• Further Affiliations at the University of Münster

  • Honors

    ERC Consolidator GrantEuropean Research Council (ERC)
  • Projects

    In Process
    Finished
  • Publications

    • Fehler K G, Ovvyan A P, Antoniuk L, Lettner N, Gruhler N, Davydov V A, Agafonov V N, Pernice W H P, & Kubanek A. (). Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity. Nanophotonics, 20200257. doi: 10.1515/nanoph-2020-0257.
    • Gehring, H, Blaicher M, Grottke T, & Pernice W. (). Reconfigurable nanophotonic circuitry enabled by direct-laser-writing. IEEE Journal of Quantum Electronics, 2020, 1–1. doi: 10.1109/JSTQE.2020.3004278.
    • Elshaari A W, Pernice W, Srinivasan K, Benson O, & Zwiller V. (). Hybrid integrated quantum photonic circuits. Nature Photonics, 2020. doi: 10.1038/s41566-020-0609-x.
    • Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, & Pernice W. (). Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder. Nano Letters, 2020. doi: 10.1021/acs.nanolett.0c00171. [online first]
    • Li X, Youngblood N, Cheng Z, Garcia-Cuevas Carrillo S, Gemo E, Pernice W H P, Wright C D, & Bhaskaran H. (). Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 7(3), 218–225. doi: 10.1364/OPTICA.379228.
    • Kaspar C, Lehrich J, Ivanenko A, Klingauf J, & Pernie W. (). Integrated photonics chip for neural activity investigation. Optogenetics and Optical Manipulation, 11227. doi: 10.1117/12.2546183.
    • Yun Y, Vetter A, Stegmüller R, Ferrari S, Pernice W H P, Rockstuhl C, & Lee C. (). Superconducting-Nanowire Single-Photon Spectrometer Exploiting Cascaded Photonic Crystal Cavities. Physical Review Applied, 13(014061), 1–13. doi: 10.1103/PhysRevApplied.13.014061.
    • Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, & Pernice W. (). Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder. Advanced Optical Materials, 1(1901602), 1–8. doi: 10.1002/adom.201901602.
    • Wolff M A, Beutel F, Hartmann W, Häußler M, Gehring H, Stegmüller R, Walter N, Pernice W, & Schuck C. (). Waveguide Integrated Superconducting Single-Photon Detector Array for Ultra-Fast Quantum Optics Experiments. In DPG Spring Meeting 2020, Hannover , p. Q27.1.
    • Feldmann J, & Pernice W. (). Phase wechsel dich. Physik Journal, 7, 36–41.
    • Faneca J, Garcia-Cuevas Carrillo S, Gemo E, Ruiz de Galarreta C, Domínguez Bucio T, Gardes F Y, Bhaskaran H, Pernice W H P, Wright C D, & Baldycheva A. (). Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Optical Materials Express, 10(8), 1778–1791. doi: 10.1364/OME.10.001778.
    • Skljarow A, Gruhler N, Pernice W, Kübler H, Pfau T, Löw R, & Alaeian H. (). Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics. Optics Express, 28(13), 19593–19607. doi: 10.1364/OE.389644.
    • Schlummer, Paul; Lauströer, Jonas; Schulz-Schaeffer, Reinhard; Abazi, Adrian; Schuck, Carsten; Pernice, Wolfram H.P.; Heusler, Stefan; Laumann, Daniel. (). MiReQu – Mixed Reality Lernumgebungen zur Förderung fachlicher Kompetenzentwicklung in den Quantentechnologien. In Grebe-Ellis, Johannes; Grötzebauch, Helmuth (Hrsg.): PhyDid B , S. 451–459. Berlin.
    • Gehring H; Blaicher M; Eich A; Hartmann W; Varytis P; Busch K; Schuck C; Wegener M, & Pernice WHP. (). Broadband fiber-to-chip coupling in different wavelength regimes realized by 3D-structures. In Optica Publishing Group (Ed.): Conference on Lasers and Electro-Optics (2020), paper JTh2B.22 , p. JTh2B.22. Washington: Optica Publishing Group. doi: 10.1364/CLEO_AT.2020.JTh2B.22.
    • Häußler, Matthias;Beutel, Fabian;Gehring, Helge;Stegmüller, Robin;Walter, Nicolai;Wolff, Martin A.;Hartmann, Wladick;Tillmann, Max;Wahl, Michael;Röhlicke, Tino;Bülter, Andreas;Wernicke, Doreen;Perlot, Nicolas;Rödiger, Jasper;Pernice, Wolfram H.P.;Schuck, Carsten. (). Parallelizing single-photon detection for ultra-fast quantum key distribution. In Qcrypt 2020, virtuell.

