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Vorwort

Eigentlich sollte die Beschäftigung mit der Mathematik ja Vergnügen bereiten! Aber auch wenn keiner
erwartet, dass sie ein billiges Vergnügen ist, so muss man doch feststellen, dass sie vielen Menschen eher
zum Missvergnügen dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein wenig zu helfen. Ich will sie
zum einen dabei unterstützen, die hohe Schwelle von der Schul- zur Hochschul-Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszuräumen, auf die ich leider immer wieder
stoße. Diese Defizite liegen im Bereich der Bruch- und Potenzrechnung. Es mag entwicklungspsychologi-
sche Gründe für sie geben. Aber spätestens zu Beginn des Studiums muss dieses Thema erledigt sein.

Anmerkung: In dieses Skript habe ich einige Texte unverändert aufgenommen, die ursprünglich anderen
Zwecken dienten. Das werden Sie merken. Ich denke aber, dass sie deshalb nicht unbrauchbar sind. Die
knappe Zeit wird mich zwingen, auf manche Themen des Skriptes zu verzichten. Es kann überhaupt
nichts schaden, sich auch mit den Teilen des Skriptes zu befassen, die nicht vorgetragen wurden. Fast
alles in diesem Skript ist sehr wichtig für jeden Mathematiker, Physiker und Informatiker. Nur Abschnitt
8 wurde mehr zum Spaß als wegen seiner generellen Wichtigkeit aufgenommen.
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1 Natürliche Zahlen

1.1 Die natürlichen Zahlen sind 0, 1, 2, 3, . . ., insgesamt unendlich viele, so dass man sie nicht alle hin-
schreiben kann. (Übrigens gibt es unter Mathematikern einen erbitterten Streit darüber, ob man die 0
wirklich zu ihnen rechnen soll. Ich jedenfalls tue das und setze es hiermit für diesen Kurs fest.)

Die Menge (=Gesamtheit) der natürlichen Zahlen wird mit N bezeichnet, also

N := {0, 1, 2, 3, . . .}

Mit N1 bezeichne ich die Menge der natürlichen Zahlen 6= 0 also N1 := {1, 2, 3, . . .} . (Wenn man will,
kann man auch N2 := {2, 3, 4, . . .} definieren, usw.)

1.2 Sie wissen, wie man natürliche Zahlen addiert und multipliziert. Wahrscheinlich kennen Sie auch
folgende Gesetze für diese ”Verknüpfungen“

(1)

 m + n = n + m mn = nm Kommutativität
k + (m + n) = (k + m) + n k(mn) = (km)n Assoziativität
k(m + n) = km + kn Distributivität

(In der letzten Gleichung ist natürlich die Konvention ”Punktrechnung geht vor Strichrechnung“ anzu-
wenden; d.h. km+kn := (km)+(kn).) Beachten Sie, dass das Distributivitätsgesetz die Addition und die
Multiplikation vollkommen unterschiedlich behandelt. Die Ausdrücke k + mn und (k + m)(k + n) haben
fast immer verschiedene Werte!

Übrigens hielt ich als abc-Schütze die Kommutativität der Multiplikation natürlicher Zahlen keinesfalls
für selbstverständlich. Erst das Beispiel der Apfelsinen, die in einer Kiste in 4 (waagerechten) Reihen
à 5 Stück, d.h. aber auch in 5 (‘senkrechten’) Reihen à 4 Stück angeordnet waren, machten mir das
Kommutativitätsgesetz für die Multiplikation augenfällig.

Die Zahlen 0 und 1 spielen für die Addition, bzw. Multiplikation eine Sonderrolle:

(2) 0 + n = n , 1n = n

Man nennt die 0 ein neutrales Element für die Addition und die 1 ein solches für die Multiplikation.

1.3 Für natürliche Zahlen a, b gelten folgende beiden Regeln

a + b = 0 =⇒ a = b = 0

(dies stimmt für die ganzen Zahlen, die auch negatv sein können, nicht mehr)

ab = 0 =⇒ a = 0 oder b = 0

(Die stimmt auch im Bereich aller ganzen Zahlen.)

1.4 Man kann die natürlichen Zahlen der Größe nach vergleichen: Man schreibt m ≤ n, wenn es eine
natürliche Zahl k mit m + k = n gibt. Man sagt in diesem Fall: ”m (ist) kleiner (oder) gleich n.“

Die Relation ‘<’ wird dann folgendermaßen definiert:

m < n ⇐⇒ m ≤ n und m 6= n

Die Relation ‘≤’ genügt neben der Regel ”0 ≤ n für alle natürlichen Zahlen n“ den folgenden Gesetzen:

(4)


k ≤ m,m ≤ n =⇒ k ≤ n Transitivität
n ≤ n Reflexivität
m ≤ n, n ≤ m =⇒ m = n Antisymmetrie
m ≤ n oder n ≤ m Totalität
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Was folgt daraus für ‘≥’ (was Sie richtig definieren müssen)? Man kann folgende Regeln ableiten:

(5) k ≤ m < n =⇒ k < n ; und k < m, m ≤ n =⇒ k < n

Bezüglich der Addition und Multiplikation gilt für ≤:

(6)
{

m ≤ n =⇒ k + m ≤ k + n
m ≤ n =⇒ km ≤ kn

Welche Regeln gelten für ‘<’?

1.5 Wichtig ist das ”Induktionsprinzip“, das bei einer axiomatischen Beschreibung der natürlichen
Zahlen gemeinhin eines der Axiome ist:

Sei A(n) eine Aussage über natürliche Zahlen n (die für jede einzelne natürliche Zahl n wahr (d.h. richtig)
oder falsch sein kann). Es gelte:

A(0) is richtig;

und

für jedes n ∈ N, für welches A(n) richtig ist, gilt auch A(n + 1).

Dann gilt A(n) für alle n ∈ N. (Hier, wie immer in der Mathematik, bedeutet ”gilt“ dasselbe wie ”ist
richtig“.)

(Ein Beweis dafür, dass A(0) gilt, heißt ”Induktionsanfang“. Ein Beweis dafür, dass A(n + 1) aus A(n)
folgt, heißt ”Induktionsschritt“ Die Voraussetzung in diesem Schluss heißt auch ”Induktionsvorausset-
zung“ oder ”Induktionsannahme“.)

Äquivalent zu o.a. Beschreibung kann man das Induktionsprinzip auch in der Sprache der Mengen dar-
stellen:

Sei M ⊂ N eine Teilmenge von N, die folgenden Eigenschaften genügt:

0 ∈ M

und
n ∈ M =⇒ n + 1 ∈ M.

Dann gilt M = N

Examples 1.6 a) Wir beweisen für n ∈ N die Aussage A(n)

1 + 3 + · · ·+ (2n + 1) = (n + 1)2.

Die Aussage A(0)
1 = (0 + 1)2

ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:

1 + · · ·+ (2n + 1) + 2(n + 1) + 1 = (n + 1)2 + 2(n + 1) + 1 = ((n + 1) + 1)2

Also gilt A(n) für alle n ∈ N.

b) Wir beweisen für n ∈ N die Aussage A(n)

0 + 1 + 2 + · · ·+ n =
n(n + 1)

2
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Die Aussage A(0)

0 =
0(0 + 1)

2
ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:

0 + 1 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ n + 1 =

n(n + 1) + 2(n + 1)
2

=
(n + 2)(n + 1)

2
=

(n + 1)((n + 1) + 1)
2

Also gilt A(n) für alle n ∈ N.

Hier haben wir das Rechnen mit ”Brüchen“ verwendet. In Wahrheit sind allerdings die Ausdrücke
n(n + 1)/2 natürliche Zahlen für alle n ∈ N

In der Mathematik werden sehr häufig Beweise mit dem Induktionsprinzip geführt. Man sagt: sie werden
mit (vollständiger) Induktion geführt.

1.7 Mit Hilfe vollständiger Induktion lässt sich auch folgendes Minimalprinzip beweisen

Ist M eine nichtleere Teilmenge von N, so besitzt M ein kleinstes Element, d.h. es gibt ein k ∈ M mit
k ≤ m für alle m ∈ M .

(Eine Menge M heißt nichtleer, wenn es mindestens ein m ∈ M gibt.)

Ein Beweis des Minimalprinzips mit Hilfe vollständiger Induktion (der nicht vorgetragen wird) geht so:

Die Aussage A(n) ist die folgende:

Wenn in M ein Element m ≤ n existiert, so besitzt M ein kleinstes Element.

Offenbar ist das Minimalprinzip äquivalent damit, dass A(n) für alle n ∈ N gilt.

Der Induktionsanfang bedeutet:

Besitzt M ein Element m ≤ 0, so hat M ein kleinstes Element.

Dies ist aber richtig. Denn da 0 das kleinste Element von N ist, muss es zu M gehören und ist dann
offenbar das kleinste Element von M .

Jetzt müssen wir A(n + 1) aus A(n) folgern.

Sei also M eine Teilmenge von N, die ein Element ≤ n+1 enthält. Enthält sie ein Element ≤ n, so besitzt
sie nach Induktionsvoraussetzung ein kleinstes Element. Enthält sie aber kein solches, so muss n + 1 ihr
kleinstes Element sein.

Mit Hilfe des Minimalpinzips wollen wir zwei Sätze über Primfaktorzerlegung natürlicher Zahlen zeigen,
die allerdings von den meisten für selbstverständlich gehalten werden. Was ‘Teiler’ etc. bedeutet, sei als
bekannt vorausgesetzt.

Definition 1.8 Eine Primzahl ist eine ganze Zahl p > 1 die außer 1 und p keine weiteren natürlichen
Zahlen als Teiler hat.

(Im Bereich aller ganzen Zahlen sind auch −1 und −p noch Teiler von p.) Die ersten Primzahlen sind 2,
3, 5, 7, 11, ...

Proposition 1.9 Jede ganze Zahl n > 1 ist ein Produkt von Primzahlen.
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Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. Wenn man will, kann man die 1
als Produkt von 0 Faktoren auffassen. Der Satz wäre dann sogar für alle n ≥ 1 richtig.

Proof: Angenommen, die Behauptung wäre falsch, d.h. die Menge derjenigen n > 1, die kein Produkt
von Primzahlen sind, wäre nicht leer. Nach dem Minimalprinzip hätte sie ein kleinstes Element m. Dieses
kann keine Primzahl sein, da eine solche als Produkt von Primzahlen (mit 1 Faktor) gilt. Also gibt es
einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e ∈ N mit m = de. Für e gilt gleichfalls 1 < e < m.
Da m die kleinste ganze Zahl > 1 ist, die nicht in Primfaktoren zerlegbar ist, müssen die kleineren d, e in
Primfaktoren zerlegbar sein, etwa

d = p1 · · · pr , e = p′1 · · · p′s
Also ist m = de = p1 · · · prp

′
1 · · · p′s doch in Primfaktoren zerlegbar. Widerspruch. �

Remark 1.10 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise geführt habe, kann man
nicht erkennen, wie man eine Primfaktorzerlegung einer ganzen Zahl n > 1 effektiv herstellen kann. Dies
ist aber prinzipiell möglich. Durch systematisches Durchprobieren der Zahlen 2,3,4,... findet man nämlich
die kleinste ganze Zahl p mit 2 ≤ p ≤ n, die ein Teiler von n ist. p ist prim; denn jeder Teiler von p ist
≤ p und ein Teiler von n.

Dann macht man dasselbe mit n
p , wenn noch p 6= n ist. Usw.

Diese Methode ist allerdings schon für Zahlen n, die im Dezimalsytem einige 100 Stellen haben, mit den
besten Computern in vernünftiger Zeit nicht mehr ausführbar. Es gibt zwar ein paar Tricks, schneller vor-
anzukommen. Aber die vermindern nur unwesentlich das Problem. (Man weiß allerdings, dass sogenannte
Quantencomputer, wenn es sie denn je geben wird, dies Problem besser lösen könnten.)

Andererseits ist es sehr wohl möglich, von Zahlen der angegebenen Größenordnung in wenigen Sekunden
oder Minuten festzustellen, ob sie prim sind – ohne eine Faktorzerlegung im negativen Falle angeben zu
können.

Auf Grund dieser Diskrepanz ist es möglich, Texte nach einem öffentlich gemachten Schlüssel zu ver-
schlüsseln, die man ohne eine zusätzliche Information nicht mehr enschlüsseln kann.

Mag man die Möglichkeit einer Primfaktorzerlegung noch für selbstverständlich halten, so scheint mir
dies für die Eindeutigkeit der Primfaktorzerlegung nicht mehr so zu sein. Ist es z.B. wirklich so selbst-
verständlich, dass 17n 6= 19m für alle natürlichen n, m ≥ 1 ist?

Proposition 1.11 Die Zerlegung einer ganzen Zahl > 1 in Primfaktoren ist bis auf die Reihenfolge
eindeutig.

Proof: (Zermelo) Wir führen den Beweis indirekt. D.h. wir nehmen an, die Menge M der natürlichen
Zahlen ≥ 2, die auf mehrere Weisen in Primfaktoren zerlegbar ist, sei nicht leer, und leiten daraus einen
Widerspruch ab. Nach dem Minimalprinzip hat M ein kleinstes Element a. Wir werden im Widerspruch
hierzu zeigen, dass es noch ein kleineres b ∈ M gibt.

Da a zu M gehört, hat a zwei verschiedene Zerlegungen in Primfaktoren:

a = p1 · . . . · pr = q1 · . . . · qs.

Es gilt r, s > 1, und es ist pi 6= qj für alle i, j, da man sonst kürzen könnte und auf diese Weise ein
kleineres Element in M fände. Man kann also ohne Beschränkung der Allgemeinheit annehmen, dass
q1 < p1 ist. Beachte, dass q1 - p1 − q1 gilt. Wenn man also p1 − q1 in irreduzible Faktoren zerlegt, kann
keiner von diesen q1 sein.

Die Zahl
b := (p1 − q1)p2 · . . . · pr = a− q1p2 · . . . · pr = q1(q2 · . . . · qs − p2 · . . . · pr)

besitzt zwei verschiedene Zerlegungen in irreduzible Faktoren. Indem man nämlich die jeweiligen Klam-
merausdrücke in irreduzible Faktoren zerlegt, erhält man einerseits eine solche in der q1 nicht vorkommt,
andererseits eine solche, in der q1 sehr wohl vorkommt. (Das stimmt auch noch, wenn p1 − q1 = 1 ist.)
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Ferner ist b echt kleiner als a (und größer als 1) im Widerspruch zur minimalen Wahl von a. Dies ist ein
Widerspruch, den wir aus der Annahme hergeleitet haben, dass es überhaupt natürliche Zahlen (> 1)
gibt, die auf wesentlich verschiedene Arten in Primfaktoren zerlegbar sind. Diese Annahme kann also
nicht stimmen. �

Proposition 1.12 Es gibt unendlich viele Primzahlen.

Proof: (Euklid) Zu gegebenen endlich vielen Primzahlen p1, . . . , pn finden wir eine weitere. Denn
jeder Primfaktor von p1· · · pn + 1 ist von allen p1, . . . , pn verschieden. �

Das heißt nicht, dass p1 · · · pn + 1 immer selbst prim wäre. Z.B. ist

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Aufgabe: Aus dem Namen Zermelo mache man ein beschwingtes Wort, indem man je drei Buchstaben
zu Anfang und am Ende hinzufügt!)

1.13 Es stellt sich die Frage, wie man die grundlegenden Gesetze des Rechnens mit natürlichen Zahlen
beweisen soll. Neben einer ”konstruktiven“ Möglichkeit wie man sie in meiner Einladung zur Zahlentheo-
rie findet, gibt es die axiomatische Methode. Man beschreibt nach Peano die Menge N durch folgende
Gegebenheiten:

(1) Es gibt in N ein spezielles Element, das mit 0 bezeichnet sei.

(2) Es gibt eine Abbildung N → N, n 7→ n′ mit folgenden Eigenschaften:
a) n′ = m′ =⇒ n = m;
b) n′ 6= 0, was auch immer n ∈ N sei;
c) das Induktionsaxiom, wo n + 1 durch n′ ersetzt sei (s.o.).

(Mit n′ ist n + 1 gemeint. Aber zunächst ist die Addition aber noch nicht definiert.)

Man definiert dann die Addition ”induktiv“ durch
m + 0 = m und m + n′ = (m + n)′.

Ist die Addition bereits definiert, so definiert man die Multiplikation durch
m · 0 = 0 und m · n′ = (m · n) + m.
(Unmittelbar aus dieser Definition kann man z.B. m · 0′ = m folgern!)

Man kann dann die o.a. Gesetze für das Rechnen mit natürlichen Zahlen mit einiger Mühe ableiten. Sie
können sich ja daran versuchen. (Dabei ist die Reihenfolge des Vorgehens nicht unwichtig.)
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2 Ganze Zahlen

Im Bereich N der natürlichen Zahlen kann man bekanntlich eine Gleichung der Form a + x = b nur dann
(in x) lösen, wenn a ≤ b ist. Auch, wenn man z.B. die Punkte einer Ebene durch Paare von Zahlen
beschreiben will, wird man irgendwann ‘negative Zahlen benötigen.

2.1 Die ganzen Zahlen sind
. . . ,−2,−1, 0, 1, 2, . . . (1)

Ihre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten auf einer Geraden identifi-
zieren, wo der Abstand von n zu n+1 für alle n derselbe ist. Wir wollen später diese Gerade mit anderen
Zahlen auffüllen, um sie zur ”Zahlengeraden“ zu machen.

2.2 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die für N noch falsch ist:

(3) Zu jedem n ∈ Z gibt es genau ein n′ ∈ Z mit n + n′ = 0

Zum Beispiel ist (−2)′ = 2. Wir bezeichnen n′ mit −n, schreiben also −(−2) = 2. Man nennt −n das
additiv Inverse von n.

Definition 2.3 Eine Menge, die mit zwei Verknüpfungen +, · versehen ist, für die neutrale Elemente
existieren und die bislang angegebenen Gesetze (einschließlich(3)) gelten, heißt ein kommutativer Ring.
(Für einen allgemeinen Ring wird das Kommutativitätsgesetz der Multiplikation nicht gefordert, dafür
aber die beidseitige Distributivität. (Was ist damit gemeint?))

2.4 Die Gleichung
a + x = b

mit der Unbekannten x besitzt in Z (allgemeiner, in jedem Ring) eine eindeutigen Lösung, nämlich
x = b + (−a).

Wir schreiben a − b := a + (−b) und bei längeren ”arithmetischen Summen“ z.B. a − b + c − d =
a + (−b) + c + (−d).
Beachte: Ist c 6= 0, so ist a− b + c = (a− b) + c 6= a− (b + c).

Anstelle der Existenz des additiv Inversen, könnte man auch zu je zwei ganzen Zahlen m,n die Existenz
ihrer Differenz m − n fordern, die dadurch gekennzeichnet ist, dass sie die Gleichung (m − n) + n = m
erfüllt.

2.5 Wir wollen zeigen, dass sich die Regel (−a)(−b) = ab, die manch einem etwas willkürlich erscheinen
mag, allein aus den Regeln (1),(2),(3) ergibt, d.h. in jedem Ring gilt. Zunächst zeigen wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b + 0b Durch Addition von −(0b) auf beiden Seiten und Anwendung der Assozia-
tivität ergibt sich 0 = 0b.

Jetzt zeigen wir: (−a)b = −(ab).

