Solvable Tuple Patterns and Their Applications to Program Verification

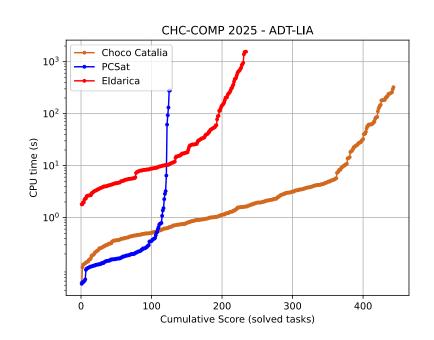
Naoki Kobayashi
The University of Tokyo
(joint work with Ryosuke Sato, Ayumi Shinohara, and Ryo Yoshinaka)

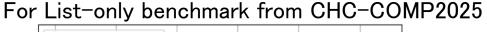
This Work

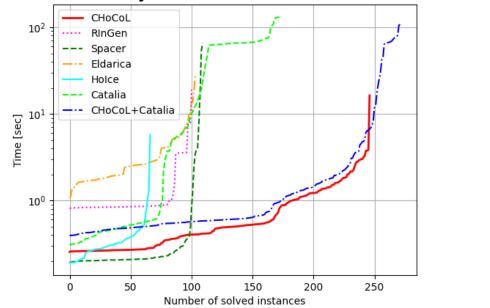
♦ Solvable Tuple Patterns (STPs) for Lightweight Inference of Relations on Sequences

(demo page: https://www-kb.is.s.u-tokyo.ac.jp/~koba/tupinf)

- Learnable from only a few positive samples
- Efficient inference algorithm
- **♦** Applications to CHCs over List-like Data Structures







Outline

- **♦** Motivations
- **♦** Solvable Tuple Patterns
- **♦** Applications to Program Verification
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Motivating Example

How to automatically verify that the assertion never fails?

- Naïve induction (on I1 or I2) would not work.
- The invariant "revα | 1 | 12 = | 11^R | 12" would be useful,
 but how can we find it automatically?
 - => data-driven approach

♦ Learning Numerical Equality Invariants [Sharma+ ESOP13][Ikeda+ APLAS 23]

```
int x = 0, y = 0, z = 0;
while(x < 500) {
   y += x; z += x + 2; x += 1;
};
assert(z >= y + 1000);
```

```
X
Y
Z
O
O
1
O
2
1
5
3
9
```

Loop invariant among x, y, z?

♦ Learning Numerical Equality Invariants [Sharma+ ESOP13][Ikeda+ APLAS 23]

```
int x = 0, y = 0, z = 0;
while(x < 500) {
   y += x; z += x + 2; x += 1;
};
assert(z >= y + 1000);
```

```
x
y
z
0
0
1
0
2
1
5
3
9
```

Loop invariant among x, y, z?

♦ Learning Numerical Equality Invariants [Sharma+ ESOP13][Ikeda+ APLAS 23]

```
int x = 0, y = 0, z = 0;
while(x < 500) {
   y += x; z += x + 2; x += 1;
};
assert(z >= y + 1000);
```

```
x
y
z-2x
0
0
1
0
0
1
1
3
3
```

Loop invariant among x, y, z?

♦ Learning Numerical Equality Invariants [Sharma+ ESOP13][Ikeda+ APLAS 23]

Loop invariant among x, y, z?

Invariant: z-2x-y=0At the assertion, $z=2x+y \ge 2*500+y=y+1000$

♦ Learning Numerical Equality Invariants [Sharma+ ESOP13][Ikeda+ APLAS 23]

```
int x = 0, y = 0, z = 0;
while(x < 500) {
   y += x; z += x + 2; x += 1;
};
assert(z >= y + 1000);
```

X	У	z-2x-	x-y	
0	Ö	0	,	
1	0	0		
2	1	0		
3	3	0		

Advantages:

- Learnable from only a few positive samples
- Positive samples are easy to collect
- => Is a similar method possible for inference of relations on recursive data structures?

