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Vorwort

Eigentlich sollte die Beschäftigung mit der Mathematik ja Vergnügen bereiten! Aber auch wenn
man nicht erwartet, dass sie ein billiges Vergnügen ist, so muss man doch feststellen, dass sie
vielen Menschen eher zum Missvergnügen dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein wenig zu helfen.
Ich will sie zum einen dabei unterstützen, die hohe Schwelle von der Schul- zur Hochschul-
Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszuräumen, auf die ich leider immer
wieder stoße. Diese Defizite liegen im Bereich der Bruch- und Potenzrechnung. Es mag entwick-
lungspsychologische Gründe dafür geben. Aber spätestens zu Beginn des Studiums muss dieses
Thema erledigt sein.

Anmerkung: In dieses Skript habe ich einige Texte unverändert aufgenommen, die ursprüng-
lich anderen Zwecken dienten. Das werden Sie merken. Ich denke aber, dass sie deshalb nicht
unbrauchbar sind. Die knappe Zeit wird mich zwingen, auf manche Themen des Skriptes zu
verzichten. Es kann überhaupt nichts schaden, sich mit den Teilen des Skriptes zu befassen, die
nicht vorgetragen wurden. Fast alles in diesem Skript ist sehr wichtig für jeden Mathematiker,
Physiker und Informatiker. Nur Abschnitt 7 wurde weniger wegen seiner Wichtigkeit aufgenom-
men, sondern weil in ihm auf elementare Weise verblüffende Tatsachen gezeigt werden.
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1 Natürliche und ganze Zahlen

1.1 Die natürlichen Zahlen sind 0, 1, 2, 3, . . ., insgesamt unendlich viele, so dass man sie nicht
alle hinschreiben kann. (Übrigens gibt es unter Mathematikern einen erbitterten Streit darüber,
ob man die 0 wirklich zu ihnen rechnen soll. Ich jedenfalls tue das und setze es hiermit für diesen
Kurs fest.)

Die Menge (=Gesamtheit) der natürlichen Zahlen wird mit N bezeichnet, also

N := {0, 1, 2, 3, . . .}

Mit N1 bezeichne ich die Menge der natürlichen Zahlen 6= 0 also N1 := {1, 2, 3, . . .} . (Wenn man
will, kann man auch N2 := {2, 3, 4, . . .} definieren usw.)

1.2 Die ganzen Zahlen sind
. . . ,−2,−1, 0, 1, 2, . . . (1)

Ihre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten auf einer Geraden
identifizieren, wo der Abstand von n zu n + 1 für alle n derselbe ist. Wir wollen später diese
Gerade mit anderen Zahlen auffüllen, um sie zur ”Zahlengeraden“ zu machen.

1.3 Sie wissen, wie man ganze Zahlen addiert und multipliziert. Wahrscheinlich kennen Sie auch
folgende Gesetze für diese ”Verknüpfungen“

(1)


m + n = n + m mn = nm Kommutativität
k + (m + n) = (k + m) + n k(mn) = (km)n Assoziativität
k(m + n) = km + kn Distributivität

(In der letzten Gleichung ist natürlich die Konvention ”Punktrechnung geht vor Strichrechnung“
anzuwenden; d.h. km + kn := (km) + (kn).) Beachten Sie, dass das Distributivitätsgesetz die
Addition und die Multiplikation vollkommen unterschiedlich behandelt. Die Ausdrücke k + mn
und (k + m)(k + n) haben fast immer verschiedene Werte!

Übrigens hielt ich als abc-Schütze die Kommutativität der Multiplikation natürlicher Zahlen
keinesfalls für selbstverständlich. Erst das Beispiel der Apfelsinen, die in einer Kiste in 4 (waa-
gerechten) Reihen à 5 Stück, d.h. aber auch in 5 (‘senkrechten’)Reihen à 4 Stück angeordnet
waren, machten mir das Kommutativitätsgesetz für die Multiplikation augenfällig.

Die Zahlen 0 und 1 spielen für die Addition, bzw. Multiplikation eine Sonderrolle:

(2) 0 + n = n , 1n = n

Man nennt die 0 ein neutrales Element für die Addition und die 1 ein solches für die Multi-
plikation.

1.4 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die für N noch falsch ist:

(3) Zu jedem n ∈ Z gibt es genau ein n′ ∈ Z mit n + n′ = 0

Zum Beispiel ist (−2)′ = 2. Wir bezeichnen n′ mit −n, schreiben also −(−2) = 2. Man nennt
−n das additiv Inverse von n.
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Definition 1.5 Eine Menge, die mit zwei Verknüpfungen +, · versehen ist, für die neutrale
Elemente existieren und die bislang angegebenen Gesetze (einschließlich(3)) gelten, heißt ein
Ring.

1.6 Die Gleichung
a + x = b

mit der Unbekannten x besitzt in Z (allgemeiner, in jedem Ring) eine eindeutigen Lösung,
nämlich x = b + (−a).

Wir schreiben a− b := a+(−b) und bei längeren ”arithmetischen Summen“ z.B. a− b+ c− d =
a + (−b) + c + (−d).

Merke: Ist c 6= 0, so ist a− b + c 6= a− (b + c).

Anstelle der Existenz des additiv Inversen, könnte man auch zu je zwei ganzen Zahlen m,n die
Existenz ihrer Differenz m − n fordern, die dadurch gekennzeichnet ist, dass sie die Gleichung
(m− n) + n = m erfüllt.

1.7 Wir wollen zeigen, dass sich die Regel (−a)(−b) = ab, die manch einem etwas willkührlich
erscheinen mag, allein aus den Regeln (1),(2),(3) ergibt, d.h. in jedem Ring gilt. Zunächst zeigen
wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b + 0b Durch Addition von −(0b) auf beiden Seiten und Anwendung der
Assoziativität ergibt sich 0 = 0b.

Jetzt zeigen wir: (−a)b = −(ab).

Da ab + (−a)b = (a + (−a))b = 0b = 0 ist, ist (−a)b das additiv Inverse von ab, d.h. (−a)b =
−(ab).

Da a + (−a) = 0 ist, ist a das additiv Inverse von −a, d.h. −(−a) = a.

Schließlich ist (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

Wenn man also (−1)(−1) überhaupt definieren und dabei die o.a. Regeln beibehalten will, bleibt
einem nichts übrig, als (−1)(−1) = 1 zu setzen.

Der französische Schriftsteller Henri Beyle, der sich Stendhal nannte und sich für Mathematik
interessierte (dessen Romane ich sehr liebe) mochte sich mit dieser Regel nicht anfreunden.

Es wäre schön, wenn Sie weitere – etwa geometrische – Gründe fänden, warum die Regel
(−a)(−b) = ab sinnvoll ist.

1.8 Man kann die ganzen Zahlen der Größe nach vergleichen: m < n heißt ”m (ist) kleiner (als)
n“. Dies ist äquivalent zu n > m, d.h. ”n (ist ) größer (als) m“. Ferner benutzt man das Zeichen
m ≤ n (”m (ist) kleiner (oder) gleich n“) in der Bedeutung

m ≤ n : ⇐⇒ m < n oder m = n

‘Umgekehrt’ gilt
m < n ⇐⇒ m ≤ n und m 6= n
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Die ”Relation“ ”≤“ genügt neben der Regel ”0 ≤ n für alle natürlichen Zahlen n“ den folgenden
Gesetzen:

(4)


k ≤ m, m ≤ n =⇒ k ≤ n Transitivität
n ≤ n Reflexivität
m ≤ n, n ≤ m =⇒ m = n Antisymmetrie
m ≤ n oder n ≤ m Totalität

Was folgt daraus für ”≥” (was Sie richtig definieren müssen)? Man kann folgende Regeln ableiten:

(5) k ≤ m < n =⇒ k < n ; und k < m, m ≤ n =⇒ k < n

Bezüglich der Addition und Multiplikation gilt für ≤:

(6)
{

m ≤ n =⇒ k + m ≤ k + n
0 ≤ k, m ≤ n =⇒ km ≤ kn

Welche Regeln gelten für ”<“?

1.9 Wichtig ist das ”Induktionsprinzip“, das bei einer axiomatischen Beschreibung der
natürlichen Zahlen gemeinhin eines der Axiome ist:

Sei m ∈ Z und A(n) eine Aussage über ganze Zahlen n. Es gelte:

A(m),

und

wennimmer A(n) für ein n ≥ m richtig ist, so ist es auch A(n + 1).

Dann gilt A(n) für alle n ≥ m, n ∈ Z.

(Ein Beweis dafür, dass A(m) gilt, heißt ”Induktionsanfang“. Ein Beweis dafür, dass A(n +
1) aus A(n) folgt, heißt ”Induktionsschluss“ Die Voraussetzung in diesem Schluss heißt auch

”Induktionsvoraussetzung“ oder ”Induktionsannahme“.)

Äquivalent zu o.a. Beschreibung kann man das Induktionsprinzip auch in der Sprache der Men-
gen darstellen:

Sei m ∈ Z und M ⊂ Z eine Teilmenge von Z, die folgenden Eigenschaften genügt:

m ∈ M

und
n ∈ M =⇒ n + 1 ∈ M.

Dann gilt n ∈ M für alle n ≥ m.

Example 1.10 Wir beweisen für n ∈ N die Aussage A(n)

0 + 1 + 2 + · · ·+ n =
n(n + 1)

2

Die Aussage A(0)

0 =
0(0 + 1)

2
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ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:

0 + 1 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ n + 1 =

n(n + 1) + 2(n + 1)
2

=
(n + 2)(n + 1)

2
=

(n + 1)((n + 1) + 1)
2

Also gilt A(n) für alle n ∈ N.

Hier haben wir das Rechnen mit ”Brüchen“ verwendet. In Wahrheit sind allerdings die Ausdrücke
n(n + 1)/2 natürliche Zahlen für alle n ∈ N

In der Mathematik werden sehr häufig Beweise mit dem Induktionsprinzip geführt.

Bevor wir ein hierzu (unter den o.a. Regeln, d.h. in einem geordneten Ring) äquivalentes ”Mi-
nimalprinzip“ formulieren, benötigen wir zwei Definitionen:

Definitions 1.11 a) Mit ∅ wird die leere Menge bezeichnet, d.h. diejenige, die kein Element
besitzt. Gilt für eine Menge M die Aussage M 6= ∅, so nennt man M auch nichtleer. M ist
also nichtleer genau dann, wenn M mindestens ein Element besitzt.

b) Eine Teilmenge M von Z heißt nach unten (bzw. oben) beschränkt, wenn es ein s ∈ Z
gibt, so dass s ≤ x (bzw. s ≥ x) für alle x ∈ M gilt. Ein solches s heißt eine untere (bzw.
obere) Schranke von M .

c) Ein kleinstes (bzw. größtes) Element einer Teilmenge M ⊂ Z ist ein m ∈ M mit der
Eigenschaft m ≤ x (bzw. m ≥ x) für alle x ∈ M .

Ein kleinstes Element einer Teilmenge M von Z ist immer auch eine untere Schranke, aber nicht
umgekehrt. Z.B. ist 0 sowohl ein kleinstes Element, als auch eine untere Schranke von N. Jedoch
ist −1000 zwar eine untere Schranke, aber kein kleinstes Element von N. Schließlich besitzt N
weder eine obere Schranke noch ein größtes Element.

1.12 Das Minimalprinzip lautet nun:

Ist M eine nach unten beschränkte nichtleere Teilmenge von Z, so besitzt M ein kleinstes Ele-
ment.