Da ab + (−a)b = (a + (−a))b = 0b = 0 ist, ist (−a)b das additiv Inverse von ab, d.h. (−a)b = −(ab).

Da a + (−a) = 0 ist, ist a das additiv Inverse von −a, d.h. −(−a) = a.

Schließlich ist (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

Wenn man also (−1)(−1) überhaupt definieren und dabei die o.a. Regeln beibehalten will, bleibt einem
nichts übrig, als (−1)(−1) = 1 zu setzen.

Es wäre schön, wenn Sie weitere – etwa geometrische – Gründe fänden, warum die Regel (−a)(−b) = ab
sinnvoll ist.

8



Remark 2.6 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist die Nullteilerfreiheit. Sie
besagt:

ab = 0 =⇒ a = 0 oder b = 0.

Für die natürlichen Zahlen habe ich sie bereits oben angegeben. Für alle ganzen Zahlen erhält man die
Nullteilerfreiheit auf Grund der Regeln

(−a)b = −(ab) , (−a)(−b) = ab.

Aus der Nullteilerfreiheit ergibt sich die Kürzungsregel

a 6= 0 und ab = ac =⇒ b = c.

Denn ab = ac ⇒ ab− ac = 0 ⇒ a(b− c) = 0 ⇒ b− c = 0 ⇒ b = c.

2.7 Bekanntlich lässt sich die Anordnung von N auf Z ausdehnen. In der zweiten Regel von (6) von 1.4
muss man k ≥ 0 voraussetzen.

2.8 Man kann das Induktionsprinzip auch etwas allgemeiner formulieren:

Sei m0 ∈ Z und A(x) eine Aussage über ganze Zahlen x ≥ m0. Wir setzen voraus:

1. A(m0) sei richtig;

2. für jede ganze Zahl n ≥ m0, für welche A(n) richtig ist, sei auch A(n + 1) richtig.

Dann gilt A(n) für alle ganzen Zahlen n ≥ m0.

Um dies einzusehen, betrachte man die Aussage B(x) für x ∈ N, die durch B(n) := A(m0 + n) definiert
ist, und wende das Induktionsprinzip aus Abschnitt 1 an.
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3 Brüche, rationale Zahlen

3.1 Während das Rechnen mit ganzen Zahlen den allermeisten Studierenden keine Probleme bereitet,
scheint das für das Rechnen mit Brüchen bereits nicht mehr zu stimmen. Habe ich doch z.B. in einer
Staatsexamensklausur die

absurde Unregel
1
a

+
1
b

=
1

a + b

lesen müssen, obgleich doch jeder, der mit dem Bruch 1
2 irgendeine vernünftige Vorstellung verbindet,

immer
1
2

+
1
2

= 1

rechnen würde.

Ohne Kommentar zitiere ich: ”Die Fähigkeit, eine Bruchrechenaufgabe zu lösen, war anscheinend ein
gutes Qualitätsmerkmal, auf den Erfolg im Mathematikstudium zu schließen.“ (Johann Sjuts in DMV
mitteilungen 12-2/2004.)

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl
m

n
mit m,n ∈ Z, n > 0 kann man folgendermaßen auf der Zahlengeraden konstruieren:

Man teile Strecke von 0 nach 1 in n gleichgroße Teilstrecken. Eine solche trage man dann m-mal von 0
aus nach rechts auf der Zahlengeraden ab, wenn m ≥ 0 ist. Ist m < 0, d.h. −m > 0, so trage man sie
(−m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die Strecke von 0 bis m in n
gleiche Teilstrecken teilt und eine solche Teilstrecke von 0 an in die Richtung von m abträgt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Arten schreiben, z.B.

9
15

=
3
5

=
6
10

Man kann ‘erweitern’ und ‘kürzen’. Man kann sich überlegen, dass es aufs selbe hinausläuft, ob man ein
15-tel der Einheitstrecke 9-mal, oder ein 10-tel der Einheitstrecke 6-mal von 0 aus (nach rechts) abträgt.

Am elegantesten definiert man die Gleichheit von Brüchen durch

a

b
=

a′

b′
: ⇐⇒ ab′ = a′b .

Diese Definition ist äquivalent dazu, dass a
b durch Erweitern und/oder Kürzen zu a′

b′ wird:

Wenn z.B. a′

b′ aus a
b durch Erweitern mit c, d.h. a

b aus a′

b′ durch Kürzen durch c hervorgeht, folgt ab′ =
a(bc) = (ac)b = a′b. Ist umgekehrt ab′ = a′b, dann entsteht a′

b′ aus a
b durch Erweitern und Kürzen, wie

folgt:
a

b
=

ab′

bb′
=

a′b

bb′
=

a′

b′

Ferner setzen wir fest
m

1
= m .

Auf diese Weise wird Z zu einer Teilmenge von Q, der Menge der rationalen Zahlen.
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3.4 Addition: Haben zwei Brüche den gleichen Nenner, so ist ihre Summe einfach zu definieren:

m

n
+

m′

n
:=

m + m′

n

Dies entspricht der Addition von Strecken auf der Zahlengeraden – oder der Subtraktion, wenn etwa
m ≥ 0,m′ < 0 ist. Sind die Nenner nicht (notwendig) gleich, so kann man sie durch Erweitern gleich
machen, also z.B. rechnen

m

n
+

m′

n′
=

mn′

nn′
+

m′n

nn′
=

mn′ + m′n

nn′
,

(Will man bei der Addition mit möglichst kleinen Zahlen rechnen, so nimmt man als gemeinsamen Nenner
das kleinste gemeinsame Vielfache von n, n′ statt nn′. Für allgemeine Überlegungen ist dies allerdings in
den meisten Fällen eher erschwerend.)

Man sieht, dass sich Nenner und Zähler bei der Addition sehr verschieden verhalten! Wenn m,n, n′ > 0
sind, gilt immer:

m

n
+

m

n′
=

m(n′ + n)
nn′

6= m

n + n′
, aber

n

m
+

n′

m
=

n + n′

m

Offenbar ist 0 = 0
1 = 0

n für alle n > 0 ein neutrales Element bezüglich der Addition. Ferner gibt es ein
additiv Inverses zu m

n , nämlich −m
n . Denn

m

n
+
−m

n
=

m−m

n
=

0
n

= 0

Man darf also −m
n = −m

n schreiben.

3.5 Multiplikation: Zunächst definieren wir k · m
n für k ∈ Z. Ist k ≥ 0, so sei k · m

n die k-fache Summe
von m

n zu sich selbst, d.h.

k · m

n
:=

m

n
+ · · ·+ m

n
=

km

n
.

Dies muss man zwangsläufig so machen, wenn 1 ein neutrales Element für die Multiplikation bleiben und
die Distributivität und Kommutativität der Multiplikation erhalten bleiben soll. Die Forderung, dass die
Distributivität weiter gelte, erzwingt dann auch

(−k) · m

n
= −km

n
, also k · m

n
=

km

n
für alle k ∈ Z .

Insbesondere ergibt unsere Definition (für k ∈ Z, r ∈ N1)

k · 1
r

=
k

r
und r · 1

r
=

r

r
=

1
1

= 1 .

Soll die Assoziativität der Multiplikation weiterhin gelten, so muss

m

n
= 1 · m

n
= r · (1

r
· m

n
)

sein. D.h., ist 1
r ·

n
m = m′

n′ , so ist rm′

n′ = m
n , also rm′n = n′m. d.h. m′

n‘ = m
rn .

Wir definieren also
1
r
· m

n
:=

m

rn
und somit

k

r
· m

n
:= k · 1

r
· m

n
= k · m

rn
=

km

rn
Merke: Die Addition von Brüchen ist komplizierter als ihre Multiplikation!

Offensichtlich ist 1 = 1
1 = n

n für n 6= 0 das multiplikativ neutrale Element.

Beachte: Sind m,n,m′, n′ positive ganze Zahlen, so gilt immer

m

n
+

m′

n′
>

m + m′

n + n′
also

m

n
+

m′

n′
6= m + m′

n + n′
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3.6 Es gibt auch ein geometrisches Argument dafür, die Multiplikation von Brüchen wie oben zu de-
finieren. Man bestimme dazu den Fächeninhalt eines Rechteckes, dessen Seiten m/n, bzw. m′/n′ lang
sind.

3.7 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a ∈ Q − {0} gibt es genau ein
multiplikativ Inverses a−1, nämlich

Ist a =
m

n
, so ist a−1 =

n

m
(oder =

−n

−m
falls m < 0)

In Q kann man also die Gleichung ax = b mit der Unbekannten x lösen, wenn a 6= 0 ist. Nämlich durch
x = ba−1

3.8 Das Rechnen mit rationalen Zahlen genügt denselben Gesetzen wie das mit den ganzen Zahlen. Es
genügt sogar einem zusätzlichen Gesetz, nämlich dem der Existenz von multiplikativ Inversen. Q ist
ein sogenannter Körper.

(Übrigens muss man bei der axiomatischen Definition eines Körpers folgendes bedenken: Eine Menge, die
aus genau einem Element p besteht, für das p + p = pp = p definiert ist, erfüllt alle o.a. Körperaxiome.
Man will sie aber nicht als Körper gelten lassen. Man verlangt deshalb zusätzlich, dass in einem Körper
1 6= 0 ist, oder – äquivalent dazu – dass er aus mindestens 2 Elementen besteht. Es gibt einen nicht ganz
unnützen Körper, der aus genau 2 Elementen besteht.)

Remark 3.9 Die Nullteilerfreiheit, und damit die Kürzungsregel gilt natürlich im Bereich der rationalen
Zahlen auch. Offenbar gilt sie in jedem Körper. (Warum?)

3.10 Da sowohl bei der Multiplikation wie bei der Addition von Brüchen der Nenner (genauer: einer der
möglichen Nenner) des Ergebnisses das Produkt der Nenner der Faktoren, bzw. der Summanden ist, gibt
es echte Teilmengen von Q, die Z echt umfassen, die gegen Addition, Subtraktion und Multiplikation
abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die Menge der Brüche, die sich mit einem
ungeraden Nenner schreiben lassen, ein solcher Unterring. (Kann man in dieser Behauptung ‘ungerade’
durch ‘gerade’ ersetzen??? Diese Frage ist allerdings nicht wirklich gut gestellt. Denn offenbar kann man
jeden Bruch durch Erweitern zu einem Bruch mit einem geraden Nenner machen.)

3.11 Anordnung: Wie vergleicht man Brüche der Größe nach? Nun, wenn zwei Brüche denselben
positiven Nenner haben, ist die Sache einfach:

m

n
≤ m′

n
⇐⇒ m ≤ m′ .

Ansonsten muss man die (als positiv vorausgesetzten!) Nenner gleich machen:

m

n
≤ m′

n′
⇐⇒ mn′

nn′
≤ m′n

nn′
⇐⇒ mn′ ≤ m′n .

Z.B. sieht man: Ist 0 < n ≤ n′, so gilt 1
n ≥

1
n′ . Die Regeln der Verträglichkeit der Anordnung mit Addition

und Multiplikation bleiben erhalten. Das Induktionsprinzip und das Minimumprinzip gilt natürlich für
die rationalen Zahlen nicht. Z.B. hat die Menge M := {a ∈ Q | 0 < a} die untere Schranke 0, aber kein
kleinstes Element. Ist nämlich a ∈ M beliebig (klein), so ist 2−1a < a und 2−1a ∈ M .
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3.12 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger Körper. Für a, b ∈ K, b 6= 0
schreibt man dann

a

b
:= ab−1

Aus den Körpergesetzen leitet man dann leicht ab:

a

b
+

a′

b′
=

ab′ + a′b

bb′
,

a

b
· a′

b′
=

aa′

bb′
,
(a

b

)−1

=
b

a

letzteres, wenn auch a 6= 0 ist.

Remark 3.13 Auch für positive rationale Zahlen a, b, c, d gilt immer

a

b
+

c

d
>

a + c

b + d
, also

a

b
+

c

d
6= a + c

b + d

3.14 Wenn man im Körper der rationalen Zahlen Brüche rationaler Zahlen bildet bekommt man ‘Mehr-
fachbrüche’, z.B. (

a
b

)(
c
d

) .

Man muss hier aufpassen, z.B.
a
b

c
=

(
a
b

)
c

und
a
b
c

=
a(
b
c

)
voneinander unterscheiden! Berechnen Sie (

1
2

)
3

und
1(
2
3

)
Ein Ausdruck der Form

a
—
b
—
c

hat keinen Sinn!

3.15 Standarddarstellung. Jede rationale Zahl kann als ein Bruch geschrieben werden, in welchem
Zähler und Nenner keinen gemeinsamen Primfaktor haben. Denn sonst kann man ja noch kürzen. Da bei
jedem Kürzen (durch eine ganze Zahl > 1) Zähler und Nenner (dem Betrag nach) kleiner werden, muss
der Kürzungsprozess nach dem Minimalprinzip irgendwann anhalten. (Übrigens gibt es eine Algoritmus
– von Euklid –, der es erlaubt, den ggT von zwei Zahlen zu berechnen, ohne sie vorher in Primfaktoren
zerlegt zu haben.)

Verlangt man noch – wie wir es bisher meist getan haben – dass der Nenner positiv ist, so ist die
Darstellung einer rationalen Zahl als ”gekürzter“ Bruch eindeutig.

Beweis hierfür: Sei m
n = m′

n′ , wo beide Brüche gekürzt sind. Dann gilt mn′ = m′n. Wir verwenden die
Eindeutigkeit der Primfaktorzerlegung. Ist p ein Primfaktor von m, genauer, ist pk die höchste p-Potenz,
die m teilt, so muss sie auch m′ teilen, da nach Vorraussetzung p kein Teiler von n ist. Es folgt m|m′,
und ebenso m′|m. Also m = ±m′. Da nach Voraussetzung n, n′ > 0 ist, müssen auch die Vorzeichen von
m und m′ übereinstimmen.

Ebenso folgt n = n′. –
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4 Reelle Zahlen

4.1 Man könnte meinen, die rationalen Zahlen füllten die ganze Zahlengerade aus. In beliebiger Nähe
jeder rationalen Zahl liegen noch unendlich viele weitere rationale Zahlen. Anders als bei den ganzen
Zahlen gibt es zu einer rationalen Zahl keine nächstkleinere oder nächstgrößere.

Trotzdem gilt die Bemerkung: Wenn man auf dem Einheitsintervall der Zahlengerade von 0 bis 1 ein
Quadrat errichtet und um 0 den Kreis schlägt, der durch die rechte obere Ecke geht, so schneidet dieser
die Zahlengerade in keinem rationalen Punkt. M.a.W. Es gibt keine rationale Zahl r mit r2 = 2.

Beweis: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit n2 = 2. Wir nehmen an, es
gäbe ein r ∈ Q mit r2 = 2 und r > 0. Wir schreiben r = m

n in Standardform, d.h. so dass m und n keinen
gemeinsamen Primfaktor haben und positiv sind. Wir zerlegen m und n in Primfaktoren:

r =
m

n
=

p1 · · · pt

q1 · · · qs

Da r nicht ganz ist, ist n ≥ 2, d.h. s ≥ 1. Wegen der Teilerfremdheit von m,n gilt pi 6= qj für alle i, j.
Jetzt bilden wir

r2 =
p2
1 · · · p2

r

q2
1 · · · q2

s

Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teilerfremdheit von Zähler und Nenner
nichts geändert. D.h. r2 kann nicht ganz sein, insbesondere ist r2 6= 2. –

Aus der Bemerkung folgen:

a) Die – nicht besonders komplizierte – Funktion f(x) = x2 − 2 hat zwar in 1 den negativen Wert −1
und in 2 den positiven Wert 2, aber zwischendurch an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, für die a < 0 oder a2 < 2 gilt, und B die Menge der positiven
rationalen Zahlen b mit b2 > 2. Dann ist A ∪B = Q und a < b für alle a ∈ A, b ∈ B , aber weder besitzt
A ein größtes, noch B ein kleinstes Element.

Es ist schlechthin nicht möglich, über dem Körper Q vernünftig Analysis zu treiben.

Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sei n ≥ 2 ganz. Ist eine ganze Zahl k keine n-te Potenz einer ganzen Zahl, so ist sie
auch keine n-te Potenz einer rationalen Zahl.

4.3 Man hat mit Erfolg den Körper Q zu einem Körper R der sogenannten reellen Zahlen erweitert, in
welchem außer den Rechen- und Anordnungsaxiomen folgende zueinander äquivalente Aussagen erfüllt
sind:

(i) Jede Zahlenfolge in R, die vernünftigerweise konvergieren sollte (d.h. eine sogenannte Cauchyfolge ist),
konvergiert auch. S.u.

(ii) Ist R = A ∪ B, derart dass sowohl A als auch B mindestens 1 Element besitzt und a < b für alle
a ∈ A, b ∈ B gilt, so hat entweder A ein größtes oder B ein kleinstes Element.

(iii) Sei (an)n = (a0, a1, a2, . . .) eine monoton wachsende nach oben beschränkte Folge. D.h. für alle n
gelte an ≤ an+1, ferner gebe es ein s mit an ≤ s für alle n. Dann konvergiert die Folge (an)n.

(iii’) Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von R, die eine untere Schranke
besitzt, d.h. für die es ein s ∈ R gibt mit s ≤ a für alle a ∈ A, besitzt auch eine untere Grenze, d.h.
ein u ∈ R mit u ≤ a für alle a ∈ A, so dass in beliebiger Nähe von u noch Elemente von A liegen.

14



(iv’) Dasselbe wie (iv), wo ”untere“ durch ”obere“ ersetzt ist.

Manche der genannen Begriffe bedürfen noch der Präzisierung. ”Anschaulich“ ist es so, dass die reellen
Zahlen den Punkten auf der Zahlengeraden entsprechen, die beliebig genau durch rationale Zahlen ap-
proximierbar sind. (Und diese sind dann wohl alle Punkte auf der Zahlengeraden, was auch immer das
heißen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Körpers der reellen Zahlen, die man aus jedem der
o.a. ”Axiome“ ableiten kann – aus (i) nur bei entsprechender Definition von ”Cauchy-Folgen“ – das
sogenannte archimedische Axiom:

(a) Zu allen positiven reellen Zahlen a, b gibt es eine natürliche Zahl n mit na > b.

Hierzu äquivalent ist folgende Aussage:

(b) Ist α eine reelle Zahl, so dass 0 ≤ α < 1/n für alle ganzen Zahlen n > 0 gilt, so ist α = 0.

Beweis der Äquivalenz: ”(a)=⇒(b)“: Wäre α > 0, so gäbe es ein n ∈ N mit nα > 1. Multiplikation mit
der positiven Zahl 1/n ergäbe α > 1/n.

”(b)=⇒(a)“: Wäre na ≤ b für alle natürlichen n, so erhielte man durch Multiplikation mit der positiven
Zahl 1

nb die Ungleichung a/b ≤ 1/n für alle n und somit aus a
b ≤

1
n+1 die Ungleichung a/b < 1/n für alle

n. –

Etwas vage ausgedrückt, besagt das archimedische Axiom, dass es weder unendlich große, noch unendlich
kleine reelle Zahlen gibt. Reelle Zahlen a, b, die unendlich nahe beieinander liegen, sind schon gleich.

Überlegen Sie selbst, dass auch im Bereich der rationalen Zahlen das archimedische Axiom gilt.

