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Vorwort

Eigentlich sollte die Beschiiftigung mit der Mathematik ja Vergniigen bereiten! Aber auch wenn keiner
erwartet, dass sie ein billiges Vergniigen ist, so muss man doch feststellen, dass sie vielen Menschen eher
zum Missvergniigen dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein wenig zu helfen. Ich will sie
zum einen dabei unterstiitzen, die hohe Schwelle von der Schul- zur Hochschul-Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszurdumen, auf die ich leider immer wieder
stofe. Diese Defizite liegen im Bereich der Bruch- und Potenzrechnung. Es mag entwicklungspsychologi-
sche Griinde fiir sie geben. Aber spétestens zu Beginn des Studiums muss dieses Thema erledigt sein.

Anmerkung: In dieses Skript habe ich einige Texte unveréndert aufgenommen, die urspriinglich anderen
Zwecken dienten. Das werden Sie merken. Ich denke aber, dass sie deshalb nicht unbrauchbar sind. Die
knappe Zeit wird mich zwingen, auf manche Themen des Skriptes zu verzichten. Es kann iiberhaupt
nichts schaden, sich auch mit den Teilen des Skriptes zu befassen, die nicht vorgetragen wurden. Fast
alles in diesem Skript ist sehr wichtig fiir jeden Mathematiker, Physiker und Informatiker. Nur Abschnitt
8 wurde mehr zum Spaf} als wegen seiner generellen Wichtigkeit aufgenommen.
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1 Natiirliche Zahlen

1.1 Die natiirlichen Zahlen sind 0,1,2,3, ..., insgesamt unendlich viele, so dass man sie nicht alle hin-

schreiben kann. (Ubrigens gibt es unter Mathematikern einen erbitterten Streit dariiber, ob man die 0
wirklich zu ihnen rechnen soll. Ich jedenfalls tue das und setze es hiermit fiir diesen Kurs fest.)

Die Menge (=Gesamtheit) der natiirlichen Zahlen wird mit N bezeichnet, also
N:={0,1,2,3,...}

Mit Ny bezeichne ich die Menge der natiirlichen Zahlen # 0 also Ny := {1,2,3,...} . (Wenn man will,
kann man auch N :={2,3,4, ...} definieren, usw.)

1.2 Sie wissen, wie man natiirliche Zahlen addiert und multipliziert. Wahrscheinlich kennen Sie auch
folgende Gesetze fiir diese ,, Verkniipfungen*

m+n=n+m mn = nm Kommutativitit
() k+(m+n)=(k+m)+n k(mn)=(km)n Assoziativitit
k(m+n)=km+kn Distributivitét

(In der letzten Gleichung ist natiirlich die Konvention ,Punktrechnung geht vor Strichrechnung® anzu-
wenden; d.h. km+kn := (km)+ (kn).) Beachten Sie, dass das Distributivitétsgesetz die Addition und die
Multiplikation vollkommen unterschiedlich behandelt. Die Ausdriicke k + mn und (k +m)(k + n) haben
fast immer verschiedene Werte!

Ubrigens hielt ich als abe-Schiitze die Kommutativitit der Multiplikation natiirlicher Zahlen keinesfalls
fiir selbstverstindlich. Erst das Beispiel der Apfelsinen, die in einer Kiste in 4 (waagerechten) Reihen
a b Stiick, d.h. aber auch in 5 (‘senkrechten’) Reihen & 4 Stiick angeordnet waren, machten mir das
Kommutativitdtsgesetz fiir die Multiplikation augenfallig.

Die Zahlen 0 und 1 spielen fiir die Addition, bzw. Multiplikation eine Sonderrolle:
(2) 0+n=n, In=n

Man nennt die 0 ein neutrales Element fiir die Addition und die 1 ein solches fiir die Multiplikation.

1.3 Fiir natiirliche Zahlen a, b gelten folgende beiden Regeln
a+b=0=0a=0=0
(dies stimmt fiir die ganzen Zahlen, die auch negatv sein kénnen, nicht mehr)
ab=0=a=0o0derb=0

(Die stimmt auch im Bereich aller ganzen Zahlen.)

1.4 Man kann die natiirlichen Zahlen der Gréfle nach vergleichen: Man schreibt m < n, wenn es eine
natiirliche Zahl k mit m + k = n gibt. Man sagt in diesem Fall: ,m (ist) kleiner (oder) gleich n.*

Die Relation ‘<’ wird dann folgendermaflen definiert:
m<n <= m<nund m#n
Die Relation ‘<’ geniigt neben der Regel ,,0 < n fiir alle natiirlichen Zahlen n* den folgenden Gesetzen:

E<mm<n=—=k<n Transitivitat

(4) n<n Reflexivitat
m<n,n<m=—m=mn Antisymmetrie
m<nodern<m Totalitat



Was folgt daraus fiir ‘>’ (was Sie richtig definieren miissen)? Man kann folgende Regeln ableiten:

(5) k<m<n=k<n; und k<mm<n=k<n

Beziiglich der Addition und Multiplikation gilt fiir <:

(©) m<n =k+m<k+n
m<n —km<kn

Welche Regeln gelten fiir ‘<’?

1.5 Wichtig ist das ,Induktionsprinzip“, das bei einer axiomatischen Beschreibung der natiirlichen
Zahlen gemeinhin eines der Axiome ist:

Sei A(n) eine Aussage tiber natiirliche Zahlen n (die fiir jede einzelne natiirliche Zahln wahr (d.h. richtig)
oder falsch sein kann). Es gelte:

A(0) is richtig;
und
fiir jedes n € N, fiir welches A(n) richtig ist, gilt auch A(n+1).

Dann gilt A(n) fiir alle n € N. (Hier, wie immer in der Mathematik, bedeutet ,gilt“ dasselbe wie ,,ist
richtig“.)

(Ein Beweis dafiir, dass A(0) gilt, heiBit ,Induktionsanfang”. Ein Beweis dafiir, dass A(n + 1) aus A(n)
folgt, heifit ,, Induktionsschritt“ Die Voraussetzung in diesem Schluss heifit auch ,,Induktionsvorausset-
zung® oder , Induktionsannahme*.)

Aquivalent zu o.a. Beschreibung kann man das Induktionsprinzip auch in der Sprache der Mengen dar-
stellen:

Sei M C N eine Teilmenge von N, die folgenden Eigenschaften geniigt:
0eM

und
neM=—n+1¢e M.

Dann gilt M =N

Examples 1.6 a) Wir beweisen fiir n € N die Aussage .A(n)
143+ +2n+1)=(n+1)%

Die Aussage A(0)
1=(0+1)?

ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:
I+ +Cn+D)+2n+ D) +1=n+1)2+2n+1)+1=((n+1) +1)?

Also gilt A(n) fiir alle n € N.

b) Wir beweisen fiir n € N die Aussage A(n)

O+14+2+4 - +n=



Die Aussage A(0)
0(0 + 1)
2
ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:

0:

0+1+~--+n+(n+1):w+n+1:
nn+1)+2n+1) (n+2)(n+1) (m+1)((n+1)+1)
2 N 2 B 2

Also gilt A(n) fiir alle n € N.

Hier haben wir das Rechnen mit , Briichen“ verwendet. In Wahrheit sind allerdings die Ausdriicke
n(n + 1)/2 natiirliche Zahlen fiir alle n € N

In der Mathematik werden sehr hiufig Beweise mit dem Induktionsprinzip gefithrt. Man sagt: sie werden
mit (vollstindiger) Induktion gefiihrt.
1.7 Mit Hilfe vollstéandiger Induktion lasst sich auch folgendes Minimalprinzip beweisen

Ist M eine nichtleere Teilmenge von N, so besitzt M ein kleinstes Element, d.h. es gibt ein k € M mit
k <m fir allem e M.

(Eine Menge M heifit nichtleer, wenn es mindestens ein m € M gibt.)

Ein BEWEIS des Minimalprinzips mit Hilfe vollsténdiger Induktion (der nicht vorgetragen wird) geht so:
Die Aussage A(n) ist die folgende:

Wenn in M ein Element m < n existiert, so besitzt M ein kleinstes Element.

Offenbar ist das Minimalprinzip dquivalent damit, dass A(n) fiir alle n € N gilt.

Der Induktionsanfang bedeutet:

Besitzt M ein Element m < 0, so hat M ein kleinstes Element.

Dies ist aber richtig. Denn da 0 das kleinste Element von N ist, muss es zu M gehoren und ist dann
offenbar das kleinste Element von M.

Jetzt miissen wir A(n + 1) aus A(n) folgern.

Sei also M eine Teilmenge von N, die ein Element < n+ 1 enthélt. Enthélt sie ein Element < n, so besitzt
sie nach Induktionsvoraussetzung ein kleinstes Element. Enthélt sie aber kein solches, so muss n + 1 ihr
kleinstes Element sein.

Mit Hilfe des Minimalpinzips wollen wir zwei Sétze {iber Primfaktorzerlegung natiirlicher Zahlen zeigen,
die allerdings von den meisten fiir selbstverstéindlich gehalten werden. Was ‘Teiler’ etc. bedeutet, sei als
bekannt vorausgesetzt.

Definition 1.8 FEine Primzahl ist eine ganze Zahl p > 1 die aufer 1 und p keine weiteren natirlichen
Zahlen als Teiler hat.

(Im Bereich aller ganzen Zahlen sind auch —1 und —p noch Teiler von p.) Die ersten Primzahlen sind 2,
3,5, 7,11, ...

Proposition 1.9 Jede ganze Zahl n > 1 ist ein Produkt von Primzahlen.



Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. Wenn man will, kann man die 1
als Produkt von 0 Faktoren auffassen. Der Satz wire dann sogar fiir alle n > 1 richtig.

Proof: Angenommen, die Behauptung wére falsch, d.h. die Menge derjenigen n > 1, die kein Produkt
von Primzahlen sind, wére nicht leer. Nach dem Minimalprinzip hétte sie ein kleinstes Element m. Dieses
kann keine Primzahl sein, da eine solche als Produkt von Primzahlen (mit 1 Faktor) gilt. Also gibt es
einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e € N mit m = de. Fiir e gilt gleichfalls 1 < e < m.
Da m die kleinste ganze Zahl > 1 ist, die nicht in Primfaktoren zerlegbar ist, miissen die kleineren d, e in
Primfaktoren zerlegbar sein, etwa
d=pi-pr, e=py-pl
Also ist m = de = py -+ - p,p} - - - p. doch in Primfaktoren zerlegbar. Widerspruch. O

Remark 1.10 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise gefiihrt habe, kann man
nicht erkennen, wie man eine Primfaktorzerlegung einer ganzen Zahl n > 1 effektiv herstellen kann. Dies
ist aber prinzipiell méglich. Durch systematisches Durchprobieren der Zahlen 2,3.4,... findet man nédmlich
die kleinste ganze Zahl p mit 2 < p < n, die ein Teiler von n ist. p ist prim; denn jeder Teiler von p ist
< p und ein Teiler von n.

Dann macht man dasselbe mit %, wenn noch p # n ist. Usw.

Diese Methode ist allerdings schon fiir Zahlen n, die im Dezimalsytem einige 100 Stellen haben, mit den
besten Computern in verniinftiger Zeit nicht mehr ausfithrbar. Es gibt zwar ein paar Tricks, schneller vor-
anzukommen. Aber die vermindern nur unwesentlich das Problem. (Man weif} allerdings, dass sogenannte
Quantencomputer, wenn es sie denn je geben wird, dies Problem besser 16sen kénnten.)

Andererseits ist es sehr wohl mdoglich, von Zahlen der angegebenen Groéflenordnung in wenigen Sekunden
oder Minuten festzustellen, ob sie prim sind — ohne eine Faktorzerlegung im negativen Falle angeben zu
konnen.

Auf Grund dieser Diskrepanz ist es moglich, Texte nach einem o6ffentlich gemachten Schliissel zu ver-
schliisseln, die man ohne eine zusétzliche Information nicht mehr enschliisseln kann.

Mag man die Moglichkeit einer Primfaktorzerlegung noch fiir selbstverstindlich halten, so scheint mir
dies fiir die Eindeutigkeit der Primfaktorzerlegung nicht mehr so zu sein. Ist es z.B. wirklich so selbst-
verstindlich, dass 17" # 19™ fiir alle natiirlichen n,m > 1 ist?

Proposition 1.11 Die Zerlequng einer ganzen Zahl > 1 in Primfaktoren ist bis auf die Reihenfolge
eindeutig.

Proof: (ZERMELO) Wir fithren den Beweis indirekt. D.h. wir nehmen an, die Menge M der natiirlichen
Zahlen > 2, die auf mehrere Weisen in Primfaktoren zerlegbar ist, sei nicht leer, und leiten daraus einen
Widerspruch ab. Nach dem Minimalprinzip hat M ein kleinstes Element a. Wir werden im Widerspruch
hierzu zeigen, dass es noch ein kleineres b € M gibt.

Da a zu M gehort, hat a zwei verschiedene Zerlegungen in Primfaktoren:

a=p1 ...:Dr=q1" ... Qs

Es gilt r,s > 1, und es ist p; # g; fiir alle ¢,j, da man sonst kiirzen kénnte und auf diese Weise ein
kleineres Element in M fande. Man kann also ohne Beschréankung der Allgemeinheit annehmen, dass
g1 < p1 ist. Beachte, dass ¢1 t p1 — ¢1 gilt. Wenn man also p; — ¢; in irreduzible Faktoren zerlegt, kann
keiner von diesen ¢; sein.

Die Zahl
b= —q)p2----Pr=a—qp2 - Pr=q (G2 .. qs— D2 ... Dr)
besitzt zwei verschiedene Zerlegungen in irreduzible Faktoren. Indem man némlich die jeweiligen Klam-

merausdriicke in irreduzible Faktoren zerlegt, erhélt man einerseits eine solche in der ¢; nicht vorkommt,
andererseits eine solche, in der ¢; sehr wohl vorkommt. (Das stimmt auch noch, wenn p; — ¢; =1 ist.)



Ferner ist b echt kleiner als a (und grofler als 1) im Widerspruch zur minimalen Wahl von a. Dies ist ein
Widerspruch, den wir aus der Annahme hergeleitet haben, dass es iiberhaupt natiirliche Zahlen (> 1)
gibt, die auf wesentlich verschiedene Arten in Primfaktoren zerlegbar sind. Diese Annahme kann also
nicht stimmen. ]

Proposition 1.12 Es gibt unendlich viele Primzahlen.

Proof: (EUKLID) Zu gegebenen endlich vielen Primzahlen py,...,p, finden wir eine weitere. Denn
jeder Primfaktor von p;---p, + 1 ist von allen pq, ..., p, verschieden. O

Das heif3t nicht, dass py - - - p, + 1 immer selbst prim wére. Z.B. ist

2-3-5-7-11-13+1 = 30031 = 59 - 509.

Aufgabe: Aus dem Namen Zermelo mache man ein beschwingtes Wort, indem man je drei Buchstaben
zu Anfang und am Ende hinzufiigt!)

1.13 Es stellt sich die Frage, wie man die grundlegenden Gesetze des Rechnens mit natiirlichen Zahlen
beweisen soll. Neben einer , konstruktiven“ Moéglichkeit wie man sie in meiner Einladung zur Zahlentheo-
rie findet, gibt es die axiomatische Methode. Man beschreibt nach Peano die Menge N durch folgende
Gegebenheiten:

(1) Es gibt in N ein spezielles Element, das mit 0 bezeichnet sei.

(2) Es gibt eine Abbildung N — N, n +— n’ mit folgenden Eigenschaften:
a)n =m' = n=m;
b) n’ # 0, was auch immer n € N sei;
¢) das Induktionsaxiom, wo n + 1 durch n’ ersetzt sei (s.o.).

(Mit n' ist n + 1 gemeint. Aber zunéchst ist die Addition aber noch nicht definiert.)

Man definiert dann die Addition ,,induktiv* durch
m+0=mund m+n" =(m+n).

Ist die Addition bereits definiert, so definiert man die Multiplikation durch
m-0=0und m-n’ = (m-n)+m.
(Unmittelbar aus dieser Definition kann man z.B. m - 0" = m folgern!)

Man kann dann die o.a. Gesetze fiir das Rechnen mit natiirlichen Zahlen mit einiger Miihe ableiten. Sie
kénnen sich ja daran versuchen. (Dabei ist die Reihenfolge des Vorgehens nicht unwichtig.)



2 Ganze Zahlen

Im Bereich N der natiirlichen Zahlen kann man bekanntlich eine Gleichung der Form a + = = b nur dann
(in z) 16sen, wenn a < b ist. Auch, wenn man z.B. die Punkte einer Ebene durch Paare von Zahlen
beschreiben will, wird man irgendwann ‘negative Zahlen bené&tigen.

2.1 Die ganzen Zahlen sind
ey, —2,-1,0,1,2,... (1)

Thre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten auf einer Geraden identifi-
zieren, wo der Abstand von n zu n+ 1 fiir alle n derselbe ist. Wir wollen spiiter diese Gerade mit anderen
Zahlen auffiillen, um sie zur ,,Zahlengeraden“ zu machen.

2.2 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die fiir N noch falsch ist:
(3) Zu jedem n € Z gibt es genau ein n’ € Z mit n+n' =0

Zum Beispiel ist (—2)" = 2. Wir bezeichnen n’ mit —n, schreiben also —(—2) = 2. Man nennt —n das
additiv Inverse von n.

Definition 2.3 Fine Menge, die mit zwei Verkniipfungen +,- versehen ist, fir die neutrale Elemente
existieren und die bislang angegebenen Gesetze (einschliefSlich(3)) gelten, heifst ein kommutativer Ring.
(Fiir einen allgemeinen Ring wird das Kommutativititsgesetz der Multiplikation nicht gefordert, dafiir
aber die beidseitige Distributivitit. (Was ist damit gemeint?))

2.4 Die Gleichung

a+x="0
mit der Unbekannten z besitzt in Z (allgemeiner, in jedem Ring) eine eindeutigen Losung, ndmlich
x=b+ (—a).

Wir schreiben @ — b := a + (—b) und bei ldngeren ,arithmetischen Summen“ z.B. a — b+ ¢ —d =
a+ (=b) +c+(—d).
Beachte: Ist c#0,s0ist a —b+c=(a—b)+c#a— (b+c).

Anstelle der Existenz des additiv Inversen, konnte man auch zu je zwei ganzen Zahlen m,n die Existenz
ihrer Differenz m — n fordern, die dadurch gekennzeichnet ist, dass sie die Gleichung (m —n)+n =m
erfiillt.