Remark 1.13 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist die Nullteilerfrei-
heit. Sie besagt:

ab = 0 =⇒ a = 0 oder b = 0.

Es gibt verschiedene Möglichkeiten, sie zu beweisen. Dabei kommt es natürlich darauf an, von
welcher Grundlage aus man die Theorie der (natürlichen, bzw. ganzen) Zahlen betreibt: etwa
ausgehend von den sogenannten Peano-Axiomen oder auf sogenannte konstruktive Weise.

Von der Schule her sollten Sie dies für die natürlichen Zahlen für selbstverständlich halten. Für
alle ganzen Zahlen erhält man die Nullteilerfreiheit auf Grund der Regeln

(−a)b = −(ab) , (−a)(−b) = ab.

Aus der Nullteilerfreiheit ergibt sich die Kürzungsregel

a 6= 0 und ab = ac =⇒ b = c.

Denn ab = ac ⇒ ab− ac = 0 ⇒ a(b− c) = 0 ⇒ b− c = 0 ⇒ b = c.
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2 Eindeutige Primfaktorzerlegung

Definition 2.1 Seien m,n ∈ Z. Wir sagen n teilt m (oder n ist ein Teiler von m, oder m ist
ein Vielfaches von n) und schreiben n|m, wenn es ein k ∈ Z mit kn = m gibt. Ist n kein Teiler
von m, so schreiben wir n - m.

2.2 Eigenschaften: a) 1|n und n|0 für alle n ∈ Z

a’) n|m =⇒ ±n| ±m

b) n|m, m|k =⇒ n|k

c) n|m1, n|m2 =⇒ n|a1m1 + a2m2 für alle a1, a2 ∈ Z.

d) n|m1, n - m2 =⇒ n - m1 + m2

e) Für n, m ∈ N1 (also n, m > 0) gilt: n|m =⇒ n ≤ m

Definition 2.3 Eine Primzahl ist eine ganze Zahl p > 1 die außer 1 und p keine weiteren
natürlichen Zahlen als Teiler hat.

Natürlich sind im Bereich aller ganzen Zahlen auch −1 und −p noch Teiler von p.

Proposition 2.4 Jede ganze Zahl n > 1 ist ein Produkt von Primzahlen.

Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. (Wenn man will, kann
man die 1 als Produkt von 0 Faktoren auffassen.)

Proof: Angenommen, die Behauptung wäre falsch, d.h. die Menge derjenigen n > 1, die kein
Produkt von Primzahlen sind, wäre nicht leer. Nach dem Minimalprinzip hätte sie ein kleinstes
Element m. Dieses kann keine Primzahl sein, da eine solche als Produkt von Primzahlen (mit
1 Faktor) gilt. Also gibt es einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e ∈ N mit
m = de. Für e gilt gleichfalls 1 < e < m. Da m die kleinste ganze Zahl > 1 ist, die nicht in
Primfaktoren zerlegbar ist, müssen die kleineren d, e in Primfaktoren zerlegbar sein, etwa

d = p1 · · · pr , e = p′1 · · · p′s

Also ist m = de = p1 · · · prp
′
1 · · · p′s doch in Primfaktoren zerlegbar. Widerspruch. �

Remark 2.5 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise geführt habe,
kann man nicht erkennen, wie man eine Primfaktorzerlegung einer ganzen Zahl n > 1 effektiv
herstellen kann. Dies ist aber prinzipiell möglich. Durch systematisches Durchprobieren der
Zahlen 2,3,4,... findet man nämlich die kleinste ganze Zahl p mit 2 ≤ p ≤ n, die ein Teiler von n
ist. p ist prim; denn jeder Teiler von p ist ≤ p und ein Teiler von n. Dann macht man dasselbe
mit n/p, wenn noch p 6= n ist. Usw.

Diese Methode ist allerdings schon für Zahlen n, die im Dezimalsytem einige 100 Stellen haben,
mit den besten Computern in vernünftiger Zeit nicht mehr ausführbar. Es gibt zwar ein paar
Tricks, schneller voranzukommen. Aber die vermindern nur unwesentlich das Problem. (Man
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weiß allerdings, dass sogenannte Quantencomputer, wenn es sie denn je geben wird, dies Problem
besser lösen könnten.)

Andererseits ist es sehr wohl möglich, von Zahlen der angegebenen Größenordnung in wenigen
Sekunden oder Minuten festzustellen, ob sie prim sind – ohne eine Faktorzerlegung im negativen
Falle angeben zu können.

Auf Grund dieser Diskrepanz ist es möglich, Texte nach einem öffentlich gemachten Schlüssel
zu verschlüsseln, die man ohne eine zusätzliche Information nicht mehr enschlüsseln kann.

Proposition 2.6 Die Zerlegung einer ganzen Zahl > 1 in Primfaktoren ist bis auf die Reihen-
folge eindeutig.

Proof: (Zermelo) Sei a ∈ N1 minimal unter allen natürlichen Zahlen mit zwei verschiedenen
Zerlegungen in irreduzible Faktoren:

a = p1 · . . . · pr = q1 · . . . · qs.

Dann sind r, s > 0, und es ist pi 6= qj für alle i, j, da man sonst kürzen könnte.Man kann also
ohne Beschränkung der Allgemeinheit annehmen, dass q1 < p1 ist. Beachte, dass q1 - p1 − q1

gilt. Wenn man also p1 − q1 in irreduzible Faktoren zerlegt, kann keiner von diesen q1 sein.

Die Zahl

b := (p1 − q1)p2 · . . . · pr = a− q1p2 · . . . · pr = q1(q2 · . . . · qs − p2 · . . . · pr)

besitzt zwei verschiedene Zerlegungen in irreduzible Faktoren. Indem man nämlich die jeweiligen
Klammerausdrücke in irreduzible Faktoren zerlegt, erhält man einerseits eine solche in der q1

nicht vorkommt, andererseits eine solche, in der q1 sehr wohl vorkommt. (Das stimmt auch noch,
wenn p1 − q1 = 1 ist.)

Ferner ist b echt kleiner als a (und größer als 0), im Widerspruch zur minimalen Wahl von a. �

Proposition 2.7 Es gibt unendlich viele Primzahlen.

Proof: (Euklid) Zu gegebenen endlich vielen Primzahlen p1, . . . , pn finden wir eine weitere.
Denn jeder Primfaktor von p1 · · · pn + 1 ist von allen p1, . . . , pn verschieden. �

Das heißt nicht, dass p1 · · · pn + 1 immer selbst prim wäre. Z.B. ist

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Aufgabe: Aus dem Namen Zermelo mache man ein beschwingtes Wort, indem man je drei
Buchstaben zu Anfang und am Ende hinzufügt!)
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3 Brüche, rationale Zahlen

3.1 Während das Rechnen mit ganzen Zahlen den allermeisten Studierenden keine Probleme
bereitet, scheint das für das Rechnen mit Brüchen bereits nicht mehr zu stimmen. Habe ich doch
kürzlich in einer Staatsexamensklausur die

absurde Unregel
1

a + b
=

1
a

+
1
b

lesen müssen, obgleich doch jeder, der mit dem Bruch 1
2 irgendeine vernünftige Vorstellung

verbindet, immer
1
2

+
1
2

= 1

rechnen würde.

Ohne Kommentar zitiere ich: ”Die Fähigkeit, eine Bruchrechenaufgebe zu lösen, war anscheinend
ein gutes Qualitätsmerkmal, auf den Erfolg im Mathematikstudium zu schließen.“ (Johann Sjuts
in DMV mitteilungen 12-2/2004.)

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl
m

n
mit m,n ∈ Z, n > 0 kann man folgendermaßen auf der Zahlengeraden

konstruieren: Man teile Strecke von 0 nach 1 in n gleichgroße Teilstrecken. Eine solche trage
man dann m-mal von 0 aus nach rechts auf der Zahlengeraden ab, wenn m ≥ 0 ist. Ist m < 0,
d.h. −m > 0, so trage man sie (−m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die Strecke von 0 bis
m in n gleiche Teilstrecken teilt und eine solche Teilstrecke von 0 an in die Richtung von m
abträgt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Arten schreiben, z.B.
9
15

=
3
5

=
6
10

Man kann ‘erweitern’ und ‘kürzen’. Man kann sich überlegen, dass es aufs selbe hinausläuft, ob
man ein 15-tel der Einheitstrecke 9-mal, oder ein 10-tel der Einheitstrecke 6-mal von 0 aus (nach
rechts) abträgt.

Am elegantesten definiert man die Gleichheit von Brüchen durch

a

b
=

a′

b′
⇐⇒ ab′ = a′b .

Diese Definition ist äquivalent dazu, dass a
b durch Erweitern und/oder Kürzen zu a′

b′ wird:

Wenn z.B. a′

b′ aus a
b durch Erweitern mit c, d.h. a

b aus a′

b′ durch Kürzen durch c hervorgeht, folgt
ab′ = a(bc) = (ac)b = a′b. Ist umgekehrt ab′ = a′b, dann entsteht a′

b′ aus a
b durch Erweitern und

Kürzen, wie folgt:
a

b
=

ab′

bb′
=

a′b

bb′
=

a′

b′

Ferner setzen wir fest
m

1
= m .

Auf diese Weise gilt Z ⊂ Q, der Menge der rationalen Zahlen.
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3.4 Addition: Haben zwei Brüche den gleichen Nenner, so ist ihre Summe einfach zu definieren:

m

n
+

m′

n
:=

m + m′

n

Dies entspricht der Addition von Strecken auf der Zahlengeraden – oder der Subtraktion, wenn
etwa m ≥ 0,m′ < 0 ist. Sind die Nenner nicht (notwendig) gleich, so kann man sie durch
Erweitern gleich machen, also z.B. rechnen

m

n
+

m′

n′
=

mn′

nn′
+

m′n

nn′
=

mn′ + m′n

nn′
,

(Will man bei der Addition mit (absolut) möglichst kleinen Zahlen rechnen, so nimmt man als
gemeinsamen Nenner das kleinste gemeinsame Vielfache von n, n′ statt nn′. – Anschließend kann
man möglicherweise noch weiter kürzen. – Für allgemeine Überlegungen ist dies allerdings in
den meisten Fällen eher erschwerend.)

Man sieht, dass sich Nenner und Zähler bei der Addition sehr verschieden verhalten! Wenn
m,n, n′ > 0 sind, gilt immer:

m

n
+

m

n′
=

m(n′ + n)
nn′

6= m

n + n′
, aber

n

m
+

n′

m
=

n + n′

m

Offenbar ist 0 = 0
1 = 0

n für alle n > 0 ein neutrales Element bezüglich der Addition. Ferner gibt
es ein additiv Inverses zu m

n , nämlich −m
n . Denn

m

n
+
−m

n
=

m−m

n
=

0
n

= 0

Man darf also −m
n = −m

n schreiben.

3.5 Multiplikation: Zunächst definieren wir k · m
n für k ∈ Z. Ist k ≥ 0, so sei k · m

n die k-fache
Summe von m

n zu sich selbst, d.h.

k · m

n
:=

m

n
+ · · ·+ m

n
=

km

n
.

Dies muss man zwangsläufig so machen, wenn 1 ein neutrales Element für die Multiplikation
bleiben und die Distributivität und Kommutativität der Multiplikation erhalten bleiben soll.
Die Forderung, dass die Distributivität weiter gelte, erzwingt dann auch

(−k) · m

n
= −km

n
, also k · m

n
=

km

n
für alle k ∈ Z .

