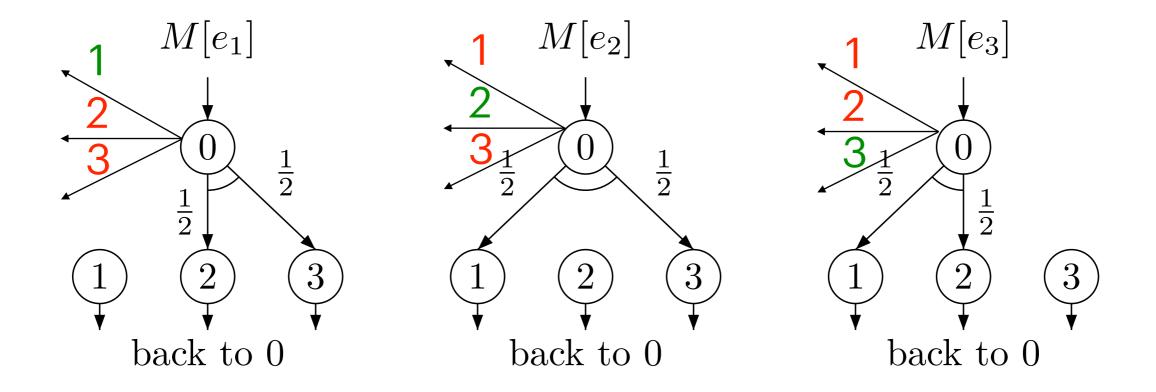
Modeling examples and decision problems

What can be modeled?



A card deck with one missing card

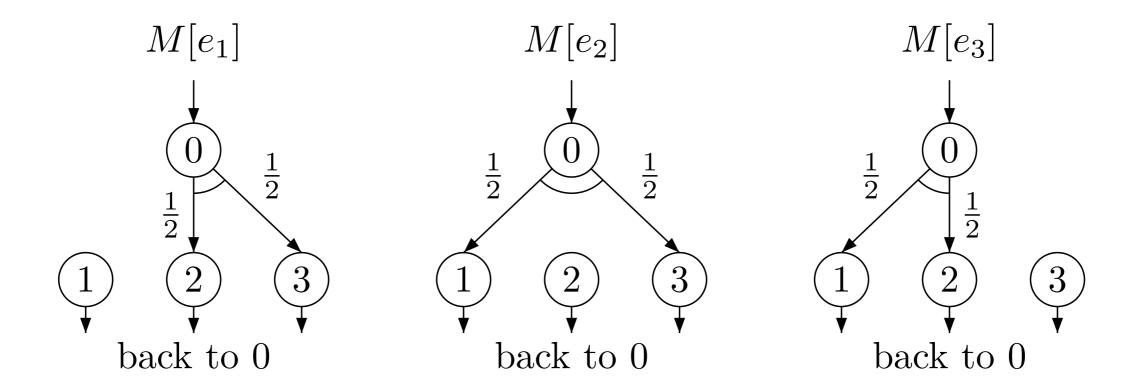
What can be modeled?



A card deck with one **missing** card

Q: Can we discover the missing card? With which probability?

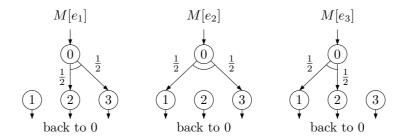
What can be modeled?



A card deck with one **missing** card **Q**: Can we discover the missing card? With which probability?

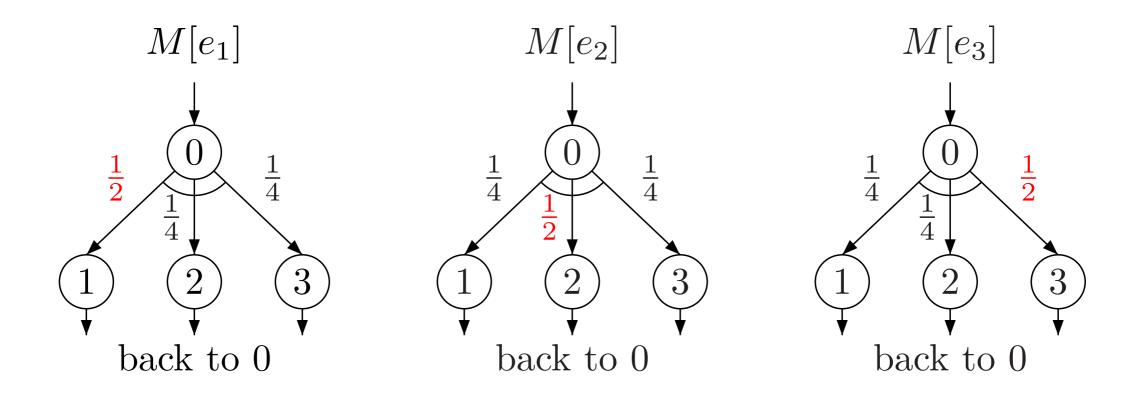
Yes, with probability one (almost surely)!