Für die reellen Zahlen kann man folgendes beweisen:

Proposition 4.5 Sei a ≥ 0 reell und n ≥ 2 ganz. Dann gibt es genau eine reelle Zahl r ≥ 0 mit rn = a.

Man nennt r die n-te Wurzel von a und schreibt r = n
√

a. (Ist n ungerade, so gibt es auch für a < 0 eine
n-te Wurzel aus a. Ist n gerade, und a > 0, so ist auch (− n

√
a)n = a. In diesem Falle soll n

√
a immer die

positive Wurzel bezeichnen! Der Ausdruck n
√

a soll nicht zweideutig sein!)

Proof: Sei B die Menge der reellen Zahlen b ≥ 0 mit bn ≥ a und A := R − B. Dann ist offenbar
A ∪ B = R. Ferner sieht man leicht c < b für c ∈ A, b ∈ B. Die kleinste Zahl von B oder die größte von
A ist dann das gesuchte r. �

4.6 Für den Studienanfänger empfiehlt sich vielleicht folgendes zweigleisige Vorgehen: Anschaulich stelle
er sich die reellen Zahlen als Punkte auf der Zahlengeraden vor (die rational approximierbar sind). Und
für präzise Beweise benutze er ein Axiomensystem der reellen Zahlen. Ein solches wird er sicherlich in
der Analysis-Vorlesung kennenlernen.

4.7 Man kann R auch auf mannigfache Weise konstruieren, z.B. als Menge aller unendlichen oder endli-
chen positiven oder negativen Dezimalbrüche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbrüchen einzugehen, wollen wir uns über-
legen, wie man die Eigenschaft (iv) für nach unten beschränkte nichtleere Mengen B von Dezimalbrüchen
zeigen kann.

Beweis: Man darf annehmen, A sei durch 0 nach unten beschränkt. (Sonst verschiebe man die Menge.)
Zunächst betrachten wir den ”ganzen Anteil“, d.h. die ”Vorkommazahlen“ der Zahlen aus A. Unter diesen
gibt es nach dem Minimalprinzip eine kleinste, etwa m. Dieses m wird die Vorkommazahl der gesuchten
unteren Grenze. Dann betrachten wir alle a ∈ A, die die Vorkommazahl m haben und von diesen jeweils
die erste Nachkommaziffer Die kleinste dieser Ziffern sei n1. Dieses n1 wird die erste Nachkommaziffer
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der gesuchten unteren Grenze. Diese beginnt also mit m,n1. Von allen Zahlen aus A, die mit m,n1

beginnen, betrachten wir die jeweils zweite Ziffer nach dem Komma. Sei n2 die kleinste unter diesen.
Unsere untere Grenze beginnt mit m,n1n2, usw. Sei m,n1n2 . . . nk auf diese Weise bereits gefunden. In
A gibt es also mindestens eine Zahl, deren Dezimalzahldarstellung mit m,n1 . . . nk beginnt. Und keine
beginnt mit einer kleineren Zahl mit k Nachkommastellen. Man betrachte nun alle Zahlen aus A, die
mit m,n1 . . . nk beginnen und betrachte von jeder die (k + 1)-te Ziffer nach dem Komma. Die kleinste
unter allen diesen sei nk+1. Diese ist auch die (k +1)-te Nachkommaziffer der gesuchte unteren Schranke.
Wenn wir dies bis ins Unendliche fortsetzen, bekommen wir einen Dezimalbruch u, der die gewünschte
Eigenschaft hat. Denn keine Zahl aus A ist kleiner als u. Und für jedes k gibt es eine Zahl aus A, deren
Vorkommazahl und deren erste k Nachkommaziffern mit u übereinstimmen. Es gibt also Zahlen in A, die
beliebig nahe bei u liegen. –

4.8 Übrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche Dezimalbrüche darstellbar
sind:

3, 72 = 3, 719 := 3, 71999 . . .

Jeder von 0 verschiedene, abbrechende Dezimalbruch (der, wollte man ihn als unendlichen Dezimalbruch
schreiben, bis auf endlich viele Ausnahmen nur die Ziffer 0 hat) lässt sich auch auf die Weise schreiben,
dass alle seine Ziffern bis auf endlich viele Ausnahmen 9 sind.

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0, 9 und 1 seien in Wahrheit doch ein
wenig verschieden. Man sollte sich aber überlegen, dass ihr Abstand kleiner ist als 10−n(= 1/10n) für
jede natürliche Zahl n, und sie deshalb auf Grund des archimedischen Axioms gleich sind. (Es gibt
angeordnete Körper, die das archimedische Axiom nicht erfüllen. Um deren Elemente zu beschreiben,
kommt man allerdings nicht mit Dezimalbrüchen aus.) Was spricht denn dagegen, dass man ein und
dieselbe Zahl auf mehrere Weisen schreiben kann? Die Darstellung einer rationalen Zahl als Bruch zweier
ganzer Zahlen ist ja überhaupt nicht eindeutig.

Wer vernünftig mit Dezimalbrüchen als reellen Zahlen umgehen will, hat nur folgende Wahlmöglichkeiten:
Entweder er verbietet eine der beiden Schreibweisen, erlaubt also nicht, dass fast alle Ziffern 0, bzw.
erlaubt nicht, dass fast alle Ziffern 9 sind. Oder er akzeptiert, dass gewisse reelle Zahlen 2 Schreibweisen
als Dezimalbrüche haben.
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5 Unendliche Reihen

Beispiel 1:
1
2

+
1
4

+
1
8

+
1
16

+ · · · (= 2−1 + 2−2 + 2−3 + 2−4 + · · ·) =
∞∑

k=1

2−k =?

Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird zuerst halb gefüllt, dann wird
durch hinzugießen von einem viertel Liter vom freien Rest wieder die Hälfte gefüllt, und es bleibt 1/4
Liter frei. Dann bleibt nach Hinzufügen von 1/8 l wieder 1/8 l frei. So geht es weiter: im n-ten Schritt
fügt man 2−n l hinzu, und der Literzylinder ist bis auf 2−n l gefüllt. Der einzig sinnvolle Wert für o.a.
unendliche Reihe (Summe) ist

∞∑
k=1

2−k =
1
2

+
1
4

+
1
8

+
1
16

+ · · ·+ 1
2n

+ · · · = 1

Beispiel 2:
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+

1
4 · 5

+ · · ·+ 1
n(n + 1)

+ · · · =
∞∑

k=1

1
k(k + 1)

= ?

Es gilt
1
n
− 1

n + 1
=

(n + 1)− n

n(n + 1)
=

1
n(n + 1)

, z.B.
1
3
− 1

4
=

1
3 · 4

. Die unendliche Reihe kann man also

auch so schreiben:

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+
1

4 · 5
+ · · · =

(
1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+
(

1
4
− 1

5

)
+ · · ·

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt) addiert, so hebt sich viel

weg und man erhält als Summe (der ersten n Glieder) 1 − 1
n + 1

. Wieder ist der einzig sinnvolle Wert

unserer unendlichen Reihe
∞∑

k=1

1
k(k + 1)

=
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+

1
4 · 5

+ · · ·+ 1
n(n + 1)

+ · · · = 1

Lässt man die ersten N Summanden dieser Reihe weg, so erhält man auf dieselbe Weise

∞∑
k=N+1

1
k(k + 1)

=
1

(N + 1)(N + 2)
+

1
(N + 2)(N + 3)

+
1

(N + 3)(N + 4)
+ · · · = 1

N + 1

Beispiel 3:
1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · ·+ 1
n

+ · · · =
∞∑

n=1

1
n

= ? (”Harmonische Reihe“)

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1 +
1
2

+ (
1
3

+
1
4
) + (

1
5

+
1
6

+
1
7

+
1
8
) + (

1
9

+ · · ·+ 1
16

) + (
1
17

+ · · ·+ 1
32

) + · · ·

Nun ist
1
3

+
1
4
≥ 1

4
+

1
4

= 2 · 1
4

=
1
2
,

1
5

+ · · ·+ 1
8
≥ 1

8
+ · · ·+ 1

8
= 4 · 1

8
=

1
2

1
9

+ · · ·+ 1
16
≥ 8 · 1

16
=

1
2
, usw.

Deshalb gilt

1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · · ≥ 1 +
1
2

+
1
2

+
1
2

+ · · ·

Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:

∞∑
n=1

1
n

=
1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · · = ∞
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(Wir betrachten ∞ nicht als reelle Zahl, weil man mit ∞ schlecht rechnen kann. Aber es spricht nichts
dagegen, ∞ als (uneigentlichen) ”Grenzwert“ zuzulassen.)

In den Beispielen 4 und 6 werden wir die harmonische Reihe auf zweierlei Weise modifizieren und erhalten
endliche Werte.

Beispiel 4: Wir quadrieren die Summanden:

1 +
1
22

+
1
32

+
1
42

+
1
52

+ · · ·+ 1
n2

+ · · · =?

Es gilt (für n ≥ 2) die Beziehung
1
n2

<
1

(n− 1)n
, also

1
22

<
1

1 · 2
,

1
32

<
1

2 · 3
usw. Durch Vergleich mit

Beispiel 2 erhält man hieraus – vorausgesetzt unsere Reihe hat einen vernünftigen Wert –

1 +
1
22

+
1
32

+
1
42

+
1
52

+ · · · < 1 + 1 = 2

Wenn man die reellen Zahlen axiomatisch einführt, kann man als eines der Axiome z.B. folgendes nehmen:

Jede unendliche Summe positiver Summanden, die nach oben beschränkt ist, hat einen reellen Wert,

(Dies ist nur eine Umformulierung von ( iii.).)

In der Tat ist der Wert o.a. unendlicher Summe
π2

6
. Dies ist allerdings keineswegs einfach zu sehen. Wenn

Sie Glück haben, hören Sie einen Beweis dafür am Ende des 1. Semesters in der Vorlesung ”Analysis 1“.
Sie können einen Beweis im Buch O. Forster: Analysis 1 finden.

Beispiel 5: 1 +
1
1

+
1

1 · 2
+

1
1 · 2 · 3

+ · · · =
∞∑

k=0

1
k!

(Dabei ist 0! := 1, n! := 1 ·2 · · ·n für ganze n > 0.) Wenn wir den Summanden
1

1 · 2 · · ·n · (n + 1)
mit dem

Summanden
1

n(n + 1)
der Reihe aus Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert < 3

hat. Man nennt diesen Wert in der Regel e. Es gilt also 2 < e < 3.

Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:

Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Zähler und Nenner.

Beweis: Indirekt! Wäre e eine rationale Zahl mit dem (posiiven ganzen) Nenner N ≥ 2, etwa e = m
N , so

wäre N ! · e = 1 · 2 · · ·N · m
N eine ganze Zahl. Wir zeigen, dass dem aber nicht so ist, welche natürliche

Zahl N auch sein mag.

Multiplizieren wir die ersten N + 1 Summanden von e mit N ! = 1 · 2 · · ·N , so erhalten wir ganze Zahlen.
Für den Rest r := N !

∑∞
n=N+1 1/n! genügt es also 0 < r < 1 zu zeigen. Dann ist ja N !e die Summe einer

ganzen Zahl und r, also nicht ganz. Offenbar gilt

r =
1

N + 1
+

1
(N + 1)(N + 2)

+
1

(N + 1)(N + 2)(N + 3)
+ · · ·

Machen wir, anfangend mit dem 2. Summanden von r den oben gemachten Vergleich, so erhalten wir

r <
1

N + 1
+

1
(N + 1)(N + 2)

+
1

(N + 2)(N + 3)
+ · · · = 1

N + 1
+

1
N + 1

< 1

Beispiel 6: Wir versehen die ”Hälfte“ der Summanden der harmonischen Reihe mit dem Minus-Zeichen,
d.h. wir bilden die sogenannte alternierende harmonische Reihe:

1− 1
2

+
1
3
− 1

4
+

1
5
−+ · · ·+ (−1)n+1

n
+ · · · =

∞∑
k=1

(−1)k+1

k
= ?.
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Wenn wir die Teilsummen 1, 1− 1
2
, 1− 1

2
+

1
3
, 1− 1

2
+

1
3
− 1

4
usw. auf der Zahlengeraden betrachten,

so sehen wir sie hin- und herhüpfen; dabei werden die Sprünge immer kleiner und ihre Länge geht gegen
0. Es ist also plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den Wert der unendlichen
Reihe. (”Leibnizsches Konvergenzkriterium“) Dieser Wert liegt offenbar zwischen 1/2 und 1. Er ist gleich
dem natürlichen Logarithmus von 2 (ln 2), wie man in den meisten Vorlesungen ”Analysis 1“ lernt.

Jetzt möchte ich Ihnen noch einen Schock versetzen. In einer endlichen Summe darf man die Summanden
beliebig vertauschen, ohne dass sich der Wert der Summe ändert. Dies gilt nicht für alle unendlichen
Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmonischen Reihe in folgender Rei-
henfolge:

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
− 1

8
+

1
7
− 1

10
− 1

12
− 1

14
− 1

16
+

1
9
− 1

18
− · · · − 1

32
+

1
11
− 1

34
− · · ·

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2n negative Summanden auf.
Genauer: nach dem positiven Summanden 1/3 nimmt man 20 negative Summanden; nach dem nächsten
positiven Summanden 1/5 nimmt man die nächsten 21 negativen Summanden, usw.)

Da −1
6
− 1

8
≤ −1

4
, − 1

10
−· · ·− 1

16
≤ −1

4
, usw. ist, gilt für einen möglichen Wert w der o.a. umgeordneten

alternierenden harmonischen Reihe w ≤ 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

4
+

1
7
− 1

4
+

1
9
− 1

4
+

1
11
−+ · · ·. Mit

−1
4

+
1
5

= − 1
4 · 5

= − 1
20

ist − 1
4

+
1
n
≤ − 1

20
für n ≥ 5 .

Also gilt

w ≤ 1− 1
2

+
1
3
− 1

20
− 1

20
− 1

20
− · · · = −∞ .

Zusatzbemerkungen

Zu Beispiel 1: Allgemein gilt für q 6= 1 die Formel
∑n

k=0 qk = 1 + q + q2 + · · · + qn =
1− qn+1

1− q
, also

für die unendliche Reihe 1 + q + q2 + · · ·+ qn + · · · = 1
1− q

, vorausgesetzt, es ist −1 < q < 1. Setzt man

q = 1/2, so erhält man Beispiel 1 mit dem zusätzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge der Menge aller positiven ganzen
Zahlen. Wir haben gesehen, dass die Summe der Kehrwerte aller natürlichen Zahlen unendlich, dagegen
die der Kehrwerte aller Quadratzahlen endlich ist. Man kann sich für jede Teilmenge der natürlichen
Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder unendlich ist. Man weiß, dass die Summe der
Kehrwerte aller Primzahlen unendlich ist. Das ist nicht trivial, aber auch nicht allzu schwer zu zeigen.
Siehe Chapter 1 in dem hübschen Buch ”Proofs from THE BOOK“ von M. Aigner und G.M. Ziegler
(Springer Verlag). Dass die Summe der Kehrwerte der Primzahlen unendlich, die der Quadratzahlen
aber endlich ist, kann man so interpretieren, dass die Primzahlen dichter im Bereich der natürlichen
Zahlen liegen als die Quadratzahlen. Wenn Ihnen unbekannt sein sollte, dass es überhaupt unendlich
viele Primzahlen gibt, hier ist der uralte Beweis von Euklid: Zu endlich vielen Primzahlen p1, . . . , pn ist
jeder Primfaktor p der Zahl p1p2 · · · pn +1 eine weitere (von allen p1, . . . , pn verschiedene) Primzahl, nicht
wahr??

Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion ln(1+x) ist ln(1+x) =
x

1
−x2

2
+

x3

3
−+ · · ·.

Diese Gleichung gilt für alle x mit −1 < x ≤ 1, und man erhält unsere Behauptung, indem man x = 1
setzt.

Unvollständige Begründung: Die Funktion ln(1+x) ist die Stammfunktion von
1

1 + x
. Letztere Funktion

kann man, wie in der Bemerkung zu Beispiel 1 angegeben, als unendliche Reihe schreiben: setze q = −x.
Die Taylorentwicklung von ln(1 + x) erhält man durch ”gliedweise Integration“. Das alles funktioniert
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zunächst jedoch nur für −1 < x < 1. Für x = 1 braucht man ein zusätzliches Argument, den ”Abelschen
Grenzwertsatz“.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende harmonische Reihe jede vorgege-
bene reelle Zahl als Wert annehmen. Wer mathematisch geschickt ist, mag selbst versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe – statt Grenzwert sagt man auch Limes – kennenlernen:

a) Den Grenzwert einer (unendlichen) Folge (an) = (an)n = (an)n∈N = (a0, a1, a2, . . .), der lim
n→∞

an

geschrieben wird, (Man kann die Folge auch mit dem Index 1 oder irgendeiner anderen natürlichen Zahl

beginnen lassen, und schreibt z.B. lim
n→∞

1
n

= 0 obwohl 1
n für n = 0 keine Bedeutung hat.)

b) Den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unendlich vielen Summanden)
∞∑

n=0

bn,

c) Den Grenzwert einer Funktion bei Annäherung an einen Punkt, an dem sie vielleicht nicht definiert
ist lim

x→x0
f(x).

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’, d.h. ohne strikte Begriffsbildung
vorbereitet. Bei allem Spaß, den das hoffentlich gemacht hat, sollte jedoch klar sein, dass man ohne eine
Präzisierung auf Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a, b auf der rellen Zahlengerade ist a− b oder
b − a, je nachdem ob a ≥ b oder a < b ist. Man kann dies einfacher ausdrücken, wenn man den Begriff
des (Absolut-)Betrages einführt: Der Betrag |a| einer reellen Zahl a ist definiert durch

|a| :=
{

a für a ≥ 0
−a für a < 0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a− b| (wobei eben |b− a| = |a− b| ist).

Der Betrag genügt folgenden formalen Regeln

a) 0 ≤ |a|, b) |a| = 0 ⇐⇒ a = 0, c) |ab| = |a| · |b|, d) |a + b| ≤ |a|+ |b|

Die letzte Regel – die man durch Betrachtung aller vier Fälle a ≥ 0, b ≥ 0; a < 0, b ≥ 0; etc. leicht
beweist – heißt die Dreiecksungleichung. (Der Name kommt von einer allgemeineren Situation her, wo
statt reeller Zahlen Vektoren betrachtet werden und die Dreiecksungleichung für die Längen von v, w, v+w
gilt und die geometrische Bedeutung hat, dass die Länge einer Dreiecksseite höchstens so groß ist wie die
Summen der Längen der beiden anderen Seiten.)

Eine Ungleichung der Form |a− b| < ε (mit ε > 0) bedeutet, dass der Abstand von a und b kleiner als ε
ist, d.h. a− ε < b < a + ε gilt. (Natürlich kann man das auch durch b− ε < a < b + ε ausdrücken.)

6.2 Limes einer Folge. Wie kann man es präzise fassen, dass eine Folge (a0, a1, a2, a3, . . .) sich einer
reellen Zahl a beliebig annähert?