2.5 Wir wollen zeigen, dass sich die Regel (—a)(—b) = ab, die manch einem etwas willkiirlich erscheinen
mag, allein aus den Regeln (1),(2),(3) ergibt, d.h. in jedem Ring gilt. Zunéchst zeigen wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b+ 0b Durch Addition von —(0b) auf beiden Seiten und Anwendung der Assozia-
tivitét ergibt sich 0 = 0b.

Jetzt zeigen wir: (—a)b = —(ab).

Da ab+ (—a)b = (a+ (—a))b = 0b = 0 ist, ist (—a)b das additiv Inverse von ab, d.h. (—a)b = —(ab).
Da a + (—a) = 0 ist, ist a das additiv Inverse von —a, d.h. —(—a) = a.

SchlieBlich ist (—a)(—b) = —(a(—b)) = —(—(ab)) = ab.

Wenn man also (—1)(—1) iiberhaupt definieren und dabei die o.a. Regeln beibehalten will, bleibt einem
nichts iibrig, als (—1)(—1) = 1 zu setzen.

Es wére schon, wenn Sie weitere — etwa geometrische — Griinde finden, warum die Regel (—a)(—b) = ab
sinnvoll ist.



Remark 2.6 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist die Nullteilerfreiheit. Sie
besagt:
ab=0 = a=0 oderb=0.

Fiir die natiirlichen Zahlen habe ich sie bereits oben angegeben. Fiir alle ganzen Zahlen erhélt man die
Nullteilerfreiheit auf Grund der Regeln

(—a)b=—(ab) , (—a)(=b)=ab.
Aus der Nullteilerfreiheit ergibt sich die Kiirzungsregel
a#0und ab=ac = b=c

Demnab=ac=ab—ac=0=alb—c)=0=b—-c=0=b=c

2.7 Bekanntlich ldsst sich die Anordnung von N auf Z ausdehnen. In der zweiten Regel von (6) von 1.4
muss man k > 0 voraussetzen.

2.8 Man kann das Induktionsprinzip auch etwas allgemeiner formulieren:

Sei mg € Z und A(z) eine Aussage iber ganze Zahlen x > mg. Wir setzen voraus:

1. A(my) sei richtig;

2. fiir jede ganze Zahl n > my, fiir welche A(n) richtig ist, sei auch A(n + 1) richtig.
Dann gilt A(n) fiir alle ganzen Zahlen n > my.

Um dies einzusehen, betrachte man die Aussage B(z) fir z € N, die durch B(n) := A(mg + n) definiert
ist, und wende das Induktionsprinzip aus Abschnitt 1 an.



3 Briiche, rationale Zahlen

3.1 Wihrend das Rechnen mit ganzen Zahlen den allermeisten Studierenden keine Probleme bereitet,
scheint das fiir das Rechnen mit Briichen bereits nicht mehr zu stimmen. Habe ich doch z.B. in einer
Staatsexamensklausur die L .

b - a+b

1
absurde Unregel - +
a

lesen miissen, obgleich doch jeder, der mit dem Bruch % irgendeine verniinftige Vorstellung verbindet,
immer

rechnen wiirde.

Ohne Kommentar zitiere ich: ,Die Fahigkeit, eine Bruchrechenaufgabe zu lésen, war anscheinend ein
gutes Qualititsmerkmal, auf den Erfolg im Mathematikstudium zu schlieen.“ (Johann Sjuts in DMV
mitteilungen 12-2/2004.)

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl _* mit m,n € Z,n > 0 kann man folgendermafen auf der Zahlengeraden konstruieren:

n
Man teile Strecke von 0 nach 1 in n gleichgrofle Teilstrecken. Eine solche trage man dann m-mal von 0
aus nach rechts auf der Zahlengeraden ab, wenn m > 0 ist. Ist m < 0, d.h. —m > 0, so trage man sie
(—m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die Strecke von 0 bis m in n
gleiche Teilstrecken teilt und eine solche Teilstrecke von 0 an in die Richtung von m abtrigt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Arten schreiben, z.B.

9 _3_6

15 5 10
Man kann ‘erweitern’ und ‘kiirzen’. Man kann sich iiberlegen, dass es aufs selbe hinauslauft, ob man ein
15-tel der Einheitstrecke 9-mal, oder ein 10-tel der Einheitstrecke 6-mal von 0 aus (nach rechts) abtréigt.

Am elegantesten definiert man die Gleichheit von Briichen durch
/

%z% = ab =d'b.

Diese Definition ist #quivalent dazu, dass ¢ durch Erweitern und/oder Kiirzen zu § wird:

Wenn z.B. ‘;—,/ aus 3 durch Erweitern mit ¢, d.h. 7 aus ‘;—,/ durch Kiirzen durch ¢ hervorgeht, folgt ab’ =

a(bc) = (ac)b = a'b. Ist umgekehrt ab’ = a’b, dann entsteht Z—: aus § durch Erweitern und Kiirzen, wie
folgt:

a abt db d
b by by Y
Ferner setzen wir fest
m
T =m.

Auf diese Weise wird Z zu einer Teilmenge von Q, der Menge der rationalen Zahlen.
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3.4 Addition: Haben zwei Briiche den gleichen Nenner, so ist ihre Summe einfach zu definieren:

m m m+m’

n n n

Dies entspricht der Addition von Strecken auf der Zahlengeraden — oder der Subtraktion, wenn etwa
m > 0,m’ < 0 ist. Sind die Nenner nicht (notwendig) gleich, so kann man sie durch Erweitern gleich

machen, also z.B. rechnen
m m mn mn mn'+mn

n n nn' nn' nn' ’

(Will man bei der Addition mit moglichst kleinen Zahlen rechnen, so nimmt man als gemeinsamen Nenner
das kleinste gemeinsame Vielfache von n,n’ statt nn’. Fiir allgemeine Uberlegungen ist dies allerdings in
den meisten Féllen eher erschwerend.)

Man sieht, dass sich Nenner und Zihler bei der Addition sehr verschieden verhalten! Wenn m,n,n’ > 0

sind, gilt immer:
/

m m mn +n m n n n+n
—+ == (' + )7'5 , aber — + — =
n ! ! n+n' m

n nn m m

Offenbar ist 0 = % % fiir alle n > 0 ein neutrales Element beziiglich der Addition. Ferner gibt es ein
u

m
n

additiv Inverses z , ndmlich =*. Denn
m —m m-—m 0
n n n n
Man darf also % = f% schreiben.

3.5 Multiplikation: Zunéchst definieren wir k- ™ fiir k € Z. Ist k > 0, so sei k- 7> die k-fache Summe
von “ zu sich selbst, d.h.
m m m  km
ki—i=—4+. . 4 == —.
n n n n
Dies muss man zwangsléufig so machen, wenn 1 ein neutrales Element fiir die Multiplikation bleiben und
die Distributivitdt und Kommutativitdt der Multiplikation erhalten bleiben soll. Die Forderung, dass die

Distributivitdt weiter gelte, erzwingt dann auch

k k
(_k)'@:—ﬂ, also k- = = " fiir alle k € 7 .
n n n n
Insbesondere ergibt unsere Definition (fiir k € Z,r € Ny)
1 1 1
ko-=-undr--=-=>=1.
roor 1

Soll die Assoziativitéit der Multiplikation weiterhin gelten, so muss

m m 1 m
K T Y )
n n T n
. . ’ . / ’
sein. D.h.,ist £ - &2 = ™ oo ist I = ™ also rm'n = n'm. d.h. B = 2,
? r o m n’’ n n’ n rn
Wir definieren also
1 m m
ron ™m
und somit % ) .
m m m m
S PSP A A e
ron ron rn ™

Merke: Die Addition von Briichen ist komplizierter als ihre Multiplikation!

Offensichtlich ist 1 = % = = fiir n # 0 das multiplikativ neutrale Element.
Beachte: Sind m,n, m’,n’ positive ganze Zahlen, so gilt immer

m m  m+m

—+—=>
n+n’ n+

1 m m m+m
also — + — # ———
non

n' n+n'
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3.6 Es gibt auch ein geometrisches Argument dafiir, die Multiplikation von Briichen wie oben zu de-
finieren. Man bestimme dazu den Fécheninhalt eines Rechteckes, dessen Seiten m/n, bzw. m’/n’ lang
sind.

3.7 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a € Q — {0} gibt es genau ein
multiplikativ Inverses ¢!, némlich

Ist a = @7 soist @~ = — (oder = " falls m < 0)
n m —m
In Q kann man also die Gleichung az = b mit der Unbekannten x 16sen, wenn a # 0 ist. Namlich durch
r=ba"!

3.8 Das Rechnen mit rationalen Zahlen geniigt denselben Gesetzen wie das mit den ganzen Zahlen. Es
geniigt sogar einem zusétzlichen Gesetz, ndmlich dem der Existenz von multiplikativ Inversen. Q ist
ein sogenannter Koérper.

(Ubrigens muss man bei der axiomatischen Definition eines Kérpers folgendes bedenken: Eine Menge, die
aus genau einem Element p besteht, fiir das p + p = pp = p definiert ist, erfiillt alle o.a. Kérperaxiome.
Man will sie aber nicht als Koérper gelten lassen. Man verlangt deshalb zusétzlich, dass in einem Koérper
1 #£ 0 ist, oder — dquivalent dazu — dass er aus mindestens 2 Elementen besteht. Es gibt einen nicht ganz
unniitzen Korper, der aus genau 2 Elementen besteht.)

Remark 3.9 Die Nullteilerfreiheit, und damit die Kiirzungsregel gilt natiirlich im Bereich der rationalen
Zahlen auch. Offenbar gilt sie in jedem Koérper. (Warum?)

3.10 Da sowohl bei der Multiplikation wie bei der Addition von Briichen der Nenner (genauer: einer der
moglichen Nenner) des Ergebnisses das Produkt der Nenner der Faktoren, bzw. der Summanden ist, gibt
es echte Teilmengen von Q, die Z echt umfassen, die gegen Addition, Subtraktion und Multiplikation
abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die Menge der Briiche, die sich mit einem
ungeraden Nenner schreiben lassen, ein solcher Unterring. (Kann man in dieser Behauptung ‘ungerade’
durch ‘gerade’ ersetzen??? Diese Frage ist allerdings nicht wirklich gut gestellt. Denn offenbar kann man
jeden Bruch durch Erweitern zu einem Bruch mit einem geraden Nenner machen.)

3.11 Anordnung: Wie vergleicht man Briiche der Grofle nach? Nun, wenn zwei Briiche denselben
positiven Nenner haben, ist die Sache einfach:

ml

< = m<m .

=3

n

Ansonsten muss man die (als positiv vorausgesetzten!) Nenner gleich machen:

m’ mn’ _ m'n

— < — = <
n n’ nn' nn

3

S = mn' <m/n .
7.B. sieht man: Ist 0 < n < n/, so gilt % > % Die Regeln der Vertriiglichkeit der Anordnung mit Addition
und Multiplikation bleiben erhalten. Das Induktionsprinzip und das Minimumprinzip gilt natiirlich fiir
die rationalen Zahlen nicht. Z.B. hat die Menge M := {a € Q | 0 < a} die untere Schranke 0, aber kein
kleinstes Element. Ist néimlich a € M beliebig (klein), so ist 271a < a und 271a € M.
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3.12 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger Korper. Fiir a,b € K,b # 0
schreibt man dann
=ab!

» S

Aus den Korpergesetzen leitet man dann leicht ab:

a a ab+a'b !

4 @ o _ad (z)‘l,,
bV o T by by \b a

letzteres, wenn auch a # 0 ist.

Remark 3.13 Auch fiir positive rationale Zahlen a, b, ¢, d gilt immer

a—+c alsog+57éa+c

C
Ta T d a7 b4

¢
b

3.14 Wenn man im Korper der rationalen Zahlen Briiche rationaler Zahlen bildet bekommt man ‘Mehr-
fachbriiche’; z.B.

Man muss hier aufpassen, z.B.

2 a a
L =22 und - = —
b b
¢ ¢ e (®)
voneinander unterscheiden! Berechnen Sie
1
5 1
Q und 73N
3 3)
Ein Ausdruck der Form
a
b
c

hat keinen Sinn!

3.15 Standarddarstellung. Jede rationale Zahl kann als ein Bruch geschrieben werden, in welchem
Zahler und Nenner keinen gemeinsamen Primfaktor haben. Denn sonst kann man ja noch kiirzen. Da bei
jedem Kiirzen (durch eine ganze Zahl > 1) Zdhler und Nenner (dem Betrag nach) kleiner werden, muss
der Kiirzungsprozess nach dem Minimalprinzip irgendwann anhalten. (Ubrigens gibt es eine Algoritmus
— von Euklid —, der es erlaubt, den ggT von zwei Zahlen zu berechnen, ohne sie vorher in Primfaktoren
zerlegt zu haben.)

Verlangt man noch — wie wir es bisher meist getan haben — dass der Nenner positiv ist, so ist die
Darstellung einer rationalen Zahl als , gekiirzter* Bruch eindeutig.

Beweis hierfir: Sei 7 = %, wo beide Briiche gekiirzt sind. Dann gilt mn’ = m/n. Wir verwenden die
Eindeutigkeit der Primfaktorzerlegung. Ist p ein Primfaktor von m, genauer, ist p* die hochste p-Potenz,
die m teilt, so muss sie auch m’ teilen, da nach Vorraussetzung p kein Teiler von n ist. Es folgt m|m/,
und ebenso m/|m. Also m = £m/. Da nach Voraussetzung n,n’ > 0 ist, miissen auch die Vorzeichen von

m und m’ iibereinstimmen.

Ebenso folgt n =n'. —
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4 Reelle Zahlen

4.1 Man konnte meinen, die rationalen Zahlen fiillten die ganze Zahlengerade aus. In beliebiger Nihe
jeder rationalen Zahl liegen noch unendlich viele weitere rationale Zahlen. Anders als bei den ganzen
Zahlen gibt es zu einer rationalen Zahl keine néchstkleinere oder néichstgrofiere.

Trotzdem gilt die BEMERKUNG: Wenn man auf dem Einheitsintervall der Zahlengerade von 0 bis 1 ein
Quadrat errichtet und um 0 den Kreis schligt, der durch die rechte obere Ecke geht, so schneidet dieser
die Zahlengerade in keinem rationalen Punkt. M.a.W. Es gibt keine rationale Zahl r mit r2 = 2.

BEWEIS: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit n? = 2. Wir nehmen an, es
gibe ein r € Q mit 72 = 2 und r > 0. Wir schreiben r = - in Standardform, d.h. so dass m und n keinen
gemeinsamen Primfaktor haben und positiv sind. Wir zerlegen m und n in Primfaktoren:

mo_pi-cop
nooqicgs

Da r nicht ganz ist, ist n > 2, d.h. s > 1. Wegen der Teilerfremdheit von m,n gilt p; # ¢; fiir alle 1, j.

Jetzt bilden wir ) )
2 _ pl PR p',‘

-
Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teilerfremdheit von Zahler und Nenner

nichts geéndert. D.h. 72 kann nicht ganz sein, insbesondere ist 72 # 2. —

r

Aus der Bemerkung folgen:

a) Die — nicht besonders komplizierte — Funktion f(z) = 22 — 2 hat zwar in 1 den negativen Wert —1
und in 2 den positiven Wert 2, aber zwischendurch an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, fiir die a < 0 oder a? < 2 gilt, und B die Menge der positiven
rationalen Zahlen b mit % > 2. Dann ist AU B = Q und a < b fiir alle a € A,b € B , aber weder besitzt
A ein grofites, noch B ein kleinstes Element.

Es ist schlechthin nicht méglich, iiber dem Kérper Q verniinftig Analysis zu treiben.
Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sein > 2 ganz. Ist eine ganze Zahl k keine n-te Potenz einer ganzen Zahl, so ist sie
auch keine n-te Potenz einer rationalen Zahl.

4.3 Man hat mit Erfolg den Kérper Q zu einem Korper R der sogenannten reellen Zahlen erweitert, in
welchem aufler den Rechen- und Anordnungsaxiomen folgende zueinander dquivalente Aussagen erfiillt
sind:

(i) Jede Zahlenfolge in R, die verniinftigerweise konvergieren sollte (d.h. eine sogenannte Cauchyfolge ist),
konvergiert auch. S.u.

(ii) Ist R = A U B, derart dass sowohl A als auch B mindestens 1 Element besitzt und a < b fiir alle
a € A, be B gilt, so hat entweder A ein grofites oder B ein kleinstes Element.

(iii) Sei (ap)n = (ag,a1,as,...) eine monoton wachsende nach oben beschriinkte Folge. D.h. fiir alle n
gelte ap, < an41, ferner gebe es ein s mit a, < s fiir alle n. Dann konvergiert die Folge (ay, ).

(iii”) Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von R, die eine untere Schranke
besitzt, d.h. fiir die es ein s € R gibt mit s < a fiir alle a € A, besitzt auch eine untere Grenze, d.h.
ein v € R mit u < ¢ fiir alle @ € A, so dass in beliebiger Néhe von u noch Elemente von A liegen.

14



(iv’) Dasselbe wie (iv), wo ,untere“ durch ,obere® ersetzt ist.

Manche der genannen Begriffe bediirfen noch der Prézisierung. , Anschaulich“ ist es so, dass die reellen
Zahlen den Punkten auf der Zahlengeraden entsprechen, die beliebig genau durch rationale Zahlen ap-
proximierbar sind. (Und diese sind dann wohl alle Punkte auf der Zahlengeraden, was auch immer das
heiBen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Korpers der reellen Zahlen, die man aus jedem der
o.a. ,Axiome“ ableiten kann — aus (i) nur bei entsprechender Definition von ,,Cauchy-Folgen“ — das
sogenannte archimedische Axiom:

(a) Zu allen positiven reellen Zahlen a, b gibt es eine natiirliche Zahl n mit na > b.
Hierzu dquivalent ist folgende Aussage:
(b) Ist « eine reelle Zahl, so dass 0 < « < 1/n fiir alle ganzen Zahlen n > 0 gilt, so ist & = 0.

BEWEIS der Aquivalenz: ,,(a)==(b)“: Wire a > 0, so giibe es ein n € N mit na > 1. Multiplikation mit
der positiven Zahl 1/n ergiibe a > 1/n.