First example: Modeling a deck of card with one missing card



- Claim: $\exists \sigma$ to discover missing card with probability 1 (almost surely)
 - The MEMDP starts in an **unknown** environment $e \in E$ (chosen adversarially)
 - σ draws cards at random and **records** edges seen so far Important concept: **revealing edge** if $0 \to 1$, then env. in not e_1 (knowledge $K \in 2^E \setminus \emptyset$)
 - The two edges appearing in $e \in E$ are eventually revealed, with prob. 1
 - At that time, we know $e \in E$, i.e. what is the missing card!

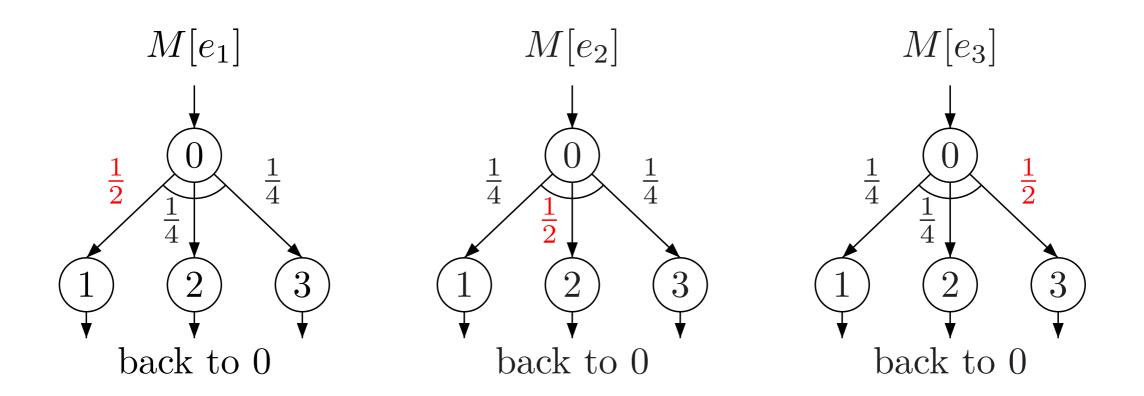
What can be modeled?



A card deck with duplicated card

Q: Can we discover the duplicated card? With which probability?

What can be modeled?

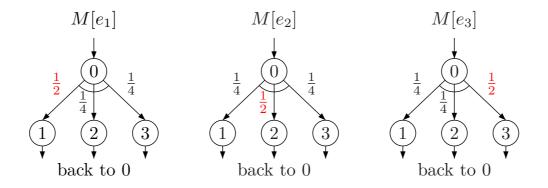


A card deck with duplicated card

Q: Can we discover the duplicated card? With which probability?

Yes, but only with high probability (arbitrarily close to one - **limit surely**) but **not** with prob. 1

Modeling a deck of card with one duplicated card



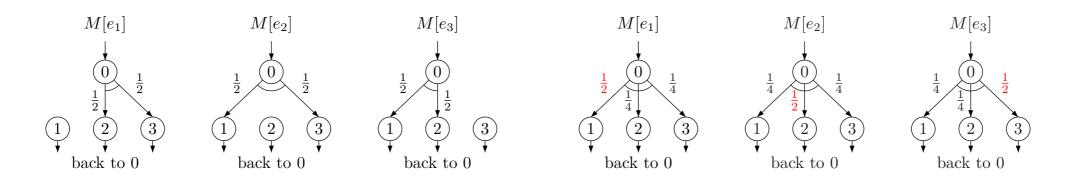
- Claim: $\forall \epsilon > 0 \cdot \exists \sigma_{\epsilon}$ to discover duplicated card with probability 1ϵ (limit surely)
 - MEMDP starts in an **unknown** environment $e \in E$ (chosen adversarially)
 - σ draws cards at random and **records statistics about frequency** of edges seen so far

Hoeffding's inequality:
$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\right|\geq\delta\right)\leq2\exp\left(-2n\delta^{2}\right)$$
, i.e. Hoeffding's inequality provides a bound on the prob. that the sum of random variables X_{i} deviates from its expected

value

• For any given $\epsilon > 0$, we can determine a number of draws n sufficient to determine with probability $p \ge 1 - \epsilon$ the active environment, and so the duplicated card! % similar to PAC learning

The model and decision problems



- Given $M=(Q,(A_q)_{q\in Q},(\delta_e)_{e\in E})$, and a state q, a parity objective φ decide:
 - for almost sure winning: if there exists a strategy σ s.t. for all $e \in E$, $\mathbb{P}_q^{\sigma}(M[e], \varphi) = 1$
 - for **limit sure** winning: if for all $\epsilon > 0$, there exists a **strategy** σ_{ϵ} s.t. for all $e \in E$, $\mathbb{P}_q^{\sigma_{\epsilon}}(M[e], \varphi) \geq 1 \epsilon$
 - for threshold α : if there exists a strategy σ s.t. for all $e \in E$, $\mathbb{P}_q^{\sigma}(M[e], \varphi) \geq \alpha$

Main results

Main results - Almost sure and limit sure Complexity

• Theorem (Almost Sure) [SVJ24].