Insbesondere ergibt unsere Definition (für k ∈ Z, r ∈ N1)

k · 1
r

=
k

r
und r · 1

r
=

r

r
=

1
1

= 1 .

Soll die Assoziativität der Multiplikation weiterhin gelten, so muss

m

n
= 1 · m

n
= r · (1

r
· m

n
)
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sein. D.h., ist 1
r ·

n
m = m′

n′ , so ist rm′

n′ = m
n , also rm′n = n′m. d.h. m′

n‘ = m
rn .

Wir definieren also
1
r
· m

n
:=

m

rn

und somit
k

r
· m

n
:= k · 1

r
· m

n
= k · m

rn
=

km

rn

Merke: Die Addition von Brüchen ist komplizierter als ihre Multiplikation!

Sind m,n,m′, n′ positive ganze Zahlen, so gilt immer

m

n
+

m′

n′
>

m + m′

n + n′

3.6 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a ∈ Q−{0} gibt es genau
ein multiplikativ Inverses a−1, nämlich

Ist a =
m

n
, so ist a−1 =

n

m
(oder =

−n

−m
falls m < 0)

In Q kann man also die Gleichung ax = b mit der Unbekannten x lösen, wenn a 6= 0 ist. Nämlich
durch x = ba−1

3.7 Das Rechnen mit rationalen Zahlen genügt denselben Gesetzen wie das mit den ganzen
Zahlen. Es genügt sogar einem zusätzlichen Gesetz, nämlich dem der Existenz von multiplikativ
Inversen. Q ist ein sogenannter Körper.

(Übrigens muss man bei der axiomatischen Definition eines Körpers folgendes bedenken: Eine
Menge, die aus genau einem Element p besteht, für das p + p = pp = p definiert ist, erfüllt
alle o.a. Körperaxiome. Man will sie aber nicht als Körper gelten lassen. Man verlangt deshalb
zusätzlich, dass in einem Körper 1 6= 0 ist, oder – äquivalent dazu – dass er aus mindestens
2 Elementen besteht. Es gibt einen nicht ganz unnützen Körper, der aus genau 2 Elementen
besteht.)

Remark 3.8 Die Nullteilerfreiheit, und damit die Kürzungsregel gilt natürlich im Bereich der
rationalen Zahlen auch. Offenbar gilt sie in jedem Körper. (Warum?)

3.9 Da sowohl bei der Multiplikation wie bei der Addition von Brüchen der Nenner (genauer:
einer der möglichen Nenner) des Ergebnisses das Produkt der Nenner der Faktoren, bzw. der
Summanden ist, gibt es echte Teilmengen von Q, die Z echt umfassen, die gegen Addition,
Subtraktion und Multiplikation abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die
Menge der Brüche, die sich mit einem ungeraden Nenner schreiben lassen, ein solcher Unterring.
(Kann man in dieser Behauptung ‘ungerade’ durch ‘gerade’ ersetzen???)
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3.10 Anodnung: Wie vergleicht man Brüche der Größe nach? Nun, wenn zwei Brüche densel-
ben positiven Nenner haben, ist die Sache einfach:

m

n
≤ m′

n
⇐⇒ m ≤ m′ .

Ansonsten muss man die (als positiv vorausgesetzten) Nenner gleich machen:

m

n
≤ m′

n′
⇐⇒ mn′

nn′
≤ m′n

nn′
⇐⇒ mn′ ≤ m′n .

Z.B. sieht man: Ist 0 < n ≤ n′, so gilt 1
n ≥

1
n′ . Die Regeln der Verträglichkeit der Anordnung mit

Addition und Multiplikation bleiben erhalten. Das Induktionsprinzip und das Minimumprinzip
gilt natürlich für die rationalen Zahlen nicht. Z.B. hat die Menge M := {a ∈ Q | 0 < a}
die untere Schranke 0, aber kein kleinstes Element. Ist nämlich a ∈ M beliebig (klein), so ist
2−1a < a und 2−1a ∈ M .

3.11 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger Körper. Für a, b ∈
K, b 6= 0 schreibt man dann

a

b
:= ab−1

Aus den Körpergesetzen leitet man dann leicht ab:

a

b
+

a′

b′
=

ab′ + a′b

bb′
,

a

b
· a′

b′
=

aa′

bb′
,
(a

b

)−1
=

b

a

letzteres, wenn auch a 6= 0 ist.

Remark 3.12 Auch für positive rationale Zahlen a, b, c, d gilt immer

a

b
+

c

d
>

a + c

b + d
.

3.13 Wenn man im Körper der rationalen Zahlen Brüche rationaler Zahlen bildet bekommt
man ‘Mehrfachbrüche’, z.B. (

a
b

)(
c
d

) .

Man muss hier aufpassen, z.B.
a
b

c
=

(
a
b

)
c

und
a
b
c

=
a(
b
c

)
voneinander unterscheiden! Berechnen Sie(

1
2

)
3

und
1(
2
3

)
Ein Ausdruck der Form

a
—
b
—
c

hat keinen Sinn!
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3.14 Standarddarstellung. Jede rationale Zahl kann als ein Bruch geschrieben werden, in
welchem Zähler und Nenner keinen gemeinsamen Primfaktor haben. Denn sonst kann man ja
noch kürzen. Da bei jedem Kürzen (durch eine ganze Zahl > 1) Zähler und Nenner (dem Betrag
nach) kleiner werden, muss der Kürzungsprozess nach dem Minimalprinzip irgendwann anhalten.
(Übrigens gibt es eine Algoritmus – von Euklid –, der es erlaubt, den ggT von zwei Zahlen zu
berechnen, ohne sie vorher in Primfaktoren zerlegt zu haben.)

Verlangt man noch – wie wir es bisher meist getan haben – dass der Nenner positiv ist, so ist
die Darstellung einer rationalen Zahl als ”gekürzter“ Bruch eindeutig.

Beweis hierfür: Sei m
n = m′

n′ , wo beide Brüche gekürzt sind. Dann gilt mn′ = m′n. Wir verwenden
die Eindeutigkeit der Primfaktorzerlegung. Ist p ein Primfaktor von m, genauer, ist pk die höchste
p-Potenz, die m teilt, so muss sie auch m′ teilen, da nach Vorraussetzung p kein Teiler von n ist.
Es folgt m|m′, und ebenso m′|m. Also m = ±m′. Da nach Voraussetzung n, n′ > 0 ist, müssen
auch die Vorzeichen von m und m′ übereinstimmen.

Ebenso folgt n = n′. –
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4 Reelle Zahlen

4.1 Man könnte meinen, die rationalen Zahlen füllten die ganze Zahlengerade aus. In beliebiger
Nähe jeder rationalen Zahl liegen noch unendlich viele weitere rationale Zahlen. Anders als bei
den ganzen Zahlen gibt es zu einer rationalen Zahl keine nächstkleinere oder nächstgrößere.

Trotzdem gilt die Bemerkung: Wenn man auf dem Einheitsintervall der Zahlengerade von 0
bis 1 ein Quadrat errichtet und um 0 den Kreis schlägt, der durch die rechte obere Ecke geht, so
schneidet dieser die Zahlengerade in keinem rationalen Punkt. M.a.W. Es gibt keine rationale
Zahl r mit r2 = 2.

Beweis: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit n2 = 2. Wir nehmen
an, es gäbe ein r ∈ Q mit r2 = 2. Wir schreiben r = m

n in gekürzer Form, d.h. so dass m und n
keinen gemeinsamen Primfaktor haben. Wir zerlegen m und n in Primfaktoren:

r =
m

n
=

p1 · · · pr

q1 · · · qs

Da r nicht ganz ist, ist n ≥ 2, d.h. s ≥ 1. Wegen der Teilerfremdheit von m, n gilt pi 6= qj für
alle i, j. Jetzt bilden wir

r2 =
p2
1 · · · p2

r

q2
1 · · · q2

s

Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teilerfremdheit von Zähler
und Nenner nichts geändert. D.h. r2 kann nicht ganz sein, insbesondere ist r2 6= 2. –

Aus der Bemerkung folgen:

a) Die – nicht besonders komplizierte – Funktion f(x) = x2−2 hat zwar in 1 den negativen Wert
−1 und in 2 den positiven Wert 2, aber zwischendurch an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, für die a < 0 oder a2 < 2 gilt, und B die Menge der
positiven rationalen Zahlen b mit b2 > 2. Dann ist A ∪B = Q und a < b für alle a ∈ A, b ∈ B ,
aber weder besitzt A ein größtes, noch B ein kleinstes Element.

Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sei n ≥ 2 ganz. Ist eine ganze Zahl k keine n-te Potenz einer ganzen Zahl,
so ist sie auch keine n-te Potenz einer rationalen Zahl.

4.3 Man hat mit Erfolg den Körper Q zu einem Körper R der sogenannten reellen Zahlen er-
weitert, in welchem außer den Rechen- und Anordnungsaxiomen folgende zueinander äquivalente
Aussagen erfüllt sind:

(i) Jede Zahlenfolge in R, die vernünftigerweise konvergieren sollte (d.h. eine sogenannte Cauchy-
folge ist), konvergiert auch. S.u.

(ii) Ist R = A∪B, derart dass sowohl A als auch B mindestens 1 Element besitzt und a < b für
alle a ∈ A, b ∈ B gilt, so hat entweder A ein größtes oder B ein kleinstes Element.

(iii) Sei (an)n = (a0, a1, a2, . . .) eine monoton wachsende nach oben beschränkte Folge. D.h. für
alle n gilt an ≤ an+1 und es gibt ein s mit an ≤ s für alle n. Dann konvergiert die Folge (an)n.
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(iii’) Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von R, die eine untere
Schranke besitzt, d.h. für die es ein s ∈ R gibt mit s ≤ a für alle a ∈ A, besitzt auch eine untere
Grenze, d.h. ein u ∈ R mit u ≤ a für alle a ∈ A, so das in beliebiger Nähe von u noch Elemente
von A liegen.

(iv’) Dasselbe wie (iv), wo ”untere“ durch ”obere“ ersetzt ist.

Manche der genannen Begriffe bedürfen noch der Präzisierung, die wir in einem späteren Pa-
ragrafen vornehmen werden. ”Anschaulich“ ist es so, dass die reellen Zahlen den Punkte auf
der Zahlengeraden entsprechen, die beliebig genau durch rationale Zahlen approximierbar sind.
(Und diese sind dann wohl alle Punkte auf der Zahlengeraden, was auch immer das heißen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Körpers der reellen Zahlen, die man aus
jedem der o.a. ”Axiome“ ableiten kann – aus (i) nur bei entsprechender Definition von ”Cauchy-
Folgen“ – das sogenannte archimedische Axiom:

(a) Zu allen positiven reellen Zahlen a, b gibt es eine natürliche Zahl n mit na > b.

Hierzu äquivalent ist folgende Aussage:

(b) Ist α eine reelle Zahl, so dass 0 ≤ α < 1/n für alle ganzen Zahlen n > 0 gilt, so ist α = 0.

Beweis der Äquivalenz: ”(a)=⇒(b)“: Wäre α > 0, so gäbe es ein n ∈ N mit nα > 1. Multipli-
kation mit der positiven Zahl 1/n ergäbe α > 1/n.