Seit ungefähr 200 Jahren macht man es so:

Definition 6.3 a) Sei a eine reelle Zahl und (an) eine Folge reeller Zahlen. Man sagt, die Folge (an)n

hat den Grenzwert (oder Limes) a – oder konvergiert gegen a – und schreibt limn→∞ an = a, wenn
zu jeder (noch so kleinen) reellen Zahl ε > 0 ein N ∈ N existiert, derart dass |an − a| < ε für alle n > N
gilt.

b) Eine Folge reeller Zahlen heißt konvergent, wenn sie eine reelle Zahl als Limes hat. Andernfalls heißt
sie divergent. Man sagt auch: Sie konvergiert, bzw. divergiert.
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limn→∞ an = a heißt: In jeder noch so großen Nähe zu a liegen, bis auf höchstens endlich viele Ausnahmen,
alle Folgenglieder an

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (an)n∈N mit an = a für alle n.

Den Zusatz ”(noch so kleinen)“ kann man in der Definition weglassen. Er dient lediglich zur inhaltlichen
Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Änderungen des obigen Wortlautes nicht zu äquivalenten Aussagen
führen:

”Es gibt ein ’extrem kleines’ ε > 0, derart dass . . .“

”Es gibt ein N ∈ N, so dass für jedes ε > 0 . . .“

6.4 Obige Definition wird häufig von didaktisch Interessierten als sprachliches Monstrum angesehen.

F. Vester (in ”Denken, Lernen, Vergessen“) polemisiert gegen obige Definition und schlägt stattdessen
vor, die Konvergenz gegen 0 folgendermaßen zu definieren:

”Eine Folge heißt eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn – vom Vorzeichen einmal ganz
abgesehen – in ihr jedes Glied kleiner ist als das Vorangehende.“

Nun erfüllt die Folge (an) mit an = 1 + 1
n sicher die Definition von Vester, wird aber kaum als Nullfolge

anzusehen sein. Andererseits wird man die Folge

(an) mit an :=
{

2−n für gerade n
n−1 für ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch nicht erfüllt. Dieser ist also
– diplomatisch gesprochen – wenig hilfreich.

6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen, der nicht so sinnlos ist wie
der von F. Vester. Man definiert einen verschärften Konvergenzbegriff wie folgt:

Definition: Die Folge an konvergiert geometrisch gegen a, wenn es ein g mit 0 < g < 1 gibt, derart
dass |an − a| < gn für alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus: ”es gibt . . ., so dass für alle . . .,
während die die Definition 6.3 deren 3 benötigt: ”für alle . . . gibt es ein . . ., so dass für alle . . .“

Dafür muss man in Kauf nehmen, dass z.B. die Folge ( 1
n ) nicht geometrisch konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die Definition 6.3 zu verste-
hen und anzuwenden, sollte nicht Mathematik studieren! Auch Informatikern und Physikern
ist sie zuzumuten!

Es ist nützlich, auch ∞ und −∞ als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (an)n divergiert bestimmt gegen ∞ und schreibt limn→∞ an =
∞, wenn es für jedes r ∈ R ein N ∈ N existiert, so dass an > r für alle n ≥ N gilt.

Wie definiert man limn→∞ an = −∞??

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunächst wollen wir eine abkürzende Schreibweise für Summen der Art bm + bm+1 + · · ·+ bn einführen –
wo m ≤ n sei. Wir setzen

n∑
k=m

bk := bm + bm+1 + · · ·+ bn
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Insbesondere sei
n∑

k=n

bk = bn.

Falls n < m ist setzen wir
n∑

k=m

bk = 0

Das Symbol
∞∑

k=0

bk

wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens bedeutet es die Folge
(sn)n∈N, wo sn := b0 + b1 + · · ·+ bn =

∑n
k=0 bk definiert ist, und zweitens bedeutet es den Limes dieser

Folge, so es ihn denn gibt.

Man sagt also z.B.: Die (unendliche) Reihe

∞∑
k=0

bn

konvergiert, und man schreibt
∞∑

k=0

bn = s,

wenn limn→∞ sn = s ist.

Wir haben also den Begriff der unendlichen Reihen und ihrer Werte auf den Begriff der Folgen und deren
Grenzwerte zurückgeführt.

6.8 Im Übrigen kann man jede Folge (an)n∈N als unendliche Reihe
∑∞

k=0 bk schreiben, indem man b0 = a0

und bk = ak − ak−1 für k ≥ 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschriebene Folgen. Mal ist die eine,
mal die andere Schreibweise nützlich oder von der untersuchten Fragestellung her gegeben.

6.9 Der Limes einer Funktion f bei Annäherung an einen Punkt x0 ∈ R hat nur dann Sinn,
wenn in beliebiger Nähe von x0 Punkte des Definitionsbereiches von f liegen. Sei also D ⊂ R, f : D → R
eine Funktion. Wir setzen voraus: Für jedes ε > 0 gebe es ein x ∈ D mit |x−x0| < ε. (Dies ist auf triviale
Weise erfüllt, wenn x0 ∈ D ist. Ist aber z.B. D =]0, 1[, d.h. die Menge der x ∈ R mit 0 < x < 1, so erüllt
sowohl x0 = 0 als auch x0 = 1 diese Bedingung.)

Dann definieren wir: Es ist limx→x0 f(x) = b genau dann, wenn für jede Folge (an)n mit an ∈ D und
limn→∞ an = x0 die Gleichung limn→∞ f(an) = b gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei Anäherung an x0 nähert, auf den
Begriff des Grenzwertes von Folgen zurückgeführt.

(Man kann diese Art Grenzwert auch auf andere, äquivalente Weise definieren: Für jedes ε > 0 gibt es
ein δ > 0, so dass für alle x ∈ D mit |x− x0| < δ die Ungleichung |f(x)− b| < ε gilt.)

Man benötigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die Ableitung einer Funktion
als Grenzwert des Differenzenquotienten definieren will:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

= lim
x→x0

f(x)− f(x0)
x− x0
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Examples 6.10 a) Die Folge ( 1
n ) konvergiert gegen 0. Denn wegen des archimedischen Axioms gibt es

keine reelle Zahl ε > 0 mit ε < 1
n für alle n. Also ist 1

n ≤ ε für mindestens ein n ∈ N1. Da aber, wie
wir wissen, 1

m+1 < 1
m gilt, folgt aus 1

n ≤ ε, dass 1
m < ε für alle m > n gilt. Ich erinnere jedoch an die

(bestimmte) Divergenz der harmonischen Reihe.

b) Für reelle x mit |x| < 1 konvergiert die Folge xn auch gegen 0. Dies ist vielleicht jedem klar, aber nicht
so unmittelbar rigoros zu beweisen. Ich will auf den Beweis verzichten. Sie werden ihn in der Analysis 1
lernen.

Für x = 1 konvergiert diese Folge offenbar gegen 1. Für x > 1 divergiert sie bestimmt gegen ∞. Für
x ≤ −1 hat sie keinen Limes, auch nicht den Limes −∞.

c) Sehr wichtig, vor allem für theoretische Überlegungen, ist die geometrische Reihe

∞∑
n=1

xn

Wir berechnen zunächst die endlichen Teilsummen
∑k

n,0 xn =: sk. Rechne

(1− x)sk = sk − xsk =
k∑

n=0

xk −
k+1∑
n=1

xk = 1− xk+1.

Es folgt für x 6= 1
k∑

n=0

xn =
1− xk+1

1− x

Da limk→∞ xk+1 = 0 für |x| < 1 gilt, hat man für diese x

∞∑
n=0

xn =
1

1− x

Für |x| ≥ 1 konvergiert die geometrische Reihe nicht.

d) Betrachten Sie die Funktion f , die auf den reellen Zahlen folgendermaßen definiert ist: Für rationale x
sei f(x) := x2, für irrationale x sei f(x) = 0. Dann ist limx→0 f(x) = 0. Ist hingegen x0 6= 0, so existiert
limx→x0 f(x) nicht.

Ferner ist f sogar in 0 (aber sonst nirgend) differenzierbar.
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7 Allgemeine Potenzen

1. Wir studieren zunächst die Potenzen von 2:

21 = 2, 22 = 4, 23 = 8, . . . , 29 = 512, 210 = 1024, . . . .

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen, und zwar mit der Einheit 1
cm : Wandert man vom Nullpunkt aus auf der waagerechten Achse um 5 cm nach rechts, so müssen wir
von dort um 32 cm nach oben gehen, um den Wert 25 = 32 abzutragen. 4 cm weiter müssen wir schon
um 5,12 m nach oben gehen. Noch einen cm weiter auf der waagerechten Achse, so sind wir in der Höhe
bereits bei mehr als 10 m angelangt, was bestimmt die Dimension dieses Raumes sprengt. Selbst eine
Tafel von der Höhe des Himalaya reicht nicht aus, um den Punkt zu markieren, der dem Wert von 220 in
Zentimetern entspricht.

Man spricht von exponentiellem Wachstum.

Nun wollen wir doch gleich sowohl 210 − 21 als auch 210−1 ausrechnen:

210 − 21 = 1024− 2 = 1022 , 210−1 = 29 = 512.

Man sieht, dass im Allgemeinen 2a − 2b 6= 2a−b ist. Das Beispiel 22 − 21 = 22−1 ist die große Ausnahme!

2. Für jede reelle (oder komplexe) Zahl a und jede positive ganze Zahl n ist klar, was an bedeutet:

a1 = a, a2 = aa, a3 = aaa, . . .

Man kann diese Potenzen induktiv definieren: a1 := a, an+1 := ana. (Man kann solche Potenzen mit
positiven ganzen Exponenten immer dann definieren, wenn a in einem Bereich liegt, wo eine assoziative
Multiplikation gegeben ist.)

Man überlegt sich leicht folgende Regeln

am+n = am · an (2)
(ab)n = anbn (3)

Beide Regeln kann man als Distributivgesetze der Potenzrechnung auffassen. Man erkennt an ihnen die
völlige Unsymmetrie in Bezug auf Basis und Exponent einer Potenz. (Beinahe hätte ich einmal einen
Examenskandidaten wegen seelischer Grausamkeit verklagt, weil er in seiner Klausur die absurde Unregel
ab+c = ab + ac benutzt hatte. Ich habe mich dann damit begnügt, die Klausur mit 6 zu bewerten!)

(Betrachtet man den Fall wo die Basen einem allgemeinen Bereich H mit assoziativen Produkt angehören,
so gilt immer die erste Regel. Die zweite gilt zwar dann, wenn das Produkt auch kommutativ ist, aber
ansonsten in der Regel nicht. Gelten die rechte und die linke Kürzungsregel, so folgt die Gleichheit ab = ba
aus der Gleichheit (ab)2 = a2b2.)

Aus der Regel (2) kann man noch folgende Regel ableiten:

(am)n = amn (4)

Wegen Regel (4) definiert man übrigens abc

:= a(bc). Beachten Sie dazu 2(32) = 29 = 512, (23)2 = 82 =
64 = 26.

3. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definieren, etwa 2−2? Antwort: Man
kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man den Exponenten um 1 erhöht,
wird die Potenz verdoppelt: 2n+1 = 2n · 2. Das bedeutet aber auch: Vermindert man den Exponenten um
eins (und bleibt er dabei positiv), so wird die Potenz halbiert:

2n−1 =
1
2
· 2n
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Wenn man diese Regel für allgemeingültig erklärt,, d.h. auf alle ganzen Zahlen n ausdehnt, erhält man

20 = 21−1 =
1
2
· 2 = 1, 2−1 =

1
2
· 1 =

1
2
, 2−2 =

1
22

=
1
4
, . . . , 2−n =

1
2n

.

Allgemein, ist a 6= 0 eine reelle Zahl, so definiert man

a0 := 1, a−n =
1
an

falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)−2 = 4.)

Geht das gut?

Ja! Und zwar in folgendem Sinne: Für jede reelle Zahl a 6= 0 und jede ganze Zahl n, sei sie positiv, negativ
oder 0, ist die Potenz an eindeutig definiert, und die Regeln (2), (3), (4) gelten.

(Wenn umgekehrt die Regel (2) gelten soll und an für n ∈ N1 wie üblich definiert ist, so muss a0 = 1
und a−n = 1

an für a 6= 0 gelten. Denn aus a0a = a0a1 = a0+1 = a1 = a folgt a0 = 1 (für a 6= 0). Aus

a−nan = a−n+n = a0 = 1 folgt dann a−n =
1
an

.)

4. Wir wollen uns jetzt überlegen, ob, wann und wie man Potenzen mit rationalen Exponenten definieren
kann. Soll (2) und damit auch (4) (für rationale m und positive ganze n) weiterhin gelten, so muss

(a
1
n )n = a

sein, d.h. a1/n sollte diejenige Zahl (die auch mit n
√

a bezeichnet wird) sein, deren n-te Potenz a ist. Für
ungerade n macht dies (im Bereich der reellen Zahlen) keine Probleme. Ist aber n gerade, so gibt es für
a > 0 zwei ”n-te Wurzeln“ und für a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir a ≥ 0 voraussetzen und a(1/n) ≥ 0 verlangen.

Wenn wir schließlich noch
a

m
n := (am)

1
n = n

√
am (= (a

1
n )m = ( n

√
a)m)

für ganze m,n mit n > 0 definieren, so ist ax für reelle a > 0 und rationale x so definiert, dass die Regeln
(2) bis (4) gelten.

Übrigens ist an rational, wenn a 6= 0 rational und n ganz ist. hingegen ist 21/2 – wir wir bereits wissen –
nicht rational.

5. Schließlich wollen wir noch ax für beliebige reelle Zahlen x und a > 0 definieren. Die o.a. Regeln (2) bis
(4) geben alleine kein Rezept. Wir verlangen zusätzlich die sogenannte Stetigkeit der Funktion x 7→ ax.

Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir ”definieren“ (und müssen das auch tun,
wenn ax

”stetig“ sein soll):

Ist x = lim
n→∞

bn mit bn ∈ Q, so sei ax := lim
n→∞

abn . (5)

Diese ”Definition“ hat natürlich einen oder sogar zwei Haken. Erstens muss man sich fragen: Existiert
der Grenzwert limn→∞ abn überhaupt? Da die reelle Zahl x auf viele Weisen Limes einer Folge ratio-
naler Zahlen ist, müssen wir uns zweitens fragen: Wenn limn→∞ b′n = limn→∞ bn ist, ist dann auch
limn→∞ ab′n = limn→∞ abn?

Die Antwort zu beiden Fragen ist: Ja. Allerdings ist der Beweis dafür keineswegs trivial. Eine präzise
Durchführung ist im Schulunterricht vielleicht nicht möglich. (Man kann den Beweis leicht auf die
folgende Behauptung reduzieren: ”Ist (cn) eine rationale Nullfolge, so ist limn→∞ acn = 1.“ Aber
letzteres zu zeigen, ist nicht leicht.)
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6. Ist die Funktion f(x) = ax (für a > 0) differenzierbar, und was ist gegebenenfalls die Ableitung? Wir
studieren den Differenzenquotienten:

ax+h − ax

h
=

axah − ax

h
= ax · ah − 1

h
.

Man kann f also differenzieren, wenn lim
h→0

ah − 1
h

=: c existiert. Dies ist so – allerdings nicht ganz einfach

zu zeigen. Man erhält, dass die Ableitung von ax proportional zu ax ist, wobei der Proportionalitätsfaktor
c (monoton) von a abhängt.

Es gibt nun – was wiederum nicht leicht zu beweisen ist – genau eine Zahl e > 0 mit der Eigenschaft
(ex)′ = ex. Dies ist übrigens dieselbe Zahl e, die schon im Paragrafen 5. definiert wurde.

7. Bei der Einführung der allgemeinen Potenz auf der Universität geht man gemeinhin einen Umweg, der
es erlaubt, den unter 5. und 6. genannten Probleme elegant aus dem Wege zu gehen:

Man definiert zunächst eine Funktion ”exp“ durch

exp(x) :=
∞∑

n=0

xn

n!
(6)

Die Reihe konvergiert für alle reellen (sogar komplexen) x. Dann zeigt man die fundamentale Gleichung

exp(x + y) = exp(x) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Aufwand (Cauchy-Produkt,
Binomial-Formel) und darf nicht durch den Hinweis exp(x) = ex und Regel (2) erledigt werden! Warum
nicht?

Aus (7) folgert man zunächst die Stetigkeit von exp. Auch die Differenzierbarkeit und exp′ = exp ist
leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(x) = ex zunächst für die natürlichen, danach für die
ganzen und schließlich für die rationalen Zahlen, wobei die rechte Seite wie unter 2., 3. und 4.definiert
sei.. Das geht wie geschmiert!

Zwei stetige Funktionen auf R, die auf Q übereinstimmen, sind gleich, wie man leicht sieht. Da exp stetig
ist, gibt es also genau eine stetige Fortsetzung von ex auf ganz R, nämlich ex := exp(x).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(x) als x-te Potenz von e anzusehen und mit
ex zu bezeichnen.

Aber wir wollen natürlich auch ax für beliebige a > 0 definieren. Dazu definiert man den Logarithmus
als Umkehrfunktion der Exponentialfunktion. Man zeigt dazu exp(x) > 0, also exp′(x) > 0. Somit ist exp
streng monoton wachsend. Das Bild besteht ferner aus allen positiven reellen Zahlen: exp(R) = R∗+. Man
hat also eine Umkehrabbildung, den natürlichen Logarithmus

ln : R∗+ → R

(Man schreibt auch ”log“ statt ”ln“.) Für beliebige a > 0 sieht man sofort, dass die Funktion
f(x) := exp(x ln(a)) die Gleichungen f(x + y) = f(x)f(y) sowie f(1) = a erfüllt, und deshalb mit ax

für alle rationalen x übereinstimmt. Dies rechtfertigt es, ax := exp(x ln(a)) für alle reellen x zu definieren.

7. Seien c, z ∈ C, c 6= 0 Man kann versuchen cz := exp(z ln(c)) zu definieren. Dies hat den Vorzug, dass
man bis auf die Bedingung c 6= 0 keine Einschränkung machen muss. Der Nachteil liegt darin, dass die

”Funktion“ ln auf C× = C − {0} von Natur aus unendlich viele Werte hat, die sich um Vielfache von
2πi unterscheiden. Das kommt daher, dass im Komplexen die Funktion exp nicht injektiv ist. Jeder noch

27



so geschickt ausgewählte, auf ganz C× eindeutig definierte Logarithmus ist weder überall stetig, noch
erfüllt er allgemein die Gleichung ln(z1z2) = ln(z1) + ln(z2).

Man muss also damit leben, dass etwa der Ausdruck ii zunächst unendlich viele Werte hat (die übrigens
reell sind) und wenn man mit ihm rechnen will, angeben, welcher der möglichen Werte gemeint ist.

28



8 Potenzen und Potenztürme

1. a) Für beliebige reelle Zahlen a, b gilt: a + b = b + a und ab = ba.

Für Potenzen ist das anders:
23 = 8, aber 32 = 9.

Hingegen gilt 24 = 42. Gibt es weiter solche Fälle?

b) Wir vergleichen (
9
4

) 27
8

mit
(

27
8

) 9
4

Zunächst wollen wir uns daran erinnern, wie diese Ausdrücke definiert sind. Z.B. ist für a ≥ 0

a
9
4 =

(
4
√

a
)9

definiert. Und fragen Sie, ob die positive oder negative Wurzel gemeint ist, so ist die Antwort: Die positive!