    • Feldmann J, Youngblood N, Li X, Wright D, Bhaskaran H, & Pernice W. (). Integrated 256 cell photonic phase change memory with 512-bit capacity. Journal of Selected Topics in Quantum Electronics, 1. doi: 10.1109/JSTQE.2019.2956871.
    • Farmakidis N, Youngblood N, Li X, Tan J, Swett J L, Cheng Z, Wright C D, Pernice W H P, & Bhaskaran H. (). Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Science advances, 5(11), 1–7. doi: 10.1126/sciadv.aaw2687.
    • Ciancico C, Schädler K G, Pazzagli S, Colautti M, Lombardi P, Osmond J, Dore C, Mihi A, Ovvyan A P, Pernice W H P, Berretti E, Lavacchi A, Toninelli C, Koppens F H L, & Reserbat-Plantey A. (). Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer. ACS Photonics, 2019. doi: 10.1021/acsphotonics.9b01145.
    • Feldmann J, Pernice, & W H P. (). Lichtschnelles Nervennetz. Physik in unserer Zeit, 50(6), 282–288. doi: 10.1002/piuz.201901557.
    • Gehring H, Blaicher M, Hartmann W, Pernice, & W H P. (). Python based open source design framework for integrated nanophotonic and superconducting circuitry with 2D-3D-hybrid integration. OSA Continuum, 2(11), 3091–3101. doi: 10.1364/OSAC.2.003091.
    • Ferrari S, Kovalyuk V, Vetter A, Lee C, Rockstuhl C, Semenov A, Gol´tsman G, & Pernice W. (). Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate. Applied Physics Letters, 115(101104), 1–4. doi: 10.1063/1.5113652.
    • Wright C D, Bhaskaran H, Pernice, & W H P. (). Integrated phase-change photonic devices and systems. MRS Bulletin, 44(9), 721–727. doi: 10.1557/mrs.2019.203.
    • Fehler K. G, Ovvyan A. P, Gruhler N, Pernice W H. P, & Kubanek A. (). Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity. ACS Nano, 2019. doi: 10.1021/acsnano.9b01668.
    • Feldmann J, Youngblood N, Wright C. D., Bhaskaran H, Pernice W. H. P. (). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208–214. doi: 10.1038/s41586-019-1157-8.
    • Muñoz-Castro M, Walter N, Prüßing Jan K., Pernice W, Bracht H,. (). Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material. ACS Photonics, 6(5), 1182–1190. doi: 10.1021/acsphotonics.8b01708.
    • Rios C, Youngblood N, Cheng Z, Le Gallo M, Pernice W H P, Wright D, Sebastian A, & Bhaskaran H. (). In-memory computing on a photonic platform. Science advances, 5(2), 1–9. doi: 10.1126/sciadv.aau5759.
    • Giambra M A, Benfante A, Pernice R, Miseikis V, Fabbri F, Reitz, C, Pernice W H P, Krupke, R, Calandra, E, Stivala S, Busacca A C, & Danneau R. (). Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study. ACS Omega, 4, 2256–2260. doi: 10.1021/acsomega.8b02836.
    • Youngblood N, Rios C, Gemo E, Feldmann J, Cheng Z, Baldycheva A, Pernice W H P, Wright C D, & Bhaskaran H. (). Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics. Advanced Functional Materials, 2019(1807571), 1–7. doi: 10.1002/adfm.201807571.
    • Wolff M A, Beutel F, Hartmann W, Häußler M, Stegmüller R, Walter N, Tillmann M, Wahl M, Röhlicke T, Bülter A, Wernicke D, Perlot N, Rödiger J, Pernice W H P, & Schuck C. (). QuPAD - Waveguide Integrated Superconducting Nanowire Array for Ultra-Fast Parallelized Single-Photon Detection. In Single Photon Workshop SPW-2019, Milano , p. 228.
    • Tillmann M, Wahl M, Röhlicke T, Bülter A, Wernicke D, Wolff M, Häußler M, Walter N, Stegmüller R, Beutel F, Pernice W, Schuck C, & Perlot N. (). QuPAD - high bandwidth photon detection enabled by a massively parallelized system. In Single Photon Workshop SPW-2019, Milano , p. 230.
    • Gehring H, Eich A, Schuck C, Pernice, & W H P. (). Broadband out-of-plane coupling at visible wavelengths. Optics Letters, 44(20), 5089–5092. doi: 10.1364/OL.44.005089.
    • Carrillo S G-C, Gemo E, Li X, Youngblood N, Katumba A, Bienstman P, Pernice W, Bhaskaran H, & Wright C D. (). Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL Materials, 7(091113), 1–7. doi: 10.1063/1.5111840.
    • Giambra M A, Benz C, Wu F, Thürmer M, Balachandran G, Benfante A, Pernice R, Pandey H, Boopathi M, Jang M-H, Ahn, J-H, Stivala S, Calandra E, Arnone C, Cusumano P, Busacca A, Pernice W H P, & Danneau R. (). Investigation on Metal-Oxide Graphene Field-Effect Transistors with clamped geometries. IEEE Journal of the Electron Devices Society, 2019, 1–5. doi: 10.1109/JEDS.2019.2939574.
    • Gemo E, Garcia-Cuevas Carrillo S, Ruiz De Galarreta C, Baldycheva A, Hayat H, Youngblood N, Bhaskaran H, Pernice W H P, & Wright C D. (). Plasmonically-enhanced all-optical integrated phase-change memory. Optics Express, 27(17), 24724–24737. doi: 10.1364/OE.27.024724.
    • Gehring H, Blaicher M, Hartmann W, Varytis P, Busch K, Wegener M, & Pernice W. (). Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics 4, Volume 4, Issue 1. doi: 10.1063/1.5064401.
    • Hanafi H, Kroesen S, Lewes-Malandrakis G, Nebel C, Pernice W. H.P, & Denz C. (). Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography. Optical Material Express, 9(7). doi: 10.1364/OME.9.003109.
    • Polyakova M, Semenov A, Kovalyuk V, Ferrari S, Pernice W, Gol´tsman G. (). Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency. IEEE Transactions on Applied Superconductivity, 1, 1–1. doi: 10.1109/TASC.2019.2906267.
    • Muñoz-Castro M, Walter N, Prüßing JK, Pernice W, & Bracht H. (). Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material. ACS Photonics, 2019, 6, 5, 1182–1190. doi: 10.1021/acsphotonics.8b01708.