”(b)=⇒(a)“: Wäre na ≤ b für alle natürlichen n, so erhielte man durch Multiplikation mit der
positiven Zahl 1

nb die Ungleichung a/b ≤ 1/n für alle n und somit aus a
b ≤

1
n+1 die Ungleichung

a/b < 1/n für alle n. –

Für die reellen Zahlen kann man folgendes beweisen:

Proposition 4.5 Sei a ≥ 0 reell und n ≥ 2 ganz. Dann gibt es eine reelle Zahl r ≥ 0 mit
rn = a.

Man nennt r die n-te Wurzel von a und schreibt r = n
√

a.

Proof: Sei B die Menge der reellen Zahlen b ≥ 0 mit bn ≥ a und A := R − A. Dann ist
offenbar A∪B = R. Ferner sieht man leicht c < b für c ∈ A, b ∈ B. Die kleinste Zahl von B oder
die größte von A ist dann das gesuchte r. �

4.6 Man kann R z.B. als Menge aller unendlichen oder endlichen positiven oder negativen
Dezimalbrüche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbrüchen einzugehen, wollen wir
uns überlegen, wie man die Eigenschaft (iv) für nach unten beschränkte nichtleere Mengen B
von Dezimalbrüchen zeigen kann.

Beweis: Man darf annehmen, A sei durch 0 nach unten beschränkt. (Sonst verschiebe man die
Menge.) Zunächst betrachten wir den ”ganzen Anteil“, d.h. die ”Vorkommazahlen“ der Zahlen
aus A. Unter diesen gibt es nach dem Minimalprinzip eine kleinste, etwa m. Dieses m wird
die Vorkommazahl der gesuchten unteren Grenze. Dann betrachten wir alle a ∈ A, die die
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Vorkommazahl m haben und von diesen jeweils die erste Nachkommaziffer Die kleinste dieser
Ziffern sei n1. Dieses n1 wird die erste Nachkommaziffer der gesuchten unteren Grenze. Diese
beginnt also mit m,n1. Von allen Zahlen aus A, die mit m,n1 beginnen, betrachten wir die
jeweils zweite Ziffer nach dem Komma. Sei n2 die kleinste unter diesen. Unsere untere Grenze
beginnt mit m,n1n2, usw. Sei m,n1n2 . . . nk auf diese Weise bereits gefunden. In A gibt es also
mindestens eine Zahl, deren Dezimalzahldarstellung mit m,n1 . . . nk beginnt. Und keine beginnt
mit einer kleineren Zahl mit k Nachkommastellen. Man betrachte nun alle Zahlen aus A, die mit
m,n1 . . . nk beginnen und betrachte von jeder die (k+1)-te Ziffer nach dem Komma. Die kleinste
unter allen diesen sei nk+1. Diese ist auch die (k + 1)-te Nachkommaziffer der gesuchte unteren
Schranke. Wenn wir dies bis ins Unendliche fortsetzen, bekommen wir einen Dezimalbruch u,
der die gewünschte Eigenschaft hat. Denn keine Zahl aus A ist kleiner als u. Und für jedes
k gibt es eine Zahl aus A, deren Vorkommazahl und deren erste k Nachkommaziffern mit u
übereinstimmen. Es gibt also Zahlen in A, die beliebig nahe bei u liegen. –

4.7 Übrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche Dezimalbrüche dar-
stellbar sind:

3, 72 = 3, 719 := 3, 71999 . . .

Jeder von 0 verschiedene, abbrechende Dezimalbruch (der, wollte man ihn als unendlichen De-
zimalbruch schreiben, bis auf endlich viele Ausnahmen nur die Ziffer 0 hat) lässt sich auch auf
die Weise schreiben, dass alle seine Ziffern bis auf endlich viele Ausnahmen 9 sind.

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0, 9 und 1 seien in Wahr-
heit doch ein wenig verschieden. Man sollte sich aber überlegen, dass ihr Abstand kleiner ist
als 10−n(= 1/10n) für jede natürliche Zahl n, und sie deshalb auf Grund des archimedischen
Axioms gleich sind. (Es gibt angeordnete Körper, die das archimedische Axiom nicht erfüllen.
Um deren Elemente zu beschreiben, kommt man allerdings nicht mit Dezimalbrüchen aus.) Was
spricht denn dagegen, dass man ein und dieselbe Zahl auf mehrere Weisen schreiben kann?
Die Darstellung einer rationalen Zahl als Bruch zweier ganzer Zahlen ist ja überhaupt nicht
eindeutig.

Wer vernünftig mit Dezimalbrüchen als reellen Zahlen umgehen will, hat nur folgende
Wahlmöglichkeiten: Entweder er verbietet eine der beiden Schreibweisen, wo fast alle Ziffern
0 oder fast alle Ziffern 9 sind, oder er akzeptiert, dass gewisse reelle Zahlen 2 Schreibweisen als
Dezimalbrüche haben.
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5 Unendliche Reihen

Beispiel 1:
1
2

+
1
4

+
1
8

+
1
16

+ · · · (= 2−1 + 2−2 + 2−3 + 2−4 + · · ·) =
∞∑

k=1

2−k =?

Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird zuerst halb gefüllt,
dann wird durch hinzugießen von einem viertel Liter vom freien Rest wieder die Hälfte gefüllt,
und es bleibt 1/4 Liter frei. Dann bleibt nach Hinzufügen von 1/8 l wieder 1/8 l frei. So geht
es weiter: im n-ten Schritt fügt man 2−n l hinzu, und der Literzylinder ist bis auf 2−n l gefüllt.
Der einzig sinnvolle Wert für o.a. unendliche Reihe (Summe) ist

1
2

+
1
4

+
1
8

+
1
16

+ · · ·+ 1
2n

+ · · · = 1

Beispiel 2:
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+

1
4 · 5

+ · · ·+ 1
n(n + 1)

+ · · · = ?

Es gilt
1
n
− 1

n + 1
=

(n + 1)− n

n(n + 1)
=

1
n(n + 1)

, z.B.
1
3
− 1

4
=

1
3 · 4

. Die unendliche Reihe kann

man also auch so schreiben:

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+
1

4 · 5
+ · · · = (

1
1
− 1

2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + (

1
4
− 1

5
) + · · ·

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt) addiert, so hebt

sich viel weg und man erhält als Summe (der ersten n Glieder) 1− 1
n + 1

. Wieder ist der einzig

sinnvolle Wert unserer unendlichen Reihe

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+
1

4 · 5
+ · · ·+ 1

n(n + 1)
+ · · · = 1

Lässt man die ersten N Summanden dieser Reihe weg, so erhält man auf dieselbe Weise

1
(N + 1)(N + 2)

+
1

(N + 2)(N + 3)
+

1
(N + 3)(N + 4)

+ · · · = 1
N + 1

Beispiel 3:
1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · ·+ 1
n

+ · · · = ? (”Harmonische Reihe“)

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1 +
1
2

+ (
1
3

+
1
4
) + (

1
5

+
1
6

+
1
7

+
1
8
) + (

1
9

+ · · ·+ 1
16

) + (
1
17

+ · · ·+ 1
32

) + · · ·

Nun ist
1
3

+
1
4
≥ 1

4
+

1
4

= 2 · 1
4

=
1
2
,

1
5

+ · · ·+ 1
8
≥ 1

8
+ · · ·+ 1

8
= 4 · 1

8
=

1
2

1
9

+ · · ·+ 1
16
≥ 8 · 1

16
=

1
2
, usw.

Deshalb gilt
1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · · ≥ 1 +
1
2

+
1
2

+
1
2

+ · · ·

Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:

1
1

+
1
2

+
1
3

+
1
4

+
1
5

+ · · · = ∞
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(Wir betrachten ∞ nicht als reelle Zahl, weil man mit ∞ schlecht rechnen kann. Aber es spricht
nichts dagegen, ∞ als ”Grenzwert“ zuzulassen.) In den Beispielen 4 und 6 werden wir die har-
monische Reihe auf zweierlei Weise modifizieren und erhalten endliche Werte.

Beispiel 4: Wir quadrieren die Summanden:

1 +
1
22

+
1
32

+
1
42

+
1
52

+ · · ·+ 1
n2

+ · · · =?

Es gilt (für n ≥ 2) die Beziehung
1
n2

<
1

(n− 1)n
, also

1
22

<
1

1 · 2
,

1
32

<
1

2 · 3
usw. Durch

Vergleich mit Beispiel 2 erhält man hieraus – vorausgesetzt unsere Reihe hat einen vernünftigen
Wert –

1 +
1
22

+
1
32

+
1
42

+
1
52

+ · · · < 1 + 1 = 2

Wenn man die reellen Zahlen axiomatisch einführt, kann man als eines der Axiome z.B. folgendes
nehmen:

Jede unendliche Summe positiver Summanden, die nach oben beschränkt ist, hat einen reellen
Wert,

In der Tat ist der Wert o.a. unendlicher Summe
π2

6
. Dies ist allerdings keineswegs einfach zu

sehen. Wenn Sie Glück haben, hören Sie einen Beweis dafür am Ende des 1. Semesters in der
Vorlesung ”Analysis 1“. Sie können einen Beweis im Buch O. Forster: Analysis 1 finden.

Beispiel 5: 1 +
1
1

+
1

1 · 2
+

1
1 · 2 · 3

+ · · ·

Wenn wir den Summanden
1

1 · 2 · · ·n · (n + 1)
mit dem Summanden

1
n(n + 1)

der Reihe aus

Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert < 3 hat. Man nennt diesen
Wert in der Regel e. Es gilt also 2 < e < 3.

Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:

Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Zähler und Nenner.

Beweis: Indirekt. Wäre e eine rationale Zahl mit dem Nenner N ≥ 2, so wäre 1 · 2 · · ·N · e eine
ganze Zahl. Wir zeigen, dass dem aber nicht so ist.

Multiplizieren wir die ersten N + 1 Summanden von e mit 1 · 2 · · ·N , so erhalten wir ganze
Zahlen. Für den Rest r der Summe genügt es also 0 < r < 1 zu zeigen. Offenbar gilt

r =
1

N + 1
+

1
(N + 1)(N + 2)

+
1

(N + 1)(N + 2)(N + 3)
+ · · ·

Machen wir, anfangend mit dem 2. Summanden von r den oben gemachten Vergleich, so erhalten
wir

r <
1

N + 1
+

1
(N + 1)(N + 2)

+
1

(N + 2)(N + 3)
+ · · · = 1

N + 1
+

1
N + 1

< 1

Beispiel 6: Wir versehen die ”Hälfte“ der Summanden der harmonischen Reihe mit dem Minus-
Zeichen, d.h. wir bilden die sogenannte alternierende harmonische Reihe:

1− 1
2

+
1
3
− 1

4
+

1
5
−+ · · ·+ (−1)n+1

n
+ · · · = ?.
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Wenn wir die Teilsummen 1, 1− 1
2
, 1− 1

2
+

1
3
, 1− 1

2
+

1
3
− 1

4
usw. auf der Zahlengeraden

betrachten, so sehen wir sie hin- und herhüpfen; dabei werden die Sprünge immer kleiner und ihre
Länge geht gegen 0. Es ist also plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den
Wert der unendlichen Reihe. (”Leibnizsches Konvergenzkriterium“) Dieser Wert liegt offenbar
zwischen 1/2 und 1. Er ist gleich dem natürlichen Logarithmus von 2 (ln 2), wie man in den
meisten Vorlesungen ”Infinitesimalrechnung 1“ lernt.