»(b)=(a)*: Wire na < b fiir alle natiirlichen n, so erhielte man durch Multiplikation mit der positiven
Zahl 2 die Ungleichung a/b < 1/n fiir alle n und somit aus % < n%_l die Ungleichung a/b < 1/n fiir alle
n. —

Etwas vage ausgedriickt, besagt das archimedische Axiom, dass es weder unendlich grofle, noch unendlich
kleine reelle Zahlen gibt. Reelle Zahlen a, b, die unendlich nahe beieinander liegen, sind schon gleich.

Uberlegen Sie selbst, dass auch im Bereich der rationalen Zahlen das archimedische Axiom gilt.

Fiir die reellen Zahlen kann man folgendes beweisen:
Proposition 4.5 Sei a > 0 reell und n > 2 ganz. Dann gibt es genau eine reelle Zahl r > 0 mit r™ = a.

Man nennt r die n-te Wurzel von a und schreibt » = {/a. (Ist n ungerade, so gibt es auch fiir ¢ < 0 eine
n-te Wurzel aus a. Ist n gerade, und a > 0, so ist auch (—{/a)™ = a. In diesem Falle soll {/a immer die
positive Wurzel bezeichnen! Der Ausdruck {/a soll nicht zweideutig sein!)

Proof: Sei B die Menge der reellen Zahlen b > 0 mit b > a und A := R — B. Dann ist offenbar
AU B = R. Ferner sieht man leicht ¢ < b fiir ¢ € A,b € B. Die kleinste Zahl von B oder die gréfite von
A ist dann das gesuchte r. O

4.6 Fiir den Studienanfianger empfiehlt sich vielleicht folgendes zweigleisige Vorgehen: Anschaulich stelle
er sich die reellen Zahlen als Punkte auf der Zahlengeraden vor (die rational approximierbar sind). Und
fiir prézise Beweise benutze er ein Axiomensystem der reellen Zahlen. Ein solches wird er sicherlich in
der Analysis-Vorlesung kennenlernen.

4.7 Man kann R auch auf mannigfache Weise konstruieren, z.B. als Menge aller unendlichen oder endli-
chen positiven oder negativen Dezimalbriiche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbriichen einzugehen, wollen wir uns iiber-
legen, wie man die Eigenschaft (iv) fiir nach unten beschriinkte nichtleere Mengen B von Dezimalbriichen
zeigen kann.

BeEWEIS: Man darf annehmen, A sei durch 0 nach unten beschriankt. (Sonst verschiebe man die Menge.)
Zunéchst betrachten wir den ,,ganzen Anteil®, d.h. die ,, Vorkommazahlen* der Zahlen aus A. Unter diesen
gibt es nach dem Minimalprinzip eine kleinste, etwa m. Dieses m wird die Vorkommazahl der gesuchten
unteren Grenze. Dann betrachten wir alle a € A, die die Vorkommazahl m haben und von diesen jeweils
die erste Nachkommaziffer Die kleinste dieser Ziffern sei nq. Dieses ny wird die erste Nachkommaziffer
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der gesuchten unteren Grenze. Diese beginnt also mit m,n;. Von allen Zahlen aus A, die mit m,n;
beginnen, betrachten wir die jeweils zweite Ziffer nach dem Komma. Sei ny die kleinste unter diesen.
Unsere untere Grenze beginnt mit m, nins, usw. Sei m,nins ...n; auf diese Weise bereits gefunden. In
A gibt es also mindestens eine Zahl, deren Dezimalzahldarstellung mit m,n; ...n; beginnt. Und keine
beginnt mit einer kleineren Zahl mit & Nachkommastellen. Man betrachte nun alle Zahlen aus A, die
mit m,nq ...n; beginnen und betrachte von jeder die (k + 1)-te Ziffer nach dem Komma. Die kleinste
unter allen diesen sei ny1. Diese ist auch die (k + 1)-te Nachkommaziffer der gesuchte unteren Schranke.
Wenn wir dies bis ins Unendliche fortsetzen, bekommen wir einen Dezimalbruch w, der die gewiinschte
Eigenschaft hat. Denn keine Zahl aus A ist kleiner als u. Und fiir jedes k gibt es eine Zahl aus A, deren
Vorkommazahl und deren erste k& Nachkommaziffern mit u iibereinstimmen. Es gibt also Zahlen in A, die
beliebig nahe bei u liegen. —

4.8 Ubrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche Dezimalbriiche darstellbar
sind:
3,72 =3,719:=3,71999...

Jeder von 0 verschiedene, abbrechende Dezimalbruch (der, wollte man ihn als unendlichen Dezimalbruch
schreiben, bis auf endlich viele Ausnahmen nur die Ziffer 0 hat) ldsst sich auch auf die Weise schreiben,
dass alle seine Ziffern bis auf endlich viele Ausnahmen 9 sind.

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0,9 und 1 seien in Wahrheit doch ein
wenig verschieden. Man sollte sich aber iiberlegen, dass ihr Abstand kleiner ist als 107" (= 1/10™) fiir
jede natiirliche Zahl n, und sie deshalb auf Grund des archimedischen Axioms gleich sind. (Es gibt
angeordnete Korper, die das archimedische Axiom nicht erfiillen. Um deren Elemente zu beschreiben,
kommt man allerdings nicht mit Dezimalbriichen aus.) Was spricht denn dagegen, dass man ein und
dieselbe Zahl auf mehrere Weisen schreiben kann? Die Darstellung einer rationalen Zahl als Bruch zweier
ganzer Zahlen ist ja iiberhaupt nicht eindeutig.

Wer verniinftig mit Dezimalbriichen als reellen Zahlen umgehen will, hat nur folgende Wahlmoglichkeiten:
Entweder er verbietet eine der beiden Schreibweisen, erlaubt also nicht, dass fast alle Ziffern 0, bzw.
erlaubt nicht, dass fast alle Ziffern 9 sind. Oder er akzeptiert, dass gewisse reelle Zahlen 2 Schreibweisen
als Dezimalbriiche haben.
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5 Unendliche Reihen

P ] 1 1 _9-1_, 9-2 | 5=3  o—4 _ o ok _9
Beispiel 1: 2+4+8+16+ (=222 p 2 ) =) o =
Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird zuerst halb gefiillt, dann wird
durch hinzugieflen von einem viertel Liter vom freien Rest wieder die Hélfte gefiillt, und es bleibt 1/4
Liter frei. Dann bleibt nach Hinzufiigen von 1/8 1 wieder 1/8 1 frei. So geht es weiter: im n-ten Schritt
figt man 27" 1 hinzu, und der Literzylinder ist bis auf 27" 1 gefiillt. Der einzig sinnvolle Wert fiir o.a.
unendliche Reihe (Summe) ist

- 1 1. 1 1
27k77 - _ R _ =
> stitgTE Tttt 1
k=1
1 1 1 1 1 — 1
Beispiel 2: — 4+ — 4+ — 4+ — _ 2
c1spie 12 a3t satist n(n+1) ;k(kJrl)
1 1 1) — 1 1 1 1
Es gilt P (T;z;tll)n = n(n+1)’Z'B' 37131 Die unendliche Reihe kann man also

auch so schreiben:

S B N S S S AN ST ARG S AN I AT
1-2 2-3 3-4 4-5 1 2 2 3 3 4 4 5

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt) addiert, so hebt sich viel

1
weg und man erhilt als Summe (der ersten n Glieder) 1 — Tl Wieder ist der einzig sinnvolle Wert
n
unserer unendlichen Reihe
> SR . S
k(k+1) 1-2 3 34 4-5 n(n+1) N

Léasst man die ersten N Summanden dieser Reihe weg, so erhélt man auf dieselbe Weise

1 1 1 1
+ + fe = —
kzN:HkkH N+ D(N+2) (N+2)(N+3)  (N+3)(N+4) N+1
11 1 1 1 1 |
Beispiel 3: 1 + 3 + 3 + 1 + : NI - o= Z o= ? (,Harmonische Reihe*)

n=1

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1
B U e U I TAT A TL
. 1.1 1 1 1 1 1.1 1 1 1
Nunlbt*+121+122'1=§, g+"+§2§+"+§=4-§=§
1 1 1 1
9+ +E_8-1—6 2,usvv
Deshalb gilt
1 2 3 4 5 - 2 2 2
Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:
=1 1 1 1 1 1
2 Titatataty o



(Wir betrachten oo nicht als reelle Zahl, weil man mit oo schlecht rechnen kann. Aber es spricht nichts
dagegen, oo als (uneigentlichen) ,, Grenzwert“ zuzulassen.)

In den Beispielen 4 und 6 werden wir die harmonische Reihe auf zweierlei Weise modifizieren und erhalten
endliche Werte.

Beispiel 4: Wir quadrieren die Summanden:

1 1 1 1 1 0
1+272+372+E+?+”.+ﬁ+”.:.
1 1 < 1 1 <
(n—1)n 22 7 1.2732 2.3
Beispiel 2 erhélt man hieraus — vorausgesetzt unsere Reihe hat einen verniinftigen Wert —
1 1 1 1
1+ 52 + 3 + Yl + 5z
Wenn man die reellen Zahlen axiomatisch einfiihrt, kann man als eines der Axiome z.B. folgendes nehmen:

1
Es gilt (fiir n > 2) die Beziehung — < , also usw. Durch Vergleich mit
n

foe<l41=2

Jede unendliche Summe positiver Summanden, die nach oben beschrinkt ist, hat einen reellen Wert,

(Dies ist nur eine Umformulierung von ( iii.).)

2
T
In der Tat ist der Wert o.a. unendlicher Summe —-. Dies ist allerdings keineswegs einfach zu sehen. Wenn

Sie Gliick haben, horen Sie einen Beweis dafiir am Ende des 1. Semesters in der Vorlesung ,, Analysis 1.
Sie kénnen einen Beweis im Buch O. Forster: Analysis 1 finden.

. 1 1 1 =1

Beispiel 5: 1+I+ﬁ+ 1.2.3—#---—;_0@
1
(Dabei ist 0! :=1,n! :=1-2---n fiir ganze n > 0.) Wenn wir den Summanden mit dem
1-2--n-(n+1)
1
Summanden m der Reihe aus Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert < 3
n(n

hat. Man nennt diesen Wert in der Regel e. Es gilt also 2 < e < 3.
Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:

Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Zihler und Nenner.

Beweis: Indirekt! Wére e eine rationale Zahl mit dem (posiiven ganzen) Nenner N > 2, etwa e = %7, so

wire N!-e=1-2..-N - % eine ganze Zahl. Wir zeigen, dass dem aber nicht so ist, welche natiirliche
Zahl N auch sein mag.

Multiplizieren wir die ersten N + 1 Summanden von e mit N!=1-2--- N, so erhalten wir ganze Zahlen.
Fiir den Rest r := N! ZZO:NH 1/n! geniigt es also 0 < r < 1 zu zeigen. Dann ist ja Nle die Summe einer
ganzen Zahl und r, also nicht ganz. Offenbar gilt

1 1 1

TNl Nr D12 T INFD(V (V13

Machen wir, anfangend mit dem 2. Summanden von r den oben gemachten Vergleich, so erhalten wir

1 1 1 1 1

+

e 1
TN I T IO T3 T NI TNfLS

Beispiel 6: Wir versehen die , Hélfte“ der Summanden der harmonischen Reihe mit dem Minus-Zeichen,
d.h. wir bilden die sogenannte alternierende harmonische Reihe:
_1\n+1 X 1Vk+1
L1 SR o G 3

1 1
[ T N S A
2+3 4+5 L n * k

k=1
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1 1 1 1 1 1
Wenn wir die Teilsummen 1, 1— 2 1-— 3 +=, 1-— 3 + 371 usw. auf der Zahlengeraden betrachten,

so sehen wir sie hin- und herhiipfen; dabei werden die Spriinge immer kleiner und ihre Lénge geht gegen
0. Es ist also plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den Wert der unendlichen
Reihe. (,,Leibnizsches Konvergenzkriterium*) Dieser Wert liegt offenbar zwischen 1/2 und 1. Er ist gleich
dem natiirlichen Logarithmus von 2 (In 2), wie man in den meisten Vorlesungen ,, Analysis 1“ lernt.

Jetzt mochte ich Thnen noch einen Schock versetzen. In einer endlichen Summe darf man die Summanden
beliebig vertauschen, ohne dass sich der Wert der Summe &ndert. Dies gilt nicht fiir alle unendlichen
Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmonischen Reihe in folgender Rei-
henfolge:

PSS SN U U S NS B NN SR B S S 1,11
2 3 4 5 6 8 7 10 12 14 16 9 18 32

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2" negative Summanden auf.
Genauer: nach dem positiven Summanden 1/3 nimmt man 2° negative Summanden; nach dem niichsten
positiven Summanden 1/5 nimmt man die niichsten 2! negativen Summanden, usw.)

1 1 1 1 1 1
Da 573 < T "0 16 < T usvil. istl, giltlfﬁr eiinenlm'dgllicheln Wfrt ui der ;).a. umgeordneten
alternierenden harmonischen Reihe w <1 — 5 + 371 + FT1 + 771 + 971 + - + .-, Mit
L + - = LI t + L fi >5
A4T5 T 45 20 % it =T "
Also gilt

Zusatzbemerkungen

n 1— n+1
Zu Beispiel 1: Allgemein gilt fiir ¢ # 1 die Formel ), F=14+q++ 4" = 1 ¢ , also
—q

fiir die unendliche Reihe 1 +g+¢>+ - - +¢" +--- = , vorausgesetzt, es ist —1 < g < 1. Setzt man

1—
q = 1/2, so erhilt man Beispiel 1 mit dem zusétzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge der Menge aller positiven ganzen
Zahlen. Wir haben gesehen, dass die Summe der Kehrwerte aller natiirlichen Zahlen unendlich, dagegen
die der Kehrwerte aller Quadratzahlen endlich ist. Man kann sich fiir jede Teilmenge der natiirlichen
Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder unendlich ist. Man weif}; dass die Summe der
Kehrwerte aller Primzahlen unendlich ist. Das ist nicht trivial, aber auch nicht allzu schwer zu zeigen.
Siehe Chapter 1 in dem hiibschen Buch ,Proofs from THE BOOK*“ von M. Aigner und G.M. Ziegler
(Springer Verlag). Dass die Summe der Kehrwerte der Primzahlen unendlich, die der Quadratzahlen
aber endlich ist, kann man so interpretieren, dass die Primzahlen dichter im Bereich der natiirlichen
Zahlen liegen als die Quadratzahlen. Wenn Thnen unbekannt sein sollte, dass es iiberhaupt unendlich

viele Primzahlen gibt, hier ist der uralte Beweis von Euklid: Zu endlich vielen Primzahlen pq, ..., p, ist
jeder Primfaktor p der Zahl pipy - - - p, + 1 eine weitere (von allen py, ..., p, verschiedene) Primzahl, nicht
wahr??

Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion In(1+4zx) ist In(1+z) = ‘i ?Jr?er e

Diese Gleichung gilt fiir alle z mit —1 < z < 1, und man erhélt unsere Behauptung, indem man x = 1
setzt.

. Letztere Funktion

Unvollsténdige Begriindung: Die Funktion In(1 + ) ist die Stammfunktion von T

x
kann man, wie in der Bemerkung zu Beispiel 1 angegeben, als unendliche Reihe schreiben: setze ¢ = —x.
Die Taylorentwicklung von In(1 + z) erhilt man durch ,gliedweise Integration“. Das alles funktioniert
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zunichst jedoch nur fiir —1 < z < 1. Fiir z = 1 braucht man ein zusétzliches Argument, den ,, Abelschen
Grenzwertsatz®.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende harmonische Reihe jede vorgege-
bene reelle Zahl als Wert annehmen. Wer mathematisch geschickt ist, mag selbst versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe — statt Grenzwert sagt man auch Limes — kennenlernen:

a) Den Grenzwert einer (unendlichen) Folge (a,) = (an)n = (an)nen = (ao,a1,a2,...), der nlLH;O an

geschrieben wird, (Man kann die Folge auch mit dem Index 1 oder irgendeiner anderen natiirlichen Zahl

1
beginnen lassen, und schreibt z.B. lim — = 0 obwohl % fiir n = 0 keine Bedeutung hat.)
n—oo M

b) Den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unendlich vielen Summanden)
D bu
n=0

¢) Den Grenzwert einer Funktion bei Anndherung an einen Punkt, an dem sie vielleicht nicht definiert
ist lim f(x).

T—T0

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’, d.h. ohne strikte Begriffsbildung
vorbereitet. Bei allem Spafl; den das hoffentlich gemacht hat, sollte jedoch klar sein, dass man ohne eine
Prézisierung auf Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a,b auf der rellen Zahlengerade ist a — b oder
b — a, je nachdem ob a > b oder a < b ist. Man kann dies einfacher ausdriicken, wenn man den Begriff
des (Absolut-)Betrages einfiihrt: Der Betrag |a| einer reellen Zahl a ist definiert durch

la] = a fir a>0
T —a fiir a<0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a — b| (wobei eben |b — a| = |a — b] ist).

Der Betrag geniigt folgenden formalen Regeln
a) 0<al], b)|a|=0 <= a=0, c)lab]=|a|-|b|, d) |a+b|] <]a|]+b]

Die letzte Regel — die man durch Betrachtung aller vier Félle a > 0,b > 0; a < 0,b > 0; etc. leicht
beweist — heifit die Dreiecksungleichung. (Der Name kommt von einer allgemeineren Situation her, wo
statt reeller Zahlen Vektoren betrachtet werden und die Dreiecksungleichung fiir die Ladngen von v, w, v+w
gilt und die geometrische Bedeutung hat, dass die Lénge einer Dreiecksseite hochstens so grof} ist wie die
Summen der Léngen der beiden anderen Seiten.)

Eine Ungleichung der Form |a — b| < € (mit € > 0) bedeutet, dass der Abstand von a und b kleiner als ¢
ist, d.h. @ —e < b < a + ¢ gilt. (Natiirlich kann man das auch durch b — e < a < b+ € ausdriicken.)

6.2 Limes einer Folge. Wie kann man es prizise fassen, dass eine Folge (ag, a1, as,as,...) sich einer
reellen Zahl a beliebig annéhert?

Seit ungefihr 200 Jahren macht man es so:

Definition 6.3 a) Sei a eine reelle Zahl und (a,) eine Folge reeller Zahlen. Man sagt, die Folge (an)n
hat den Grenzwert (oder Limes) a — oder konvergiert gegen a — und schreibt lim,,_ o, a,, = a, wenn
zu jeder (noch so kleinen) reellen Zahle > 0 ein N € N existiert, derart dass |a, —a| < € fir allen > N
gilt.

b) Eine Folge reeller Zahlen heifit konvergent, wenn sie eine reelle Zahl als Limes hat. Andernfalls heifit
sie divergent. Man sagt auch: Sie konvergiert, bzw. divergiert.
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lim,, o0 @, = a heifit: In jeder noch so grofien Néhe zu a liegen, bis auf héchstens endlich viele Ausnahmen,
alle Folgenglieder a,,

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (a,,)nen mit a,, = a fiir alle n.