    • Tonndorf P, Pozp-Zamudio O.D, Gruhler N, Kern J, Schmidt R, Dmitriev A. I, Bakhtinov A. P, Tartakovskii A. I, Pernice W. H. P, Michaelis de Vasconcellos S, & Bratschitsch R. (). On-chip waveguide coupling of a layered semiconductor single-photon source. Nanoletters, 17, 5446–5451. doi: 10.1021/acs.nanolett.7b02092#cor1.
    • Pyatkov F, Khasminskaya S, Kovalyuk V, Hennrich F, Kappes M M, Goltsman G N, Pernice W H P, & Krupke R. (). Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers. Beilstein J. Nanotechnol., 8, 38–44.
    • Lubanov Y, Shcherbatenko M, Semenov A, Kovalyuk V, Kahl O, Ferrari S, Korneev R, Ozhegov N, Kaurova B, Voronov B, Pernice W H P, & Goltsman G. (). Superconducting nanowire single photon detector for coherent detection of weak signals. IEEE Trans. Appl. Supercond, 2017. doi: 10.1109/TASC.2016.2645132.
    • Cheng Z, Ríos C, Pernice W. H. P, Wright C. D. and, & Bhaskaran H. (). On-chip photonic synapse. Science advances, 3.
    • Lombard P, Ovvyan A. P, Pazzagli S, Mazzamuto G, Kewes G, Neitzke O, Gruhler N, Benson O, Pernice W.H.P, Cataliotti F.S, & Toninelli C. (). Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics, 2017.
    • Feldmann J, Stegmaier M, Gruhler N, Ríos C, Bhaskaran H, Wright C. D, Pernice, W. H. P. (). Calculating with light using a chip-scale all-optical abacus. Nature Communications, 8.
    • Kovalyuk V, Ferrari S, Kahl O, Semenov A, Shcherbatenko M, Lobanov Y, Ozhegov R, Korneev A, Kaurova N, Voronov B, Pernice W, Gol’tsman G. (). On-chip coherent detection with quantum limited sensitivity. Scientific Reports, 7, 4812.
    • Ferrari S, Kovalyuk V, Hartmann W, Vetter A, Kahl O, Lee C, Korneev A, Rockstuhl C, Gol’tsman G, Pernice, & W H P. (). Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Optics Express, 25(8), 8739–8750.
    • Kahl O, Ferrari S, Kovalyuk V, Vetter A, Lewes-Malandrakis G, Nebel C, Korneev A, Goltsman G, Pernice, & W H P. (). Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. Optica, 4, 557–562.