Membership problem is **PSPACE-complete**; solvable in PTime if number of environments is fixed. *Pure exponential-memory strategies suffice*.

• Theorem (Limit Sure).

Membership problem is **PSPACE-complete**; solvable in PTime if number of environments is fixed. From a LS winning state, for any $\varepsilon > 0$, pure exponential-memory strategies suffice to ensure the objective with probability $\geq 1-\varepsilon$.

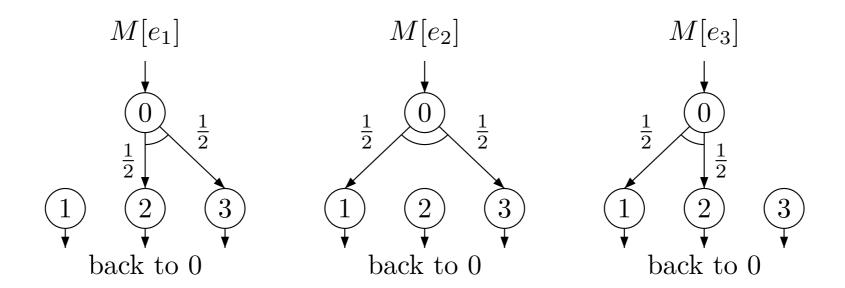
Main results - Threshold problem Gap version

- We leave open the decidability of the threshold problem.
- We show how to **solve** a relaxation: the **gap problem** (a.k.a. *promise problem*). Given $0 < \alpha < 1$ and $\epsilon > 0$, a MEMDP M, a state q, parity objective φ , answers:
 - Yes, if there exists a strategy σ such that for all $e \in E$, we have $\mathbb{P}_q^{\sigma}(M[e], \varphi) \geq \alpha$
 - No, if for all strategies σ , there exists $e \in E$ with $\mathbb{P}_q^{\sigma}(M[e], \varphi) < \alpha \epsilon$
 - and arbitrarily otherwise
- This can be used to approximate arbitrarily closely the max. realizable threshold

Main algorithmic ideas

Revealing Edges

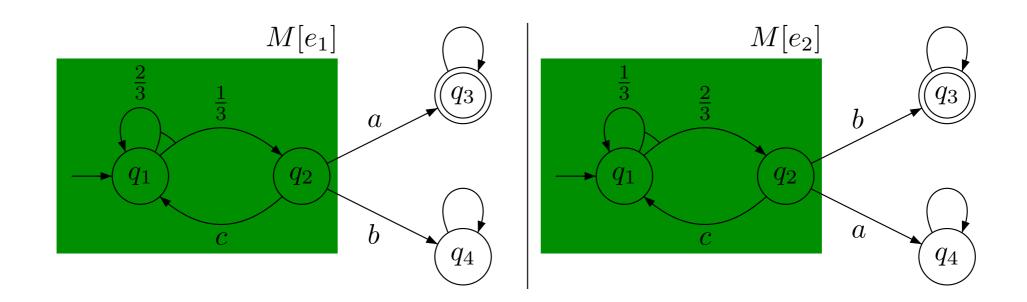
Improve knowledge about environment with certainty



• if $0 \to 1$, then env. in not e_1 (knowledge $K \in 2^E \setminus \emptyset$)

Distinguishing Common End-Component

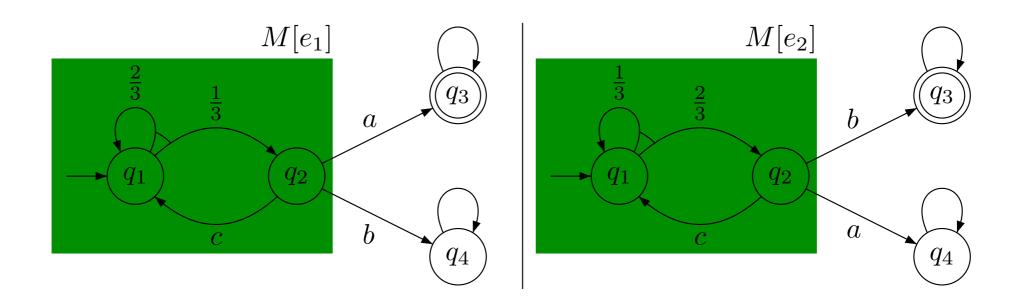
How to learn about the environment in charge with high probability?