Invariant:

$$z-2x-y=0$$

At the assertion,

$$z=2x+y \ge 2*500+y = y+1000$$

Outline

- **♦** Motivations
- **♦ Solvable Tuple Patterns**
 - tuple patterns
 - tuple pattern inference
 - solvable tuple patterns
 - extensions
- **♦** Applications to Program Verification
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Tuple Patterns

t (tuple patterns) ::=
$$(p_1, ..., p_n)$$
 $p_i \in (\Sigma \cup Vars)^*$
 $L(t) = \{[s_1/x_1, ..., s_k/x_k]t \mid s_i \in \Sigma^* \}$

Examples:

(x, y, xy): append (or concatenation) relation (xy, yz, xyz):

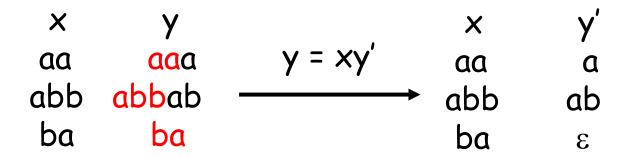
the first (second, rep.) element is a prefix (postfix, resp.) of the third element, with y being the overlapping part.

cf. Anguluin's pattern languages [1980] ("identifiable in the limit" [Gold67] from only positive samples) and its variants [Shinohara 1983]

Tuple Pattern Inference

```
x y
aa aaa
abb abbab
ba ba
```

Tuple Pattern Inference



Tuple Pattern Inference

$$\begin{array}{c} x & y \\ \text{aa} & \text{aaa} \\ \text{abb} & \text{abbab} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x & y' \\ \text{aa} & \text{a} \\ \text{abb} & \text{abb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{a} & \text{a} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x' & y' \\ \text{a} & \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{a} & \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{a} & \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{ba} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{aabb} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{ba} & \text{aabb} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{aabb} \\ \text{ba} & \text{aabb} \end{array} \qquad \begin{array}{c} x = y'x' \\ \text{aabb} \\ \text{aabb} \\ \text{aabb} \\ \text{aabb} \\ \text{aabb} \\ \text{aabb} & \text{aabb} \\ \text{aabb} \\ \text{aabb} \\ \text{aab$$

Non-determinism of Inference Algorithm

$$((x,y,z),\begin{pmatrix} x & y & z \\ aa & a & aac \\ b & bb & bbd. \end{pmatrix} \longrightarrow ((x,y,xz'),\begin{pmatrix} x & y & z' \\ aa & a & c \\ b & bb & bd. \end{pmatrix})$$

$$((x,y,z),\begin{pmatrix} x & y & z \\ aa & a & aac \\ b & bb & bbd. \end{pmatrix} \longrightarrow ((x,y,yz'),\begin{pmatrix} x & y & z' \\ aa & a & ac \\ b & bb & d \end{pmatrix}).$$

Conjunctive tuple patterns? (left for future work): $(x, y, xz) \land (x, y, yz)$

Theorem 1.1 (soundness). If $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$, then $M, \Theta \models t$.

Theorem 1.2. Given M as input, t such that $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta) \not\rightarrow$ can be computed in polynomial time.

Note: Not all tuple patterns can be inferred.

For example, the singleton pattern (xx) cannot be inferred.

Outline

- **♦** Motivations
- **♦ Solvable Tuple Patterns**
 - tuple patterns
 - tuple pattern inference
 - solvable tuple patterns
 - extensions
- **♦** Applications to Program Verification
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Solvable Tuple Patterns

Definition 1.3. A tuple pattern t is solvable if $t \rightsquigarrow^* (x_1, \ldots, x_k)$.

$$p_{j} = p_{i} \cdot p'_{j} \qquad p_{i} \neq \epsilon$$

$$(p_{1}, \dots, p_{n}) \rightsquigarrow (p_{1}, \dots, p_{j-1}, p'_{j}, p_{j+1}, \dots, p_{n})$$

Example:

(xyx) is not solvable, but (xyx, xy) is solvable, because:

 $(xyx,xy) \rightarrow (x, xy) \rightarrow (x,y)$

$$p_{j} = a \cdot p'_{j} \qquad a \in \Sigma$$

$$(p_{1}, \dots, p_{n}) \rightsquigarrow (p_{1}, \dots, p_{j-1}, p'_{j}, p_{j+1}, \dots, p_{n})$$

$$p_{j} = \epsilon$$

$$(p_{1}, \dots, p_{n}) \rightsquigarrow (p_{1}, \dots, p_{j-1}, p_{j+1}, \dots, p_{n})$$

Why "Solvable"?