    • Fechner R G, Pyatkov F, Khasminskaya S, Flavel B S, Krupke R, Pernice, & W H P. (). Directional couplers with integrated carbon nanotube incandescent light emitters. Optics Express, 2016, 966.
    • Stegmaier M, Pernice, & W H P. (). Nichtflüchtiger optischer Speicher in photonischen Schaltkreisen. Physik unserer Zeit, 47, 9.
    • Piracha A H, Rath P, Ganesan K, Kühn S, Pernice W H P, & Prawer S. (). Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows. Nano Letters 16, 5, 3341–3347.
    • Stegmaier M, Rios C, Bhaskaran H, Pernice, & W H P. (). Thermo-optical Effect in Phase-Change Nanophotonics. ACS Photonics, 3, 828–835. doi: 10.1021/ascphotonics.6b00032.
    • Checcucci S, Lombardi P, Rizvi S, Sgrignuoli F, Gruhler N, Dieleman F B C, Cataliotti F S , Pernice W H P, Agio M, & Toninelli C. (). Beaming light from a quantum emitter with a planar optical antenna. Light: Science & Applications, 2017(6), e16245.
    • Lu Y, Stegmaier M, Nukala P, Giambra M A, Ferrari S, Busacca A, Pernice W H P, & Agarwal R. (). Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Nano Letters, 2016. doi: 10.1021/acs.nanolett.6b03688.
    • Lee C, Ferrari S, Pernice W H P, & Rockstuhl C. (). Sub-Poisson-binomial light. Physical Review A, 94, 053844.
    • Dzyapko O, Borisenko I V, V. Demidov E, Pernice W, & Demokritov S O. (). Reconfigurable heat-induced spin wave lenses. Applied Physics Letters, 109, 232407.
    • Gruhler N, Yoshikawa T, Rath P, Lewes-Malandrakis G, Schmidhammer E, Nebel C, Pernice, & W H P. (). Diamond on aluminum nitride as a platform for integrated photonic circuits. Physica Statut Solid A, 213.
    • Stegmaier M, Rı́os C, Bhaskaran H, Wright C D, Pernice, & W H P. (). Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks. Advance Optical Materials, 2016. doi: 10.1002/adom.201600346.
    • Vetter A, Ferrari S, Rath P, Alaee R, Kahl O, Kovalyuk V, Diewald S, Goltsman G N, Korneev A, Rockstuhl C, Pernice, & W H P. (). Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors. Nano Letters, 16. doi: 10.1021/acs.nanolett.6b03344.
    • Khasminskaya S, Pyatkov F, Słowik K, Ferrari S, Kahl O, Kovalyuk V, Rath P, Vetter A, Hennrich F, Kappes M M, Gol'tsman G, Korneev A, Rockstuhl C, Krupke R, Pernice, & W H P. (). Fully integrated quantum photonic circuit with an electrically driven light source. Nature Photonics, 2016. doi: 10.1038/nphoton.2016.178.
    • Ritter R, Gruhler N, Pernice WHP, Kübler H, Pfau T, & Löw R. (). Coupling thermal atomic vapor to an integrated ring resonator. New Journal of Physics, 18, 103031.
    • Ovvyan A, Gruhler N, Ferrari S, Pernice, & W H P. (). Cascaded Mach-Zehnder interferometer tunable filters. Journal of Optics, 18, 064011.
    • Pyatkov F, Fütterling V, Khasminskaya S, Flavel B.S, Hennrich F, Kappes M.M, Krupke R, Pernice, W.H.P. (). Cavity-enhanced light emission from electrically driven carbon nanotubes. Nature Photonics, 70.