Jetzt rechnen wir: (
9
4

) 27
8

=

((
3
2

)2
) 3

2 ·
9
4

=
(

3
2

)2· 32 ·
9
4

=

((
3
2

)3
) 9

4

=
(

27
8

) 9
4

Allgemeiner zeigt man ganz analog zur dieser Rechnung: Ist

a =
(

1 +
1
n

)n

, b =
(

1 +
1
n

)n+1

,

so gilt ab = ba. Man erkennt schon hier, dass es unendlich viele Paare verschiedener rationaler Zahlen
(a, b) mit ab = ba gibt.

c) Wir wollen alle Paare (x, y) positiver reeller Zahlen mit xy = yx finden. Es gilt:

xy = yx ⇐⇒ ln(xy) = ln(yx) ⇐⇒ y lnx = x ln y ⇐⇒ lnx

x
=

ln y

y

Will man also Paare (x, y) positiver reeller Zahlen mit xy = yx, x 6= y finden, so hat man die Funktion
f(x) = ln x

x darauf zu untersuchen, ob sie mehrfach denselben Wert annimmt.

Deshalb werden wir diese Funktion auf ihrem Definitionsbereich, d.h. dem Bereich der positiven reellen
Zahlen, jetzt diskutieren:

i. Nullstellen:
f(x) = 0 ⇐⇒ lnx = 0 ⇐⇒ x = 1.

Offenbar ist f(x) < 0 für 0 < x < 1 und f(x) > 0 für x > 1.

ii. Verhalten der Funktion nahe 0. Offenbar geht f(x) gegen −∞, wenn x gegen 0 geht.

iii. Die Ableitung:

f ′(x) =
(1/x) · x− 1 · lnx

x2
=

1− lnx

x2

Also gilt folgendes
f ′(x) = 0 ⇐⇒ x = e, die Eulersche Zahl,

Ferner ist f ′(x) > 0 für 0 < x < e und f ′(x) < 0 für x > e.

Also kann man sich bereits ein Bild der Funktion machen. Sie steigt zwischen 0 und e monoton an, läuft
bei 1 durch die x-Achse, erreicht bei e ein Maximum und fällt für x > e monoton, bleibt aber positiv.
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iv. Verhalten für große x. Man weiß, dass die Logarithmusfunktion sehr langsam wächst. Deshalb gilt
limx→∞ f(x) = 0. (Dies lernt man in der Vorlesung Analysis 1.)

Was erkennt man daraus? (Skizze!)

Zu jeder reellen Zahl x mit 1 < x < e gibt es genau eine weitere Zahl y mit f(x) = f(y), und dieses y ist
größer als e.

Es gibt also sehr viele Paare positiver reeller Zahlen (x, y), für die xy = yx, aber x 6= y gilt. Verlangt man
allerdings, dass x, y beide ganz (und positiv) sind, so ist, bis auf die Reihenfolge (2, 4) das einzige solche
Paar, da 2 die einzige ganze Zahl zwischen 1 und e ist.

Beachte aber, dass auch (−2)−4 = 1
(−2)4 = 1

16 = (−4)−2 ist.

2 a) Auch das Assoziativgesetz gilt nicht für Potenzen. Während a+(b+c) = (a+b)+c und a(bc) = (ab)c
gelten, ist

(33)3 = 33·3 = 39, aber 3(33) = 327 .

Da (ab)c = abc ist, hält man sich an die Konvention:

abc

:= a(bc), und analog abcd

= a(b(cd)) usw., z.B.
√

2
√

2
√

22

=
√

2
√

2
2

=
√

2
2

= 2. (8)

Wir wollen für diesen Vortrag folgende Schreibweise einführen: Wir schreiben a[1] := a, a[2] := aa, a[3] =
aaa

usw., a[n+1] = a(a[n]).

Beachte, dass im Allgemeinen a[m+n] 6= (a[m])(a
[n]) ist, z.B. 3[2+1] 6= (3[2])3, wie wir schon wissen. Ein

weiteres Beispiel ist:

2[2+2] = 2222

= 224
= 216, aber (2[2])(2

[2]) = 44 = 28 .

b) Nun betrachten wir die riesige Zahl 9[100]. Sicher ist 3[100] zwar immer noch beachtlich groß, aber viel
kleiner. Wir stellen uns die Frage: Welches ist die kleinste natürliche Zahl n mit 3[n] ≥ 9[100]?

Sicher ist 3m+1 = 3 · 3m > 2 · 3m. Hieraus folgt: Sind k, m ∈ N, so gilt

3k > 3l =⇒ 3k > 2 · 3l (9)

Wir setzen jetzt voraus, m,n seien natürliche Zahlen mit 3[m] > 9[n]. Da 9[n] eine Potenz von 3 (mit
einem positiven ganzen Exponenten) ist, folgt mit (9), dass dann auch 3[m] > 2 · 9[n], also auch

3[m+1] = 33[m]
> 32·9[n]

= 9[n+1]

gilt. Da 33 > 9, d.h. 3[2] > 9[1] folgt mit Induktion 3[n+1] > 9[n].

Es ist also bereits 3[101] > 9[100]. Überraschend, nicht wahr?

Dasselbe gilt, wenn man 3 durch eine beliebige ganze Zahl a ≥ 3 und 9 durch aa−1 ersetzt. Der Beweis
hierfür ist derselbe.

c) Auf die Frage, für welche n, m die Ungleichung 2[n] > 4[m] erfüllt ist, hat man die folgende Antwort:

Es gilt
2[n+2] > 4[n] ≥ 2[n+1].

(Die zweite Ungleichung kann man zu > verschärfen, wenn n ≥ 2 ist.)

Wenn man in dem Potenzturm 4[n] die oberste 4 als 22 schreibt, erkennt man sofort die Gültigkeit der
zweiten Ungleichung.
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Die erste Ungleichung ist offenbar für n = 1 gültig. Dann überlegt man sich: Sind k > l gerade Zahlen,
so folgt aus 2k > 2l die Ungleichung 2k > 2 · 2l. Es gelte nun

2[m] > 4[n] und n ≥ 1, (10)

also m ≥ 2. Deshalb sind die beiden Terme in (10) Potenzen von 2 mit geraden Exponenten. Die Unglei-
chung (10) impliziert also

2[m] > 2 · 4[n]

also
2[m+1] > 22·4[n]

= 4[n+1].

Per Induktion folgt mithin 2[n+2] > 4[n].

3. Die Folge (2, 22, 222
, . . .) ist streng monoton wachsend und besteht aus ganzen Zahlen. Deshalb gilt

limn→∞ 2[n] = ∞. Auch die Folge (
√

2
[n]

)n ist streng monoton wachsend. Denn die Funktion f(x) :=
√

2
x

ist streng monoton wachsend. Deshalb ist
√

2 <
√

2
√

2
, folglich

√
2
√

2
<
√

2
√

2
√

2

. Usw. Man sieht (mit

vollständiger Induktion)
√

2
[n]

<
√

2
[n+1]

. Analog gehts für alle (b[n]) mit b > 1.

Sind die Limites dieser Folgen immer ∞?

Überraschender Weise gilt

lim
n→∞

√
2
[n]

= 2

Beweis: Wenn man in dem Potenzturm
√

2
[n]

das oberste Stockwerk durch 2 ersetzt, erhält man (mit

einem Teleskopargument, vgl.(8)) einerseits die Zahl 2, andererseits sicher ein größeres Ergebnis als
√

2
[n]

.

Es ist also
√

2
[n]

< 2 für alle n ≥ 1. Da die Folge (
√

2
[n]

)n monoton wachsend und durch 2 nach oben
beschränkt ist, hat sie einen endlichen Limes t ≤ 2.

Um t zu bestimmen, rechnen wir

√
2

t
=
√

2
limn→∞

√
2
[n]

= lim
n→∞

√
2
[n+1]

= t

Die Gleichung
√

2
t

= t hat die Lösungen t = 2 und t = 4. Durch eine Kurvendiskussion stellt man fest,
dass sie keine weiteren haben kann. Wegen t ≤ 2 folgt t = 2. –

Diese Überlegungen kann man allgemeiner, statt nur für 21/2 für a1/a mit a ≥ 1 anstellen. Da

ln(a1/a) =
ln a

a

ist, ist die größte der Zahlen unter den a1/a die Zahl e1/e. (Beachten Sie dass nach obigen Betrachtungen
die Funktion lnx/x ein totales Maximum bei x = e hat.)

Für a ∈ [1, e] ist limn→∞(a1/a)[n] = a. Für a > e ist limn→∞(a1/a)[n] = b, wobei b ∈]1, e[ so gewählt ist,
dass ab = ba ist. Nicht wahr?

Zum Schluss beweisen wir
lim

n→∞
b[n] = ∞, falls b > e1/e gilt.

Da die Folge (b[n]) monoton wachsend ist, genügt es zu zeigen, dass sie keinen endlichen Limes hat. Wäre
dieser gleich t, so gölte (s.o.) bt = t, also b ≤ t1/t. Deshalb wäre b ≤ e1/e. –

Fragt man nach der Konvergenz von (b[n])n für 0 < b < 1, so kann man beweisen, dass dieselbe genau
für die b ≥ (1/e)e gilt. Hier ist zu beachten, dass die Folge (b[n])n hier nicht mehr monoton ist.
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9 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden für viele von Ihnen eine beachtliche
Hürde sein, die Sie jedoch überwinden müssen, wollen Sie mit Erfolg Mathematik, Informatik oder Physik
studieren! Sie sollten erkennen, wie simpel, ja geradezu primitiv diese Dinge sind. Die Mengensprache
ist eine wichtige und grundlegende Sprache der modernen Mathematik.

9.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchsfreie Weise angibt, welche
Dinge zu ihr gehören sollen, d.h. für welche x das Symbol x ∈ M gelten soll, d.h. welche Dinge Elemente
der Menge sind..

Gilt dies für nur endlich viele Dinge, d.h ist die Menge M endlich, so kann man sie durch Angabe aller
ihrer Elemente beschreiben, wobei es auf die Reihenfolge nicht ankommt, und auch nicht darauf, ob man
zufällig eines ihrer Elemente mehrfach angibt:

{3, 7, 2, 7, 1, 7} = {3, 7, 2, 3, 7, 1, 2} = {3, 7, 2, 1} = {1, 2, 3, 7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Mengen N, Z, Q, R als wohlbe-
schrieben ansehen und aus ihnen weitere Mengen gewinnen, z.B. die Menge der geraden ganzen Zahlen:

{n | n ∈ Z, 2 teilt n} = {n ∈ Z | 2 teilt n}

(Statt des senkrechten Striches
∣∣∣ schreiben manche auch ”;“ oder ”:“ .) Da a - b bedeuten soll, dass a kein

Teiler von b ist, ist {n ∈ Z | 2 - n} die Menge der ungeraden Zahlen.

Wichtige Mengen reeller Zahlen sind die Intervalle. Seien a, b ∈ R mit a < b, so schreibt man:

[a, b] := {x ∈ R | a ≤ x ≤ b} , ]a, b[:= {x ∈ R | a < x < b} ,

]a, b] := {x ∈ R | a < x ≤ b} , [a, b[:= {x ∈ R | a ≤ x < b}

Obwohl diese Mengen sich (bei festem a, b) in höchstens 2 Elementen unterscheiden, darf man sie nicht
miteinander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die sogenannte leere Menge, die
mit ∅ bezeichnet wird.

9.2 Seien M,N Mengen. Man nennt M eine Teilmenge von N (und manchmal N eine Obermenge
von M) und schreibt M ⊂ N oder N ⊃ M , wenn jedes Element von M auch ein solches von N ist:

M ⊂ N ⇐⇒
[
x ∈ M =⇒ x ∈ N

]
(Die Aussage M ⊂ N kann man auch so ausdrücken: ”Für alle x gilt [x ∈ M =⇒ x ∈ N ].)

Dabei schließen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also M ⊂ M . (Manche benutzen
lieber die Bezeichnung M ⊆ N .)

Zum Beispiel gelten

{1, 3, 7} ⊂ {1, 2, 3, 7} , {n ∈ Z
∣∣∣ 6|n} ⊂ {n ∈ Z

∣∣∣ 3|n} , [a, b[⊂ [a, b]

9.3 Für zwei Aussagen A,B bedeutet A =⇒ B eine der folgenden untereinander äquivalenten Aussagen:

”wenn A gilt, dann gilt auch B“

”aus A folgt B“
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”A ist eine hinreichende Bedingung für B“

”B ist eine notwendige Bedingung für A“

”B gilt, oder A gilt nicht“

Man sagt dazu auch: ”A impliziert B“.

9.4 Der Durchschnitt M1 ∩M2 zweier Mengen M1 und M2 ist die Menge aller Elemente, die sowohl
Elemente von M1 als auch solche von M2 sind:

M1 ∩M2 = {x | x ∈ M1 und x ∈ M2}

Beispiele: {1, 7, 3, 8, 4, 9} ∩ {3, 7, 2, 7, 1, 7} = {1, 3, 7}.
{n ∈ Z

∣∣∣ 2|n} ∩ {n ∈ Z | 3|n} = {n ∈ Z | 6|n}. ]0, 3[∩Z = {1, 2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne gebraucht wird als in dem
Satz ”Der Durchschnitt der Schokoladenpreise in diesem Supermarkt ist 79 Zent“.

Die Vereinigung M1 ∪M2 zweier Mengen M1 und M2 ist die Menge aller Elemente, die in M1 oder M2

liegen, d.h. die Element mindestens einer der beiden Mengen sind.

M1 ∪M2 := {x | x ∈ M1 oder x ∈ M2}

Zum Beispiel {1, 7, 3, 8, 4, 9} ∪ {3, 7, 2, 7, 1, 7} = {1, 2, 3, 4, 7, 8, 9} oder [0, 2] ∪ [2, 3] = [0, 3] oder
[0, 3[∪[2, 4[= [0, 4[

Man mag geneigt sein zu sagen, die Elemente von M1∪M2 seien die Elemente von M1 und von M2. Man
sollte sich darüber im Klaren sein, dass bei dieser Sprechweise nicht gemeint ist: M1 ∪M2 besteht aus
den Elementen x, für die gilt, dass x sowohl Element von M1, als auch Element von M2 ist. (Letztere
Menge wäre gerade der Durchschnitt M1 ∩M2.)

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstände verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei Mengen bilden, ja sogar von
unendlich vielen Mengen.

9.5 Man betrachtet auch die Mengendifferenz M −N (auch M \N geschrieben):

M −N := {x ∈ M | x /∈ N}

Zum Beispiel {1, 3, 4, 7, 8, 9} − {1, 2, 3, 5, 7} = {4, 8, 9} oder Z− {n ∈ Z
∣∣∣ 2 - n} = {n ∈ Z | 2|n}

Die symmetrische Differenz zweier Mengen M1,M2 ist
(M1 ∪M2)− (M1 ∩M2) = (M1 −M2) ∪ (M2 −M1).

9.6 Zwei Aussagen A,B kann man logisch verknüpfen durch die ”Junktoren“ ‘und’ und ‘oder’. Diese
werden manchmal abgekürzt: ∧ heißt ‘und’, ∨ heißt ‘oder’. Dabei bedeutet ∨ kein ausschließendes ‘oder’.

A ∨B ist genau dann wahr, wenn mindestens eine der Aussagen A,B wahr ist.

A ∧B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (A ∧ B) ∨ C bedeutet etwas anderes als A ∧ (B ∨ C). Manche Unklarheiten in nicht formali-
sierten Texten entstehen dadurch, dass man solcherlei nicht leicht unterschiedlich ausdrücken kann. In
verbalen Sätzen haben die Klammern – so man sie überhaupt verwendet – eine andere Bedeutung als in
mathematischen und logischen Formeln.
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Die beiden folgenden Ausdrücke sind äquivalent: (A ∧B) ∨ C und (A ∨ C) ∧ (B ∨ C).

Selbiges gilt für A ∧ (B ∨ C) und (A ∧B) ∨ (A ∧ C).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ , das man auch ⇁ A schreibt. Genau dann ist
⇁ A richtig, wenn A falsch ist.

In der klassischen Logik, die wir in der Regel benutzen ist ⇁ (⇁ A) mit A äquivalent.

Die Aussage ⇁ (A ∧B) ist äquivalent zu (⇁ A) ∨ (⇁ B).

Und ⇁ (A ∨B) ist äquivalent zu (⇁ A) ∧ (⇁ B).

Die Aussage A =⇒ B bedeutet (in der klassischen Logik) nichts anderes als (⇁ A) ∨B.

Und A ⇐⇒ B bedeutet natürlich (A =⇒ B) ∧ (B =⇒ A).

9.7 Der Zusammenhang zwischen den Mengenverknüpfungen und den Junktoren ist:

x ∈ M ∩N ⇐⇒ x ∈ M ∧ x ∈ N

x ∈ M ∪N ⇐⇒ x ∈ M ∨ x ∈ N

Aus den o.a. logischen (Distributiv-)Regeln ergibt sich für Mengen (L ∩M) ∪N = (L ∪N) ∩ (M ∪N);
und dasselbe , wenn man ∪ mit ∩ vertauscht. Es gilt also die Distributivität von ‘∩’ bezüglich ‘∪’ und
auc diejenige von ∪ bezüglich ‘∩’.

9.8 Außer den Junktoren braucht man noch die sogenannten Quantoren: ”für alle“ und ”es gibt“, welch
letzteres nichts anderes bedeutet als ”für ein“. Man braucht dazu Aussagen über eine ”Variable“, etwa
x. Man schreibt A(x), was bedeuten soll: A gilt für x. Ein Beispiel ist die Aussage x ∈ R =⇒ 2x = x + x.

Die abkürzenden Bezeichnungen sind:
∧

x A(x) in der Bedeutung: ”für alle x gilt A“ (Allquantor)

und:
∨

x A(x) in der Bedeutung: ”für (mindestens) ein x gilt A“ (Existenzquantor).

Mathematiker benutzen häufiger die Abkürzungen ∀ statt
∧

und ∃ statt
∨

.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt für zwei Existenzquantoren. Hingegen
wissen wir von der Definition der Konvergenz, dass man einen All- mit einem Existenzquantor nicht
vertauschen darf.

In den natürlichen Sprachen werden Allquantoren häufig versteckt. Z.B. gilt folgender Satz:

”Seien x, y (beliebige) reelle Zahlen. Dann gilt xy = yx.“ Damit ist gemeint:∧
x

∧
y

(
(x ∈ R ∧ y ∈ R) =⇒ xy = yx

)
Wenn man sagt ”für eine reelle Zahl x gilt 2x = x+x“, so meint man meist: ”für alle reellen Zahlen x gilt
2x = x + x“. Aus diesem Grunde empfiehlt es sich, den Existenzquantor mit ”es gibt“ zu verbalisieren.
Statt ”Für eine reelle Zahl x (aber nicht unbedingt für alle) gilt xx = xx“ sollte man sagen ”es gibt eine
reelle Zahl x mit xx = xx“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 9.9 a) Die Aussagen
∧

x(x ∈ N =⇒ xx = xx) und
∧

x(x ∈ N =⇒ xx 6= xx) sind beide falsch.

b) Hingegen sind die Aussagen
∨

x(x ∈ N ∧ xx = xx) und
∨

x(x ∈ N ∧ xx 6= xx) beide richtig.

c) Für alle Mengen M,N gilt

M ⊂ N ⇐⇒
∧
x

(x ∈ M =⇒ x ∈ N)
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9.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X×Y (genannt nach Descartes) versteht
man die Menge aller Paare (x, y) mit x ∈ X, y ∈ Y . Zum Beispiel kann man die euklidische Ebene
bekanntlich als Menge aller Paare (x, y) reeller Zahlen auffassen. Also ”ist“ sie R× R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden. Statt R × R schreibt man
auch R2. Entsprechend ist R3 usw. und Rn zu verstehen. Die Elemente (x1, x2, . . . , xn) des Rn heißen
n-tupel reeller Zahlen.