♦ Equation † = (s₁,...,s_n) can be "solved" if † is an STP (cf. solvable polynomial equations)

e.g.

- $(xy, xyx) = (s_1, s_2)$ has a general solution: $x = s_1 \setminus s_2$, $y = (s_1 \setminus s_2) \setminus s_1$
- $(x, yy, xy) = (s_1, s_2, s_3)$ has a general solution: $x = s_1, y = s_1 \setminus s_3$ just if $s_2 = (s_1 \setminus s_3)$ $(s_1 \setminus s_3)$

Theorem 1.4. If $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$, then t is solvable.

Theorem 1.4. If $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$, then t is solvable.

Theorem 1.5 (completeness). If $M \models_s t$ and t is solvable, then $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$ for some Θ .

Theorem 1.4. If $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$, then t is solvable.

Theorem 1.5 (completeness). If $M \models_s t$ and t is solvable, then $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$ for some Θ .

THEOREM 1.6 (MINIMALITY). Suppose $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t_1, \Theta_1) \not\longrightarrow$. If $M \models t_0$ and $\mathcal{L}(t_0) \subseteq \mathcal{L}(t_1)$ for an STP t_0 , then $\mathcal{L}(t_0) = \mathcal{L}(t_1)$.

Theorem 1.4. If $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$, then t is solvable.

Theorem 1.5 (completeness). If $M \models_s t$ and t is solvable, then $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta)$ for some Θ .

THEOREM 1.6 (MINIMALITY). Suppose $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t_1, \Theta_1) \not\longrightarrow$. If $M \models t_0$ and $\mathcal{L}(t_0) \subseteq \mathcal{L}(t_1)$ for an STP t_0 , then $\mathcal{L}(t_0) = \mathcal{L}(t_1)$.

THEOREM 1.7. If t be an STP, then there exists M such that (i) The size of M is $O(n \log n)$ where n is the size of t; (ii) $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t, \Theta) \not\longrightarrow$ for some Θ ; and (iii) $(\widetilde{x}, [M/\widetilde{x}]) \longrightarrow^* (t', \Theta') \not\longrightarrow$ implies $\mathcal{L}(t) = \mathcal{L}(t')$.

Corollary: STPs are "identifiable in the limit [Gold67]" from positive samples

Learnability and Complexity Results

	STP	NE-patterns [Angluin 80]	E-patterns [Shinohara 83]	
Learnability	Yes	Yes	No for $ \Sigma =2,3,4$ Yes for $ \Sigma =1,\infty$ Open for other cases	
Membership	Р	NP-complete	NP-complete	
Inclusion	Р	Undecidable	Undecidable	
Equivalence	Р	Р	Open	

Outline

- **♦** Motivations
- **♦ Solvable Tuple Patterns**
 - tuple patterns
 - tuple pattern inference
 - solvable tuple patterns
 - extensions
- **♦** Applications to Program Verification
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Postfix

$$M[*][i] \neq \widetilde{\epsilon} \qquad M[*][j] = \widetilde{s} \cdot M[*][i] \qquad x'_j \text{ fresh}$$

$$(t, [M/(x_1, \dots, x_m)]) \longrightarrow ([x'_j \cdot x_i/x_j]t, [M\{j \mapsto \widetilde{s}\}/(x_1, \dots, x_{j-1}, x'_j, x_{j+1}, \dots, x_m)])$$

$$M[*][j] = \widetilde{s} \cdot a \qquad a \in \Sigma \qquad x'_j \text{ fresh}$$

$$(t, [M/(x_1, \dots, x_m)]) \longrightarrow ([x'_j a/x_j]t, [M\{j \mapsto \widetilde{s}\}/(x_1, \dots, x_{j-1}, x'_j, x_{j+1}, \dots, x_m)])$$

$$p_j = p'_j \cdot p_i \qquad p_i \neq \epsilon$$

$$(p_1, \dots, p_n) \rightsquigarrow (p_1, \dots, p_{j-1}, p'_j, p_{j+1}, \dots, p_n)$$

$$p_j = p'_j \cdot a \qquad a \in \Sigma$$

$$(p_1, \dots, p_n) \rightsquigarrow (p_1, \dots, p_{j-1}, p'_j, p_{j+1}, \dots, p_n)$$