    • Ferrari S, Kahl O, Kovalyuk V, Goltsman G.N, Korneev A. Pernice W.H.P. (). Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl. Phys. Lett, 106, 151101.
    • Korneev A, Goltsman G, Pernice W.H.P. (). Photonic integration meets single-photon detection. Laser Focus World, 51, 47–50.
    • Kahl O, Ferrari S, Kovalyuk V, Goltsman G.N, Korneev A, Pernice W.H.P. (). Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Scientific Reports, 5, 10941.
    • Ritter R, Gruhler N, Pernice W, Kübler H, Pfau T and, & Löw R. (). Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett., 107, 041101.
    • Kahl O, Ferrari S, Rath P, Vetter A, Nebel C, Pernice W.H.P. (). High efficiency, on-chip single-photon detection for diamond nanophotonic circuits. IEEE Journal of Lightwave Technology, 33, 01.
    • Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C.D, Bhaskaran H, Pernice W.H.P. (). Integrated all-photonic nonvolatile multi-level memory. Nature Photonics, 9, 725.
    • Rath P, Kahl O, Ferrari S, Sproll F, Lewes-Malandrakis G, Brink D, Ilin K, Siegel M, Nebel C, Pernice W.H.P. (). Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Science & Applications, 4, e338.
    • Rath P, Ummethala S, Nebel C, Pernice W.H.P. (). Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A): Applications and Materials Science, 212, 2385.

    • Rios C, Hosseini P, Wright D, Bhaskaran H, Pernice W.H.P. (). On-chip photonic memory elements employing phase change materials. Advanced Materials, 26, 1372.
    • Ummethala S, Rath P, Lewes-Malandrakis G, Brink D, Nebel C, Pernice W.H.P. (). High-Q optomechanical circuits made from polished nanocrystalline diamond thin films. Diamond Rel. Mat, 44, 49–53.
    • Khasminskaya S, Pyatkov F, Flavel B.S, Pernice W.H.P, & Krupke R. (). Waveguide integrated electroluminescent carbon nanotubes. Advanced Materials, 2014.
    • Xiong C, Pernice W.H.P, Ngai J, Reiner J, Kumah D, Walker F, Ahn C, Tang H.X. (). Silicon integrated active ferroelectric BaTiO3 thin films and waveguiding devices. Nano Letters, 14, 1419.
    • M. Stegmaier, J. Ebert, J.M. Meckbach, K. Ilin, M. Siegel and W.H.P. Pernice. (). Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Applied Physics Letters, 104(9), Article 091108. doi: 10.1063/1.4867529.
    • Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W.H.P. (). Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Nature Light: Science and Applications, 2014.
    • Pernice W.H.P, Xiong C, Walker F, Tang H.X. (). Design of a silicon integrated electro-optic modulator based on ferroelectric BaTiO3 thin films. IEEE Photon. Tech. Lett., 2014.
    • Rath P, Hirtz M, Lewes-Malandrakis G, Brink D, Nebel C, Pernice W.H.P. (). Diamond Nanophotonic Circuits Functionalized by Dip-pen Nanolithography. Advanced Optical Materials, 2014.
    • Pernice W.H.P. (). Integrated Optomechanics: materials and concepts. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1889.
    • Rath P, Ummethala S, Diewald S, Lewes-Malandrakis G, Brink D, Heidrich N, Nebel C, Pernice W.H.P. (). Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Appl. Phys. Lett. 105, 105, 251101.