Zuletzt möchte ich Ihnen noch einen Schock versetzen. In einer endlichen Summe darf man die
Summanden beliebig vertauschen, ohne dass sich der Wert der Summe ändert. Dies gilt nicht
für alle unendlichen Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmonischen Reihe in folgender
Reihenfolge:

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
− 1

8
+

1
7
− 1

10
− 1

12
− 1

14
− 1

16
+

1
9
− 1

18
− · · · − 1

32
+

1
11
− 1

34
− · · ·

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2n negative Summanden
auf.)

Da −1
6
− 1

8
≤ −1

4
, − 1

10
− · · · − 1

16
≤ −1

4
, usw. ist, gilt für einen möglichen Wert w der o.a.

umgeordneten alternierenden harmonischen Reihe w ≤ 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

4
+

1
7
− 1

4
+

1
9
−

1
4

+
1
11
−+ · · ·. Mit

−1
4

+
1
5

= − 1
4 · 5

= − 1
20

ist − 1
4

+
1
n
≤ − 1

20
für n ≥ 5 .

Also gilt

w ≤ 1− 1
2

+
1
3
− 1

20
− 1

20
− 1

20
− · · · = −∞ .

Zusatzbemerkungen

Zu Beispiel 1: Allgemein gilt für q 6= 1 die Formel 1 + q + q2 + · · · + qn =
1− qn+1

1− q
, also für

die unendliche Reihe 1 + q + q2 + · · ·+ qn + · · · = 1
1− q

, vorausgesetzt, es ist −1 < q < 1. Setzt

man q = 1/2, so erhält man Beispiel 1 mit dem zusätzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge der Menge aller
positiven ganzen Zahlen. Wir haben gesehen, dass die Summe der Kehrwerte aller natürlichen
Zahlen unendlich, dagegen die der Kehrwerte aller Quadratzahlen endlich ist. Man kann sich
für jede Teilmenge der natürlichen Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder
unendlich ist. Man weiß, dass die Summe der Kehrwerte aller Primzahlen unendlich ist. Das ist
nicht trivial, aber auch nicht allzu schwer zu zeigen. Siehe Chapter 1 in dem hübschen Buch

”Proofs from THE BOOK“ von M. Aigner und G.M. Ziegler (Springer Verlag) Wenn Ihnen
unbekannt sein sollte, dass es überhaupt unendlich viele Primzahlen gibt, hier ist der uralte
Beweis von Euklid: Zu endlich vielen Primzahlen p1, . . . , pn ist jeder Primfaktor p der Zahl
p1p2 · · · pn + 1 eine weitere (von allen p1, . . . , pn verschiedene) Primzahl, nicht wahr??
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Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion ln(1+x) ist ln(1+x) =
x

1
−x2

2
+

x3

3
−+ · · ·. Diese Gleichung gilt für alle x mit −1 < x ≤ 1, und man erhält unsere Behauptung,

indem man x = 1 setzt.

Die Funktion ln(1 + x) ist die Stammfunktion von
1

1 + x
. Letztere Funktion kann man, wie

in der Bemerkung zu Beispiel 1 angegeben, als unendliche Reihe schreiben: setze q = −x.
Die Taylorentwicklung von ln(1 + x) erhält man durch ”gliedweise Integration“. Das alles
funktioniert zunächst jedoch nur für −1 < x < 1. Für x = 1 braucht man ein zusätzliches
Argument, den ”Abelschen Grenzwertsatz“.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende harmonische Reihe jede
vorgegebene reelle Zahl als Wert annehmen. Wer mathematisch geschickt ist, mag selbst
versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe – statt Grenzwert sagt man auch Limes – kennenlernen:

a) Den Grenzwert einer (unendlichen) Folge (an) = (an)n = (an)n∈N = (a0, a1, a2, . . .), der
lim

n→∞
an geschrieben wird, (Man kann die Folge auch mit dem Index 1 oder irgendeiner anderen

natürlichen Zahl beginnen lassen, und schreibt z.B. lim
n→∞

1
n

= 0 obwohl 1
n für n = 0 keine

Bedeutung hat.)

b) Den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unendlich vielen Summan-

den)
∞∑

n=0

bn,

c) Den Grenzwert einer Funktion bei Annäherung an einen Punkt, an dem sie vielleicht nicht
definiert ist lim

x→x0

f(x).

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’, d.h. ohne strikte Begriffs-
bildung vorbereitet. Bei allem Spaß, den das hoffentlich gemacht hat, sollte jedoch klar sein,
dass man ohne eine Präzisierung auf Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a, b auf der rellen Zahlengerade ist
a − b oder b − a, je nachdem ob a ≥ b oder a < b ist. Man kann dies einfacher ausdrücken,
wenn man den Begriff des (Absolut-)Betrages einführt: Der Betrag |a| einer reellen Zahl a ist
definiert durch

|a| :=
{

a für a ≥ 0
−a für a < 0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a−b| (wobei eben |b−a| = |a−b|
ist).

Der Betrag genügt folgenden formalen Regeln

a) 0 ≤ |a|, b) |a| = 0 ⇐⇒ a = 0, c) |ab| = |a| · |b|, d) |a + b| ≤ |a|+ |b|

Die letzte Regel – die man durch Betrachtung aller vier Fälle a ≥ 0, b ≥ 0; a < 0, b ≥ 0;
etc. leicht beweist – heißt die Dreiecksungleichung. (Der Name kommt von einer allgemeineren
Situation her, wo statt reeller Zahlen Vektoren betrachtet werden und die Dreiecksungleichung
für die Längen von v, w, v + w gilt und die geometrische Bedutung hat, dass die Länge einer
Dreiecksseite höchstens so groß ist wie die Summen der Längen der beiden anderen Seiten.)

Eine Ungleichung der Form |a − b| < ε (mit ε > 0) bedeutet, dass der Abstand von a und b
kleiner als ε ist, d.h. a−ε < b < a+ε gilt. (Natürlich kann man das auch durch b−ε < a < b+ε
ausdrücken.)

6.2 Limes einer Folge. Wie kann man es präzise fassen, dass eine Folge (a0, a1, a2, a3, . . .) sich
einer reellen Zahl a beliebig annähert?

Seit ungefähr 200 Jahren macht man es so:
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Definition 6.3 a) Sei a eine reelle Zahl und (an) eine Folge reeller Zahlen. Man sagt, die
Folge (an)n hat den Grenzwert (oder Limes) a – oder konvergiert gegen a – und schreibt
limn→∞ an = a, wenn zu jeder (noch so kleinen) reellen Zahl ε > 0 ein N ∈ N existiert, derart
dass |an − a| < ε für alle n > N gilt.

b) Eine Folge reeller Zahlen heißt konvergent, wenn sie eine reelle Zahl als Limes hat. An-
dernfalls heißt sie divergent. Man sagt auch: Sie konvergiert, bzw. divergiert.

Das heißt: In jeder noch so großen Nähe zu a liegen, bis auf höchstens endlich viele Ausnahmen,
alle Folgenglieder.

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (an)n∈N mit an = a für alle
n.

Den Zusatz ”(noch so kleinen)“ kann man in der Definition weglassen. Er dient lediglich zur
inhaltlichen Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Änderungen des obigen Wortlautes nicht zu äquivalenten
Aussagen führen:

”Es gibt ein kleines ε > 0, derart dass . . .“

”Es gibt ein N ∈ N, so dass für jedes ε > 0 . . .“

6.4 Obige Definition wird häufig von didaktisch Interessierten als sprachliches Monstrum ange-
sehen.

F. Vester (in ”Denken, Lernen, Vergessen“) polemisiert gegen obige Definition und schlägt statt-
dessen vor, die Konvergenz gegen 0 folgendermaßen zu definieren:

”Eine Folge heißt eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn – vom Vorzeichen
einmal ganz abgesehen – in ihr jedes Glied kleiner ist als das Vorangehende.“

Nun erfüllt die Folge (an) mit an = 1 + 1
n sicher die Definition von Vester, wird aber kaum als

Nullfolge anzusehen sein. Andererseits wird man die Folge

(an) mit an :=
{

2−n für gerade n
n−1 für ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch nicht erfüllt. Dieser
ist also – diplomatisch gesprochen – wenig hilfreich.

6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen, der nicht so sinnlos
ist wie der von F. Vester. Man definiert einen verschärften Konvergenzbegriff wie folgt:

Definition: Die Folge an konvergiert geometrisch gegen a, wenn es ein g mit 0 < g < 1 gibt,
derart dass |an − a| < gn für alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus: ”es gibt . . ., so dass für
alle . . ., während die die Definition 6.3 deren 3 benötigt: ”für alle . . . gibt es ein . . ., so dass für
alle . . .“

Dafür muss man in Kauf nehmen, dass z.B. die Folge ( 1
n) nicht geometrisch konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die Definition 6.3 zu
verstehen und anzuwenden, sollte nicht Mathematik studieren! Auch Informatikern
und Physikern ist sie zuzumuten!
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Es ist nützlich, auch ∞ und −∞ als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (an)n divergiert bestimmt gegen ∞ und schreibt
limn→∞ an = ∞, wenn es für jedes r ∈ R ein N ∈ N existiert, so dass an > r für alle n ≥ N
gilt.

Wie definiert man limn→∞ an = −∞??

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunächst wollen wir eine abkürzende Schreibweise für Summen der Art bm + bm+1 + · · · + bn

einführen – wo m ≤ n sei. Wir setzen
n∑

k=m

bk := bm + bm+1 + · · ·+ bn

Insbesondere sei
n∑

k=n

bk = bn.

Falls n < m ist setzen wir
n∑

k=m

bk = 0

Das Symbol
∞∑

k=0

bn

wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens bedeutet es die
Folge (sn)n∈N, wo sn := b0 + b1 + · · ·+ bn =

∑n
k=0 bn definiert ist, und zweitens bedeutet es den

Limes dieser Folge.

Man sagt also z.B.: Die (unendliche) Reihe

∞∑
k=0

bn

konvergiert, und man schreibt
∞∑

k=0

bn = s,

wenn limn→∞ sn = s ist.

Wir haben also den Begriff der unendlichen Reihen und ihrer Werte auf den Begriff der Folgen
und deren Grenzwerte zurückgeführt.

6.8 Im Übrigen kann man jede Folge (an)n∈N als unendliche Reihe
∑∞

k=0 bk schreiben, indem
man b0 = a0 und bk = ak − ak−1 für k ≥ 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschriebene Folgen. Mal
ist die eine, mal die andere Schreibweise nützlich oder von der untersuchten Fragestellung her
gegeben.
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6.9 Der Limes einer Funktion f bei Annäherung an einen Punkt x0 ∈ R hat nur dann
Sinn, wenn in beliebiger Nähe von x0 Punkte des Definitionsbereiches von f liegen. Sei also
D ⊂ R, f : D → R eine Funktion. Wir setzen voraus: Für jedes ε > 0 gebe es ein x ∈ D mit
|x− x0| < ε.

Dann definieren wir: Es ist limx→x0 = a genau dann, wenn für jede Folge (an)n mit an ∈ D und
limn→∞ an = x0 die Gleichung limn→∞ f(an) = a gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei Anäherung an x0 nähert, auf
den Begriff des Grenzwertes von Folgen zurückgeführt.

(Man kann diese Art Grenzwert auch anders definieren: Für jedes ε > 0 gibt es ein δ > 0, so
dass für alle x ∈ D mit |x− x0| < δ die Ungleichung |f(x)− a| < ε gilt.)