Reverse

$$p ::= a \mid x \mid p_1 p_2 \mid x^R.$$

$$M[*][i] \neq \widetilde{\epsilon} \qquad M[*][j] = M[*][i]^R \cdot \widetilde{s} \qquad x'_j \text{ fresh}$$

$$(t, [M/(x_1, \dots, x_m)]) \longrightarrow ([x_i^R \cdot x'_j/x_j]t, [M\{j \mapsto \widetilde{s}\}/(x_1, \dots, x_{j-1}, x'_j, x_{j+1}, \dots, x_m)])$$

$$M[*][i] \neq \widetilde{\epsilon} \qquad M[*][j] = \widetilde{s} \cdot M[*][i]^R \qquad x'_j \text{ fresh}$$

$$(t, [M/(x_1, \dots, x_m)]) \longrightarrow ([x'_j \cdot x_i^R/x_j]t, [M\{j \mapsto \widetilde{s}\}/(x_1, \dots, x_{j-1}, x'_j, x_{j+1}, \dots, x_m)])$$

$$p_j = p_i^R \cdot p'_j \qquad p_i \neq \epsilon$$

$$(p_1, \dots, p_n) \rightsquigarrow (p_1, \dots, p_{j-1}, p'_j, p_{j+1}, \dots, p_n)$$

$$p_j = p'_j \cdot p_i^R \qquad p_i \neq \epsilon$$

$$(p_1, \dots, p_n) \rightsquigarrow (p_1, \dots, p_{j-1}, p'_j, p_{j+1}, \dots, p_n)$$

Set/Multiset Patterns

$$\frac{M[*][i] \neq \widetilde{\epsilon} \quad \forall k.M[k][j] \supseteq M[k][i] \quad \widetilde{s} = M[*][j] \setminus M[*][i] \quad x'_{j} \text{ fresh}}{(t, [M/(x_{1}, \dots, x_{m})]) \longrightarrow ([x_{i}x'_{j}/x_{j}]t, [M\{j \mapsto \widetilde{s}\}/(x_{1}, \dots, x_{j-1}, x'_{j}, x_{j+1}, \dots, x_{m})])}$$

$$\frac{M[*][j] = \widetilde{\emptyset}}{(t, [M/(x_{1}, \dots, x_{m})]) \longrightarrow ([\epsilon/x_{j}]t, [M \uparrow_{j}/(x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{m})])}$$

$$((x_{1}, x_{2}, x_{3}), \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ \{a\} & \{b\} & \{a, b\} \\ \{b\} & \{b, c\} & \{b, c\} \end{pmatrix}) \longrightarrow ((x_{1}, x_{2}, x_{1}x'_{3}), \begin{pmatrix} x_{1} & x_{2} & x'_{3} \\ \{a\} & \{b\} & \{b\} \\ \{b\} & \{b, c\} & \{c\} \end{pmatrix})$$

$$\longrightarrow ((x_{1}, x'_{3}x'_{2}, x_{1}x'_{3}), \begin{pmatrix} x_{1} & x'_{2} & x'_{3} \\ \{a\} & \emptyset & \{b\} \\ \{b\} & \{b\} & \{c\} \end{pmatrix}) \longrightarrow ((x'_{2}x'_{1}, x'_{3}x'_{2}, x'_{2}x'_{1}x'_{3}), \begin{pmatrix} x'_{1} & x'_{2} & x'_{3} \\ \{a\} & \emptyset & \{b\} \\ \emptyset & \{b\} & \{c\} \end{pmatrix})$$