Den Zusatz ,,(noch so kleinen)“ kann man in der Definition weglassen. Er dient lediglich zur inhaltlichen
Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Anderungen des obigen Wortlautes nicht zu dquivalenten Aussagen
fiihren:

»Es gibt ein ’extrem kleines’ € > 0, derart dass ...«

»Es gibt ein N € N, so dass fiir jedese >0 ...«

6.4 Obige Definition wird hidufig von didaktisch Interessierten als sprachliches Monstrum angesehen.

F. Vester (in ,Denken, Lernen, Vergessen“) polemisiert gegen obige Definition und schligt stattdessen
vor, die Konvergenz gegen 0 folgendermaflen zu definieren:

»Eine Folge heifit eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn — vom Vorzeichen einmal ganz
abgesehen — in ihr jedes Glied kleiner ist als das Vorangehende.“

Nun erfiillt die Folge (ay,) mit a, = 1+ * sicher die Definition von Vester, wird aber kaum als Nullfolge
anzusehen sein. Andererseits wird man die Folge

27" fiir gerade n

(an) mit a, ;:{ .

n fiir ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch nicht erfiillt. Dieser ist also
— diplomatisch gesprochen — wenig hilfreich.

6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen, der nicht so sinnlos ist wie
der von F. Vester. Man definiert einen verschérften Konvergenzbegriff wie folgt:

Definition: Die Folge a,, konvergiert geometrisch gegen a, wenn es ein g mit 0 < g < 1 gibt, derart
dass |a, —a| < g™ fiir alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus: ,es gibt ..., so dass fiir alle ...,
wéihrend die die Definition 6.3 deren 3 benotigt: ,,fiir alle ... gibt es ein ..., so dass fiir alle ...

Dafiir muss man in Kauf nehmen, dass z.B. die Folge (1) nicht geometrisch konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die Definition 6.3 zu verste-
hen und anzuwenden, sollte nicht Mathematik studieren! Auch Informatikern und Physikern
ist sie zuzumuten!

Es ist niitzlich, auch co und —oo als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (a,), divergiert bestimmt gegen co und schreibt lim,, o a, =
0o, wenn es fir jedes r € R ein N € N existiert, so dass a, > r fir alle n > N gilt.

Wie definiert man lim,,_, o a,, = —00??

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunichst wollen wir eine abkiirzende Schreibweise fiir Summen der Art b, + b;,41 + - - - + by, einfithren —
wo m < n sei. Wir setzen

D bk = b+ bngr + -+ by

k=m
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Insbesondere sei

k=n
Falls n < m ist setzen wir .
> b =0
k=m
Das Symbol
> bk
k=0

wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens bedeutet es die Folge
(Sn)nen, WO Sy :=bg + by + -+ + b, = > ;_, bi definiert ist, und zweitens bedeutet es den Limes dieser
Folge, so es ihn denn gibt.

Man sagt also z.B.: Die (unendliche) Reihe

konvergiert, und man schreibt
o0
E b, = s,
k=0

wenn lim,, ., S, = S ist.

Wir haben also den Begriff der unendlichen Reihen und ihrer Werte auf den Begriff der Folgen und deren
Grenzwerte zuriickgefiihrt.

6.8 Im Ubrigen kann man jede Folge (a,, )nen als unendliche Reihe > e bi, schreiben, indem man by = aq
und by, = ap — ap_1 fir k > 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschriebene Folgen. Mal ist die eine,
mal die andere Schreibweise niitzlich oder von der untersuchten Fragestellung her gegeben.

6.9 Der Limes einer Funktion f bei Anniherung an einen Punkt z; € R hat nur dann Sinn,
wenn in beliebiger Nihe von xy Punkte des Definitionsbereiches von f liegen. Sei also D C R, f: D — R
eine Funktion. Wir setzen voraus: Fiir jedes € > 0 gebe es ein ¢ € D mit |x — x| < . (Dies ist auf triviale
Weise erfiillt, wenn xg € D ist. Ist aber z.B. D =]0, 1], d.h. die Menge der z € R mit 0 < = < 1, so eriillt
sowohl g = 0 als auch zy = 1 diese Bedingung.)

Dann definieren wir: Es ist lim,_,,, f(z) = b genau dann, wenn fiir jede Folge (a,), mit a, € D und
lim,, o an, = xo die Gleichung lim,, ., f(a,) = b gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei An#iherung an zy nédhert, auf den
Begriff des Grenzwertes von Folgen zuriickgefiihrt.

(Man kann diese Art Grenzwert auch auf andere, dquivalente Weise definieren: Fiir jedes € > 0 gibt es
ein 0 > 0, so dass fiir alle x € D mit |x — x¢| < ¢ die Ungleichung |f(z) — b] < € gilt.)

Man benétigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die Ableitung einer Funktion
als Grenzwert des Differenzenquotienten definieren will:

f(zo+h) — f(z0) — lim f(x) — f(20)

h—0 h T—x0 T — X0
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Examples 6.10 a) Die Folge (%L) konvergiert gegen 0. Denn wegen des archimedischen Axioms gibt es
keine reelle Zahl ¢ > 0 mit ¢ < % fiir alle n. Also ist % < ¢ fiir mindestens ein n € N;. Da aber, wie
wir wissen, %ﬂ < % gilt, folgt aus % < g, dass % < ¢ fiir alle m > n gilt. Ich erinnere jedoch an die

(bestimmte) Divergenz der harmonischen Reihe.

b) Fiir reelle z mit |z| < 1 konvergiert die Folge 2™ auch gegen 0. Dies ist vielleicht jedem klar, aber nicht
so unmittelbar rigoros zu beweisen. Ich will auf den Beweis verzichten. Sie werden ihn in der Analysis 1
lernen.

Fiir x = 1 konvergiert diese Folge offenbar gegen 1. Fiir x > 1 divergiert sie bestimmt gegen oco. Fiir
x < —1 hat sie keinen Limes, auch nicht den Limes —oo.

¢) Sehr wichtig, vor allem fiir theoretische Uberlegungen, ist die geometrische Reihe
oo
>
n=1

Wir berechnen zunéchst die endlichen Teilsummen ) ;2™ =: s3,. Rechne

k k41
(1—x)sk:sk—xskzg xk—g 2P =1 - 2"
n=0 n=1

Es folgt fiir x # 1
k k+1

n_l—a:
Zw T

n=0

k+1 = 0 fiir || < 1 gilt, hat man fiir diese =

= 1
nzzjoxnzl—a:

Fiir |z| > 1 konvergiert die geometrische Reihe nicht.

Da limy_ . @

d) Betrachten Sie die Funktion f, die auf den reellen Zahlen folgendermaflen definiert ist: Fiir rationale x
sei f(r) := 22, fiir irrationale x sei f(z) = 0. Dann ist lim, .o f(x) = 0. Ist hingegen x¢ # 0, so existiert
lim,_,4, f(z) nicht.

Ferner ist f sogar in 0 (aber sonst nirgend) differenzierbar.
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7 Allgemeine Potenzen

1. Wir studieren zunéachst die Potenzen von 2:
2l =92 922=4 23=8,...,2° =512, 210=1024,....

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen, und zwar mit der Einheit 1
cm : Wandert man vom Nullpunkt aus auf der waagerechten Achse um 5 cm nach rechts, so miissen wir
von dort um 32 cm nach oben gehen, um den Wert 2° = 32 abzutragen. 4 cm weiter miissen wir schon
um 5,12 m nach oben gehen. Noch einen cm weiter auf der waagerechten Achse, so sind wir in der Hohe
bereits bei mehr als 10 m angelangt, was bestimmt die Dimension dieses Raumes sprengt. Selbst eine
Tafel von der Hohe des Himalaya, reicht nicht aus, um den Punkt zu markieren, der dem Wert von 22° in
Zentimetern entspricht.

Man spricht von exponentiellem Wachstum.

Nun wollen wir doch gleich sowohl 20 — 2! als auch 2'9~! ausrechnen:
210 21 = 1024 — 2=1022, 21971 =2% =512

Man sieht, dass im Allgemeinen 2% — 20 # 297t ist. Das Beispiel 22 — 2! = 227! ist die grofie Ausnahme!

2. Fiir jede reelle (oder komplexe) Zahl a und jede positive ganze Zahl n ist klar, was a™ bedeutet:

at =a, a* = aa, a® = aaa, ...

Man kann diese Potenzen induktiv definieren: a! := a, a"™' := a"a. (Man kann solche Potenzen mit

positiven ganzen Exponenten immer dann definieren, wenn a in einem Bereich liegt, wo eine assoziative
Multiplikation gegeben ist.)

Man iiberlegt sich leicht folgende Regeln

&m+n — am . an (2)

(ab)" = a™b" (3)

Beide Regeln kann man als Distributivgesetze der Potenzrechnung auffassen. Man erkennt an ihnen die
vollige Unsymmetrie in Bezug auf Basis und Exponent einer Potenz. (Beinahe hétte ich einmal einen
Examenskandidaten wegen seelischer Grausamkeit verklagt, weil er in seiner Klausur die absurde Unregel
a’t¢ = a® + a° benutzt hatte. Ich habe mich dann damit begniigt, die Klausur mit 6 zu bewerten!)

(Betrachtet man den Fall wo die Basen einem allgemeinen Bereich H mit assoziativen Produkt angehoren,
so gilt immer die erste Regel. Die zweite gilt zwar dann, wenn das Produkt auch kommutativ ist, aber
ansonsten in der Regel nicht. Gelten die rechte und die linke Kiirzungsregel, so folgt die Gleichheit ab = ba
aus der Gleichheit (ab)? = a?b?.)

Aus der Regel (2) kann man noch folgende Regel ableiten:

()" = a7 (1)
Wegen Regel (4) definiert man iibrigens a®* := a(*"). Beachten Sie dazu 23%) = 29 = 512, (23)2 =82 =
64 = 26.

3. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definieren, etwa 2727 Antwort: Man
kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man den Exponenten um 1 erhoht,
wird die Potenz verdoppelt: 2"+! = 2™ .2, Das bedeutet aber auch: Vermindert man den Exponenten um
eins (und bleibt er dabei positiv), so wird die Potenz halbiert:



Wenn man diese Regel fiir allgemeingiiltig erklért,, d.h. auf alle ganzen Zahlen n ausdehnt, erhélt man

1 1 1 11 1
0 1-1 o _ -1 _ * 1 _ = -2 _ _ = -n _ _~
20 =2 =5 2=1, 2 =3 1—2,2 ——22—4,...72 =

Allgemein, ist a # 0 eine reelle Zahl, so definiert man

falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)72 = 4.)
Geht das gut?

Ja! Und zwar in folgendem Sinne: Fiir jede reelle Zahl a # 0 und jede ganze Zahl n, sei sie positiv, negativ
oder 0, ist die Potenz o™ eindeutig definiert, und die Regeln (2), (3), (4) gelten.

Wenn umgekehrt die Regel (2) gelten soll und a™ fiir n € Ny wie iiblich definiert ist, so muss a° = 1
( g g g ;

und ¢= " = ﬁ fiir @ # 0 gelten. Denn aus aof = a%a! = a"*! = o' = a folgt a® = 1 (fiir a # 0). Aus
a”"a" = a” "t = a® =1 folgt danm o™ = —.)
a

4. Wir wollen uns jetzt iiberlegen, ob, wann und wie man Potenzen mit rationalen Exponenten definieren
kann. Soll (2) und damit auch (4) (fiir rationale m und positive ganze n) weiterhin gelten, so muss

(") =a
sein, d.h. a'/™ sollte diejenige Zahl (die auch mit {/a bezeichnet wird) sein, deren n-te Potenz a ist. Fiir

ungerade n macht dies (im Bereich der reellen Zahlen) keine Probleme. Ist aber n gerade, so gibt es fiir
a > 0 zwei ,n-te Wurzeln“ und fiir a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir a > 0 voraussetzen und a(*/™) > 0 verlangen.

Wenn wir schliellich noch ) .

o i (@)F = YT (= ()" = (Y)")
fiir ganze m,n mit n > 0 definieren, so ist a® fiir reelle ¢ > 0 und rationale = so definiert, dass die Regeln
(2) bis (4) gelten.

Ubrigens ist a™ rational, wenn a # 0 rational und n ganz ist. hingegen ist 2'/2 — wir wir bereits wissen —
nicht rational.

5. SchlieBlich wollen wir noch a” fiir beliebige reelle Zahlen 2 und a > 0 definieren. Die o.a. Regeln (2) bis
(4) geben alleine kein Rezept. Wir verlangen zusétzlich die sogenannte Stetigkeit der Funktion = — a®.

Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir ,definieren® (und miissen das auch tun,
wenn a” ,stetig® sein soll):

Ist z = lim b, mit b, € Q, so sei a” := lim a’". (5)
n—oo n—oo
Diese ,,Definition“ hat natiirlich einen oder sogar zwei Haken. Erstens muss man sich fragen: Existiert
der Grenzwert lim,,_, o a’* iiberhaupt? Da die reelle Zahl z auf viele Weisen Limes einer Folge ratio-
naler Zahlen ist, miissen wir uns zweitens fragen: Wenn lim,, . b/, = lim,_, b, ist, ist dann auch
lim,,— 0o abn = lim,,—, oo @b ?

Die Antwort zu beiden Fragen ist: Ja. Allerdings ist der Beweis dafiir keineswegs trivial. Eine prézise
Durchfiihrung ist im Schulunterricht vielleicht nicht méglich. (Man kann den Beweis leicht auf die
folgende Behauptung reduzieren: ,Ist (c,) eine rationale Nullfolge, so ist lim, ., a®» = 1. Aber
letzteres zu zeigen, ist nicht leicht.)
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6. Ist die Funktion f(z) = a® (fiir @ > 0) differenzierbar, und was ist gegebenenfalls die Ableitung? Wir
studieren den Differenzenquotienten:

=: ¢ existiert. Dies ist so — allerdings nicht ganz einfach

Man kann f also differenzieren, wenn ’llin%)
zu zeigen. Man erhélt, dass die Ableitung von a® proportional zu a” ist, wobei der Proportionalitéitsfaktor
¢ (monoton) von a abhéngt.

Es gibt nun — was wiederum nicht leicht zu beweisen ist — genau eine Zahl e > 0 mit der Eigenschaft
(e*)" = e®. Dies ist iibrigens dieselbe Zahl e, die schon im Paragrafen 5. definiert wurde.

7. Bei der Einfithrung der allgemeinen Potenz auf der Universitédt geht man gemeinhin einen Umweg, der
es erlaubt, den unter 5. und 6. genannten Probleme elegant aus dem Wege zu gehen:

Man definiert zunéchst eine Funktion ,,exp“ durch

oo n

exp(x) := Z % (6)

n=0

Die Reihe konvergiert fiir alle reellen (sogar komplexen) x. Dann zeigt man die fundamentale Gleichung

exp(z +y) = exp(x) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Aufwand (Cauchy-Produkt,
Binomial-Formel) und darf nicht durch den Hinweis exp(z) = e” und Regel (2) erledigt werden! Warum
nicht?

Aus (7) folgert man zunichst die Stetigkeit von exp. Auch die Differenzierbarkeit und exp’ = exp ist
leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(x) = e” zuniichst fiir die natiirlichen, danach fiir die
ganzen und schlielich fiir die rationalen Zahlen, wobei die rechte Seite wie unter 2., 3. und 4.definiert
sei.. Das geht wie geschmiert!

Zwei stetige Funktionen auf R, die auf Q iibereinstimmen, sind gleich, wie man leicht sieht. Da exp stetig
ist, gibt es also genau eine stetige Fortsetzung von e® auf ganz R, ndmlich e® := exp(z).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(z) als z-te Potenz von e anzusehen und mit
e” zu bezeichnen.

Aber wir wollen natiirlich auch a® fiir beliebige a > 0 definieren. Dazu definiert man den Logarithmus
als Umkehrfunktion der Exponentialfunktion. Man zeigt dazu exp(x) > 0, also exp’(z) > 0. Somit ist exp
streng monoton wachsend. Das Bild besteht ferner aus allen positiven reellen Zahlen: exp(R) = R* . Man
hat also eine Umkehrabbildung, den natiirlichen Logarithmus

In:R} =R

(Man schreibt auch ,log® statt ,ln“.) Fiir beliebige a > 0 sieht man sofort, dass die Funktion
f(x) := exp(xzIn(a)) die Gleichungen f(z +y) = f(x)f(y) sowie f(1) = a erfiillt, und deshalb mit a®

fiir alle rationalen x iibereinstimmt. Dies rechtfertigt es, a® := exp(z In(a)) fiir alle reellen x zu definieren.

7. Seien ¢,z € C, ¢ # 0 Man kann versuchen ¢* := exp(zIn(c)) zu definieren. Dies hat den Vorzug, dass
man bis auf die Bedingung ¢ # 0 keine Einschrankung machen muss. Der Nachteil liegt darin, dass die
yFunktion® In auf C* = C — {0} von Natur aus unendlich viele Werte hat, die sich um Vielfache von
2mi unterscheiden. Das kommt daher, dass im Komplexen die Funktion exp nicht injektiv ist. Jeder noch
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so geschickt ausgewéhlte, auf ganz C* eindeutig definierte Logarithmus ist weder iiberall stetig, noch
erfiillt er allgemein die Gleichung In(z122) = In(z1) + In(22).

Man muss also damit leben, dass etwa der Ausdruck ¢ zuniichst unendlich viele Werte hat (die iibrigens
reell sind) und wenn man mit ihm rechnen will, angeben, welcher der moglichen Werte gemeint ist.
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8 Potenzen und Potenztiirme

1. a) Fiir beliebige reelle Zahlen a, b gilt: a+b=0b+ a und ab = ba.

Fiir Potenzen ist das anders:
23 =8, aber 32 = 0.

Hingegen gilt 2% = 42. Gibt es weiter solche Fille?

27 9
N i (27
1) M

Zunichst wollen wir uns daran erinnern, wie diese Ausdriicke definiert sind. Z.B. ist fiir a > 0
al = (%)9

definiert. Und fragen Sie, ob die positive oder negative Wurzel gemeint ist, so ist die Antwort: Die positive!