Let $M=(Q,(A_q)_{q\in Q},(\delta_e)_{e\in E})$ be multi-env MDP. A pair $(Q',(A_q)_{q\in Q'})$ is an End-Component (EC) in $e\in E$: that is the subMDP $\left(Q',(A_q)_{q\in Q'},\delta_e^{(Q',(A_q)_{q\in Q'})}\right)$ is strongly connected.

Distinguishing Common End-Component

How to learn about the environment in charge with high probability?



A Common End-Component (CEC) is a pair $(Q', (A_q)_{q \in Q'})$ that is an EC in all $e \in E$.

It is **distinguishing** if it contains a transition (q, a, q') such that $\delta_e(q, a)(q') \neq \delta_f(q, a)(q')$ for some env. $e, f \in E$.

Distinguishing CEC allows to learn! By observing frequencies of next states, we can guess the correct environment with high probability!

Algorithmic ideas

Knowledge and recursion

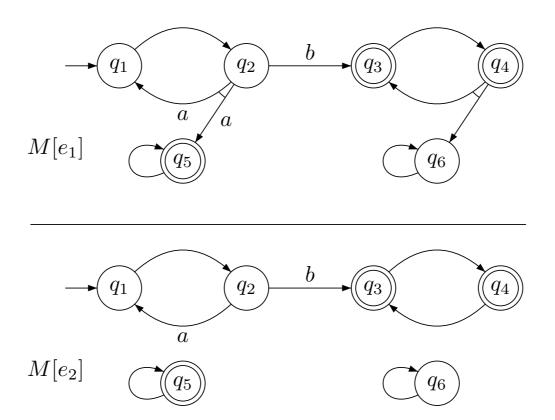
- The knowledge is the set of environment that are potentially active
- Initially: $K_0 = \{e_1, e_2, ..., e_n\} = E$ % env. is chosen adversarially
- Two (main) ways to improve the knowledge:
 - when crossing a revealing edge
 % one which is not present in all env. of current knowledge
 - When staying long enough into a distinguishing common-endcomponent

% by collecting statistics, we can exclude some environments

- When K is a singleton or all environments share the same future dynamics: we have a plain MDP that we can solve (in PTime)! (base case)
- Recurse when knowledge improves

Another example

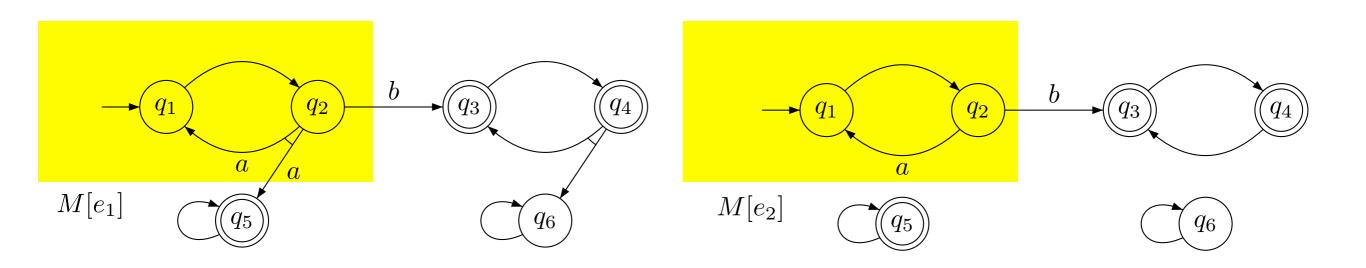
Prob. does not matter



Objective: $\square \Diamond \{q_3, q_4, q_5\}$

Distinguishing CEC and revealing edge

... combined ...



- If the active env. is e_2 then playing action a never reveals this
- Still after taking action a many times in q_2 , we win **or** we can **guess**, and being correct with high probability that active env. is e_2
- Playing action a is OK even if $\{q_1,q_2\}$ is not a CEC because action a is « safe » for limit sure winning (every LS state has a « safe » action)

% see details in the paper

Multi-Env. MDPs

Conclusions

- MEMDP=perfectly observable states but unknown, fixed environment dynamics taken in finite set of env., modeling a.o.:
 - several types of users, different types of patients, etc.
 - finite number of valuations for a parametric MDP
 - adversary playing a strategy taken from a finite set of finite memory strategies
- Variants (not subclass) of POMDPs with decidable decision problems
- Algorithms for robust synthesis across multiple environments
- Almost-sure and limit-sure are solvable in PSPACE, and in PTIME for fixed number of environments. Threshold problem remains open, but gap problem is decidable.