Man benötigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die Ableitung einer
Funktion als Grenzwert des Differenzenquotienten definieren will:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

= lim
x→x0

f(x)− f(x0)
x− x0

Examples 6.10 a) Die Folge ( 1
n) konvergiert gegen 0. Denn wegen des archimedischen Axioms

gibt es keine reelle Zahl ε > 0 mit ε < 1
n für alle n. Also ist 1

n ≤ ε für mindestens ein n ∈ N1.
Da aber – wie wir wissen – 1

m+1 < 1
m gilt, folgt aus 1

n ≤ ε, dass 1
m < ε für alle m > n gilt. Ich

erinnere an die (bestimmte) Divergenz der harmonischen Reihe.

b) Für reelle x mit |x| < 1 konvergiert die Folge xn auch gegen 0. Dies ist vielleicht jedem klar,
aber nicht so unmittelbar rigoros zu beweisen. Ich will auf den Beweis verzichten.

Für x = 1 konvergiert diese Folge offenbar gegen 1. Für x > 1 divergiert sie bestimmt gegen ∞.
Für x ≤ −1 hat sie keinen Limes, auch nicht den Limes −∞.

c) Sehr wichtig, vor allem für theoretische Überlegungen, ist die geometrische Reihe

∞∑
n=1

xn

Wir berechnen zunächst die endlichen Teilsummen
∑k

n=0 xn =: sk. Rechne

(1− x)sk = sk − xsk =
k∑

n=0

xk −
k+1∑
n=1

xk = 1− xk+1.

Es folgt für x 6= 1
k∑

n=0

xn =
1− xk+1

1− x

Da limk→∞ xk+1 = 0 für |x| < 1 gilt, hat man für diese x

∞∑
n=0

xn =
1

1− x

Für |x| ≥ 1 konvergiert die geometrische Reihe nicht.
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7 Allgemeine Potenzen

Anlass zu diesem Thema waren zwei überraschende Erlebnisse, negative Überraschungen freilich.

1. Mehrere junge Leute, die kurz zuvor ihr Abitur mit einer ”1+“ in Mathematik bestanden
hatten, wussten mit dem Ausdruck 2−2 nichts anzufangen.

2. In einer Staatsexamensklausur für das Fach Mathematik musste ich mehrfach die ”Regel“
ab− ac = ab−c lesen. Am liebsten hätte ich die betreffende Person wegen seelischer Grausamkeit
verklagt.

1. Wir studieren zunächst die Potenzen von 2:

21 = 2, 22 = 4, 23 = 8, . . . , 29 = 512, 210 = 1024, . . . .

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen, und zwar mit der
Einheit 1 cm : Wandert man vom Nullpunkt aus auf der waagerechten Achse um 5 cm nach
rechts, so müssen wir von dort um 32 cm nach oben gehen, um den Wert 25 = 32 abzutragen.
4 cm weiter müssen wir schon um 5,12 m nach oben gehen. Noch einen cm weiter auf der
waagerechten Achse, so sind wir in der Höhe bereits bei mehr als 10 m angelangt, was bestimmt
die Dimension dieses Raumes sprengt. Selbst eine Tafel von der Höhe des Himalaya reicht nicht
aus, um den Punkt zu markieren, der dem Wert von 220 in Zentimetern entspricht.

Man spricht von exponentiellem Wachstum.

Nun wollen wir doch gleich sowohl 210 − 21 als auch 210−1 ausrechnen:

210 − 21 = 1024− 2 = 1022 , 210−1 = 29 = 512.

Man sieht, dass im Allgemeinen 2a − 2b 6= 2a−b ist. Das Beispiel 22 − 21 = 22−1 ist die große
Ausnahme!

2. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definieren, etwa 2−2? Ant-
wort: Man kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man den Exponenten um
1 erhöht, wird die Potenz verdoppelt: 2n+1 = 2n · 2. Das bedeutet aber auch: Vermindert man
den Exponenten um eins (und bleibt er dabei positiv), so wird die Potenz halbiert:

2n−1 =
1
2
· 2n

Wenn man diese Regel für allgemeingültig erklärt,, d.h. auf alle ganzen Zahlen n ausdehnt, erhält
man

20 = 21−1 =
1
2
· 2 = 1, 2−1 =

1
2
· 1 =

1
2
, 2−2 =

1
22

=
1
4
, . . . , 2−n =

1
2n

.

Allgemein, ist a 6= 0 eine reelle Zahl, so definiert man

a0 := 1, a−n =
1
an

falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)−2 = 4.)
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Geht das gut?

Ja! Und zwar in folgendem Sinne: Für jede reelle Zahl a 6= 0 und jede ganze Zahl n, sei sie
positiv, negativ oder 0, ist die Potenz an eindeutig definiert, und es gilt die fundamentale Regel:

am+n = am · an (2)

für alle ganzen Zahlen m und n. Beachten Sie bitte: Auf der rechten Seite steht kein ”+“!!!

(Wenn umgekehrt die Regel 2 gelten soll und an für n ∈ N1 wie üblich definiert ist, so muss
a0 = 1 und a−n = 1

an für a 6= 0 gelten. Denn aus a0a = a0a1 = a0+1 = a1 = a folgt a0 = 1 (für

a 6= 0). Aus a−nan = a−n+n = a0 = 1 folgt dann a−n =
1
an

.)

Es gibt noch weitere Regeln:

(ab)n = anbn (3)
(am)n = amn (4)

Die Regel (4) folgt aus (2).

Wegen Regel (4) definiert man übrigens abc
:= a(bc). Beachten Sie dazu 2(32) = 29 = 512, (23)2 =

82 = 64 = 26.

Die Regeln am+n = aman und (ab)n = anbn sind die Analoga zu dem Distributivgesetz der
Addition/Multiplikation. Man beachte, wie unterschiedlich Basis und Exponent behandelt
werden!

3. Wir wollen uns jetzt überlegen, ob, wann und wie man Potenzen mit rationalen Exponenten
definieren kann. Soll (1) und damit auch (3) (für rationale m und positive ganze n) weiterhin
gelten, so muss

(a
1
n )n = a

sein, d.h. a1/n sollte diejenige Zahl (die auch mit n
√

a bezeichnet wird) sein, deren n-te Potenz
a ist. Für ungerade n macht dies (im Bereich der reellen Zahlen) keine Probleme. Ist aber n
gerade, so gibt es für a > 0 zwei ”n-te Wurzeln“ und für a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir a > 0 voraussetzen und a(1/n) > 0
verlangen.

Wenn wir schließlich noch

a
m
n := (am)

1
n = n

√
am (= (a

1
n )m = ( n

√
a)m)

für ganze m,n mit n > 0 definieren, so ist ax für reelle a > 0 und rationale x so definiert, dass
die Regeln (2) bis (4) gelten.

Übrigens ist an rational, wenn a 6= 0 rational und n ganz ist. hingegen ist 21/2 – wir wir bereits
wissen – nicht rational.

4. Schließlich wollen wir noch ax für beliebige reelle Zahlen x und a > 0 definieren. Die o.a.
Regeln (2) bis (4) geben alleine kein Rezept. Wir verlangen zusätzlich die sogenannte Stetigkeit
der Funktion x 7→ ax.
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Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir ”definieren“ (und müssen das
auch tun, wenn ax

”stetig“ sein soll):

Ist x = lim
n→∞

bn mit bn ∈ Q, so sei ax := lim
n→∞

abn . (5)

Diese ”Definition“ hat natürlich einen Haken. Die reelle Zahl x ist auf viele Weisen Limes einer
Folge rationaler Zahlen. Wir müssen uns fragen: Wenn limn→∞ b′n = limn→∞ bn ist, ist dann
auch limn→∞ ab′n = limn→∞ abn?

Die Antwort ist: Ja. Allerdings ist der Beweis dafür keineswegs trivial. Eine präzise Durchführung
ist im Schulunterricht vielleicht nicht möglich. (Man kann den Beweis leicht auf die folgende
Behauptung reduzieren: ”Ist (cn) eine rationale Nullfolge, so ist limn→∞ acn = 1.“ Aber letzteres
zu zeigen, ist nicht leicht.)

5. Ist die Funktion f(x) = ax (für a > 0) differenzierbar, und was ist gegebenenfalls die Ablei-
tung? Wir studieren den Differenzenquotienten:

ax+h − ax

h
=

axah − ax

h
= ax · ah − 1

h
.

Man kann f also differenzieren, wenn lim
h→0

ah − 1
h

=: c existiert. Dies ist so – allerdings nicht

ganz einfach zu zeigen. Man erhält, dass die Ableitung von ax proportional zu ax ist, wobei der
Proportionalitätsfaktor c (monoton) von a abhängt.

Es gibt nun – was wiederum nicht leicht zu beweisen ist – genau eine Zahl e > 0 mit der
Eigenschaft (ex)′ = ex. Dies ist übrigens dieselbe Zahl e, die schon im Paragrafen 5. definiert
wurde.

6. Bei der Einführung der allgemeinen Potenz auf der Universität geht man gemeinhin einen
Umweg, der es erlaubt, den unter 4. und 5. genannten Probleme elegant aus dem Wege zu gehen:

Man definiert zunächst eine Funktion ”exp“ durch

exp(x) :=
∞∑

n=0

xn

n!
(6)

Die Reihe konvergiert für alle reellen (sogar komplexen) x. Dann zeigt man die fundamentale
Gleichung

exp(x + y) = exp(x) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Aufwand (Cauchy-
Produkt, Binomial-Formel) und darf nicht durch den Hinweis exp(x) = ex und Regel (1) erledigt
werden! Warum nicht?

Aus (7) folgert man zunächst die Stetigkeit von exp. Auch die Differenzierbarkeit und exp′ = exp
ist leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(x) = ex zunächst für die natürlichen, danach
für die ganzen und schließlich für die rationalen Zahlen, wobei die rechte Seite wie unter 2. und
3. definiert sei.. Das geht wie geschmiert!
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Zwei stetige Funktionen auf R, die auf Q übereinstimmen, sind gleich, wie man leicht sieht. Da
exp stetig ist, gibt es also genau eine stetige Fortsetzung von ex auf ganz R, nämlich ex := exp(x).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(x) als x-te Potenz von e anzusehen
und mit ex zu bezeichnen.

Aber wir wollen natürlich auch ax für beliebige a > 0 definieren. Dazu definiert man den
Logarithmus als Umkehrfunktion der Exponentialfunktion. Man zeigt dazu exp(x) > 0, also
exp′(x) > 0. Somit ist exp streng monoton wachsend. Das Bild besteht ferner aus allen positiven
reellen Zahlen: exp(R) = R∗

+. Man hat also eine Umkehrabbildung, den natürlichen Logarithmus

ln : R∗
+ → R

(Man schreibt auch ”log“ statt ”ln“.) Für beliebige a > 0 sieht man sofort, dass die Funktion
f(x) := exp(x ln(a)) die Gleichungen f(x + y) = f(x)f(y) sowie f(1) = a erfüllt, und deshalb
mit ax für alle rationalen x übereinstimmt. Dies rechtfertigt es, ax := exp(x ln(a)) für alle
reellen x zu definieren.