Outline

- **♦** Motivations
- **♦** Solvable Tuple Patterns
- **♦** Applications to Automated Program Verification
 - Program Verification via CHCs
 - CHC solving via SPT inference
 - Combination with CHC solving over integer arithmetic
 - Applications of Set/Multiset Patterns
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Program Verification via CHC Solving

May the assertion fail?

$$Reva(\epsilon, l_2, l_2).$$
 $Reva(l'_1, x \cdot l_2, l_3) \Rightarrow Reva(x \cdot l'_1, l_2, l_3).$
 $Reva(l_1, l_2, l_3) \land Reva(l_3, \epsilon, l_4)$
 $\land Reva(l_2, l_1, l_5) \Rightarrow l_4 = l_5.$

 $(Reva(I_1,I_2,I_3) \Leftrightarrow reva I_1 I_2 may return I_3)$

Are the CHCs satisfiable?

Yes: Reva(I_1,I_2,I_3) = $I_3 = I_1^R I_2$

CHC Solving via STP Inference (Example)

Samples:

$$I_1$$
 I_2 I_3 ε a a ε bc bc I_3 I_4 I_5 I_7 I_8 I_8

$$\forall x, l_1', l_2, l_3. l_1' = \epsilon \wedge x \cdot l_2 = l_3 \Longrightarrow x \cdot l_1' = \epsilon \wedge l_2 = l_3?$$

counterexample:

x=a,
$$I1' = I_2 = I_3 = \varepsilon$$
, ... Reva(xI1', I2, I3) = Reva(a, ε , a) does not hold

$$Reva(\epsilon, l_2, l_2).$$

$$Reva(l'_1, x \cdot l_2, l_3) \Rightarrow Reva(x \cdot l'_1, l_2, l_3).$$
 $Reva(l_1, l_2, l_3) \land Reva(l_3, \epsilon, l_4)$

$$Reva(l_1, l_2, l_3) \wedge Reva(l_3, \epsilon, l_4)$$

$$\land Reva(l_2, l_1, l_5) \Rightarrow l_4 = l_5.$$

CHC Solving via STP Inference (Example)

Samples:

(x, y, xy)

$$\forall x, l'_1, l_2, l_3.l'_1 x l_2 = l_3 \Rightarrow x l'_1 l_2 = l_3?$$

x=a,
$$|1'=b|$$
, $|1|=\epsilon$, $|1|=$

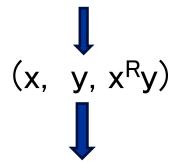
 $Reva(\epsilon, l_2, l_2)$.

 $Reva(l'_1, x \cdot l_2, l_3) \Rightarrow Reva(x \cdot l'_1, l_2, l_3).$ $Reva(l_1, l_2, l_3) \land Reva(l_3, \epsilon, l_4)$

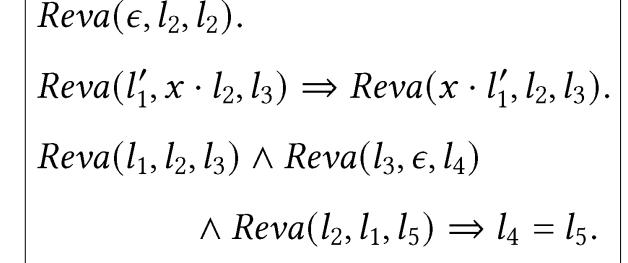
 $\land Reva(l_2, l_1, l_5) \Rightarrow l_4 = l_5.$

CHC Solving via STP Inference (Example)

Samples:



$$\forall x, l'_1, l_2, l_3. l'_1{}^R x l_2 = l_3 \Rightarrow (x l'_1){}^R l_2 = l_3?$$



CHC Solving Procedure via STP Inference

```
1: function SOLVE(D, G)
        T := \emptyset;
       M := collect\_samples(D);
        while true do
            if true_samples(M) \models \neg G then return UNSAT;
 5:
            end if
 6:
            t_{new} := STPinf(M);
            if t_{new} \notin T and T \cup \{t_{new}\} \models D then
 8:
                T := T \cup \{t_{new}\};
 9:
                 if T \models G then return SAT(T)
10:
                 end if;
11:
            else
12:
                 M := M \cup \text{collect\_more\_samples}(D, t_{new});
13:
            end if
14:
```