9\ ¥ 3\ 3\ 234 s\ oyt
@) -G)) -G -(E)) - ()
Allgemeiner zeigt man ganz analog zur dieser Rechnung: Ist
1 n 1 n+1
a=14+—-) , b=(14+— ,
n n

so gilt a® = b*. Man erkennt schon hier, dass es unendlich viele Paare verschiedener rationaler Zahlen
(a,b) mit a® = b gibt.

b) Wir vergleichen

Jetzt rechnen wir:

3.9
2'4

¢) Wir wollen alle Paare (x,y) positiver reeller Zahlen mit z¥ = y* finden. Es gilt:

1 1
2 =y¥ <= In(zY) =ln(y*) < yher=chy < 21y
Z Yy
Will man also Paare (z,y) positiver reeller Zahlen mit z¥ = y*, = # y finden, so hat man die Funktion
f(z) = 1“71 darauf zu untersuchen, ob sie mehrfach denselben Wert annimmt.

Deshalb werden wir diese Funktion auf ihrem Definitionsbereich, d.h. dem Bereich der positiven reellen
Zahlen, jetzt diskutieren:

i. Nullstellen:
f&)=0 < Ilnz =0 <= z=1.
Offenbar ist f(z) <0 fir 0 <z < 1 und f(z) > 0 fir z > 1.
ii. Verhalten der Funktion nahe 0. Offenbar geht f(z) gegen —oo, wenn z gegen 0 geht.
iii. Die Ableitung;:
() = (1/m)-m2—1~lnx _ 1—lnx

T x

Also gilt folgendes
f'(x) =0 < x = e, die Eulersche Zahl,

Ferner ist f'(z) > 0 fiir 0 < 2z < e und f'(x) < 0 fiir x > e.

Also kann man sich bereits ein Bild der Funktion machen. Sie steigt zwischen 0 und e monoton an, lduft
bei 1 durch die x-Achse, erreicht bei e ein Maximum und fillt fiir > e monoton, bleibt aber positiv.
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iv. Verhalten fiir grofle . Man weif}; dass die Logarithmusfunktion sehr langsam wiéchst. Deshalb gilt
lim, o f(x) = 0. (Dies lernt man in der Vorlesung Analysis 1.)

Was erkennt man daraus? (Skizze!)

Zu jeder reellen Zahl x mit 1 < = < e gibt es genau eine weitere Zahl y mit f(z) = f(y), und dieses y ist
grofier als e.

Es gibt also sehr viele Paare positiver reeller Zahlen (x,y), fiir die 2¥ = y*, aber x # y gilt. Verlangt man
allerdings, dass x,y beide ganz (und positiv) sind, so ist, bis auf die Reihenfolge (2,4) das einzige solche
Paar, da 2 die einzige ganze Zahl zwischen 1 und e ist.

Beachte aber, dass auch (—2)~* = ﬁ =4 = (—4)"?ist.

2 a) Auch das Assoziativgesetz gilt nicht fiir Potenzen. Wihrend a+ (b+c¢) = (a+b)+c und a(bec) = (ab)c
gelten, ist
(3%)% = 3%% = 3% aber 3¢") =327 .

Da (a’)¢ = a®¢ ist, hilt man sich an die Konvention:

c c Cd Cd \/52 2
a® :=a®) und analog a*° = o) usw., z.B. \/i\/5 = ﬁﬁ = \/52 =2. (8)

Wir wollen fiir diesen Vortrag folgende Schreibweise einfithren: Wir schreiben al'! := a, al?! := a%, al¥l =

a®

a® usw., alntll = q(@™),

Beachte, dass im Allgemeinen al™+"] (a[m])(a["l) ist, z.B. 32T £ (30)3 wie wir schon wissen. Ein
weiteres Beispiel ist:
9l242] _ 922 _ 92* _ 216 aber (212)2*) = 44 = 98 |

b) Nun betrachten wir die riesige Zahl 911%). Sicher ist 31'% zwar immer noch beachtlich gro8, aber viel
kleiner. Wir stellen uns die Frage: Welches ist die kleinste natiirliche Zahl n mit 3[" > 910017
Sicher ist 3m*1 = 3.3™ > 2. 3™, Hieraus folgt: Sind k,m € N, so gilt

>3 —=3">2.3 (9)
Wir setzen jetzt voraus, m,n seien natiirliche Zahlen mit 3lm > 9lnl. Da 9" eine Potenz von 3 (mit
einem positiven ganzen Exponenten) ist, folgt mit (9), dass dann auch 3[™ > 2.9 also auch

3[m+1] _ 33[m] > 32.9[n] _ 9[n+1]

gilt. Da 3% > 9, d.h. 32 > 91 folgt mit Induktion 3"+ > 9lnl,
Es ist also bereits 31191 > 91100 Therraschend, nicht wahr?

1

Dasselbe gilt, wenn man 3 durch eine beliebige ganze Zahl ¢ > 3 und 9 durch a*~" ersetzt. Der Beweis

hierfiir ist derselbe.

c) Auf die Frage, fiir welche n, m die Ungleichung 2] > 4[m] erfiillt ist, hat man die folgende Antwort:

Es gilt

(Die zweite Ungleichung kann man zu > verschirfen, wenn n > 2 ist.)

Wenn man in dem Potenzturm 4[" die oberste 4 als 22 schreibt, erkennt man sofort die Giiltigkeit der
zweiten Ungleichung.

30



Die erste Ungleichung ist offenbar fiir n = 1 giiltig. Dann iiberlegt man sich: Sind k£ > [ gerade Zahlen,
so folgt aus 2% > 2! die Ungleichung 2¥ > 2 - 2!, Es gelte nun

olml > 4lnl ynd n > 1, (10)

also m > 2. Deshalb sind die beiden Terme in (10) Potenzen von 2 mit geraden Exponenten. Die Unglei-
chung (10) impliziert also
olml < 9. 4ln]

also
olm+1] 22-4["] — yln+1]
Per Induktion folgt mithin 2["+2 > 4[],

3. Die Folge (2, 22, 222, ...) ist streng monoton wachsend und besteht aus ganzen Zahlen. Deshalb gilt
lim,, o 21" = 0o. Auch die Folge (\/ﬁ[”])n ist streng monoton wachsend. Denn die Funktion f(z) := v/2"

ist streng monoton wachsend. Deshalb ist V2 < V2 , folglich V2YT < V2 . Usw. Man sieht (mit
vollstédndiger Induktion) \/i[n] < \/Q[nﬂ]. Analog gehts fiir alle (b)) mit b > 1.

Sind die Limites dieser Folgen immer oco?

Uberraschender Weise gilt
lim V2" =2

n—oo

BEWEIS: Wenn man in dem Potenzturm \/i[n] das oberste Stockwerk durch 2 ersetzt, erhilt man (mit

einem Teleskopargument, vgl.(8)) einerseits die Zahl 2, andererseits sicher ein groBeres Ergebnis als v/2 .

Es ist also \@[n] < 2 fiir alle n > 1. Da die Folge (\@[n])n monoton wachsend und durch 2 nach oben
beschrankt ist, hat sie einen endlichen Limes ¢ < 2.

Um ¢ zu bestimmen, rechnen wir

img, oo (] n
NG V2R v g

n—oo
Die Gleichung \/it =t hat die Losungen ¢t = 2 und ¢ = 4. Durch eine Kurvendiskussion stellt man fest,
dass sie keine weiteren haben kann. Wegen ¢ < 2 folgt t = 2. —

Diese Uberlegungen kann man allgemeiner, statt nur fiir 2'/2 fiir '/ mit a > 1 anstellen. Da

Ina
1 1/a _ —°
n(a/?) = =
ist, ist die grofite der Zahlen unter den a'/® die Zahl el/¢. (Beachten Sie dass nach obigen Betrachtungen
die Funktion Inz/z ein totales Maximum bei 2 = e hat.)

Fiir a € [1,¢] ist lim, o (a"/*)™ = a. Fiir a > e ist lim,, o (a'/*)" = b, wobei b €]1, ¢[ so gewihlt ist,
dass a® = b* ist. Nicht wahr?

Zum Schluss beweisen wir

lim b = oo, falls b > e'/¢ gilt.

n—00

Da die Folge (b)) monoton wachsend ist, geniigt es zu zeigen, dass sie keinen endlichen Limes hat. Wiire
dieser gleich ¢, so golte (s.0.) bt =t, also b < t'/*. Deshalb wiire b < e'/¢. —

Fragt man nach der Konvergenz von (b["])n fiir 0 < b < 1, so kann man beweisen, dass dieselbe genau
fiir die b > (1/e)¢ gilt. Hier ist zu beachten, dass die Folge (b)), hier nicht mehr monoton ist.
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9 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden fiir viele von IThnen eine beachtliche
Hiirde sein, die Sie jedoch iiberwinden miissen, wollen Sie mit Erfolg Mathematik, Informatik oder Physik
studieren! Sie sollten erkennen, wie simpel, ja geradezu primitiv diese Dinge sind. Die Mengensprache
ist eine wichtige und grundlegende Sprache der modernen Mathematik.

9.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchsfreie Weise angibt, welche
Dinge zu ihr gehoren sollen, d.h. fiir welche  das Symbol z € M gelten soll, d.h. welche Dinge Elemente
der Menge sind..

Gilt dies fiir nur endlich viele Dinge, d.h ist die Menge M endlich, so kann man sie durch Angabe aller
ihrer Elemente beschreiben, wobei es auf die Reihenfolge nicht ankommt, und auch nicht darauf, ob man
zufillig eines ihrer Elemente mehrfach angibt:

{3,7,2,7,1,7} = {3,7,2,3,7,1,2} = {3,7,2,1} = {1,2,3,7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Mengen N,Z,Q,R als wohlbe-
schrieben ansehen und aus ihnen weitere Mengen gewinnen, z.B. die Menge der geraden ganzen Zahlen:

{n|neZ2teilt n} ={n €Z| 2 teilt n}

(Statt des senkrechten Striches ‘ schreiben manche auch ,,;* oder ,,:“ .) Da a 1 b bedeuten soll, dass a kein

Teiler von b ist, ist {n € Z | 2{ n} die Menge der ungeraden Zahlen.

Wichtige Mengen reeller Zahlen sind die Intervalle. Seien a,b € R mit a < b, so schreibt man:
[a,0] ={xeR|a<z<b}, Jao,bi={zeR|a<z<b},

Ja,b) :={zeR|a<z<b}, [a,b[={r€R|a<x<b}

Obwohl diese Mengen sich (bei festem a, b) in hochstens 2 Elementen unterscheiden, darf man sie nicht
miteinander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die sogenannte leere Menge, die
mit () bezeichnet wird.

9.2 Seien M, N Mengen. Man nennt M eine Teilmenge von N (und manchmal N eine Obermenge
von M) und schreibt M C N oder N D M, wenn jedes Element von M auch ein solches von N ist:

MCN < [xeszeN}

(Die Aussage M C N kann man auch so ausdriicken: , Fiir alle x gilt [t € M = z € N].)

Dabei schlieflen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also M C M. (Manche benutzen
lieber die Bezeichnung M C N.)

Zum Beispiel gelten

{1,3,7} € {1,2,3,7}, {n€Z|6ln} C{neZ]|3n}, [ab[Ca,b]

9.3 Fiir zwei Aussagen A, B bedeutet A = B eine der folgenden untereinander dquivalenten Aussagen:
,wenn A gilt, dann gilt auch B
»aus A folgt B“
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»A ist eine hinreichende Bedingung fiir B¢
»B ist eine notwendige Bedingung fiir A“
B gilt, oder A gilt nicht*

Man sagt dazu auch: ,, A impliziert B*.

9.4 Der Durchschnitt M; N My zweier Mengen M; und Ms ist die Menge aller Elemente, die sowohl
Elemente von M; als auch solche von M5 sind:

MlﬂMQZ{JJ‘LUGMl undeMg}
Beispiele: {1,7,3,8,4,9} N{3,7,2,7,1,7} = {1,3,7}.
{neZ|2ntn{neZ|3n}={neZ|6|n}. 0,3NZ = {1,2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne gebraucht wird als in dem
Satz ,Der Durchschnitt der Schokoladenpreise in diesem Supermarkt ist 79 Zent*.

Die Vereinigung M; U Ms zweier Mengen M7 und M> ist die Menge aller Elemente, die in M; oder M,
liegen, d.h. die Element mindestens einer der beiden Mengen sind.

M1UMQI:{1‘|I€M1 Oder.TEMg}

Zum Beispiel {1,7,3,8,4,9} U {3,7,2,7,1,7} = {1,2,3,4,7,8,9} oder [0,2] U [2,3] = [0,3] oder
[0, 3[U[2, 4[= [0, 4]

Man mag geneigt sein zu sagen, die Elemente von M; U M, seien die Elemente von M; und von Ms. Man
sollte sich dariiber im Klaren sein, dass bei dieser Sprechweise nicht gemeint ist: M; U My besteht aus
den Elementen z, fiir die gilt, dass = sowohl Element von Mj, als auch Element von Ms ist. (Letztere
Menge wiire gerade der Durchschnitt My N M,.)

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstédnde verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei Mengen bilden, ja sogar von
unendlich vielen Mengen.

9.5 Man betrachtet auch die Mengendifferenz M — N (auch M \ N geschrieben):
M—-N:={xeM|x¢ N}

Zum Beispiel {1,3,4,7,8,9} — {1,2,3,5,7} ={4,8,9} oder Z—{n€Z | 2tn} ={n€Z| 2n}

Die symmetrische Differenz zweier Mengen My, M> ist
(Ml U Mg) — (Ml M Mg) = (M1 — Mg) U (M2 — Ml)

9.6 Zwei Aussagen A, B kann man logisch verkniipfen durch die ,,Junktoren* ‘und’ und ‘oder’. Diese
werden manchmal abgekiirzt: A heifit ‘und’, V heifit ‘oder’. Dabei bedeutet V kein ausschlieendes ‘oder’.

AV B ist genau dann wahr, wenn mindestens eine der Aussagen A, B wahr ist.
AN B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (A A B) V C bedeutet etwas anderes als A A (B V C). Manche Unklarheiten in nicht formali-
sierten Texten entstehen dadurch, dass man solcherlei nicht leicht unterschiedlich ausdriicken kann. In
verbalen Sédtzen haben die Klammern — so man sie iiberhaupt verwendet — eine andere Bedeutung als in
mathematischen und logischen Formeln.
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Die beiden folgenden Ausdriicke sind dquivalent: (AA B)V C und (AV C)A (BV C).
Selbiges gilt fiir AA (BVC) und (AAB)V (AAC).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ ; das man auch — A schreibt. Genau dann ist
— A richtig, wenn A falsch ist.

In der klassischen Logik, die wir in der Regel benutzen ist — (— A) mit A dquivalent.
Die Aussage — (A A B) ist dquivalent zu (— A) V (— B).

Und — (A V B) ist dquivalent zu (— A) A (— B).

Die Aussage A = B bedeutet (in der klassischen Logik) nichts anderes als (— A) V B.
Und A <= B bedeutet natiirlich (A = B) A (B = A).

9.7 Der Zusammenhang zwischen den Mengenverkniipfungen und den Junktoren ist:
reEMNN < zeMAxeN

rtEMUN < zeMVzeN

Aus den o.a. logischen (Distributiv-)Regeln ergibt sich fiir Mengen (LN M)UN = (LUN)N (M U N);
und dasselbe , wenn man U mit N vertauscht. Es gilt also die Distributivitdt von ‘1Y’ beziiglich ‘U’ und
auc diejenige von U beziiglich ‘".

9.8 Aufler den Junktoren braucht man noch die sogenannten Quantoren: , fiir alle“ und , es gibt“, welch
letzteres nichts anderes bedeutet als ,fiir ein“. Man braucht dazu Aussagen iiber eine , Variable“, etwa
2. Man schreibt A(z), was bedeuten soll: A gilt fiir z. Ein Beispiel ist die Aussage ¢ € R = 2z =z +x.

Die abkiirzenden Bezeichnungen sind: A, A(z) in der Bedeutung: ,fiir alle z gilt A“ (Allquantor)
und: \/, A(z) in der Bedeutung: ,fiir (mindestens) ein z gilt A“ (Existenzquantor).
Mathematiker benutzen hiufiger die Abkiirzungen V statt A und 3 statt \/.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt fiir zwei Existenzquantoren. Hingegen
wissen wir von der Definition der Konvergenz, dass man einen All- mit einem Existenzquantor nicht
vertauschen darf.

In den natiirlichen Sprachen werden Allquantoren haufig versteckt. Z.B. gilt folgender Satz:
»Seien x,y (beliebige) reelle Zahlen. Dann gilt zy = yx.“ Damit ist gemeint:

/\/\((xGR/\y€R):>xy:yx>

Wenn man sagt ,,fiir eine reelle Zahl x gilt 2z = x + z“, so meint man meist: ,,fiir alle reellen Zahlen x gilt
2z = x + x“. Aus diesem Grunde empfiehlt es sich, den Existenzquantor mit ,es gibt“ zu verbalisieren.
Statt ,, Fiir eine reelle Zahl = (aber nicht unbedingt fiir alle) gilt 2* = xz“ sollte man sagen ,es gibt eine
reelle Zahl x mit % = za“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 9.9 a) Die Aussagen A, (v € N= 2% = zx) und A\ (x € N = z” # xx) sind beide falsch.
b) Hingegen sind die Aussagen \/, (z € NA2® = zx) und \/ (x € NA 2 # xx) beide richtig.
¢) Fiir alle Mengen M, N gilt

MCN < N\@zeM=z€eN)

x
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9.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X x Y (genannt nach Descartes) versteht
man die Menge aller Paare (z,y) mit x € X, y € Y. Zum Beispiel kann man die euklidische Ebene
bekanntlich als Menge aller Paare (z,y) reeller Zahlen auffassen. Also ,ist* sie R x R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden. Statt R x R schreibt man
auch R2. Entsprechend ist R® usw. und R™ zu verstehen. Die Elemente (1,22, ...,7,) des R™ heilen
n-tupel reeller Zahlen.