Ist K ein beliebiger Körper, so definiert man auf dem Kn eine Addition wie folgt:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) := (a1 + b1 , a2 + b2, . . . , an + bn) (11)

Alle Axiome der Addition in einem Körper (oder Ring) sind für diese Addition erfüllt. Definiert man
noch eine Multiplikation durch

(a1, a2, . . . , an) · (b1, b2, . . . , bn) := (a1b1, a2b2, . . . , anbn)

so wird der Kn zu einem Ring, der aber für n > 1 kein Körper ist. (Warum nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen von Kn:

a · (b1, . . . , bn) := (ab1, . . . , abn) (12)

für a, b1, . . . , bn ∈ K. Man nennt Kn zusammen mit der Addition (11) und der Multiplikation (12) einen
Vektorraum.

35



10 Abbildungen

Ohne den Begriff ”Abbildung“ geht in der modernen Mathematik gar nichts. Zu einer Abbil-
dung gehören eine Startmenge (Definitionsbereich) X und eine Zielmenge Y . Eine Abbildung
f : X → Y besteht nun darin, dass jedem Element x ∈ X genau ein (d.h. ein, aber auch nur ein)
Element f(x) ∈ Y zugeordnet wird. Wird durch f auch nur einem einzigen Element x ∈ X kein oder
mehr als ein Element aus Y zugeordnet, so ist f keine Abbildung.

Z.B. ist f : R → R, f(x) := 1/x keine Abildung. Hingegen ist f : R − {0} → R, f(x) := 1/x sehr wohl
eine solche.

Anderen Einschränkungen ist der Begriff Abbildung nicht unterworfen. Z.B. ist folgendes eine Abbildung

f : R → R definiert durch f(x) = 1 für x ∈ Q, f(x) = 0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber präzise definiert. (Dabei ist allerdings zuzugeben, dass
es bei einer gemessenen physikalischen Größe keinen Sinn hat, zu fragen, ob sie rational oder irrational
ist.)

Ein weiteres Beispiel ist:

g : R → R, g(x) = x2 für x ≥ 0, g(x) = −x2 für x < 0

Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differenzierbar!

Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Element abgebildet wird, z.B.

α : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 2, 3 7→ 3

β : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 3, 3 7→ 1

Definitions 10.1 Sei f : X → Y eine Abbildung.

a) X heißt die Startmenge (kurz: der Start) und Y die Zielmenge (kurz: das Ziel) von f . (In man-
chen Situationen, insbesondere in der Linearen Algebra, ist man sehr streng und unterscheidet zwischen
Abbildungen, die nur bis auf die Start- oder die Zielmenge übereinstimmen, z.B. zwischen den Abbildungen
f : R → R, x 7→ x2 und g : R → R+, x 7→ x2.)

b) Die Bildmenge (auch das Bild) im(f) = f(X) von f ist die Menge {f(x) | x ∈ X} =
{y ∈ Y | es existiert ein x ∈ X mit f(x) = y}. Die Bildmenge ist eine Teilmenge der Zielmenge.

c) f heißt injektiv, wenn verschiedene Elemente von X auch verschiedene Bilder haben, d.h. wenn aus
f(x) = f(x′) immer x = x′ folgt. (Dass aus x = x′ immer f(x) = f(x′) folgt, ist aufgrund des Begriffes
einer Abbildung klar, und hat deshalb nichts mit ‘injektiv’ zu tun!)

d) f heißt surjektiv, wenn jedes Element y ∈ Y das Bild (mindestens) eines x ∈ X ist, d.h. wenn
f(X) = Y , also die Bildmenge gleich der Zielmenge ist.

e) f heißt bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f) Sind f : X → Y, g : Y → Z Abbildungen, so definiert man ihre Verkettung g◦f : X → Z durch
(g◦f)(x) := g(f(x)).

Examples 10.2 a) Die o.a. Abbildung α ist weder injektiv, noch surjektiv; β hingegen ist bijektiv.

b) Durch x 7→ x2 können, je nach Wahl von Start und Ziel, Abbildungen mit verschiedenen der o.a.
Eigenschaften definiert werden:

1) R → R, weder surjektiv noch injektiv,

2) R → R+, surjektiv aber nicht injektiv,

3) R+ → R, injektiv aber nicht surjektiv,

4) R+ → R+, sowohl surjektiv wie injektiv, also bijektiv.
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10.3 Sei f : X → Y eine bijektive Abbildung. Dann gibt es zu jedem y ∈ Y genau ein (d.h. ein eindeutig
bestimmtes) x ∈ X mit f(x) = y. (Die Existenz dieses x folgt aus der Surjektivität, seine Eindeutigkeit
aus der Injektivität.)

Dieses x wird mit f−1(y) bezeichnet. Macht man obiges für alle y ∈ Y , so erhält man eine Abbildung
f−1 : Y → X. Man nennt f−1 auch die Umkehrabbildung von f . Sie ist nur dann definiert, wenn f
bijektiv ist. Natürlich ist auch f−1 bijektiv, wenn es überhaupt definiert ist. Achtung: Die Abbildung

x 7→ 1
f(x)

hat nichts mit f−1, wie wir es definiert haben, zu tun! (Ich kann natürlich nicht dafür garantieren, dass
vielleicht in dem einen oder anderen Buch oder einer Vorlesung die Abbildung x 7→ 1/f(x) nicht mit f−1

bezeichnet wird. Da muß man eben aufpassen!)

Ist f : X → Y eine bijektive Abbildung, so gilt f◦f−1 = idY und f−1◦f = idX .

Sind umgekehrt f : X → Y und g : Y → X Abbildungen mit g◦f = idX und f◦g = idY , so sind f, g
bijektiv, und es ist g = f−1 und f = g−1.

Lemma 10.4 Sei
W

α−→ X
β−→ Y

γ−→ Z

eine Folge von Abbildungen. Dann gilt γ◦(β◦α) = (γ◦β)◦α.

Proof: Für w ∈ W gilt
(γ◦(β◦α))(w) = γ((β◦α)(w)) = γ(β(α(w)))

und
((γ◦β)◦α)(w) = (γ◦β)(α(w)) = γ(β(α(w)))

�

Mit anderen Worten: Sowohl γ◦(β◦α) als auch (γ◦β)◦α ist die Abbildung, die entsteht, indem man erst
α, dann β und schließlich γ ausführt.

Beachten Sie, dass α◦β in obiger Situation meistens nicht definiert ist.

10.5 Natürliche Zahlen. Man kann die natürlichen Zahlen und das Rechnen mit ihnen über die Men-
genlehre einführen. Die natürlichen Zahlen sind dann die sogenannten Kardinalzahlen (Elementean-
zahlen) endlicher Mengen.

Ist m = #M, n = #N und M ∩N = ∅, so kann man definieren m + n := #(M ∪N). Ebenso definiert
man mn := #(M ×N), wobei man hier nicht fordern muss, dass M ∩N = sei.

Die Rechengesetze ergeben sich dann auf natürliche Weise.

10.6 Sei f : X → Y eine beliebige Abbildung – die weder injektiv noch surjektiv sein muss. Dann
definiert man manchmal für Teilmengen V ⊂ Y die folgende Menge:

f−1(V ) := {x ∈ X | f(x) ∈ V }

Vorsicht: Trotz gleicher Bezeichnung handelt es sich hier nicht um die Umkehrabbildung von f , welche
ja nur dann definiert ist, wenn f bijektiv ist. Ist V ∩ im(f) = ∅, so ist f−1(V ) = ∅, und umgekehrt.

Man kann f−1(V ) im Allgemeinen nicht als

f−1(V ) := {f−1(y) | y ∈ V }

definieren. Das geht nur, wenn f bijektiv ist.

Ist U ⊂ X eine Teilmenge, so wird definiert:

f(U) := {f(x) | x ∈ U}.
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10.7 Für endliche Mengen M,N gilt: Es gibt genau dann eine injektive Abbildung M → N , wenn #M ≤
#N ist. (Aufgabe: Wann gibt es eine surjektive Abbildung? Aufgepasst: Manchmal gibt es überhaupt
keine Abbildung.) Eine bijektive Abbildung f : M → N gibt es genau dann, wenn #M = #N ist. Von
nicht notwendig endlichen Mengen M,N kann man mit einigem Recht deshalb sagen, ihre ”Elementezahl“
(man spricht auch von Mächtigkeit) sei gleich, wenn es eine bijektive Abbildung M → N gibt.

Frage: Gibt es eine bijektive Abbildung N → Z? Antwort: Ja.

0 7→ 0, 1 7→ −1, 2 7→ 1, 3 7→ −2, 4 7→ 2, usw., d.h.

n 7→
{

n/2 falls n gerade
(n + 1)/2 falls n ungerade

10.8 Noch überraschender ist vielleicht, dass es eine bijektive Abbildung N → Q gibt.

Beweis: Wir sortieren die rationalen Zahlen (in Standardform) nach ihren Nennern und ihren Vorzeichen
in unendlich vielen Zeilen von unendlicher Länge, wobei jede Zeile eine Stelle weiter rechts anfängt als
die Vorangehende. Wir erhalten folgendes Schema:

0/1 1/1 2/1 3/1 · · ·
−1/1 −2/1 −3/1 −4/1 · · ·

1/2 3/2 5/2 7/2 · · ·
−1/2 −3/2 −5/2 −7/2 · · ·

1/3 2/3 4/3 5/3 · · ·
−1/3 −2/3 −4/3 −5/3 · · ·

. . . . . . . . . . . .

In jeder ”Spalte“, d.h. senkrechten Reihe stehen nur endlich viele Zahlen, nämlich in der n-ten Spalte
genau n solche. Eine bijektive Abbildung N → Q wird dann wie folgt beschrieben:

0 wird auf das einzige Element der 1. Spalte, 1 und 2 werden auf die zwei Elemente der 2. Spalte, 3, 4 und
5 auf die drei Elemente der 3. Spalte abgebildet; usw. Die k Zahlen k(k − 1)/2, . . . , (k + 1)k − 1 werden
bijektiv auf die k Elemente der k-ten Spalte abgebildet. Zusammen ergibt sich eine bijektive Abbildung.
–

Das zum Beweis verwendete Verfahren wird auch Cauchy’sches Diagonalverfahren genannt. ”Diagonal-
verfahren“deshalb, weil die endlichen Spalten im obigen Schema zu schräg, d.h. diagonal verlaufenden
Reihen werden, wenn man die Anfänge der Zeilen untereinander schreibt. ”Cauchy“ deshalb, weil Cauchy
analoge Diagonalen betrachtet, um eine nützliche Art, unendliche Reihen miteinander zu multiplizieren,
zu beschreiben.

In einem abstrakten Sinne darf man also sagen, dass die Mengen N, Z, Q gleichviele Elemente haben.

Unendliche Mengen, für die es eine bijektive Abbildung N → M gibt, heißen abzählbar. (Warum?)

10.9 Vielleicht überrascht es Sie erneut, wenn wir jetzt zeigen, dass R in einem entsprechenden Sinne
sehr viel mehr Elemente besitzt als N. Wir wollen zeigen, dass es keine bijektive Abbildung N1 → [0, 1[
gibt. (Da N und N1 gleich mächtig sind (warum?). heißt das natürlich, dass es keine bijektive Abbildung
N → [0, 1[ gibt. Man kann auch folgern, dass es keinen bijektive Abbildung N → R gibt.)

Beweis: Wir nehmen an, es gäbe eine solche Abbildung f . Wir denken uns die Elemente von [0, 1[ als
Dezimalbrüche geschrieben. Dann hat man folgendes Schema:

f(1) = 0, a1,1a1,2a1,3a1,4 . . .
f(2) = 0, a2,1a2,2a2,3a2,4 . . .
f(3) = 0, a3,1a3,2a3,3a3,4 . . .
f(4) = 0, a4,1a4,2a4,3a4,4 . . .

...
... · · · · · · · · ·
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Die ai,j sind Dezimalziffziffern, und zwar ist ai,j die j-te Nachkommastelle von f(i). (Wenn man will,
kann man 9er-Perioden verbieten.) Nun sehen wir uns die ”Diagonale“ a1,1, a2,2, a3,3, . . . in diesem Scheme
an und bilden den Dezimalbruch c = 0, b1b2b3b4 . . . nach folgender Vorschrift: es sei bi = 5, wenn ai,i 6= 5
ist, aber bi = 6, wenn ai,i = 5 ist. Dann gilt c ∈ [0, 1[, aber c 6= f(i) für jedes i. Denn c unterscheidet sich
in der i-ten Nachkommastelle von f(i), ist aber eindeutig als Dezimalbruch darstellbar, da die Ziffer 0
sowenig vorkommt wie die Ziffer 9. Eine Abbildung f der gewünschten Art kann es also nicht geben. –

Das hier verwendete Verfahren heißt Cantorsches Diagonalverfahren, da Cantor es erfunden hat, um die
Überabzählbarkeit von R zu zeigen.

Vielleicht sollte ich nicht verschweigen, dass es Logiker und Philosophen gibt (sog. Intuitionisten), welche
die Menge aller reellen Zahlen nicht als wohldefiniertes Objekt ansehen. Ihre Argumentation ist in etwa
die Folgende: Jede reelle Zahl aus [0, 1[ kann man ja als unendlichen Dezimalbruch, d.h. als Unendliche
Folge von Ziffern angeben. Die Menge ”aller“ solcher Folgen ist ”indefinit“, d.h. nicht konstruktiv fassbar.
Jede Folge, mit der man konkret etwas anfangen will, muss durch eine Definition (die sich mit endlich
vielen Symbolen schreiben lässt) gegeben werden, die für jedes n das Folgenglied an festlegt. Es gibt
aber nur abzählbar viele Möglichkeiten solcher Definitionen. (Es sei denn, man hätte ein überabzählbares
Alfabet, welches sicher für den einen oder anderen etwas mühsam zu lernen wäre.) Trotzdem gewinnt
man durch das Cantorsche Diagonalverfahren zu abzählbar unendlich vielen unendlichen Dezimalbrüchen
sofort einen von all diesen verschiedenen.

Aber soll uns das ernsthaft stören?
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11 Komplexe Zahlen

Wenn man von den natürlichen Zahlen aus über die ganzen und rationalen Zahlen schließlich zu den reel-
len Zahlen gelangt ist, ist ein gewisser Abschluss erreicht. Man kann z.B. jeden Punkt des (euklidischen)
Raumes – nach Festlegung eines Koordinatensystems – durch ein Tripel reeller Zahlen beschreiben, was
bekanntlich nicht möglich ist, wenn man sich auf die rationalen oder die positiven reellen Zahlen be-
schränkt. Wen kümmert es eigentlich ernsthaft, dass man aus negativen Zahlen keine Quadratwurzeln
ziehen kann? Man verzichtet ja auch darauf, durch 0 zu dividieren.

Die erste Ahnung davon, dass sich möglicherweise hinter der durch reelle Zahlen beschriebenen Realität
eine mathematisch relevante Wirklichkeit verbirgt, bekamen unsere Vorfahren in der Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen löst. Auf die sogenannte ”p-q-
Formel“ kommt man durch die quadratische ”Ergänzung“. Wenn man analog eine ”kubische Ergänzung“
auf kubische Gleichungen (d.h. solche 3. Grades) anzuwenden versucht, erreicht man lediglich eine Re-
duktion auf Gleichungen der Form x3 + px + q = 0. Eine Lösungsformel für diese Gleichung fand (wahr-
scheinlich) Tartaglia im Jahre 1535:

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27

Für die Gleichung x3 − 3x + 2 = 0 z.B. liefert Tartaglias Formel die Lösung x = 3
√
−1 +

√
1− 1 +

3
√
−1−

√
1− 1 = −2, die offenbar richtig ist. (Allerdings ist 1 eine weitere Lösung.) Ebenso erhält man

mit Tartaglias Formel die Lösung 0 der Gleichung x3 + x = 0. (Diese ist übrigens die einzige Lösung im
Bereich der reellen Zahlen.)

Bei der ebenso simplen Gleichung x3 − x = 0 scheint allerdings Tartaglias Formel zu versagen. Sie ergibt

x =
3

√√
− 1

27
+

3

√
−
√
− 1

27

Die (richtige) Lösung 0 erhält man nur dann, wenn man sich großzügig darüber hinwegsetzt, dass der

zweimal vorkommende Ausdruck
√
− 1

27 im Bereich der reellen Zahlen gar keinen Sinn hat. (1 und -1 sind
weitere Lösungen.)

Dies sollte weniger ein Grund zur Resignation sein, als einer dafür, Quadratwurzeln aus negativen Zahlen
einen Sinn zu geben. Umso mehr, als in Tartaglias Formel solche merkwürdigen Ausdrücke häufig genug
auftreten, nämlich immer gerade dann, wenn die Gleichung drei verschiedene reelle Lösungen hat.

Komplexe Zahlen: Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl dazu, die ”i“
genannt wurde und die merkwürdige Eigenschaft i2 = −1 hat, und betrachteten als neue, sogenannte
komplexe Zahlen die Ausdrücke der Gestalt a + bi mit reellen Zahlen a, b. (Zunächst sprach man von
imaginären, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da man teilweise unter imaginären
Zahlen nur solche der Form bi mit reellem b verstand, kam man auf den Namen ”komplexe Zahl“ für eine
Summe aus einer reellen und einer (rein) imaginären Zahl.)

So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so fasst man die komplexen
Zahlen als Punkte in einer Ebene auf, die komplexe Zahl a+bi bekommt die (rechtwinkligen) Koordinaten
(a, b). Es ist auch nützlich, sich die Zahl a+ bi als den Vektor vorzustellen, der von (0, 0) nach (a, b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Bedingnis, dass immer i2 = −1
sei. Also etwa

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i,

was geometrisch der Vektoraddition entspricht,

(a1 + b1i)(a2 + b2i) = a1a2 + a1b2i + a2b1i + b1b2i2 = (a1a2 − b1b2) + (a1b2 + a2b1)i,
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(Vorsichtige Leute – wie ich z.B. – werden allerdings zunächst die komplexe Zahl a + bi als Paar (a, b)
reeller Zahlen a, b schreiben und dann (a1, b1)(a2, b2) := (a1a2−b1b2 , a1b2+a2b1) und (a1, b1)+(a2, b2) =
(a1 +a2 , b1 +b2) definieren, um dann wirklich beweisen zu können, dass alle gewohnten Rechenregeln
gelten.)

Die Zahlen 0 = 0 + 0i und 1 = 1 + 0i behalten ihre bekannten Eigenschaften. Man kann natürlich
subtrahieren und sogar dividieren. Nämlich für a + bi 6= 0 gilt

1
a + bi

=
a− bi

(a + bi)(a− bi)
=

a

a2 + b2
− b

a2 + b2
i

(Beachten Sie, dass für a + bi 6= 0 mit a, b ∈ R auch a2 + b2 6= 0 ist.)