    • Schuck C, Pernice W.H.P, Tang H.X. (). Array of integrated superconducting single photon detectors with high timing resolution. IEEE Transactions on Applied Superconductivity, 23, 2201007.
    • Schuck C, Pernice W.H.P, Tang H.X. (). NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Applied Physics Letters, 102, 051101.
    • Stegmaier M, Pernice W.H.P. (). Broadband directional coupling in aluminum nitride nanophotonic circuits. Optics Express, 21, 7304–7315.
    • Rath P, Khasminskaya S, Nebel C, Wild C, Pernice W.H.P. (). Diamond-integrated optomechanical circuits. Nature Communications, 4, 1690.
    • Pernice W.H.P, Xiong C, & Tang H. (). Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits. Journal of Nanophotonics, 7, 073095.
    • Rath P, Gruhler N, Khasminskaya S, Nebel C, Wild C, Pernice W.H.P. (). Waferscale nanophotonic circuits made from diamond-on-insulator substrates. Optics Express, 21, 11031–11036.
    • Rath P, Khasminskaya S, Nebel C, Wild C, Pernice W.H.P. (). Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films. Nanotechnology, 4, 300–305.
    • Schuck C, Pernice W.H.P, Ma X, Tang H.X. (). Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Appl. Phys. Lett., 102, 191104.
    • Schuck C, Pernice W.H.P, Tang H.X. (). Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Scientific Reports, 3, 1893.
    • Kovalyuk V, Hartmann W, Kahl O, Kaurova N, Korneev A, Goltsman G, Pernice W.H.P. (). Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits. Optics Express, 21, 22683.
    • Stegmaier M, Pernice W.H.P. (). Mode control and mode conversion in nanophotonic aluminum nitride waveguides. Optics Express, 21, 26742.
    • Gruhler N, Benz C, Jang H, Ahn J.-A, Danneau R, Pernice W.H.P. (). High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices. Optics Express, 21, 31678–31689.

    • Pernice W.H.P, Xiong C, Schuck C, Tang H.X. (). High-Q aluminum nitride photonic crystal nanobeam cavities. Appl. Phys. Lett., 100, 091105.
    • Fong K.Y, Pernice W.H.P, Tang H.X. (). Frequency and phase noise of ultrahigh Q silicon nitride nanomechanical resonators. Physical Review B (Rapid Communication), 85, 161410.
    • Pernice W.H.P, Xiong C, Tang H.X. (). High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Optics Express, 20, 12261.
    • Pernice W.H.P, Xiong C, Schuck C, Tang H.X. (). Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Applied Physics Letters, 100, 091105.
    • Xiong C, Pernice W.H.P, Tang H.X. (). Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Letters, 12, 3562.
    • Pernice W.H.P, & Bhaskaran H. (). Photonic non-volatile memory based on phase-change materials. Applied Physics Letters, 101, 171101.
    • Xiong C, Pernice W.H.P, Sun X, Schuck C, Fong K.Y, Tang H.X. (). Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 14, 095014.
    • Zheng J, Sun X, Li Y, Poot M, Dadgar A, Shi N.N, Pernice W.H.P, Tang H.X, Wong C.W. (). Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison. Optics Express, 20, 26486.
    • Khasminskaya S, Pernice W.H.P. (). A silicon nanowire factorable photon pair source. Optical and Quantum Electronics.
    • Poot M, Fong K.Y, Bagheri M, Pernice W.H.P, Tang H.X. (). Backaction limits on self-sustained optomechanical oscillations. Phys. Rev. A, 86, 053826.
    • Pernice W.H.P, Schuck C, Minaeva O, Li M, Goltsman M, Sergienko A, & Tang H. (). High Speed and High Efficiency Travelling Wave Single-Photon Detectors Embedded in Nanophotonic Circuits. Nature Communications, 3, 1325.
    • Xiong C, Pernice W, Schuck C, & Tang H. (). Second harmonic generation in aluminum nitride waveguides on silicon substrates. In Tang, H.X. (Eds.): Proceedings Conference on Lasers and Electro-Optics 2012 San Jose: Wiley-IEEE Computer Society Press.