Outline

- **♦** Motivations
- **♦** Solvable Tuple Patterns
- **♦** Applications to Automated Program Verification
 - Program Verification via CHCs
 - CHC solving via SPT inference
 - Combination with CHC solving over integer arithmetic
 - Applications of Set/Multiset Patterns
- **♦** Implementation and Experiments
- **♦** Related Work
- **♦** Conclusion

Motivating Example

```
let rec take n l =
 if n=0 then []
  else
   match I with
     [] -> []
   | x:: |' \rightarrow x:: (take (n-1) |')
let rec drop n | =
  if n=0 then I
  else
    match I with
      [] -> []
    | _::|' -> drop (n-1) |'
let main n l =
 assert((take n I)@(drop n I)=I)
```

With STPs, we can only express: take(n,l) returns a prefix of l drop(n,l) returns a postfix of l

Length Abstraction

```
let rec take n l =
  if n=0 then []
  else
  match I with
     [] -> []
    | x:: |' \rightarrow x:: (take (n-1) |')
let rec drop n l =
  if n=0 then I
  else
    match I with
      [] -> []
    | _::|' -> drop (n-1) |'
let main n I =
  assert((take n l)@(drop n l)=l)
```



```
let rec take' n l =
 if n=0 then 0
 else
   if I=0 then 0
   else
     let l'=1-1 in 1+(take' (n-1) l')
let rec drop' n | =
 if n=0 then 1
 else
  if I=0 then 0
  else
    let l'=1-1 in drop' (n-1) l'
let main n I =
  assert((take' n l)+(drop' n l)=l)
```

Length Abstraction

```
let rec take' n l =
 if n=0 then 0
 else
   if I=0 then 0
   else
    let l'=1-1 in 1+(take' (n-1) l')
let rec drop' n | =
 if n=0 then I
 else
  if I=0 then 0
  else
    let l'=1-1 in drop' (n-1) l'
let main n I =
  assert((take' n l)+(drop' n l)=l)
```

Output of CHC solvers for LIA

$$Take'(n, l, r) \equiv (l < n \land r = l) \lor (l \ge n \land r = n)$$
$$Drop'(n, l, r) \equiv (l < n \land r = 0) \lor (l \ge n \land r = l - n).$$

Length Abstraction

```
let rec take' n l =
 if n=0 then 0
 else
   if I=0 then 0
   else
    let l'=1-1 in 1+(take' (n-1) l')
let rec drop' n l =
 if n=0 then I
 else
  if I=0 then 0
  else
    let l'=1-1 in drop' (n-1) l'
let main n l =
 assert((take' n l)+(drop' n l)=l)
```

Output of CHC solvers for LIA

$$Take'(n, l, r) \equiv (l < n \land r = l) \lor (l \ge n \land r = n)$$
$$Drop'(n, l, r) \equiv (l < n \land r = 0) \lor (l \ge n \land r = l - n).$$

Combination with the result of STP inference

$$Take(n, l, r) \equiv \exists s.rs = l \land ((len(l) < n \land len(r) = len(l))$$

$$\lor (len(l) \ge n \land len(r) = n))$$

$$Drop(n, l, r) \equiv \exists s.sr = l \land ((len(l) < n \land len(r) = 0)$$

$$\lor (len(l) \ge n \land len(r) = len(l) - n)).$$

Applications of Multiset Tuple Patterns

$$Insert(x, [], [x]). \qquad x \leq y \Rightarrow Insert(x, y :: l_2, x :: y :: l_2).$$