Als spezielles Beispiel rechnen wir (1 + i)2 = 1 + 2i − 1 = 2i, also ( 1√
2

+ 1√
2
i)2 = 1

2 (2i) = i, mithin
( 1√

2
+ 1√

2
i)4 = i2 = −1. Im Bereich der komplexen Zahlen ist also −1 nicht nur ein Quadrat, sondern

auch eine 4. Potenz (übrigens – wie wir unten sehen werden – auch eine 6., 8. usw.). Wir bleiben bei diesem
Beispiel und setzen abkürzend v := 1√

2
+ 1√

2
i. Dann ist v3 = v2v = iv = − 1√

2
+ 1√

2
i, v5 = v4v = −v,

v6 = v4v2 = −i v7 = v4v3 = −v3 = 1√
2
− 1√

2
i und schließlich v8 = (v4)2 = (−1)2 = 1. Dann

wiederholen sich die Werte der Potenzen, also v9 = v8v = v, v10 = v8v2 = v2 = i, v11 = v8v3 = v3 =
− 1√

2
+ 1√

2
i usw. Für jede beliebige (ganze) Potenz vk gilt offenbar (vk)8 = (v8)k = 1k = 1. D.h. wir

haben insgesamt 8 verschiedene Zahlen gefunden, deren 8. Potenz 1 ergibt, nämlich 1, v, v2, . . . , v7.

Ein weiteres Beispiel. Setze w := 1
2 +

√
3

2 i. Dann ist w2 = 1
4 −

3
4 + 2 · 1

2

√
3

2 i = − 1
2 +

√
3

2 i und w3 = ww2 =
( 1
2 +

√
3

2 i)(− 1
2 +

√
3

2 i) = − 1
4 −

3
4 = −1. Weiter erhält man w4 = w3w = −w, w5 = w3w2 = −w2 und

w6 = w3w3 = (−1)(−1) = 1. Wie oben wiederholen sich jetzt die Potenzen: w7 = w1, w8 = w2 usw.
Ebenso sieht man, dass für jede ganze Potenz wk von w gilt: (wk)6 = 1. Es gibt also (mindestens) 6
verschiedene komplexe Zahlen, die die Gleichung x6 = 1 erfüllen.

Zur geometrischen Deutung der Multiplikation. Sei c = a + bi, a, b ∈ R eine komplexe Zahl. Ihr
(Absolut-)Betrag wird definiert als |c| :=

√
a2 + b2, d.h. als Länge des entsprechenden Vektors (Pyta-

goras). Sei c 6= 0, d.h. a 6= 0 oder b 6= 0. Der Vektor c hat zum Vektor 1 = 1 + 0i einen (orientierten)
Winkel, den man als Argument von c bezeichnet. (Das Argument ist im Grunde nur bis auf Addition
eines Vielfachen von 2π definiert.) Ist ϕ das Argument von c, so gilt offenbar

c = |c|(cos ϕ + i sinϕ), d.h. a = |c| cos ϕ, b = |c| sinϕ.

Für zwei von 0 verschiedene komplexe Zahlen c1, c2 mit den Argumenten ϕ1, ϕ2 erhalten wir mit Hilfe
der Additionstheoreme des Sinus und des Cosinus

c1c2 = |c1||c2|
(

cos ϕ1 cos ϕ2 − sinϕ1 sinϕ2 + i(sinϕ1 cos ϕ2 + cos ϕ1 sinϕ2)
)

=

|c1||c2|
(

cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)
)

D.h. der Betrag des Produktes ist das Produkt der Beträge und das Argument des Produktes ist die
Summe der Argumente der Faktoren. Es folgt z.B.

cn = |c|n(cos(nϕ) + i sin(nϕ)).

Dies gilt für jede positive ganze Zahl n (und, wie man sich leicht überlegt, auch für jede ganze Zahl n).

Sei c 6= 0 eine komplexe Zahl mit dem Argument ϕ und d := n
√
|c|(cos(ϕ/n) + i sin(ϕ/n)) (n > 0) so gilt

offenbar dn = c. D.h. man kann aus jeder komplexen Zahl für jede natürliche Zahl n > 0 eine n-te Wurzel
ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene komplexe Zahlen d mit
dn = c, wenn nicht gerade c = 0 ist. Das mag man im Zusammenhang mit der Vieldeutigkeit des
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Arguments einer komplexen Zahl sehen: Es ist cos(ϕ + k · 2π) + i sin(ϕ + k · 2π) = cos ϕ + i sinϕ für jede
ganze Zahl k. Also ist jede komplexe Zahl dk := n

√
|c|(cos(ϕ/n + k · 2π/n) + i sin(ϕ/n + k · 2π/n)) eine

n-te Wurzel aus c, d.h. dn
k = c. Die Zahlen d0, d1, . . . , dn−1 sind untereinander verschieden, aber danach

wiederholen sie sich: dn = d0, dn+1 = d1, . . ..

Insbesondere gibt es n verschiedene komplexe Zahlen z0, z1, . . . , zn−1, die alle die Gleichung zn = 1
erfüllen. Eine von ihnen ist 1, alle haben den Betrag 1, d.h. sie befinden sich auf dem Einheitskreis. Sie
bilden offenbar die Ecken eines regelmäßigen n-Ecks. Von dieser Tatsache ist Gauß ausgegangen, als es
ihm kurz vor 1800 gelang, ein regelmäßiges 17-Eck allein mit Zirkel und Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen beliebige Wurzeln ziehen kann,
lässt sich auch der ”Fundamentalsatz der Algebra“ beweisen:

Jedes Polynom zn + c1z
n−1 + · · · + cn−1z + cn mit komplexen Koeffizienten cj hat (mindestens) eine

komplexe Nullstelle. (Diesen Satz hat Gauß als erster vollständig bewiesen.)

(N.B. Dass ein Polynom vom Grad n höchstens n Nullstellen hat, ist ebenfalls ein richtiger und wich-
tiger – übrigens für beliebige Körper gültiger – Satz, der aber fast trivial zu beweisen ist und nicht als
Fundamentalsatz der Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Matematiker mit der Ent-
deckung/Erfindung der komplexen Zahlen ein ”weites Feld“ öffnet, und er sich durch Beharren auf den
reellen Zahlen viele Möglichkeiten verbauen würde. Als einzelnes Beispiel sei genannt, dass manche Sätze
über die Verteilung der Primzahlen sich am besten mit Hilfe der komplexen Zahlen beweisen lassen. (Im
Anhang finden Sie eine Ausführung über die komplexe e-Funktion.)

Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zunütze, ist auf dem Holzweg: Keine
Elektrotechnik und keine Quantenteorie ohne komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat es mit mehrdeutigen Wurzel

zu tun. Mit den Quadratwurzeln ist es einfach: Mit
√

q2

4 + p3

27 sei willkürlich eine der beiden möglichen

Wurzeln bezeichnet; −
√

q2

4 + p3

27 ist dann automatisch die andere. Jeder der beiden Summanden in Tar-
taglias Formel ist nun eine kubische Wurzel mit 3 möglichen Werten. So hat man insgesamt 9 mögliche
Kombinationen. Es gibt nun eine Regel, welche 3 Kombinationen die Nullstellen des kubischen Polynoms
ergeben. Hierauf will ich nicht genauer eingehen und verweise stattdessen auf das Buch ”Kubische und
biquadratische Gleichungen“ von Heinrich Dörrie (Leibniz Verlag München 1948).

Die komplexe e-Funktion: Für z = x + iy, x, y ∈ R, setzt man ez := ex(cos y + i sin y). Dies ist
keineswegs willkürlich. Denn für die so definierte Funktion gilt

ez =
∞∑

n=0

zn

n!
,

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im Komplexen. Ferner erhält man
auch für komplexe z1, z2 die Formel ez1+z2 = ez1ez2 . Die komplexe e-Funktiom bildet die reelle Achse
{a + bi | a ∈ R, b = 0} (bijektiv) auf die positive reelle Halbachse und die imaginäre Achse {a + bi | a =
0, b ∈ R} (surjektiv) auf die Einheitskreislinie {a + bi | a, b ∈ R, a2 + b2 = 1} ab.

Wenn man den Zielbereich der Funktion exp (mit exp(z) = ez) auf C× = C− {0} einschränkt, so ist die
Abbildung exp : C → C× surjektiv, aber nicht injektiv. Für jedes z ∈ Z gilt, dass die z + 2nπi für alle
n ∈ Z dasselbe Bild unter exp haben.
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12 Vorkurs-Aufgaben

1. In einer Beschreibung wird die Größe eines Balkons als 80 cm2 angegeben. Was sagen Sie dazu?
Zeichnen Sie ein Rechteck von 80 cm2 Flächeninhalt, oder schneiden Sie ein solches aus, vorausge-
setzt, ein DIN A4-Blatt reicht dazu. Wie viele cm2 enthalten 0, 8 m2, wie viele ein Quadrat mit der
Seitenlänge 80 cm?

2. Ein Kaufmann hat 100 kg Gurken. Diese bestehen (gewichtsmäßig) zu 99 Prozent aus Wasser.
Wieviel kg Wasser müssen sie durch Austrocknen verlieren, damit sie nur noch zu 98 Prozent aus
Wasser bestehen?

3. Eine Aktie hat am Montagmorgen den Kurs 100 Euro. Im Laufe des Montags gewinnt (bzw. verliert)
sie 10 Prozent. Im Laufe des Dienstags verliert (bzw. gewinnt) sie 10 Prozent. Wie hoch ist der Kurs
am Dienstagabend? (Ist die Gleichheit beider Ergebnisse erklärlich?)

4. a) Wieviel Prozent de Bruttopreises beträgt die Mehrwertsteuer bei einem Mehrwertsteuersatz von
16 Prozent?
b) Was bedeutet prozentual jeder 2-te, bzw. jeder 3-te, ... bzw. jeder 6-te?
c) Jeder wievielte einer Bevölkerung ist 5 Prozent (bzw. 10, bzw. 20 Prozent) dieser Bevölkerung?

5. Berechnen Sie
a) 24 und 42, b) 34 und 43, c) (6± 4)3 und 63 ± 43.

6. Berechnen Sie
a) 23 · 23 und 23·3. b) (2 · 3)3 und 2(3·3).

7. Berechnen Sie
a) 22 − 21 und 22−1, b) 25 − 22 und 25−2 , c) 22 + 22 und 22+2.

8. Nach welchen Regeln darf man am+n, amn, (ab)n umformen?

9. Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millionen, c) eine Milliarde, d) eine
Billion, e) one billion (amerikanisch).

10. Schreiben Sie in der Form 10xm die folgenden Längeneinheiten:

1 µm (Mikrometer), 1 nm (Nanometer), 1 pm (Picometer), 1 Å (Ångström)

11. Berechnen Sie ohne Rechner
a) sin π + sinπ und sin(π + π), b) sin π

2 + sin π
2 und sin(π

2 + π
2 ),

c) sin(π
6 + π

3 ) und sin π
6 + sin π

3 . Welches Ergebnis ist größer?
d) Bestimmen Sie die Werte des Sinus bei π/6, π/4, π/3 auf elementargeometrische Weise.

12. Schreiben Sie (7a7 + 6a6)2 als Summe von Potenzen von a mit ganzzahligen Koeffizienten.

13. Berechnen Sie
√

9 + 16 und
√

9 +
√

16.

14. Berechnen Sie 242
und (24)2. (Per definitionem ist abc

= a(bc).)

15. Berechnen Sie 231+1
und 231 · 231

.

16. Berechnen Sie 232 · 232
und (23 · 23)2.

17. Finden Sie, wenn möglich, eine natürliche Zahl n mit ((33)3)n = 333
.

18. Zeigen Sie: Zu jeder ungeraden Zahl u ∈ N gibt es ein m ∈ N mit u2 = 8m + 1.

19. Geben Sie allgemeine Formeln für (a + b)3 und (a + b)4 an.

20. Berechnen Sie (mit Hilfe der vorigen Aufgabe) 10 . . . 014, wo zwischen den beiden Einsen 999 (oder
allgemeiner n − 1) Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl an, d.h. in ähnlicher
Weise wie hier die Basis der zu berechnenden Potenz angegeben ist.
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21. Berechnen Sie (a− b)(a4 + a3b + a2b2 + ab3 + b4) und allgemein
(a− b)

∑n
j=0 an−jbj . (Dabei ist

∑n
j=0 an−jbj = an + an−1b + · · ·+ abn−1 + bn.)

22. Auf das erste Feld eines Schachbretts sei 1 Reiskorn gelegt, auf das zweite 2 Reiskörner, auf das dritte
4 usw., nämlich jeweils auf ein Feld doppelt soviele wie auf das vorangehende. (Vernachlässigen Sie
das Problem, dass möglicherweise die Felder zu klein für die Anzahl der Reiskörner werden, die auf
sie gelegt werden sollen.)

a) Berechnen Sie in möglichst wenigen Schritten exakt die Anzahl N der Reiskörner, die insgesamt
auf das Schachbrett gelegt werden sollen, im Dezimalsystem. (Ich habe Verständnis dafür, wenn
Sie diese Rechnungen nicht ausführen wollen. Dann müssen Sie aber angeben, wie eine möglichst
effiziente Berechnung zu erfolgen hat. Beachten Sie aber, dass man auch mit einem Taschenrechner,
der nur 10 Stellen anzeigt, die Hand- und Kopfrechenarbeit auf wenige Additionen reduzieren kann.
Wie? )
b) Berechnen Sie N im Binärsystem.
c) Zerlegen Sie N in zwei ganzzahlige Faktoren, die annähernd gleich groß sind.
d) Zeigen Sie, dass N durch 17 teilbar ist.

23. Zeigen Sie (etwa mit Induktion): a) Für alle ganzen Zahlen n ≥ 3 ist n2 > 2n + 1.

b) Für alle ganzen Zahlen n ≥ 5 ist 2n > n2.

24. Zeigen Sie:
n∑

k=0

k · k! = (n + 1)!− 1. (Dies geschieht mit vollständiger Induktion ohne Mühe.)

25. Bestimmen Sie alle natürlichen Zahlen, die genau 3 verschiedene positive Teiler haben. (Z.B. hat 4
die Teiler 1,2,4.)

26. Zeigen Sie: Für jedes n ∈ N ist 2 · 53n+1 + 4n durch 11 teilbar, d.h. es gibt zu jedem n ein (von n
abhängiges) k ∈ N mit 11 · k = 2 · 53n+1 + 4n. (Tipp: Induktion.)

27. Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man mit Postkarten lückenlos und
ohne Überlappungen bedecken kann? Die Länge einer Postkarte verhält sich zur Breite wie

√
2 : 1.

(Natürlich soll die Kantenlänge der Tischplatte nicht 0 sein.)
(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenlängen breit. Wie viele Karten
brauchen Sie, um eine Fläche entsprechenden Ausmaßes zu bedecken?)

28. Seien a, b, c positive (ganze) Zahlen. Wann gilt

a + b

a + c
=

b

c
, wann

ab

ac
=

b

c
?

29. Seien m,n ∈ N1. Zeigen Sie:
19m

17n
ist nicht ganz.

30. Finden Sie (etwa durch Probieren) ganze Zahlen m,n mit

m

3
+

n

5
=

1
15

und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

31. Finden Sie natürliche Zahlen m,n mit

m

3
+

n

5
=

14
15

32. Finden Sie untereinander verschiedene ganze Zahlen k, l,m, n > 0 mit

1
k

+
1
l

+
1
m

+
1
n

= 1
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33. Finden Sie ganze Zahlen m,n mit n 6= 0 und

m

3
+

n

5
=

1
3

34. Berechnen Sie
3
2 + 5

7
2
3 + 7

5

und
1
3 + 1

6
1

3+6

.

35. Sei p eine Primzahl und k eine ganze Zahl mit 1 ≤ k ≤ p − 1. Sie dürfen annehmen, dass (der
Binomialkoeffizient)

(
p
k

)
= p!

k!(p−k)! eine ganze Zahl ist. Zeigen Sie, dass
(

p
k

)
durch p teilbar ist.

36. a) Zeigen Sie a2 + b2 ≥ 2ab für alle a, b ∈ R. (Tipp: x2 ≥ 0.)

b) Folgern Sie a2 + b2 ≥ ab für a, b ∈ R. (Beachten Sie, dass 2ab ≥ ab nicht immer richtig ist!
Unterscheiden Sie 2 Fälle.)

c) Folgern Sie (aus a)), dass a2 + b2 + c2 ≥ ab + bc + ac für alle a, b, c ∈ R gilt.

37. Berechnen Sie
a

b
+

b

a
und zeigen Sie, dass

a

b
+

b

a
> 2 ist, wenn a > b > 0 gilt.

38. Bringen Sie auf einen Bruchstrich:

a

bc
+

b

ac
+

c

ab
und

bc

a
+

ac

b
+

ab

c

39. Schreiben Sie tanx + cot x als rationalen Ausdruck in sin 2x.

40. Lösen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem einen oder anderen Fall nicht
möglich ist:

2
3 + 7

6
3
4 −

1
x

= 1 ,
4
3 −

1
6

7
6 + 1

x

= 1

41. a) Kürzen Sie den Bruch
x12 − x3

x6

so gut es allgemein möglich ist.
b) Kann man denselben Bruch als Differenz zweier Potenzen von x schreiben, wo jeder Exponent
auch negativ sein darf (aber nicht muss)?
c) Kann man dasselbe für den Kehrwert des Bruches machen?

42. Das entsprechende wie oben für den Bruch

t7 − t2 + t

t5

43. Vereinfachen Sie
a

(k + 1)!(n− k − 1)!
+

a

k!(n− k)!

44. Berechnen Sie
6∑

n=1

1
n

,
4∑

n=−3

n(n + 2)

45. Seien p1, . . . , pn verschiedene Primzahlen mit n ≥ 2. Zeigen Sie: Der Nenner von

a :=
n∑

j=1

1
pj

in der Standardform ist p1 · · · pn. (D.h. nach erfolgter Addition der auf den kleinsten gemeinsamen
Nenner gebrachten Summanden kann man nicht kürzen.) Insbesondere gilt a /∈ Z. (Wenn Sie die
erste Aussage nicht sofort beweisen können, zeigen Sie zunächst die letzte. Ist p1 · · · pn−1a ∈ Z?)
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46. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1
k

keine ganze Zahl. (Tipp: Sei m das kleinste gemeinsame

Vielfache aller Nenner. Was gilt für am/2 ? Betrachte die größte 2-Potenz unter den Nennern.)

47. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1
k!

keine ganze Zahl.

48. Sei Q eine Menge von Primzahlen und S die Menge aller s ∈ N1, deren Primfaktoren sämtlich zu
Q gehören. Zeigen Sie, dass die Menge

A := {a

s
| a ∈ Z, s ∈ S}

ein Unterring von Q ist.

49. Zeigen Sie: Die abbrechenden Dezimalbrüche bilden einen Unterring von Q. Ist dieser Unterring
von Q ein Körper?

50. Sei a > 0 eine irrationale reelle Zahl und n ≥ 2 ganz. Zeigen Sie, dass n
√

a ebenfalls irrational ist.

51. Betrachten Sie
K := {a + b

√
2 | a, b ∈ Q} , L := {a + 2b

√
2 | a, b ∈ Q} ,

R := {a + b
√

2 | a, b ∈ Z} , S := {a + 2b
√

2 | a, b ∈ Z} .

a) Zeigen Sie: K und L sind Teilkörper von R. Zeigen Sie ferner K = L.
b) Zeigen Sie: R und S sind beide keine Teilkörper, aber Teilringe von R. Zeigen Sie ferner R ⊃ S
und R 6= S.