Ist K ein beliebiger Korper, so definiert man auf dem K™ eine Addition wie folgt:
(al,ag,...,an) + (bl,bQ,...7bn) = (a1 +b1 , a2 +b2,...,an +bn) (11)

Alle Axiome der Addition in einem Kérper (oder Ring) sind fiir diese Addition erfiillt. Definiert man
noch eine Multiplikation durch

(al,ag,...,an) . (bl,bg,...,bn) = (albl,agbg,...,anbn)

so wird der K™ zu einem Ring, der aber fiir n > 1 kein Kérper ist. (Warum nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen von K™:
a-(bi,...,by) = (aby,...,aby) (12)

fiir a,by,...,b, € K. Man nennt K™ zusammen mit der Addition (11) und der Multiplikation (12) einen
Vektorraum.
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10 Abbildungen

Ohne den Begriff ,Abbildung® geht in der modernen Mathematik gar nichts. Zu einer Abbil-
dung gehéren eine Startmenge (Definitionsbereich) X und eine Zielmenge Y. Eine Abbildung
f : X — Y besteht nun darin, dass jedem Element € X genau ein (d.h. ein, aber auch nur ein)
Element f(z) € Y zugeordnet wird. Wird durch f auch nur einem einzigen Element z € X kein oder
mehr als ein Element aus Y zugeordnet, so ist f keine Abbildung.

Z.B.ist f: R — R, f(x) := 1/x keine Abildung. Hingegen ist f : R — {0} — R, f(z) := 1/2 sehr wohl
eine solche.

Anderen Einschrinkungen ist der Begriff Abbildung nicht unterworfen. Z.B. ist folgendes eine Abbildung
f:R— R definiert durch f(z) =1firz €Q, f(x)=0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber prézise definiert. (Dabei ist allerdings zuzugeben, dass
es bei einer gemessenen physikalischen Grofle keinen Sinn hat, zu fragen, ob sie rational oder irrational
ist.)

Ein weiteres Beispiel ist:
g:R—=R, g(x)=2z*firz>0, g(x) = —2* fir £ <0
Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differenzierbar!

Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Element abgebildet wird, z.B.
a:{1,2,3} - {1,2,3}, 1—2,2—2 3—3
8:{1,2,3} - {1,2,3}, 1—2,2—3 3—1

Definitions 10.1 Sei f: X — Y eine Abbildung.

a) X heifit die Startmenge (kurz: der Start) und Y die Zielmenge (kurz: das Ziel) von f. (In man-
chen Situationen, insbesondere in der Linearen Algebra, ist man sehr streng und unterscheidet zwischen
Abbildungen, die nur bis auf die Start- oder die Zielmenge iibereinstimmen, z.B. zwischen den Abbildungen
f RoR x—a22undg:R—R,, v+ 2%)

b) Die Bildmenge (auch das Bild) im(f) = f(X) von f ist die Menge {f(z) | x € X} =
{y €Y | es existiert ein x € X mit f(x) = y}. Die Bildmenge ist eine Teilmenge der Zielmenge.

¢) [ heifst injektiv, wenn verschiedene Elemente von X auch verschiedene Bilder haben, d.h. wenn aus
f(z) = f(&') immer x = 2’ folgt. (Dass aus x = x’ immer f(x) = f(z') folgt, ist aufgrund des Begriffes
einer Abbildung klar, und hat deshalb nichts mit ‘“injektiv’ zu tun!)

d) f heifit surjektiv, wenn jedes Element y € Y das Bild (mindestens) eines x € X ist, d.h. wenn
f(X) =Y, also die Bildmenge gleich der Zielmenge ist.

e) f heifit bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f)Sind f : X =Y, g:Y — Z Abbildungen, so definiert man ihre Verkettung gof : X — Z durch
(gof)(x) := g(f(x)).

Examples 10.2 a) Die o.a. Abbildung « ist weder injektiv, noch surjektiv; 8 hingegen ist bijektiv.

b) Durch x — 22 kénnen, je nach Wahl von Start und Ziel, Abbildungen mit verschiedenen der o.a.
Eigenschaften definiert werden:

1) R — R, weder surjektiv noch injektiv,

2) R — R, surjektiv aber nicht injektiv,

3) Ry — R, injektiv aber nicht surjektiv,
)

4) Ry — Ry, sowohl surjektiv wie injektiv, also bijektiv.
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10.3 Sei f: X — Y eine bijektive Abbildung. Dann gibt es zu jedem y € Y genau ein (d.h. ein eindeutig
bestimmtes) € X mit f(z) = y. (Die Existenz dieses x folgt aus der Surjektivitéit, seine Eindeutigkeit
aus der Injektivitt.)

Dieses x wird mit f~!(y) bezeichnet. Macht man obiges fiir alle y € Y, so erhilt man eine Abbildung
f~':Y — X. Man nennt f~! auch die Umkehrabbildung von f. Sie ist nur dann definiert, wenn f
bijektiv ist. Natiirlich ist auch f~' bijektiv, wenn es {iberhaupt definiert ist. Achtung: Die Abbildung

1
f(x)
hat nichts mit f~!, wie wir es definiert haben, zu tun! (Ich kann natiirlich nicht dafiir garantieren, dass
vielleicht in dem einen oder anderen Buch oder einer Vorlesung die Abbildung z +— 1/f(x) nicht mit f~!
bezeichnet wird. Da mufl man eben aufpassen!)
Ist f: X — Y eine bijektive Abbildung, so gilt fof = =idy und f~lof =idx.

Sind umgekehrt f : X — Y und ¢ : Y — X Abbildungen mit gof = idx und fog = idy, so sind f,g
bijektiv, und es ist g = f~' und f =g~ '.

Xr —

Lemma 10.4 Se:
w-x Ly Lz
eine Folge von Abbildungen. Dann gilt ~yo(Boct) = (yo3)ecr.

Proof: Fiirw e W gilt
(ve(Bea))(w) = v((Bear)(w)) = y(B(a(w)))
und
((yoB)ea)(w) = (vof)(a(w)) = y(B(a(w)))
O

Mit anderen Worten: Sowohl yo(fea) als auch (yo83)oc ist die Abbildung, die entsteht, indem man erst
«, dann 3 und schlielich ~ ausfiihrt.

Beachten Sie, dass aof3 in obiger Situation meistens nicht definiert ist.
10.5 Natiirliche Zahlen. Man kann die natiirlichen Zahlen und das Rechnen mit ihnen iiber die Men-

genlehre einfithren. Die natiirlichen Zahlen sind dann die sogenannten Kardinalzahlen (Elementean-
zahlen) endlicher Mengen.

Ist m = #M, n=+#N und M N N = (), so kann man definieren m + n := #(M U N). Ebenso definiert
man mn := #(M x N), wobei man hier nicht fordern muss, dass M N N = sei.

Die Rechengesetze ergeben sich dann auf natiirliche Weise.

10.6 Sei f : X — Y eine beliebige Abbildung — die weder injektiv noch surjektiv sein muss. Dann
definiert man manchmal fiir Teilmengen V' C Y die folgende Menge:

V) ={ze X | f(x) eV}

Vorsicht: Trotz gleicher Bezeichnung handelt es sich hier nicht um die Umkehrabbildung von f, welche
ja nur dann definiert ist, wenn f bijektiv ist. Ist V Nim(f) = 0, so ist f~1(V) = 0, und umgekehrt.

Man kann f~1(V) im Allgemeinen nicht als
V) ={f") lyeV}
definieren. Das geht nur, wenn f bijektiv ist.

Ist U C X eine Teilmenge, so wird definiert:

fU):={f(x) |z € U}.
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10.7 Fiir endliche Mengen M, N gilt: Es gibt genau dann eine injektive Abbildung M — N, wenn #M <
#N ist. (Aufgabe: Wann gibt es eine surjektive Abbildung? Aufgepasst: Manchmal gibt es iiberhaupt
keine Abbildung.) Eine bijektive Abbildung f : M — N gibt es genau dann, wenn #M = #N ist. Von
nicht notwendig endlichen Mengen M, N kann man mit einigem Recht deshalb sagen, ihre ,, Elementezahl“
(man spricht auch von Méchtigkeit) sei gleich, wenn es eine bijektive Abbildung M — N gibt.

Frage: Gibt es eine bijektive Abbildung N — Z? Antwort: Ja.
0—0,1——-1,2—1, 3— =2, 4+— 2, usw., d.h.

—_ n/2 falls n gerade
(n+1)/2 falls n ungerade

10.8 Noch iiberraschender ist vielleicht, dass es eine bijektive Abbildung N — Q gibt.

Beweis: Wir sortieren die rationalen Zahlen (in Standardform) nach ihren Nennern und ihren Vorzeichen
in unendlich vielen Zeilen von unendlicher Léange, wobei jede Zeile eine Stelle weiter rechts anfingt als
die Vorangehende. Wir erhalten folgendes Schema:

0/1 1/1 2/1 3/1
~1/1 —=2/1 -3/1 —4/1
/2 3/2 5/2 7/2 ..
~1/2 —3/2 -5/2 —7/2
/3 2/3  4/3 5/3 ..
~1/3 —2/3 —4/3 —5/3

In jeder ,,Spalte“, d.h. senkrechten Reihe stehen nur endlich viele Zahlen, nimlich in der n-ten Spalte
genau n solche. Eine bijektive Abbildung N — Q wird dann wie folgt beschrieben:

0 wird auf das einzige Element der 1. Spalte, 1 und 2 werden auf die zwei Elemente der 2. Spalte, 3, 4 und
5 auf die drei Elemente der 3. Spalte abgebildet; usw. Die k Zahlen k(k —1)/2,...,(k+ 1)k — 1 werden
bijektiv auf die k Elemente der k-ten Spalte abgebildet. Zusammen ergibt sich eine bijektive Abbildung.

Das zum Beweis verwendete Verfahren wird auch Cauchy’sches Diagonalverfahren genannt. ,,Diagonal-
verfahren “deshalb, weil die endlichen Spalten im obigen Schema zu schrig, d.h. diagonal verlaufenden
Reihen werden, wenn man die Anfiinge der Zeilen untereinander schreibt. ,,Cauchy“ deshalb, weil Cauchy
analoge Diagonalen betrachtet, um eine niitzliche Art, unendliche Reihen miteinander zu multiplizieren,
zu beschreiben.

In einem abstrakten Sinne darf man also sagen, dass die Mengen N, Z, Q gleichviele Elemente haben.

Unendliche Mengen, fiir die es eine bijektive Abbildung N — M gibt, heilen abzéhlbar. (Warum?)

10.9 Vielleicht tiberrascht es Sie erneut, wenn wir jetzt zeigen, dass R in einem entsprechenden Sinne
sehr viel mehr Elemente besitzt als N. Wir wollen zeigen, dass es keine bijektive Abbildung Ny — [0, 1]
gibt. (Da N und N; gleich méchtig sind (warum?). heifit das natiirlich, dass es keine bijektive Abbildung
N — [0, 1] gibt. Man kann auch folgern, dass es keinen bijektive Abbildung N — R gibt.)

Beweis: Wir nehmen an, es gébe eine solche Abbildung f. Wir denken uns die Elemente von [0, 1] als
Dezimalbriiche geschrieben. Dann hat man folgendes Schema:

f1) = 0,a1,1012a1,301,4. ..
f(2) = 0,a2,1a220a23024...
f(3) = 0,a31a32a33a34. ..
f(4) = 0,a4,104204 3044 ...



Die a; ; sind Dezimalziffziffern, und zwar ist a; ; die j-te Nachkommastelle von f(i). (Wenn man will,
kann man 9er-Perioden verbieten.) Nun sehen wir uns die ,, Diagonale“ a1,1,a2,2,a3 3, . .. in diesem Scheme
an und bilden den Dezimalbruch ¢ = 0, b1b2b3b4 . .. nach folgender Vorschrift: es sei b; = 5, wenn a;; # 5
ist, aber b; = 6, wenn a; ; = 5 ist. Dann gilt ¢ € [0, 1[, aber ¢ # f(4) fiir jedes i. Denn ¢ unterscheidet sich
in der i-ten Nachkommastelle von f(i), ist aber eindeutig als Dezimalbruch darstellbar, da die Ziffer 0
sowenig vorkommt wie die Ziffer 9. Eine Abbildung f der gewiinschten Art kann es also nicht geben. —

Das hier verwendete Verfahren heifit Cantorsches Diagonalverfahren, da Cantor es erfunden hat, um die
Uberabzéhlbarkeit von R zu zeigen.

Vielleicht sollte ich nicht verschweigen, dass es Logiker und Philosophen gibt (sog. Intuitionisten), welche
die Menge aller reellen Zahlen nicht als wohldefiniertes Objekt ansehen. Ihre Argumentation ist in etwa
die Folgende: Jede reelle Zahl aus [0, 1] kann man ja als unendlichen Dezimalbruch, d.h. als Unendliche
Folge von Ziffern angeben. Die Menge ,,aller” solcher Folgen ist ,,indefinit“, d.h. nicht konstruktiv fassbar.
Jede Folge, mit der man konkret etwas anfangen will, muss durch eine Definition (die sich mit endlich
vielen Symbolen schreiben ldsst) gegeben werden, die fiir jedes n das Folgenglied a,, festlegt. Es gibt
aber nur abzéhlbar viele Moglichkeiten solcher Definitionen. (Es sei denn, man hétte ein iiberabzéhlbares
Alfabet, welches sicher fiir den einen oder anderen etwas miihsam zu lernen wire.) Trotzdem gewinnt
man durch das Cantorsche Diagonalverfahren zu abzihlbar unendlich vielen unendlichen Dezimalbriichen
sofort einen von all diesen verschiedenen.

Aber soll uns das ernsthaft storen?
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11 Komplexe Zahlen

Wenn man von den natiirlichen Zahlen aus iiber die ganzen und rationalen Zahlen schlieflich zu den reel-
len Zahlen gelangt ist, ist ein gewisser Abschluss erreicht. Man kann z.B. jeden Punkt des (euklidischen)
Raumes — nach Festlegung eines Koordinatensystems — durch ein Tripel reeller Zahlen beschreiben, was
bekanntlich nicht moglich ist, wenn man sich auf die rationalen oder die positiven reellen Zahlen be-
schrankt. Wen kiimmert es eigentlich ernsthaft, dass man aus negativen Zahlen keine Quadratwurzeln
ziehen kann? Man verzichtet ja auch darauf, durch 0 zu dividieren.

Die erste Ahnung davon, dass sich moglicherweise hinter der durch reelle Zahlen beschriebenen Realitéit
eine mathematisch relevante Wirklichkeit verbirgt, bekamen unsere Vorfahren in der Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen 16st. Auf die sogenannte ,,p-q-
Formel“ kommt man durch die quadratische ,,Erginzung”. Wenn man analog eine , kubische Ergéanzung*
auf kubische Gleichungen (d.h. solche 3. Grades) anzuwenden versucht, erreicht man lediglich eine Re-
duktion auf Gleichungen der Form z3 + px + ¢ = 0. Eine Losungsformel fiir diese Gleichung fand (wahr-
scheinlich) Tartaglia im Jahre 1535:

S I S IS A/ B B G i
96_\/2Jr 4+27+\/2 T
Fiir die Gleichung 23 — 32 + 2 = 0 z.B. liefert Tartaglias Formel die Losung z = +v/—1++1—1 +
v/ —1 —+1/1—1 = -2, die offenbar richtig ist. (Allerdings ist 1 eine weitere Lésung.) Ebenso erhélt man

mit Tartaglias Formel die Losung 0 der Gleichung 23 + x = 0. (Diese ist iibrigens die einzige Losung im
Bereich der reellen Zahlen.)

Bei der ebenso simplen Gleichung x2 — x = 0 scheint allerdings Tartaglias Formel zu versagen. Sie ergibt

Die (richtige) Losung 0 erhilt man nur dann, wenn man sich grofziigig dariiber hinwegsetzt, dass der

zweimal vorkommende Ausdruck —2—17 im Bereich der reellen Zahlen gar keinen Sinn hat. (1 und -1 sind

weitere Losungen.)

Dies sollte weniger ein Grund zur Resignation sein, als einer dafiir, Quadratwurzeln aus negativen Zahlen
einen Sinn zu geben. Umso mehr, als in Tartaglias Formel solche merkwiirdigen Ausdriicke hiufig genug
auftreten, ndmlich immer gerade dann, wenn die Gleichung drei verschiedene reelle Losungen hat.

«

Komplexe Zahlen: Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl dazu, die ,,i
genannt wurde und die merkwiirdige Eigenschaft i = —1 hat, und betrachteten als neue, sogenannte
komplexe Zahlen die Ausdriicke der Gestalt a + bi mit reellen Zahlen a,b. (Zunichst sprach man von
imaginéren, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da man teilweise unter imaginéren
Zahlen nur solche der Form bi mit reellem b verstand, kam man auf den Namen , komplexe Zahl* fiir eine
Summe aus einer reellen und einer (rein) imagindren Zahl.)

So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so fasst man die komplexen
Zahlen als Punkte in einer Ebene auf, die komplexe Zahl a+bi bekommt die (rechtwinkligen) Koordinaten
(a,b). Es ist auch niitzlich, sich die Zahl a + bi als den Vektor vorzustellen, der von (0,0) nach (a, b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Bedingnis, dass immer i2 = —1
sei. Also etwa
(a1 + bll) + (GQ + b21) = ((11 + (ZQ) + (bl + bg)i,

was geometrisch der Vektoraddition entspricht,

(a1 + bli)(ag + bgl) = aiag + arbai + asbii + b1b212 = (a1a2 — blbz) + (a1b2 + agbl)i,
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(Vorsichtige Leute — wie ich z.B. — werden allerdings zunéchst die komplexe Zahl a + bi als Paar (a,b)
reeller Zahlen a, b schreiben und dann (aq, b1)(ag,b2) := (a1a2—b1ba , arba+agby) und (ai, b))+ (ag,bs) =
(a1 +az , b1 +b2) definieren, um dann wirklich beweisen zu kénnen, dass alle gewohnten Rechenregeln
gelten.)

Die Zahlen 0 = 0 + 0i und 1 = 1 + 0i behalten ihre bekannten Eigenschaften. Man kann natiirlich
subtrahieren und sogar dividieren. Namlich fiir a 4 bi # 0 gilt
1 a — bi a b

a+bi (at+bi)a—b) aZ+b2 aZ+b?

(Beachten Sie, dass fiir a + bi # 0 mit a,b € R auch a® + b? # 0 ist.)