7. Seien c, z ∈ C, c 6= 0 Man kann versuchen cz := exp(z ln(c)) zu definieren. Dies hat den
Vorzug, dass man bis auf die Bedingung c 6= 0 keine Einschränkung machen muss. Der Nachteil
liegt darin, dass die ”Funktion“ ln auf C× = C − {0} von Natur aus unendlich viele Werte
hat, die sich um Vielfache von 2πi unterscheiden. Das kommt daher, dass im Komplexen die
Funktion exp nicht injektiv ist. Jeder noch so geschickt ausgewählte, auf ganz C× eindeutig
definierte Logarithmus ist weder überall stetig, noch erfüllt er allgemein die Gleichung ln(z1z2) =
ln(z1) + ln(z2).

Man muss also damit leben, dass etwa der Ausdruck ii zunächst unendlich viele (reelle) Werte
hat und wenn man mit ihm rechnen will, angeben, welcher der möglichen Werte gemeint ist.
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8 Potenzen und Potenztürme

1. Für beliebige (reelle) Zahlen a, b gilt: a + b = b + a und ab = ba.

Für Potenzen ist das anders:
23 = 8, aber 32 = 9.

Auch ohne Rechnen sieht man, dass 23 von 32 verschieden sein muss. Denn 23 = 2 · 2 · 2 ist
gerade, 32 = 3 · 3 hingegen ungerade. Dieses Argument gilt nicht für 24 und 42, die ja gleich
sind. Ist nun etwa 28 = 82? Nein:

28 = 26+2 = 26 · 22, aber 82 = (23)2 = 23·2 = 26.

Die erste Potenz ist also viermal so groß wie die zweite.

Jetzt vergleichen wir (
9
4

) 27
8

mit
(

27
8

) 9
4

Zunächst wollen wir uns daran erinnern, dass diese Ausdrücke sinnvoll sind. Z.B. ist für a ≥ 0
per definitionem:

a
9
4 =

(
4
√

a
)9

Und fragen Sie, ob die positive oder negative Wurzel gemeint ist, so ist die Antwort: Die positive!

Jetzt rechnen wir:(
9
4

) 27
8

=

((
3
2

)2
) 3

2
· 9
4

=
(

3
2

)2· 3
2
· 9
4

=

((
3
2

)3
) 9

4

=
(

27
8

) 9
4

Allgemeiner gilt: Ist

a =
(

1 +
1
n

)n

, b =
(

1 +
1
n

)n+1

,

so gilt ab = ba.

Für positive reelle x, y gilt

xy = yx ⇐⇒ ln(xy) = ln(yx) ⇐⇒ y lnx = x ln y ⇐⇒ lnx

x
=

ln y

y

Will man also Paare (x, y) positiver reeller Zahlen mit xy = yx, x 6= y finden, so hat man die
Funktion f(x) = ln x

x darauf zu untersuchen, ob sie mehrfach denselben Wert annimmt.

Deshalb werden wir diese Funktion auf ihrem Definitionsbereich, d.h. dem Bereich der positiven
reellen Zahlen, jetzt diskutieren:

1. Nullstellen:
f(x) = 0 ⇐⇒ lnx = 0 ⇐⇒ x = 1.

Offenbar ist f(x) < 0 für 0 < x < 1 und f(x) > 0 für x > 1.

2. Verhalten der Funktion nahe 0. Offenbar geht f(x) gegen −∞, wenn x gegen 0 geht.
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3. Die Ableitung:

f ′(x) =
(1/x) · x− 1 · lnx

x2
=

1− lnx

x2

Also gilt folgendes
f ′(x) = 0 ⇐⇒ x = e, die Eulersche Zahl,

Ferner ist f ′(x) > 0 für 0 < x < e und f ′(x) < 0 für x > e.

Also kann man sich bereits ein Bild der Funktion machen. Sie steigt zwischen 0 und e monoton
an. läuft bei 1 durch die x-Achse, erreicht bei e ein Maximum und fällt für x > e monoton,
bleibt aber positiv.

4. Verhalten für große x. Man weiß, dass die Logarithmusfunktion sehr langsam wächst. Deshalb
gilt limx→∞ f(x) = 0.

Was erkennt man daraus:

Zu jeder reellen Zahl x mit 1 < x < e gibt es genau eine weitere Zahl y mit f(x) = f(y), und
dieses y ist größer als e.

Es gibt also sehr viele Paare positiver reeller Zahlen (x, y), für die xy = yx, aber x 6= y gilt.
Verlangt man allerdings, dass x, y beide ganz (und positiv) sind, so ist, bis auf die Reihenfolge
(2, 4) das einzige solche Paar, da 2 die einzige ganze Zahl zwischen 1 und e ist.

Beachte aber, dass auch (−2)−4 = 1
(−2)4

= 1
16 = (−4)−2 ist.

2. Auch das Assoziativgesetz gilt nicht für Potenzen. Während a + (b + c) = (a + b) + c und
a(bc) = (ab)c gelten, ist

(33)3 = 33·3 = 39, aber 3(33] = 327 .

Da
(ab)c = abc ist, setzen wir abc

:= a(bc).

Analog fahren wir fort:

abcd

= a(b(c
d)) usw., z.B.

√
2
√

2
√

2
2

=
√

2
√

2
2

= · · · = 2

Wir wollen für diesen Vortrag folgende Schreibweise einführen: a) Wir schreiben a[1] := a, a[2] :=
aa, a[3] = aaa

usw., a[n+1] = a(a[n]).

Beachte, dass im Allgemeinen a[m+n] 6= (a[m])(a
[n]) ist, z.B. 3[2+1] 6= (3[2])3, wie wir schon wissen.

Ein weiteres Beispiel ist:

2[2+2] = 2222

= 224
= 216, aber (2[2])(2

[2]) = 44 = 28 .

Nun betrachten wir die riesige Zahl 9[100]. Sicher ist 3[100] zwar immer noch beachtlich groß, aber
viel kleiner. Wir stellen uns die Frage: Welches ist die kleinste natürliche Zahl n mit 3[n] ≥ 9[100]?

Sicher ist 3m+1 = 3 · 3m > 2 · 3m. Hieraus folgt: Sind k, m ∈ N, so gilt

3k > 3l =⇒ 3k > 2 · 3l (8)
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Wir setzen jetzt voraus, m,n seien natürliche Zahlen mit 3[m] > 9[n]. Da 9[n] eine Potenz von 3
(mit einem positiven ganzen Exponenten) ist, folgt mit (8), dass dann auch 3[m] > 2 · 9[n], also
auch

3[m+1] = 33[m]
> 32·9[n]

= 9[n+1]

gilt. Da 33 > 9, d.h. 3[2] > 9[1] folgt mit Induktion 3[n+1] > 9[n].

Es ist also bereits 3[101] > 9[100]. Überraschend, nicht wahr?

Dasselbe gilt, wenn man 3 durch eine beliebige ganze Zahl a ≥ 3 und 9 durch aa−1 ersetzt. Der
Beweis hierfür ist derselbe. (Für a = 2 ergibt sich eine triviale Aussage.)

3. Die Folge (2, 22, 222
, . . .) ist streng monoton wachsend und besteht aus ganzen Zahlen. Deshalb

gilt limn→∞ 2[n] = ∞. Auch die Folge (
√

2
[n]

)n ist streng monoton wachsend. Denn die Funktion

f(x) :=
√

2
x

ist streng monoton wachsend. Deshalb ist
√

2 <
√

2
√

2
. Hieraus folgt mit Induktion√

2
[n]

<
√

2
[n+1]

. Analog gehts für alle (b[n]) mit b > 1.

Sind die Limites dieser Folgen auch ∞?

Überraschender Weise gilt
lim

n→∞

√
2
[n]

= 2

Beweis: Wenn man in dem Potenzturm
√

2
[n]

das oberste Stockwerk durch 2 ersetzt, erhält man
(mit einem Teleskopargument) einerseits die Zahl 2, andererseits sicher ein gößeres Ergebnis als√

2
[n]

. Es ist also
√

2
[n]

< 2 für alle n ≥ 1. Da die Folge (
√

2
[n]

)n monoton wachsend und durch
2 nach oben beschränkt ist, hat sie einen endlichen Limes t ≤ 2.

Um t zu bestimmen, rechnen wir

√
2

t
=
√

2
limn→∞

√
2
[n]

= lim
n→∞

√
2
[n+1]

= t

Die Gleichung
√

2
t

= t hat die Lösungen t = 2 und t = 4. Durch eine Kurvendiskussion stellt
man fest, dass sie keine anderen haben kann. Wegen t ≤ 2 folgt t = 2. –

Diese Überlegungen kann man allgemeiner, statt nur für 21/2 für a1/a mit a ≥ 1 anstellen. Da

ln(a1/a) =
ln a

a

ist, ist die größte der Zahlen unter den a1/a die Zahl e1/e.

Für a ∈ [1, e] ist limn→∞(a1/a)[n] = a. Für a > e ist limn→∞(a1/a)[n] = b, wobei b ∈]1, e[ so
gewählt ist, dass ab = ba ist. Nicht wahr?

Zum Schluss beweisen wir
lim

n→∞
b[n] = ∞, falls b > e1/e gilt.

Da die Folge (b[n]) monoton wachsend ist, genügt es zu zeigen, dass sie keinen endlichen Limes
hat. Wäre dieser gleich t, so gölte (s.o.) bt = t, also b ≤ t1/t. Deshalb wäre b ≤ e1/e. –

Fragt man nach der Konvergenz von (b[n])n für b < 1, so kann man beweisen, dass dieselbe genau
für die b ≥ (1/e)e gilt. Hier ist zu beachten, dass die Folge (b[n])n hier nicht mehr monoton ist.
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Remark 8.1 Es gilt
2[n+2] > 4[n] ≥ 2[n+1].

(Die zweite Ungleichung wird zu >, wenn n ≥ 2 ist.)

Wenn man in dem Potenzturm 4[n] die oberste 4 als 22 schreibt, erkennt man sofort die Gültigkeit
der zweiten Ungleichung.

Die erste Ungleichung ist offenbar für n = 1 gültig. Dann überlegt man sich: Sind k > l gerade
Zahlen, so folgt aus 2k > 2l die Ungleichung 2k > 2 · 2l. Es gelte nun

2[m] > 4[n] und n ≥ 1, (9)

also m ≥ 2. Deshalb sind die beiden Terme in (9) Potenzen von 2 mit geraden Exponenten. Die
Ungleichung (9) impliziert also

2[m] > 2 · 4[n]

also
2[m+1] > 22·4[n]

= 4[n+1].

Per Induktion folgt mithin 2[n+2] > 4[n].
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9 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden für viele von Ihnen eine
beachtliche Hürde sein, die Sie jedoch überwinden müssen, wollen Sie mit Erfolg Mathematik,
Informatik oder Physik studieren! Sie sollten erkennen, wie simpel, ja geradezu primitiv die-
se Dinge sind. Die Mengensprache ist eine wichtige und grundlegende Sprache der modernen
Mathematik. Man darf sie aber nicht mit dem eigentlichen Inhalt der Mathematik verwechseln.

9.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchsfreie Weise angibt,
welche Dinge zu ihr gehören sollen, d.h. für welche x das Symbol x ∈ M gelten soll, d.h. welche
Dinge Elemente der Menge sind..