52. Zeigen Sie, dass die Menge {−1, 0, 1} auf folgende Weise zu einem Körper wird: Die Multiplikation
ist die Übliche. Die Addition ⊕ wird definiert durch 1⊕ 1 := −1 , (−1)⊕ (−1) := 1 und a⊕ b :=
a + b in allen übrigen Fällen. (Den Beweis der Assoziativität der Addition und der Distributivität
brauchen Sie jeweils nur für einen weniger trivialen Spezialfall auszuführen. Es gibt auch einen
Beweis, der die Assoziativität der Addition und die Distributivität auf die entsprechenden Gesetze
in Z zurückführt.)

53. a) Seien p, q verschiedene Primzahlen. Zeigen Sie, dass
ln p

ln q
irrational ist. (Tipp: Ansonsten erhielte

man einen Widerspruch zur eindeutigen Primfaktorzerlegung.)
b) Folgern Sie, dass es höchstens eine Primzahl gibt, deren (natürlicher) Logarithmus rational ist.
(In Wahrheit gibt es – für den natürlichen (!) Logarithmus – keine solche.)
c) Zeigen Sie, dass logp(q) irrational ist.

54. Im ”großen Brockhaus - Kompaktausgabe“ findet sich unter dem Stichwort ‘reell’ der Satz: ”Jede
r[eelle] Zahl besitzt genau eine Darstellung als Dezimalzahl.“ Was sagen Sie dazu?

55. Seien a, b, c, d > 0 reell. Zeigen Sie

a

b
≤ c

d
=⇒ a

b
≤ a + c

b + d
≤ c

d

Schließen Sie daraus, dass unter der o.a. Voraussetzung

a

b
+

c

d
6= a + c

b + d

ist.

56. a) Seien a, b ∈ Q mit a + b
√

2 = 0. Zeigen Sie a = b = 0. b) Folgern Sie, dass die Abbildung
f : Q×Q → R, (a, b) 7→ a + b

√
2 injektiv ist (sobald Sie den Begriff ‘injektiv’ kennen).
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57. Geben Sie systematisch alle Tripel (a, b, c) ganzer Zahlen an, für die folgendes gilt:

0 < a ≤ b ≤ c und
1
a

+
1
b

+
1
c
∈ Z

Ohne einen Text, der beweist, dass Sie wirklich alle möglichen Tripel gefunden haben.
ist Ihre Lösung nichts wert!

58. Finden Sie verschiedene a, b ∈ N, derart dass
√

a,
√

b beide irrational sind, (
√

a+
√

b)2 aber rational
ist.

59. Zeigen Sie, dass
√

2 +
√

3 irrational ist.

60. Sei α ∈ R eine Nullstelle des Polynoms xn + a1x
n−1 + · · ·+ an−1x + an mit aj ∈ Z. Zeigen sie: Ist

α /∈ Z, so ist α /∈ Q.

61. Berechnen Sie
∞∑

k=0

xmk+l, wo m, l > 0 sind, für diejenigen x, für welche die Reihe konvergiert.

62. Zeigen Sie a)
∞∑

k=0

1
2k + 1

= ∞, b)
∞∑

k=1

1
k3

< ∞, c)
∞∑

k=2

1
k2 − k

< ∞.

63. Zeigen Sie a) lim
n→∞

n!
nn

= 0, b)
∞∑

n=1

n!
nn

< ∞.

64. Berechnen Sie (falls möglich) limn→∞
∏n

k=2(1 −
1
k ). (Analog zum

∑
-Zeichen definiert man∏n

k=2 ak := a2a3 · · · an.)

65. Geben Sie eine nicht konvergente Folge (an) und eine Zahl a an, die folgende Bedingung erfüllen:

”Es gibt ein ε > 0, derart dass für alle n ∈ N die Ungleichung |an − a| < ε gilt.“

66. Geben Sie eine gegen a konvergente Folge (an) an, die folgende Bedingung nicht erfüllt: ”Es gibt
ein N ∈ N, derart dass für alle ε > 0 und n ≥ N die Ungleichung |an − a| < ε gilt.“

67. Sei c ∈ R. Finden Sie a, b ∈ R derart, dass (x2 − axy + by2)(x2 + axy + by2) = x4 + 4c2y4 für alle
reellen x, y gilt. Welche bemerkenswerte Identität ergibt sich, wenn man y = c = 1 setzt?

68. Berechnen Sie
1

x2 − 2xy + 2y2
− 1

x2 + 2xy + 2y2

69. Berechnen Sie ohne Taschenrechner
881/3 − (88)1/3

3
5 + 5

13

70. Bestimmen Sie die reellen Nullstellen des Polynoms
x8 − 25x6 − (42x3 − 216)(x− 5)(x + 5) .

71. Begründen Sie die sogenannte p, q-Formel für die Lösung einer quadratischen Gleichung.

72. Sie beginnen zu sparen: Am ersten Tag sparen Sie 1 Euro, am zweiten 2 Euro, am dritten 3 usw.
Wann haben Sie (mindestens) 1000 Euro gespart?

73. Ein Aufzug bewegt sich mit 4 m/sec aufwärts. Eine kleine Eisenkugel fällt auf das Dach der Auf-
zugkabine. Und zwar wurde sie in dem Augenblick losgelassen, als das Kabinendach 22,1 m entfernt
war. Wie lange dauert es, bis die Kugel aufprallt, und welche Weglänge hat sie zurückgelegt? (Ver-
nachlässigen Sie den Luftwiderstand und rechnen Sie mit einer Erdbeschleunigung von 10 m/sec2.)

74. Zeigen Sie, dass Gleichungen der Form x3 +ax2 + a2

3 x+ b = 0 mit a, b ∈ R genau eine reelle Lösung
haben, und geben Sie für diese eine Formel an.
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75. In der Musik werden zwei Tonintervalle als ”gleichgroß“ bezeichnet – und auch als gleichgroß emp-
funden, wenn die beiden Tonfrequenzverhältnisse des jeweils höheren Tones zum jeweils tieferen
Ton eines Intervalles gleich sind.
a) Die Frequenzverhältnisse sind bei einer (reinen) Oktave 2, bei einer reinen Quint 3

2 , bei einer
reinen großen Terz 5

4 .
Wenn man von einem Grundton aus 4 reine Quinten auf- und anschließend 2 Oktaven absteigt, ist
man dann eine reine große Terz oberhalb des Grundtones gelandet? (Auf dem Klavier mit seiner
temperierten Stimmung käme man vom c auf das e; ”Syntonisches“ oder ”didymisches Komma“)
Könnte man dieses eventuell erreichen, indem man andere Anzahlen von Quinten und Oktaven auf-
und absteigt?
b) Die Oktave sei in n (∈ N1) gleichgroße Tonschritte (Intervalle) geteilt. Was ist das Frequenz-
verhältnis der beiden Töne eines solchen Tonschrittes? (Für n = 12 erhält man die 12 Halbton-
schritte der temperierten Stimmung.)
c) Gesucht ist ein n ∈ N1, so dass für die Unterteilung der Oktave in n gleichgroße Tonschritte
folgendes gilt:
Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte aufsteigt, landet man eine
reine Quinte oberhalb des Grundtones.
Frage: Gibt es ein solches n ?
d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf- und anschließend 3 Oktaven
absteigt, andererseits 6 reine Quinten ab- und anschließend 4 Oktaven aufsteigt, trifft man dann
auf exakt denselben Ton? (Beim ersten Verfahren landet man auf dem fis, beim zweiten auf dem
ges, wenn man jeweils mit dem c beginnt. ”Pythagoreisches Komma“)

76. Ein Ehepaar hat 5 Töchter. Die erste heißt Nana, die zweite Nene, die dritte Nini, die vierte Nono.
Viele mögen dann sagen: ”Die fünfte Tochter muss dann Nunu heißen. Das ist doch logisch!“ Aber
ist das wirklich logisch, d.h. nicht anders denkbar?

77. Zeigen Sie, dass die Menge Q2 der Menge aller Paare rationaler Zahlen durch die Definitionen

(a, b) + (a′, b′) := (a + a′, b + b′) und (a, b)(a′, b′) := (aa′, bb′)

zwar zu einem Ring, aber nicht zu einem Körper wird.

78. Seien p, q ∈ R. Beschreiben Sie die Menge der (x, y) ∈ R2 mit
x2 + pxy + qy2 = 0 möglichst konkret.

79. a) Wird durch die Angabe ”f(x) sei diejenige reelle Zahl y, für die y4 = x gilt“ eine Abbildung
f : R → R definiert?
b) Was ‘muss’ man in a) ändern, damit eine Abbildung definiert wird? (Mindestens zweierlei!)

80. a) Wird durch die Angabe ”f(x) sei diejenige reelle Zahl y, für die sin y = x gilt“ eine Abbildung
f : R → R definiert?
b) Was ‘muss’ man in a) ändern, damit eine Abbildung definiert wird? (Mindestens zweierlei!)

81. Für jede reelle Zahl x sei f(x) die Stelle unmittelbar vor dem Komma in der Dezimalbruchentwix-
klung von x. Was muss man präzisieren, damit f zu einer Abbildung R → R wird?

82. Sei p(x) ein Polynom vom Grad 3. Für jedes reelle x sei f(x) die kleinste reelle Zahl y mit p(y) =
x. Beschreibt f eine Abbildung R → R? (Sie dürfen verwenden, dass jedes Polynom 3. Grades
mindestens eine, aber höchstens 3 reelle Nullstellen hat.)

83. Untersuchen Sie die beiden Funktionen f1, f2 : R → R mit f1(x) = x3 + x, f2(x) = x3 − x auf
Injektivität und Surjektivitat.

84. Für jedes x ∈ [−1, 1] sei f(x) die kleinste (bzw. größte) reelle Zahl y > 0 mit sin(1/y) = x. In
welchem der beiden Fälle wird eine Abbildung f : [−1, 1] → R beschrieben?

48



85. a) Durch f seien jedem n ∈ N die natürlichen Zahlen m < n zugeordnet. Ist das eine Abbildung
N → N?

b) Durch f sei jedem n ∈ N die Menge der natürlichen Zahlen m < n zugeordnet. Ist das eine Ab-
bildung N → P (N)? (Mit P (N) sei die Menge aller Teilmengen von N, die sogenannte Potenzmenge
von N, bezeichnet.)

86. Untersuchen Sie folgende ”Abbildungen“ darauf, ob sie wirklich Abbildungen sind, und ob sie
gegebenenfalls injektiv oder surjektiv oder beides sind.
a) f : [0, 1[→ [0, 1[ mit f(x) = x + 1

2 für x < 1
2 und f(x) = x− 1

2 für x ≥ 1
2 .

b) f : N → N ordne jedem n ∈ N diejenigen m ∈ N zu, die ≥ 2n sind.
c) f :]− π, π[→ [−1, 1], x 7→ cos x.
c’) Ersetzen Sie cos durch sin und π durch π/2.
d) f : R → R, x 7→ ex − e−x3

.

e) f : R → R, x 7→ x3 − x.

f) g : R → R, definiert durch ”g(y) = x ⇐⇒ y = x3 − x“.
g tan :]− π/2, π/2[→ R. (Anschauliche Begründung reicht.)

87. Seien X
α−→ Y

β−→ Z Abbildungen. Zeigen Sie:

a) Sind α und β beide injektiv (bzw. surjektiv), so ist es auch β◦α.

b) Ist β◦α injektiv, so ist es auch α.

c) Ist β◦α surjektiv, so ist es auch β.

d) Geben Sie zwei Beispiele, wo β◦α bijektiv ist, aber weder β injektiv noch α surjektiv ist. Wählen
Sie im ersten Beispiel für X, Y, Z endliche Mengen und im zweiten X = Y = Z = N.

88. a) Zeigen Sie, dass die folgenden Abbildungen fj : R → R bijektiv sind:

f1(x) :=
{

1− x für 0 < x < 1
x sonst , f2(x) :=

{
x für x ≤ 0

x−1 für x > 0

b) Tun Sie dasselbe für die Abbildung f3 : R → R mit

f3(x) :=
{

x für x ∈ Q
x + 1 für x /∈ Q

89. Sei E ⊂ R und f : R → R definiert durch

f(x) :=
{

x3 falls x ∈ E
x falls x ∈ R− E

Untersuchen Sie f auf Injektivität und Surjektivität
a) im Falle E = Q, b) im Falle E = R−Q.

90. Ist die Abbildung f : Q2 → R, (x, y) 7→ x + y
√

2 injektiv? (Antwort mit Begründung!)

91. Sei P (N) die Menge aller Teilmengen von N und F die Menge aller unendlichen Folgen (an)n∈N mit
an ∈ {0, 1}. Geben Sie eine bijektive Abbildung f : P (N) → F an und zeigen Sie, dass es keine
bijektive Abbildung g : N → P (N) gibt.

92. Geben Sie eine surjektive Abbildung f : R → Z und eine ebensolche Abbildung g : R → N an.

93. Beschreiben Sie in einem Venn-Diagramm mit den Mengen A,B,C die Mengen A ∪ (B ∩ C) und
(A ∪B) ∩ C.

94. Zeigen Sie (A−B) ∩ C = (A ∩ C)− (B ∩ C) = (A ∩ C)−B.

95. Zeigen Sie (A ∪ C)− (B ∪ C) = A− (B ∪ C) = (A−B)− C.
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96. (Etwas zum Knobeln.) Sei n > 0 ganz. In jeder Zeile einer symmetrischen n × n-Matrix A mögen
die Zahlen 1, . . . , n in irgendeiner Reihenfolge stehen. Zeigen Sie:
a) Ist n ungerade, so stehen in der Diagonale von A alle Zahlen 1, . . . , n in irgendeiner Reihenfolge.
b) Ist n gerade, so steht nicht jede der Zahlen 1, . . . , n in der Diagonale.
Eine quadratische Matrix A = (aij) heißt symmetrisch, wenn aij = aji für alle (vorkommenden)
i, j gilt.

97. Machen Sie sich ein (inneres) Bild der Funktion sin 1
x und überlegen Sie sich (zumindest anschau-

lich), warum

lim
x→0

sin
1
x

nicht existiert, aber lim
x→0

x sin
1
x

= 0 ist.

98. Konstruieren Sie eine (unendliche) aufsteigende Folge endlicher Mengen M0 ⊂ M1 ⊂ M2 ⊂ · · · mit
folgenden Eigenschaften:
1.
⋃

i∈N Mi = N

2. lim
i→∞

#{n ∈ Mi | n gerade }
#Mi

= 1.

Vergleichen Sie diese Aufgabe mit Beipiel 7 des Paragrafen über unendliche Summen!

99. Seien x > 0, a := (1 + 1/x)x und b := (1 + 1/x)x+1. Zeigen Sie: ab = ba.

100. In einem populärwissenschaftlichen Artikel steht – in etwa – folgendes: ”Die Wahrscheinlichkeit
eines Nachbebens nimmt mit der Zeit exponentiell ab. Unmittelbar nach dem Hauptbeben hat sie
ihr Maximum, 10 Tage später beträgt sie nur noch 10 % hiervon, nach 100 Tagen nur noch 1 %,
usw.“ Was sagen Sie dazu?

101. Was sagen Sie dazu, wenn jemand meint, die Anzahl der bei einer internationalen Konferenz benötig-
ten Simultandolmetscher hänge exponentiell von der Anzahl der gesprochenen Sprachen ab. (Wie-
viele Dolmetscher werden benötigt, wenn jeder nur für 2 Sprachen zuständig ist?)

102. Lösen Sie folgende Gleichungen:

a) 2x + 2111110 = 2111111 b) 2x2
= 512x+28 c) x(xx) = (xx)x, x > 0

d) x−
1
2 = − 1

x2
, x > 0

103. Man kann sich auf verschiedene einfache Weisen klar machen, dass es irrationale Zahlen α, β gibt,
derart dass αβ rational ist:

a) Betrachte α0 :=
√

2
√

2
. Ist α0 rational, so ist man fertig. Ist hingegen α0 irrational, so ist es

leicht, hierzu ein irrationales β konkret anzugeben, so dass αβ
0 rational ist. Finden Sie ein solches

β. (Man weiß, dass α0 irrational ist. Ich kenne allerdings keinen einfachen Beweis hierfür.)

b) Es gibt (genau) eine reelle Zahl β, derart dass
√

2
β

= 3 ist. (In der Analysis zeigt man dies mit
dem sogenannten Zwischenwertsatz.) Zeigen Sie, dass dieses β nicht rational sein kann. (Vgl. 53.)
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Ratschläge für das erste Semester

1. Die Mathematik ist zwar für jeden, der sich mit ihr beschäftigt, ein schwierige Sache. (Übrigens
auch für mich.) Bedenken Sie aber: Schwierige und interessante Probleme zu lösen und schwierige
und interessante Theorien zu verstehen, kann richtig Spaß machen.
Betrachten Sie das Studium der Mathematik als Herausforderung!

2. Freuen Sie sich darüber, dass die Mathematik an der Uni sich deutlich von der an der Schule
unterscheidet. Sie wollen doch nicht etwa nur den Schulstoff wiederkäuen?

3. Das erste Semester ist zum Studieren da und nicht zum Eingewöhnen!

4. Es beginnt mit dem ersten Vorlesungstag!

5. Reden Sie über alle auftauchenden mathematischen Probleme mit ihren Kommiliton(inn)en, den
Übungsgruppenleiter(inne)n und den Lehrenden. Bilden Sie kleine Arbeitsgruppen.

6. Bereiten Sie den Vorlesungsstoff regelmäßig nach. Das heißt, lernen Sie den Stoff sofort und nicht
erst zu den Prüfungen. Es kann auch nicht schaden, sich gelegentlich mit der Problematik, die in den
nächsten Vorlesungsstunden behandelt wird, anhand eines Buches oder Skriptes schon im Voraus
ein wenig vertraut zu machen.

7. Denken Sie über eine Übungsaufgabe, deren Lösung nicht auf der Hand liegt, geduldig und aus-
dauernd nach. Genießen Sie das Erlebnis, eine Aufgabe, die zunächst nicht angreifbar erschien,
schließlich doch gelöst zu haben!

8. Versehen Sie Ihre Lösungen der Übungsaufgaben ausreichend mit Text. Schreiben Sie im Zweifel
lieber zuviel als zuwenig Text! Drücken Sie sich möglichst klar aus.

9. Jede Mühe, die Sie sich geben, bei den Übungsaufgaben das Rechnen durch Denken zu ersetzen,
zahlt sich im Laufe Ihres Studiums vielfach aus!

10. Wenn Sie einmal zur Lösung einer Übungsaufgabe in Ihrer Arbeitsgruppe nichts haben beitragen
können, so sollten Sie die Lösung doch zumindest verstehen.

11. Ziehen Sie am Ende des ersten, und erst recht am Ende des zweiten Semesters eine ehrliche Bilanz!
Wenn Sie das Studienfach nach einem halben oder ganzen Jahr wechseln oder auch die Uni verlassen,
so haben Sie eine wichtige Erfahrung gemacht. Wenn Sie sich hingegen mehrere Jahre mit einem Fach
herumquälen, das Ihnen nicht liegt, und Sie am Ende möglicherweise nicht einmal einen Abschluss
schaffen, ist das wirklich schlimm.

12. Die Semesterferien sind sicher auch zur Erholung da, aber nicht nur! Was Sie im ersten Semester
gelernt haben, brauchen Sie im zweiten. Usw.
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