Als spezielles Beispiel rechnen wir (1 +1i)? = 1 +2i — 1 = 2i, also (7 + \1[1) = 1(2i) = i, mithin
(% + %1)4 = i2 = —1. Im Bereich der komplexen Zahlen ist also —1 nicht nur ein Quadrat, sondern
auch eine 4. Potenz (iibrigens — wie wir unten sehen werden — auch eine 6., 8. usw.). Wir bleiben bei diesem
.. . 1 1. . 3_2_.__7 L' 5 _ 4, _
Beispiel und setzen abkiirzend v := 7 —|— i Dann ist v° =v°v =iv = 7+ f v? = v* = —v,
00 = vh? = —i o7 = vhd = P = % - %i und schliefllich v® = (v*)? = (—=1)?2 = 1. Dann
wiederholen sich die Werte der Potenzen, also v° = v8v = v, v10 = 0802 =02 =1, v =083 =3 =
—% + %i usw. Fiir jede beliebige (ganze) Potenz v* gilt offenbar (v*)® = (v S)k = 1% = 1. D.h. wir
haben insgesamt 8 verschiedene Zahlen gefunden, deren 8. Potenz 1 ergibt, nimlich 1,v,v2,...,v".
Ein weiteres Beispiel. Setze w := % + @i. Dann ist w? = 1 — Z +2. lil =—3 —i— fl und w3 = ww? =
(3 + ?1)(—% + ?1) = —1 — 3 = —1. Weiter erhélt man w4 = w3w = —w, w5 = w3w? = —w? und
w8 = wiw? = (=1)(—1) = 1. Wie oben wiederholen sich jetzt die Potenzen: w” = w', w® = w? usw.

Ebenso sieht man, dass fiir jede ganze Potenz w”* von w gilt: (w*)® = 1. Es gibt also (mindestens) 6
verschiedene komplexe Zahlen, die die Gleichung 26 = 1 erfiillen.

Zur geometrischen Deutung der Multiplikation. Sei ¢ = a + bi, a,b € R eine komplexe Zahl. Thr
(Absolut-)Betrag wird definiert als |c| := va? + b?, d.h. als Lénge des entsprechenden Vektors (Pyta-
goras). Sei ¢ # 0, d.h. a # 0 oder b # 0. Der Vektor ¢ hat zum Vektor 1 = 1 + 0i einen (orientierten)
Winkel, den man als Argument von ¢ bezeichnet. (Das Argument ist im Grunde nur bis auf Addition
eines Vielfachen von 27 definiert.) Ist ¢ das Argument von ¢, so gilt offenbar

¢ = |c|(cosp +1isiny), d.h. a = |c|/cosp, b= |c|sing.

Fiir zwei von 0 verschiedene komplexe Zahlen ¢, co mit den Argumenten ¢, o erhalten wir mit Hilfe
der Additionstheoreme des Sinus und des Cosinus

cicy = |cl\|02|(cos 1 COS o — sin 7 sin g + i(sin 1 cos o + cos ¢y sin <p2)) =

lexlleal (cos(pr + ¢2) + isin(pr + ¢2) )

D.h. der Betrag des Produktes ist das Produkt der Betrige und das Argument des Produktes ist die
Summe der Argumente der Faktoren. Es folgt z.B.

n

c" = |c|™(cos(ny) + isin(ny)).
Dies gilt fiir jede positive ganze Zahl n (und, wie man sich leicht iiberlegt, auch fiir jede ganze Zahl n).

Sei ¢ # 0 eine komplexe Zahl mit dem Argument ¢ und d := {/|c|[(cos(p/n) + isin(p/n)) (n > 0) so gilt
offenbar d = ¢. D.h. man kann aus jeder komplexen Zahl fiir jede natiirliche Zahl n > 0 eine n-te Wurzel
ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene komplexe Zahlen d mit
d" = ¢, wenn nicht gerade ¢ = 0 ist. Das mag man im Zusammenhang mit der Vieldeutigkeit des
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Arguments einer komplexen Zahl sehen: Es ist cos(p + k - 2m) +isin(p + k - 27) = cos ¢ + isin ¢ fiir jede
ganze Zahl k. Also ist jede komplexe Zahl d, := {/|c|(cos(¢/n + k - 27/n) +isin(p/n + k - 27/n)) eine
n-te Wurzel aus ¢, d.h. d} = c. Die Zahlen dy, dy,...,d,_1 sind untereinander verschieden, aber danach
wiederholen sie sich: d,, = dy, dp+1 =d1, ...

Insbesondere gibt es n verschiedene komplexe Zahlen zg, z1,...,2,-1, die alle die Gleichung 2" = 1
erfiillen. Eine von ihnen ist 1, alle haben den Betrag 1, d.h. sie befinden sich auf dem Einheitskreis. Sie
bilden offenbar die Ecken eines regelméfiigen n-Ecks. Von dieser Tatsache ist Gaufl ausgegangen, als es
ihm kurz vor 1800 gelang, ein regelméfiges 17-Eck allein mit Zirkel und Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen beliebige Wurzeln ziehen kann,
ldsst sich auch der ,Fundamentalsatz der Algebra“ beweisen:

Jedes Polynom 2" + ¢12" ' + -+ 4 ¢p_12 + ¢, mit komplexen Koeffizienten c¢; hat (mindestens) eine
komplexe Nullstelle. (Diesen Satz hat Gau$ als erster vollstédndig bewiesen.)

(N.B. Dass ein Polynom vom Grad n hichstens n Nullstellen hat, ist ebenfalls ein richtiger und wich-
tiger — {ibrigens fiir beliebige Korper giiltiger — Satz, der aber fast trivial zu beweisen ist und nicht als
Fundamentalsatz der Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Matematiker mit der Ent-
deckung/Erfindung der komplexen Zahlen ein ,,weites Feld“ 6ffnet, und er sich durch Beharren auf den
reellen Zahlen viele M6glichkeiten verbauen wiirde. Als einzelnes Beispiel sei genannt, dass manche Sitze
iiber die Verteilung der Primzahlen sich am besten mit Hilfe der komplexen Zahlen beweisen lassen. (Im
Anhang finden Sie eine Ausfithrung iiber die komplexe e-Funktion.)

Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zuniitze, ist auf dem Holzweg: Keine
Elektrotechnik und keine Quantenteorie ohne komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat es mit mehrdeutigen Wurzel
zu tun. Mit den Quadratwurzeln ist es einfach: Mit 4/ % + % sei willkiirlich eine der beiden méglichen

Wurzeln bezeichnet; —4/ ‘14—2 + 12’—37’ ist dann automatisch die andere. Jeder der beiden Summanden in Tar-
taglias Formel ist nun eine kubische Wurzel mit 3 moglichen Werten. So hat man insgesamt 9 mogliche
Kombinationen. Es gibt nun eine Regel, welche 3 Kombinationen die Nullstellen des kubischen Polynoms
ergeben. Hierauf will ich nicht genauer eingehen und verweise stattdessen auf das Buch ,,Kubische und
biquadratische Gleichungen“ von Heinrich Dérrie (Leibniz Verlag Miinchen 1948).

Die komplexe e-Funktion: Fiir z = z + iy, z,y € R, setzt man e* := e*(cosy + isiny). Dies ist
keineswegs willkiirlich. Denn fiir die so definierte Funktion gilt

00
z z"
=2
— n.

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im Komplexen. Ferner erhilt man
auch fiir komplexe z1, 2o die Formel e?'T?2 = e*1¢?2. Die komplexe e-Funktiom bildet die reelle Achse
{a+bi|aeR b=0} (bijektiv) auf die positive reelle Halbachse und die imaginire Achse {a +bi | a =
0,b € R} (surjektiv) auf die Einheitskreislinie {a + bi | a,b € R,a? + b* = 1} ab.

Wenn man den Zielbereich der Funktion exp (mit exp(z) = e*) auf C* = C — {0} einschrinkt, so ist die
Abbildung exp : C — C* surjektiv, aber nicht injektiv. Fiir jedes z € Z gilt, dass die z + 2ni fiir alle
n € Z dasselbe Bild unter exp haben.
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11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

Vorkurs-Aufgaben

. In einer Beschreibung wird die Gréle eines Balkons als 80 cm? angegeben. Was sagen Sie dazu?

Zeichnen Sie ein Rechteck von 80 cm? Flicheninhalt, oder schneiden Sie ein solches aus, vorausge-
setzt, ein DIN A4-Blatt reicht dazu. Wie viele cm? enthalten 0,8 m?, wie viele ein Quadrat mit der
Seitenldnge 80 cm?

Ein Kaufmann hat 100 kg Gurken. Diese bestehen (gewichtsméBig) zu 99 Prozent aus Wasser.
Wieviel kg Wasser miissen sie durch Austrocknen verlieren, damit sie nur noch zu 98 Prozent aus
Wasser bestehen?

Eine Aktie hat am Montagmorgen den Kurs 100 Euro. Im Laufe des Montags gewinnt (bzw. verliert)
sie 10 Prozent. Im Laufe des Dienstags verliert (bzw. gewinnt) sie 10 Prozent. Wie hoch ist der Kurs
am Dienstagabend? (Ist die Gleichheit beider Ergebnisse erklérlich?)

. a) Wieviel Prozent de Bruttopreises betrégt die Mehrwertsteuer bei einem Mehrwertsteuersatz von

16 Prozent?
b) Was bedeutet prozentual jeder 2-te, bzw. jeder 3-te, ... bzw. jeder 6-te?
¢) Jeder wievielte einer Bevolkerung ist 5 Prozent (bzw. 10, bzw. 20 Prozent) dieser Bevolkerung?

Berechnen Sie
a) 2% und 42, b) 3% und 43, c) (6 £4)3 und 6% + 43,

Berechnen Sie
a) 2323 und 233, b) (2-3)3 und 263,

Berechnen Sie
a) 22 — 21 und 2271, b) 25 — 22 und 2572, c) 22 4 2% und 22*2.

Nach welchen Regeln darf man a™*", ™", (ab)” umformen?

Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millionen, c) eine Milliarde, d) eine
Billion, e) one billion (amerikanisch).

Schreiben Sie in der Form 10*m die folgenden Léngeneinheiten:

1 pm (Mikrometer), 1 nm (Nanometer), 1 pm (Picometer), 1 A (Angstrém)

Berechnen Sie ohne Rechner

a) sinw + sin7 und sin(7 + 7), b) sin § +sin § und sin(§ + ),
c) sin(§ + 5) und sin § + sin . Welches Ergebnis ist grofier?

d) Bestimmen Sie die Werte des Sinus bei /6, 7/4,7/3 auf elementargeometrische Weise.
Schreiben Sie (7a” + 6a%)? als Summe von Potenzen von a mit ganzzahligen Koeffizienten.
Berechnen Sie v/9 + 16 und v/9 + v/16.

Berechnen Sie 24° und (2%)2. (Per definitionem ist a® = a(®).)

Berechnen Sie 23" und 23" . 23"

Berechnen Sie 23° - 23” und (23 .23)2.

Finden Sie, wenn méglich, eine natiirliche Zahl n mit ((3%)3)" = 33°.

Zeigen Sie: Zu jeder ungeraden Zahl u € N gibt es ein m € N mit u? = 8m + 1.

Geben Sie allgemeine Formeln fiir (a + b)® und (a + b)* an.

Berechnen Sie (mit Hilfe der vorigen Aufgabe) 10...01%, wo zwischen den beiden Einsen 999 (oder
allgemeiner n — 1) Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl an, d.h. in dhnlicher
Weise wie hier die Basis der zu berechnenden Potenz angegeben ist.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Berechnen Sie (a — b)(a* + a®b + a?b? + ab® + b*) und allgemein
(a—1b)>7 ya" 7). (Dabeiist Y7 a™ b =a” +a" b+ -+ ab"! + ")

Auf das erste Feld eines Schachbretts sei 1 Reiskorn gelegt, auf das zweite 2 Reiskorner, auf das dritte
4 usw., ndmlich jeweils auf ein Feld doppelt soviele wie auf das vorangehende. (Vernachléssigen Sie
das Problem, dass moglicherweise die Felder zu klein fiir die Anzahl der Reiskérner werden, die auf
sie gelegt werden sollen.)

a) Berechnen Sie in méglichst wenigen Schritten exakt die Anzahl N der Reiskérner, die insgesamt
auf das Schachbrett gelegt werden sollen, im Dezimalsystem. (Ich habe Verstindnis dafiir, wenn
Sie diese Rechnungen nicht ausfithren wollen. Dann miissen Sie aber angeben, wie eine moglichst
effiziente Berechnung zu erfolgen hat. Beachten Sie aber, dass man auch mit einem Taschenrechner,
der nur 10 Stellen anzeigt, die Hand- und Kopfrechenarbeit auf wenige Additionen reduzieren kann.
Wie? )

b) Berechnen Sie N im Binérsystem.

c¢) Zerlegen Sie N in zwei ganzzahlige Faktoren, die annéhernd gleich grof} sind.

d) Zeigen Sie, dass N durch 17 teilbar ist.

Zeigen Sie (etwa mit Induktion): a) Fiir alle ganzen Zahlen n > 3 ist n? > 2n + 1.
b) Fiir alle ganzen Zahlen n > 5 ist 2" > n2.

Zeigen Sie: Z k-k!'=(n+1)! —1. (Dies geschieht mit vollsténdiger Induktion ohne Miihe.)
k=0

Bestimmen Sie alle natiirlichen Zahlen, die genau 3 verschiedene positive Teiler haben. (Z.B. hat 4
die Teiler 1,2,4.)

Zeigen Sie: Fiir jedes n € N ist 2 - 537! 4+ 4" durch 11 teilbar, d.h. es gibt zu jedem n ein (von n
abhiingiges) k € N mit 11 -k = 2-5%"*! + 47 (Tipp: Induktion.)

Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man mit Postkarten liickenlos und
ohne Uberlappungen bedecken kann? Die Linge einer Postkarte verhiilt sich zur Breite wie v/2 : 1.
(Natiirlich soll die Kantenlénge der Tischplatte nicht 0 sein.)

(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenlingen breit. Wie viele Karten
brauchen Sie, um eine Fliche entsprechenden Ausmafies zu bedecken?)

Seien a, b, ¢ positive (ganze) Zahlen. Wann gilt

a+b b ab
=-,wann — = - 7

a-—+c c ac c

m
Seien m,n € Ny. Zeigen Sie: T ist nicht ganz.

Finden Sie (etwa durch Probieren) ganze Zahlen m,n mit

m n 1

35 15
und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

Finden Sie natiirliche Zahlen m, n mit

+

m.n

3 5 15

Finden Sie untereinander verschiedene ganze Zahlen k,l, m,n > 0 mit
1 1 1

1
SR R R |
k+l+m+n
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33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

Finden Sie ganze Zahlen m,n mit n # 0 und

m,n_1

3 5 3

Berechnen Sie . -
,_I_, ,_i_,
gigund 316.

3ts3 356

Sei p eine Primzahl und k eine ganze Zahl mit 1 < k£ < p — 1. Sie diirfen annehmen, dass (der
Binomialkoeffizient) () = #ik)! eine ganze Zahl ist. Zeigen Sie, dass (}) durch p teilbar ist.
a) Zeigen Sie a® + b? > 2ab fiir alle a,b € R. (Tipp: 2% > 0.)

b) Folgern Sie a? + b*> > ab fiir a,b € R. (Beachten Sie, dass 2ab > ab nicht immer richtig ist!
Unterscheiden Sie 2 Fille.)

c) Folgern Sie (aus a)), dass a? + b + ¢ > ab + be + ac fiir alle a,b,c € R gilt.

b b
Berechnen Sie % + — und zeigen Sie, dass % + — > 2 ist, wenn a > b > 0 gilt.
a a

Bringen Sie auf einen Bruchstrich:

g+b c N bc ac ab
bc  ac abu a b

Schreiben Sie tan x + cot z als rationalen Ausdruck in sin 2z.

Losen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem einen oder anderen Fall nicht
moglich ist:

2,7 4 _ 1
3+6_1 3 6_1
310 T
4 x 6 T
a) Kiirzen Sie den Bruch
212 _ 3
26

so gut es allgemein moglich ist.

b) Kann man denselben Bruch als Differenz zweier Potenzen von x schreiben, wo jeder Exponent
auch negativ sein darf (aber nicht muss)?

¢) Kann man dasselbe fiir den Kehrwert des Bruches machen?

Das entsprechende wie oben fiir den Bruch
T — 12+t
15

Vereinfachen Sie a a

G+ D —k—1)! " B(n—&)

Berechnen Sie

6 1 4
Do 2+
n=1 n n=—3
Seien p1, ..., p, verschiedene Primzahlen mit n > 2. Zeigen Sie: Der Nenner von
“ 1
a:= —
Dj

in der Standardform ist p; - - - p,,. (D.h. nach erfolgter Addition der auf den kleinsten gemeinsamen
Nenner gebrachten Summanden kann man nicht kiirzen.) Insbesondere gilt a ¢ Z. (Wenn Sie die
erste Aussage nicht sofort beweisen kénnen, zeigen Sie zuniichst die letzte. Ist py -+ p,_1a € Z7)
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46.

47.

48.

49.

50.
ol.

52.

53.

54.

55.

56.

1

Zeigen Sie: Fiir n > 2 ist a := Z z keine ganze Zahl. (Tipp: Sei m das kleinste gemeinsame
k=2

Vielfache aller Nenner. Was gilt fiir am/2 ? Betrachte die grofite 2-Potenz unter den Nennern.)

1
Zeigen Sie: Fiir n > 2 ist a := Z — keine ganze Zahl.
k!
k=2
Sei @ eine Menge von Primzahlen und S die Menge aller s € Ny, deren Primfaktoren sémtlich zu
Q@ gehoren. Zeigen Sie, dass die Menge

A::{%|a€Z,s€S’}

ein Unterring von Q ist.

Zeigen Sie: Die abbrechenden Dezimalbriiche bilden einen Unterring von Q. Ist dieser Unterring
von Q ein Koérper?

Sei a > 0 eine irrationale reelle Zahl und n > 2 ganz. Zeigen Sie, dass {/a ebenfalls irrational ist.

Betrachten Sie
K:={a+b/2|a,beQ}, L:={a+2bvV2|a,beQ},

R:={a+b/2]abeZ}, S:={a+20vV2|abeZ}.

a) Zeigen Sie: K und L sind Teilkorper von R. Zeigen Sie ferner K = L.
b) Zeigen Sie: R und S sind beide keine Teilkorper, aber Teilringe von R. Zeigen Sie ferner R O S
und R # S.