    • Pernice W.H.P, Schuck C., Li M, Tang H.X. (). Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures. Optics Express, 19, 3290.
    • Xiong C, Pernice W.H.P, Ryu K, Schuck C, Fong K.Y, Palacios T, Tang H.X. (). Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Optics Express, 19, 10462.
    • Fong K.Y, Pernice W.H.P, Li M, Tang H.X. (). Tunable optical coupler controlled by optical gradient forces. Optics Express, 19, 015098.
    • Sun X, Fong K.Y, Xiong C, Pernice W.H.P, Tang H.X. (). GHz optomechanical resonators with high mechanical Q factor in air. Optics Express, 19, 22316.
    • Bagheri M, Poot M, Li M, Pernice W.H.P, & Tang H. (). Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction. Nature Nanotechnology, 6, 726.

    • Pernice W.H.P. (). Finite-difference time-domain methods and material models for the simulation of plasmonic structures. Journal of Computational and Theoretical Nanoscience, 7, 1.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures. International Journal of Numerical modelling, 23, 183.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures. International Journal of Numerical modelling, 23, 183.
    • Pernice W.H.P. (). Finite-difference time-domain methods and material models for the simulation of plasmonic structures. Journal of Computational and Theoretical Nanoscience, 7, 1.
    • Pernice W.H.P, Li M, Garcia-Sanchez D, Tang H.X. (). Analysis of short range forces in optomechanical devices with a nanogap. Optics Express, 18, 12615.
    • Xiong C, Pernice W.H.P, Li M, Rooks M, Tang H.X. (). Adiabatic embedment of nanomechanical resonators in photonic microring cavities. Applied Physics Letters, 96, 363101.
    • Pernice W.H.P, Li M, Tang H.X. (). Time-domain measurement of optical transport in silicon micro-ring resonators. Optics Express, 18, 18438.
    • Fong K.Y, Pernice W.H.P, Li M, Tang H.X. (). High Q optomechanical resonators in silicon nitride nanophotonic circuits. Appl. Phys. Lett., 97, 073112.
    • Xiong C, Pernice W.H.P, Li M, Tang H.X. (). High performance nanophotonic circuits based on partially buried horizontal slot waveguides. Optics Express, 18, 20690.
    • Li M, Pernice W.H.P, Tang H.X. (). Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities. Applied Physics Letters, 97, 073112.

    • Li M, Pernice W.H.P, Tang H.X. (). Reactive Cavity Optical Force on Micro-disk Coupled Nanomechanical Beam Waveguides. Physical Review Letters, 103, 223901.
    • W.H.P, Li M, Tang H.X. (). A mechanical Kerr effect in deformable photonic media. Applied Physics Letters, 95, 123507.
    • Pernice W.H.P, Fong K.Y, Li M, Tang H.X. (). Modelling of optical forces in 3d nanomechanical waveguides. Optics Express, 17, 16032.
    • Pernice W.H.P, Li M, Gallagher D.F.G, & Tang H. (). Silicon Nitride Membrane Photonics. Journal of Optics A, 11, 114017.
    • Niegemann J, Pernice W.H.P, & Busch K. (). Simulation of Optical Resonators using DGTD and FDTD. Journal of Optics A, 11, 114015.
    • Li M, Pernice W.H.P, & Tang H. (). Tunable bipolar optical interactions between guided lightwaves. Nature Photonics, 3, 464.
    • Li M, Pernice W.H.P, Tang H.X. (). Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 4, 377.
    • Pernice W.H.P, Li M, Tang H.X. (). Optomechanical coupling in photonic crystal supported nanomechanical waveguides. Optics Express, 17, 12424.
    • Pernice W.H.P, Li M, Tang H.X. (). Theoretical investigation of the transverse optical force between a silicon nanowire and a substrate. Optics Express, 17, 1806.
    • Pernice W.H.P, M. Li M, & Tang H. (). Photothermal actuation in nanomechanical waveguide devices. Journal of Applied Physics, 105, 014508.