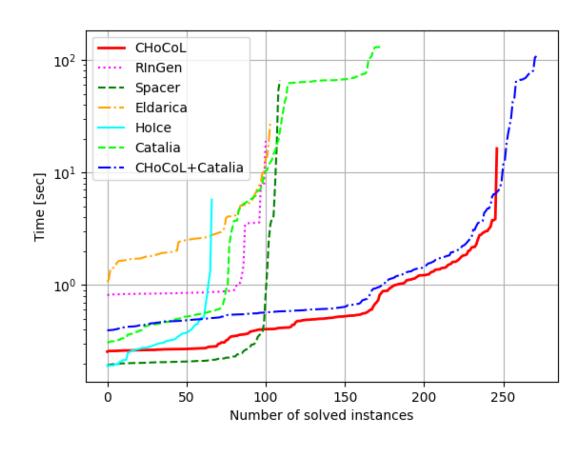
$$x > y \land Insert(x, l_2, l_3) \Rightarrow Insert(x, y :: l_2, y :: l_3).$$

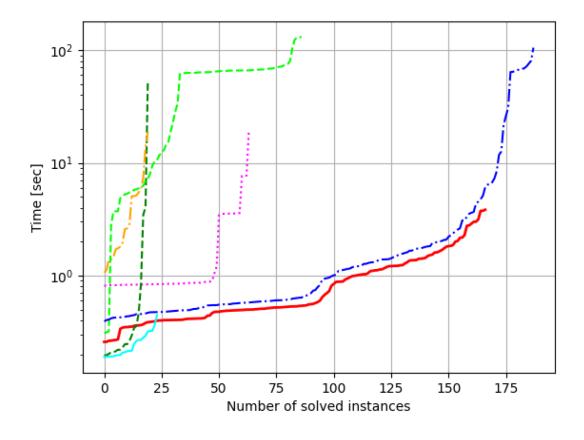
$$Sort([], []). \qquad Sort(l_1, l_2) \land Insert(x, l_2, l_3) \Rightarrow Sort(x :: l_1, l_3).$$

$$Sort(l_1, l_2) \land Count(x, l_1, z_1) \land Count(x, l_2, z_2) \Rightarrow z_1 = z_2.$$

Multiset abstraction with STP inference for multisets yield: Insert(x, I_1 , I_2) $\equiv \{x\} \cup ms(I_1) = ms(I_2)$ Sort(I_1 , I_2) $\equiv ms(I_1) = ms(I_2)$

Experimental Results for CHCs over Lists from CHC-COMP 2025 Benchmark





(a) All instances

(b) SAT instances

The Numbers of Solved Instances

Solver	Solved (SAT) Solved (UNSAT		Solved (all)
CHoCoL	167 (84)	80 (0)	247 (84)
RInGen	64 (23)	37 (4)	101 (27)
Spacer	20 (2)	90 (0)	110 (2)
ELDARICA	20 (0)	84 (0)	104 (0)
Holce	24 (6)	43 (0)	67 (6)
CATALIA	87 (12)	87 (0)	174 (12)
CHoCoL+Catalia	188	84	272

Related Work

- **♦** Pattern Languages [Angluin 80, Shinohara 83, ...]
 - No efficient algorithm known for the full class of pattern languages
 - Previously known subclasses (e.g. regular patterns [Shinohara 94])
 do not seem very useful for program verification
- **♦** Data-driven approaches to invariant inference
 - Algebraic methods: [Sharma+ ESOP13][Ikeda+, APLAS23]
 - Decision trees: [Garg+][Champion+ TACAS18]...
 - SVM: [Zhu+ ICFP15]...
 - Neural networks: CLN2INV [Ryan+ 20], NeuGuS [K+ SAS21] ...
 Mostly for inference of numerical relations

Related Work

- **♦** Solving CHCs over ADTs
 - Induction [Unno CAV17], Unfold/fold transformation [Angelis+ 18], ...
 - require heuristics and/or hints
 - Abstractions: RinGen [Koskyukov PLDI21], Racer [Govind+ POPL22],
 Catalia [SAS25], ...
 - unable to prove the equality of lists

Conclusion

- ◆ Proposed Solvable Tuple Patterns (STPs) for Lightweight Representation/Inference of Relations among Sequences
- **♦** Applied STPs to CHC Solving for List-like Data Structures

Future Work

- Supporting more patterns (such as sort/fold functions)
- Extension to tree patterns
- Other applications