Zeigen Sie, dass die Menge {—1, 0, 1} auf folgende Weise zu einem Korper wird: Die Multiplikation
ist die Ubliche. Die Addition @ wird definiert durch 1@ 1:= -1, (=1)@® (=1):=1und a® b :=
a + b in allen iibrigen Fillen. (Den Beweis der Assoziativitidt der Addition und der Distributivitét
brauchen Sie jeweils nur fiir einen weniger trivialen Spezialfall auszufithren. Es gibt auch einen
Beweis, der die Assoziativitdt der Addition und die Distributivitét auf die entsprechenden Gesetze
in Z zuriickfiihrt.)

In
a) Seien p, ¢ verschiedene Primzahlen. Zeigen Sie, dass l—p irrational ist. (Tipp: Ansonsten erhielte
n

man einen Widerspruch zur eindeutigen Primfaktorzerlegung.)

b) Folgern Sie, dass es hochstens eine Primzahl gibt, deren (natiirlicher) Logarithmus rational ist.
(In Wahrheit gibt es — fiir den natiirlichen (!) Logarithmus — keine solche.)

c) Zeigen Sie, dass log,(q) irrational ist.

Im ,,groflen Brockhaus - Kompaktausgabe“ findet sich unter dem Stichwort ‘reell’ der Satz: ,,Jede
r[eelle] Zahl besitzt genau eine Darstellung als Dezimalzahl.“ Was sagen Sie dazu?

Seien a, b, ¢, d > 0 reell. Zeigen Sie

+
+

IS
o

<- =< <

SRS}
Ul O
SRS}
(=
ISH
ISH )

Schlieflen Sie daraus, dass unter der o.a. Voraussetzung

a c a+c

b Td7 b+d

ist.

a) Seien a,b € Q mit a + bv/2 = 0. Zeigen Sie a = b = 0.  b) Folgern Sie, dass die Abbildung
f:QxQ—R, (a,b) — a+bv2 injektiv ist (sobald Sie den Begriff ‘injektiv’ kennen).

46



o7.

o8.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

Geben Sie systematisch alle Tripel (a, b, ¢) ganzer Zahlen an, fiir die folgendes gilt:

1 1 1
O0<a<b<cund —-+-+-€7Z
a b ¢

Ohne einen Text, der beweist, dass Sie wirklich alle méglichen Tripel gefunden haben.
ist Thre Losung nichts wert!

Finden Sie verschiedene a, b € N, derart dass v/a, Vb beide irrational sind, (v/a++/b)? aber rational
ist.

Zeigen Sie, dass /2 + /3 irrational ist.

Sei o € R eine Nullstelle des Polynoms ™ + a12” ' + - - + a_12 + a,, mit aj € Z. Zeigen sie: Ist
a¢Z,soist a ¢ Q.

Berechnen Sie Z 2™+ wo m,1 > 0 sind, fiir diejenigen x, fiir welche die Reihe konvergiert.
k=0
_ , = 1 = 1 — 1
Zeigen Sie a) TR b)ZE<OOv C)Zm<oo.
k=0 k=1 k=2
) . .on! = n!
Zeigen Sie a) nhj& i 0, b) Z:l —n <o

Berechnen Sie (falls moglich) lim, o [[f_5(1 — 7). (Analog zum Y -Zeichen definiert man
[Th s ak = azas---ay.)

Geben Sie eine nicht konvergente Folge (a,) und eine Zahl a an, die folgende Bedingung erfiillen:
»Es gibt ein € > 0, derart dass fiir alle n € N die Ungleichung |a,, — a| < € gilt.“

Geben Sie eine gegen a konvergente Folge (a,) an, die folgende Bedingung nicht erfiillt: , Es gibt
ein N € N, derart dass fiir alle € > 0 und n > N die Ungleichung |a,, — a| < € gilt.“

Sei ¢ € R. Finden Sie a,b € R derart, dass (2% — azy + by?)(2? + azy + by?) = 2* + 4c%y* fiir alle
reellen z, y gilt. Welche bemerkenswerte Identitéit ergibt sich, wenn man y = ¢ = 1 setzt?

1 1
22— 2y + 22 a2+ 2ay + 22

Berechnen Sie

881/3 _ (88)1/3
3 5

5 1 13

Berechnen Sie ohne Taschenrechner

Bestimmen Sie die reellen Nullstellen des Polynoms
28 — 2525 — (4223 — 216)(x — 5)(x + 5) .

Begriinden Sie die sogenannte p, g-Formel fiir die Losung einer quadratischen Gleichung.

Sie beginnen zu sparen: Am ersten Tag sparen Sie 1 Euro, am zweiten 2 Euro, am dritten 3 usw.
Wann haben Sie (mindestens) 1000 Euro gespart?

Ein Aufzug bewegt sich mit 4 m/sec aufwirts. Eine kleine Eisenkugel féllt auf das Dach der Auf-
zugkabine. Und zwar wurde sie in dem Augenblick losgelassen, als das Kabinendach 22,1 m entfernt
war. Wie lange dauert es, bis die Kugel aufprallt, und welche Weglinge hat sie zuriickgelegt? (Ver-
nachliissigen Sie den Luftwiderstand und rechnen Sie mit einer Erdbeschleunigung von 10 m/sec?.)

Zeigen Sie, dass Gleichungen der Form 2 + ax? + %256 +b =0 mit a,b € R genau eine reelle Losung
haben, und geben Sie fiir diese eine Formel an.
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75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

In der Musik werden zwei Tonintervalle als , gleichgrof8“ bezeichnet — und auch als gleichgrofi emp-
funden, wenn die beiden Tonfrequenzverhéltnisse des jeweils hoheren Tones zum jeweils tieferen
Ton eines Intervalles gleich sind.

a) Die Frequenzverhiltnisse sind bei einer (reinen) Oktave 2, bei einer reinen Quint 2, bei einer
reinen grofien Terz %.

Wenn man von einem Grundton aus 4 reine Quinten auf- und anschliefend 2 Oktaven absteigt, ist
man dann eine reine grofle Terz oberhalb des Grundtones gelandet? (Auf dem Klavier mit seiner
temperierten Stimmung kdme man vom c auf das e; ,Syntonisches* oder ,,didymisches Komma“)
Konnte man dieses eventuell erreichen, indem man andere Anzahlen von Quinten und Oktaven auf-
und absteigt?

b) Die Oktave sei in n (€ Ny) gleichgrofie Tonschritte (Intervalle) geteilt. Was ist das Frequenz-
verhéltnis der beiden Tone eines solchen Tonschrittes? (Fiir n = 12 erhiilt man die 12 Halbton-
schritte der temperierten Stimmung.)

c¢) Gesucht ist ein n € Ny, so dass fiir die Unterteilung der Oktave in n gleichgrofe Tonschritte
folgendes gilt:

Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte aufsteigt, landet man eine
reine Quinte oberhalb des Grundtones.

Frage: Gibt es ein solches n ?

d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf- und anschlieBend 3 Oktaven
absteigt, andererseits 6 reine Quinten ab- und anschliefend 4 Oktaven aufsteigt, trifft man dann
auf exakt denselben Ton? (Beim ersten Verfahren landet man auf dem fis, beim zweiten auf dem
ges, wenn man jeweils mit dem ¢ beginnt. , Pythagoreisches Komma*)

Ein Ehepaar hat 5 Tochter. Die erste heiffit Nana, die zweite Nene, die dritte Nini, die vierte Nono.
Viele mégen dann sagen: , Die fiinfte Tochter muss dann Nunu heifien. Das ist doch logisch!“ Aber
ist das wirklich logisch, d.h. nicht anders denkbar?

Zeigen Sie, dass die Menge Q? der Menge aller Paare rationaler Zahlen durch die Definitionen
(a,b) + (a', V) == (a+d' b+ V) und (a,b)(a’, V) := (ad’,bb")
zwar zu einem Ring, aber nicht zu einem Koérper wird.

Seien p, g € R. Beschreiben Sie die Menge der (x,y) € R? mit
2% + pry + qy? = 0 moglichst konkret.

a) Wird durch die Angabe ,, f(z) sei diejenige reelle Zahl y, fiir die y* = x gilt“ eine Abbildung
f R — R definiert?
b) Was ‘muss’ man in a) dndern, damit eine Abbildung definiert wird? (Mindestens zweierlei!)

a) Wird durch die Angabe ,, f(x) sei diejenige reelle Zahl y, fiir die siny = = gilt* eine Abbildung
f: R — R definiert?
b) Was ‘muss’ man in a) dndern, damit eine Abbildung definiert wird? (Mindestens zweierlei!)

Fiir jede reelle Zahl x sei f(x) die Stelle unmittelbar vor dem Komma in der Dezimalbruchentwix-
klung von z. Was muss man préazisieren, damit f zu einer Abbildung R — R wird?

Sei p(z) ein Polynom vom Grad 3. Fiir jedes reelle = sei f(x) die kleinste reelle Zahl y mit p(y) =
x. Beschreibt f eine Abbildung R — R? (Sie diirfen verwenden, dass jedes Polynom 3. Grades
mindestens eine, aber hichstens 3 reelle Nullstellen hat.)

Untersuchen Sie die beiden Funktionen fi, fo : R — R mit fi(z) = 2® + z, fo(z) = 2% — x auf
Injektivitat und Surjektivitat.

Fiir jedes © € [—1,1] sei f(z) die kleinste (bzw. groBite) reelle Zahl y > 0 mit sin(1/y) = z. In
welchem der beiden Fille wird eine Abbildung f : [—1,1] — R beschrieben?
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85.

86.

87.

88.

89.

90.
91.

92.

93.

94.
95.

a) Durch f seien jedem n € N die natiirlichen Zahlen m < n zugeordnet. Ist das eine Abbildung
N — N7

b) Durch f sei jedem n € N die Menge der natiirlichen Zahlen m < n zugeordnet. Ist das eine Ab-
bildung N — P(N)? (Mit P(N) sei die Menge aller Teilmengen von N, die sogenannte Potenzmenge
von N, bezeichnet.)

Untersuchen Sie folgende ,,Abbildungen“ darauf, ob sie wirklich Abbildungen sind, und ob sie
gegebenenfalls injektiv oder surjektiv oder beides sind.

a) f:[0,1[— [0,1[ mit f(z) =2+ 3 firz < 1 und f(z) =2 — 1 fir a2 >
b) f: N — N ordne jedem n € N diejenigen m € N zu, die > 2n sind.

c) f:]—mn[—[-1,1], z — cosz.

c’) Ersetzen Sie cos durch sin und 7 durch /2.

d) f:R—-R, T et —e T,

e) f:R—-R, z+— 23 —2x.

f) g: R — R, definiert durch ,g(y) =z <= y = 2% — z“.
g tan :] — 7/2,7/2[— R. (Anschauliche Begriindung reicht.)

1
5

Seien X -V 2 7 Abbildungen. Zeigen Sie:

a) Sind « und B beide injektiv (bzw. surjektiv), so ist es auch Soa.

b) Ist fSoa injektiv, so ist es auch a.

¢) Ist Boa surjektiv, so ist es auch f.

d) Geben Sie zwei Beispiele, wo Soa bijektiv ist, aber weder 8 injektiv noch « surjektiv ist. Wihlen
Sie im ersten Beispiel fiir X, Y, Z endliche Mengen und im zweiten X =Y = Z = N.

a) Zeigen Sie, dass die folgenden Abbildungen f; : R — R bijektiv sind:

1—-2 fir O<z<1
x sonst

rz fir <0
» Ja(2) '_{ z~ b fir x>0

b) Tun Sie dasselbe fiir die Abbildung f3 : R — R mit

fi(z) 12{

. z fir z€Q
f3($)'{x+1 fir 2¢Q
Sei E C R und f: R — R definiert durch

Fz) = z3  falls WASD
TVE 2 falls 2€eR—F

Untersuchen Sie f auf Injektivitdt und Surjektivitat
a) im Falle F = Q, b) im Falle E =R — Q.

Ist die Abbildung f : Q? — R, (x,y) — x 4+ yv/2 injektiv? (Antwort mit Begriindung!)

Sei P(N) die Menge aller Teilmengen von N und F die Menge aller unendlichen Folgen (ay,)necy mit
an € {0, 1}. Geben Sie eine bijektive Abbildung f : P(N) — F an und zeigen Sie, dass es keine
bijektive Abbildung g : N — P(N) gibt.

Geben Sie eine surjektive Abbildung f : R — Z und eine ebensolche Abbildung g : R — N an.

Beschreiben Sie in einem Venn-Diagramm mit den Mengen A, B, C die Mengen A U (BN C) und
(AuB)NC.

Zeigen Sie (A—B)NC=(ANC)—(BNnC)=(ANC) - B.
Zeigen Sie (AUC) — (BUC)=A—-(BUuC)=(A-B)-C.
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96.

97

98

99

100.

101.

102.

103.

(Etwas zum Knobeln.) Sei n > 0 ganz. In jeder Zeile einer symmetrischen n x n-Matrix A mdgen
die Zahlen 1,...,n in irgendeiner Reihenfolge stehen. Zeigen Sie:
a) Ist n ungerade, so stehen in der Diagonale von A alle Zahlen 1,...,n in irgendeiner Reihenfolge.

b) Ist n gerade, so steht nicht jede der Zahlen 1,...,n in der Diagonale.
Eine quadratische Matrix A = (a;;) heifit symmetrisch, wenn a;; = aj; fiir alle (vorkommenden)
i, j gilt.

. Machen Sie sich ein (inneres) Bild der Funktion sin 1 und iiberlegen Sie sich (zumindest anschau-
lich), warum

1 1
lim sin — nicht existiert, aber lim xsin — =10 ist.
x

x—0 x z—0
. Konstruieren Sie eine (unendliche) aufsteigende Folge endlicher Mengen My C M; C My C - -+ mit
folgenden Eigenschaften:
L UjenM; =N
9 lim #{n € M; | n gerade } 1
i—00 #Mz

Vergleichen Sie diese Aufgabe mit Beipiel 7 des Paragrafen iiber unendliche Summen!

. Seien >0, a:= (1 +1/z)% und b := (1 + 1/x)**!. Zeigen Sie: a® = b2.

In einem populdrwissenschaftlichen Artikel steht — in etwa — folgendes: ,,Die Wahrscheinlichkeit
eines Nachbebens nimmt mit der Zeit exponentiell ab. Unmittelbar nach dem Hauptbeben hat sie
ihr Maximum, 10 Tage spéter betrigt sie nur noch 10 % hiervon, nach 100 Tagen nur noch 1 %,
usw.“ Was sagen Sie dazu?

Was sagen Sie dazu, wenn jemand meint, die Anzahl der bei einer internationalen Konferenz benttig-
ten Simultandolmetscher hinge exponentiell von der Anzahl der gesprochenen Sprachen ab. (Wie-
viele Dolmetscher werden benétigt, wenn jeder nur fiir 2 Sprachen zusténdig ist?)

Losen Sie folgende Gleichungen:

a) 2T 9111110 _ 9111111 b) 2x2 — 5127128 C) w(x*) — (wac)x7 >0
_1 1

d) Tr 2 = —ﬁ, x>0

Man kann sich auf verschiedene einfache Weisen klar machen, dass es irrationale Zahlen «, § gibt,
derart dass o rational ist:

a) Betrachte ag := v/2" . Ist g rational, so ist man fertig. Ist hingegen «yq irrational, so ist es
leicht, hierzu ein irrationales § konkret anzugeben, so dass ozg rational ist. Finden Sie ein solches

B. (Man weif, dass aq irrational ist. Ich kenne allerdings keinen einfachen Beweis hierfiir.)

b) Es gibt (genau) eine reelle Zahl 3, derart dass \/§ﬁ = 3 ist. (In der Analysis zeigt man dies mit
dem sogenannten Zwischenwertsatz.) Zeigen Sie, dass dieses 3 nicht rational sein kann. (Vgl. 53.)
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10.

11.

12.

Ratschlige fiir das erste Semester

. Die Mathematik ist zwar fiir jeden, der sich mit ihr beschiftigt, ein schwierige Sache. (Ubrigens

auch fiir mich.) Bedenken Sie aber: Schwierige und interessante Probleme zu losen und schwierige
und interessante Theorien zu verstehen, kann richtig Spafl machen.
Betrachten Sie das Studium der Mathematik als Herausforderung!

. Freuen Sie sich dariiber, dass die Mathematik an der Uni sich deutlich von der an der Schule

unterscheidet. Sie wollen doch nicht etwa nur den Schulstoff wiederkiuen?
Das erste Semester ist zum Studieren da und nicht zum Eingew6hnen!
Es beginnt mit dem ersten Vorlesungstag!

Reden Sie iiber alle auftauchenden mathematischen Probleme mit ihren Kommiliton(inn)en, den
Ubungsgruppenleiter(inne)n und den Lehrenden. Bilden Sie kleine Arbeitsgruppen.

Bereiten Sie den Vorlesungsstoff regelméfliig nach. Das heift, lernen Sie den Stoff sofort und nicht
erst zu den Priifungen. Es kann auch nicht schaden, sich gelegentlich mit der Problematik, die in den
néchsten Vorlesungsstunden behandelt wird, anhand eines Buches oder Skriptes schon im Voraus
ein wenig vertraut zu machen.

Denken Sie iiber eine Ubungsaufgabe, deren Losung nicht auf der Hand liegt, geduldig und aus-
dauernd nach. Genieflen Sie das Erlebnis, eine Aufgabe, die zunéchst nicht angreifbar erschien,
schlielich doch gel6st zu haben!

Versehen Sie Thre Losungen der Ubungsaufgaben ausreichend mit Text. Schreiben Sie im Zweifel
lieber zuviel als zuwenig Text! Driicken Sie sich moglichst klar aus.

Jede Miihe, die Sie sich geben, bei den Ubungsaufgaben das Rechnen durch Denken zu ersetzen,
zahlt sich im Laufe Thres Studiums vielfach aus!

Wenn Sie einmal zur Losung einer Ubungsaufgabe in Threr Arbeitsgruppe nichts haben beitragen
konnen, so sollten Sie die Losung doch zumindest verstehen.

Ziehen Sie am Ende des ersten, und erst recht am Ende des zweiten Semesters eine ehrliche Bilanz!
Wenn Sie das Studienfach nach einem halben oder ganzen Jahr wechseln oder auch die Uni verlassen,
so haben Sie eine wichtige Erfahrung gemacht. Wenn Sie sich hingegen mehrere Jahre mit einem Fach
herumquélen, das Thnen nicht liegt, und Sie am Ende moglicherweise nicht einmal einen Abschluss
schaffen, ist das wirklich schlimm.

Die Semesterferien sind sicher auch zur Erholung da, aber nicht nur! Was Sie im ersten Semester
gelernt haben, brauchen Sie im zweiten. Usw.
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