    • Pernice W.H.P, Li M, Tang H.X. (). Gigahertz photothermal effect in silicon waveguides. Applied Physics Letters, 93, 213106.
    • Pernice W.H.P, J.H. Kuypers J.H, Pernice V.W.A, & Esashi M. (). An ADI based Fourier Spectral method for the simulation of metallic structures. Journal of Computational and Theoretical Nanoscience, 5, 571.
    • Pernice W.H.P, Payne, F.P, Gallagher D.F.G. (). Numerical investigation of Littrow lasing in open resonator photonic crystal waveguides. Europhysics Letters, 82, 54001.
    • Li M, Pernice W.H.P, Xiong C, Baehr-Jones T, Hochberg M, Tang H.X. (). Harnessing optical forces in integrated photonic circuits. Nature, 456, 480.

    • Pernice W.H.P, Obloh H, Müller-Sebert W, Wild C, Koidl P, & Urban G. (). Diamond components with integrated abrasion sensor for tribological applications. Diamond and Related Materials, 16, 991.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). An FDTD method for the simulation of dispersive metallic structures. Optical and Quantum Electronics, 38, 843.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). Pseudo-spectral time-domain modeling of real metals. Optical and Quantum Electronics, 39, 877.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals. Journal of Lightwave Technology, 25, 2306.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). Numerical investigation of field enhancement on metal nano-particles using a hybrid FDTD-PSTD algorithm. Optics Express, 15, 11433.
    • Khayam O, Cambournac C, Benisty H, Ayre M, Brenoit R, Duan G.-H, Pernice W.H.P. (). In-plane Littrow lasing of broad photonic crystal waveguides. Applied Physics Letters, 91, 041111.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). Finite-difference time-domain simulation of dispersive features smaller than the grid-spacing. Int. Journal of Numerical modeling, 20, 916.
    • Pernice W.H.P, Payne F.P, Gallagher D.F.G. (). A general framework for the finite-difference time-domain simulation of real metals. IEEE Transactions on Antennas and Propagation, 55, 916.
    • Pernice W.H.P. (). Pseudo-spectral time-domain simulation of the transmission and the group delay of photonic devices. Optical and Quantum Electronics, 40, 1.
  • Supervised Doctoral Studies

    Dzikonski, DustinLaser-sculpted hydrogel scaffolds for cell inspection (Working title)
    Hanafi, HaissamInvestigation of solid-state photonic structures as well as nonlinear structures for frequency conversion using femtosecond laser beam lithography (working title)
    Tonndorf, PhilippEinzelphotonenquellen in zweidimensionalen Schichthalbleitern
    Boguslawski, MartinMultispectral, aperiodic, and random photonic lattices
    Schmidt, RobertUltraschnelle Dynamik und Manipulation von Exzitonen in atomar dünnen Halbleitern
    Kroesen, Sebastian Walter KarlIntegrated photonics in nonlinear media by direct femtosecond laser lithography
  • Scientific Talks

    • Wolff, Martin (): ‘Towards high-Tc superconducting nanowire single-photon detectors’. Quantum Symposium 2018, 1st International Symposium on "Single Photon based Quantum Technologies", Max-Born-Saal, Berlin, Deutschland, .
    • Wolff, Martin (): ‘Towards integrated High-Tc Superconducting single-photon detectors integrated with nanophotonic waveguides’. DPG-Frühjahrstagung 2018, Universität Erlangen, Erlangen, Deutschland, .