Gilt dies für nur endlich viele Dinge, d.h ist die Menge M endlich, so kann man sie durch Angabe
aller ihrer Elemente beschreiben, wobei es auf die Reihenfolge nicht ankommt, und auch nicht
darauf, ob man zufällig eines ihrer Elemente mehrfach angibt:

{3, 7, 2, 7, 1, 7} = {3, 7, 2, 3, 7, 1, 2} = {3, 7, 2, 1} = {1, 2, 3, 7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Mengen N, Z, Q, R als
wohlbeschrieben ansehen und aus ihnen weitere Mengen gewinnen, z.B. die Menge der geraden
ganzen Zahlen, d.h. derjenigen n ∈ Z, für die 2|n gilt. Diese Menge schreibt man so

{n
∣∣∣ n ∈ Z, 2|n} = {n ∈ Z

∣∣∣ 2|n}

(Statt des senkrechten Striches
∣∣∣ schreiben manche auch ”;“ oder ”:“ .) Da a - b bedeuten soll,

dass a kein Teiler von b ist, ist {n ∈ Z | 2 - n} die Menge der ungeraden Zahlen.

Wichtige Mengen reeller Zahlen sind die Intervalle. Seien a, b ∈ R mit a < b, so schreibt man:

[a, b] := {x ∈ R | a ≤ x ≤ b} , ]a, b[:= {x ∈ R | a < x < b} ,

]a, b] := {x ∈ R | a < x ≤ b} , [a, b[:= {x ∈ R | a ≤ x < b}

Obwohl diese Mengen sich in höchstens 2 Elementen unterscheiden, darf man sie nicht mitein-
ander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die sogenante leere
Menge, die mit ∅ bezeichnet wird.

9.2 Seien M,N Mengen. Man nennt M eine Teilmenge von N (und manchmal N eine Ober-
menge von M) und schreibt M ⊂ N oder N ⊃ M , wenn jedes Element von M auch ein solches
von N ist:

M ⊂ N ⇐⇒
[
x ∈ M =⇒ x ∈ N

]
Dabei schließen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also M ⊂ M .

Zum Beispiel gelten

{1, 3, 7} ⊂ {1, 2, 3, 7} , {n ∈ Z
∣∣∣ 6|n} ⊂ {n ∈ Z

∣∣∣ 3|n} , [a, b[⊂ [a, b]
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9.3 Für zwei Aussagen A,B bedeutet A =⇒ B eine der folgenden untereinander äquivalenten
Aussagen:

”wenn A gilt, dann gilt auch B“

”aus A folgt B“

”A ist eine hinreichende Bedingung für B“

”B ist eine notwendige Bedingung für A“

”B gilt, oder A gilt nicht“

Man sagt dazu auch: ”A impliziert B“.

9.4 Der Durchschnitt M1 ∩M2 zweier Mengen M1 und M2 ist die Menge aller Elemente, die
sowohl Elemente von M1 als auch solche von M2 sind:

M1 ∩M2 = {x | x ∈ M1 und x ∈ M2}

Beispiele: {1, 7, 3, 8, 4, 9} ∩ {3, 7, 2, 7, 1, 7} = {1, 3, 7}.
{n ∈ Z

∣∣∣ 2|n} ∩ {n ∈ Z | 3|n} = {n ∈ Z | 6|n}. ]0, 3[∩Z = {1, 2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne gebraucht wird als
in dem Satz ”Der Durchschnitt der Schokoladenpreise in diesem Supermarkt ist 79 Zent“.

Die Vereinigung M1 ∪M2 zweier Mengen M1 und M2 ist die Menge aller Elemente, die in M1

oder M2 liegen, d.h. die Element mindestens einer der beiden Mengen sind.

M1 ∪M2 := {x | x ∈ M1 oder x ∈ M2}

Zum Beispiel {1, 7, 3, 8, 4, 9} ∪ {3, 7, 2, 7, 1, 7} = {1, 2, 3, 4, 7, 8, 9} oder [0, 2] ∪ [2, 3] = [0, 3] oder
[0, 3[∪[2, 4[= [0, 4[

Man mag geneigt sein zu sagen, die Elemente von M1 ∪ M2 seien die Elemente von M1 und
von M2. Man sollte sich darüber im Klaren sein, dass bei dieser Sprechweise nicht gemeint ist:
M1 ∪ M2 besteht aus den Elementen x, für die gilt, dass x sowohl Element von M1, als auch
Element von M2 ist. (Letztere Menge wäre gerade der Durchschnitt M1 ∩M2.)

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstände verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei Mengen bilden, ja
sogar von unendlich vielen Mengen.

9.5 Man betrachtet auch die Mengendifferenz M −N (auch M \N geschrieben):

M −N := {x ∈ M | x /∈ N}

Zum Beispiel {1, 3, 4, 7, 8, 9} − {1, 2, 3, 5, 7} = {4, 8, 9} oder Z− {n ∈ Z
∣∣∣ 2 - n} = {n ∈ Z | 2|n}

Die symmetrische Differenz zweier Mengen M1,M2 ist
(M1 ∪M2)− (M1 ∩M2) = (M1 −M2) ∪M2 −M1).
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9.6 Zwei Aussagen A,B kann man logisch verknüpfen durch die ”Junktoren“ ‘und’ und ‘oder’.
Diese werden manchmal abgekürzt: ∧ heißt ‘und’, ∨ heißt ‘oder’. Dabei bedeutet ∨ kein aus-
schließendes ‘oder’.

A ∨B ist genau dann wahr, wenn mindestens eine der Aussagen A,B wahr ist.

A ∧B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (A ∧ B) ∨ C bedeutet etwas anderes als A ∧ (B ∨ C). Manche Unklarheiten in nicht
formalisierten Texten entstehen dadurch, dass man solcherlei nicht leicht unterschiedlich aus-
drücken kann. In verbalen Sätzen haben die Klammern – so man sie überhaupt verwendet – eine
andere Bedeutung als in mathematischen und logischen Formeln.

Die beiden folgenden Ausdrücke sind äquivalent: (A ∧B) ∨ C und (A ∨ C) ∧ (B ∨ C).

Selbiges gilt für A ∧ (B ∨ C) und (A ∧B) ∨ (A ∧ C).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ , das man auch ⇁ A schreibt. Genau
dann ist ⇁ A richtig, wenn A falsch ist.

In der klassischen Logik,, die wir in der Regel benutzen ist ⇁ (⇁ A) mit A äquivalent.

Die Aussage ⇁ (A ∧B) ist äquivalent zu (⇁ A) ∨ (⇁ B).

Und ⇁ (A ∨B) ist äquivalent zu (⇁ A) ∧ (⇁ B).

Die Aussage A =⇒ B bedeutet (in der klassischen Logik) nichts anderes als (⇁ A) ∨B.

Und A ⇐⇒ B bedeutet natürlich (A =⇒ B) ∧ (B =⇒ A).

9.7 Der Zusammenhang zwischen den Mengenverknüpfungen und den Junktoren ist:

x ∈ M ∩N ⇐⇒ x ∈ M ∧ x ∈ N

x ∈ M ∪N ⇐⇒ x ∈ M ∨ x ∈ N

Aus den o.a. logischen (Distributiv)Regeln ergibt sich für Mengen (L ∩ M) ∪ N = (L ∪ N) ∩
(M ∪N); und dasselbe , wenn man ∪ mit ∩ vertauscht.

9.8 Außer den Junktoren braucht man noch die sogenannten Quantoren: ”für alle“ und ”es
gibt“, welch letzteres nichts anderes bedeutet als ”für ein“. Man braucht dazu Aussagen über
eine ”Variable“, etwa x. Man schreibt A(x), was bedeuten soll: A gilt für x. Ein Beispiel ist die
Aussage x ∈ R =⇒ 2x = x + x.

Die abkürzenden Bezeichnungen sind:
∧

x A(x) in der Bedeutung: ”für alle x gilt A“ (Allquan-
tor)

und:
∨

x A(x) in der Bedeutung: ”für (mindestens) ein x gilt A“ (Existenzquantor).

Mathematiker benutzen häufiger die Abkürzungen ∀ statt
∧

und ∃ statt
∨

.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt für zwei Existenzquantoren.
Hingegen wissen wir, dass man einen All- mit einem Existenzquantor nicht vertauschen darf.

In den natürlichen Sprachen werden Allquantoren häufig versteckt. Z.B. gilt folgender Satz:
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”Seien x, y (beliebige) reelle Zahlen. Dann gilt xy = yx.“ Damit ist gemeint:∧
x

∧
y

(
(x ∈ R ∧ y ∈ R) =⇒ xy = yx

)
Wenn man sagt, ”für eine reelle Zahl x gilt 2x = x + x“, so meint man: ”für alle reellen Zahlen
x gilt 2x = x + x“. Aus diesem Grunde empfiehlt es sich, den Existenzquantor mit ”es gibt“ zu
verbalisieren. Statt ” Für eine reelle Zahl x gilt xx = xx“ sollte man sagen ”es gibt eine reelle
Zahl x mit xx = xx“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 9.9 a) Die Aussagen
∧

x(x ∈ N =⇒ xx = xx) und
∧

x(x ∈ N =⇒ xx 6= xx) sind
beide falsch.

b) Hingegen sind die Aussagen
∨

x(x ∈ N ∧ xx = xx) und
∨

x(x ∈ N ∧ xx 6= xx) beide richtig.

c) Für alle Mengen M,N gilt

M ⊂ N ⇐⇒
∧
x

(x ∈ M =⇒ x ∈ N)

9.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X×Y (genannt nach Descartes)
versteht man die Menge aller Paare (x, y) mit x ∈ X, y ∈ Y . Zum Beispiel kann man die
euklidische Ebene bekanntlich als Menge aller Paare (x, y) reeller Zahlen auffassen. Also ”ist“
sie R× R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden. Statt R×R schreibt
man auch R2. Entsprechend ist R3 usw. und Rn zu verstehen. Die Elemente (x1, x2, . . . , xn) des
Rn heißen n-tupel reeller Zahlen.

Ist K ein beliebiger Körper, so definiert man auf dem Kn eine Addition wie folgt:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) := (a1 + b1 , a2 + b2, . . . , an + bn) (10)

Alle Axiome der Addition in einem Körper (oder Ring) sind für diese Addition erfüllt. Definiert
man noch eine Multiplikation durch

(a1, a2, . . . , an) · (b1, b2, . . . , bn) := (a1b1, a2b2, . . . , anbn)

so wird der Kn zu einem Ring, der aber für n > 1 kein Körper ist. (Warum nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen von Kn:

a · (b1, . . . , bn) := (ab1, . . . , abn) (11)

für a, b1, . . . , bn ∈ K. Man nennt Kn zusammen mit der Addition (10) und der Multiplikation
(11) einen sogenannten Vektorraum.
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10 Abbildungen

Ohne den Begriff ”Abbildung“ geht in der modernen Mathematik gar nichts. Zu einer Abbildung
gehören eine Startmenge (Definitionsbereich) X und eine Zielmenge Y . Eine Abbildung F : X →
Y besteht nun darin, dass jedem Element x ∈ X genau ein (d.h. ein, aber auch nur ein) Element
f(x) ∈ Y zugeordnet wird. Wird durch f auch nur einem einzigen Element x ∈ X kein oder
mehr als ein Element aus Y zugeordnet, so ist f keine Abbildung.

Z.B. ist f : R → R, f(x) := 1/x keine Abildung. Hingegen ist f : R− {0} → R, f(x) := 1/x sehr
wohl eine solche.

Anderen Einschränkungen ist der Begriff Abbildung nicht unterworfen. Z.B. ist folgendes eine
Abbildung

f : R → R definiert durch f(x) = 1 für x ∈ Q, f(x) = 0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber präzise definiert. (Dabei ist allerdings zuzuge-
ben, dass es bei einer gemessenen physikalischen Größe keinen Sinn hat, zu fragen, ob sie rational
oder irrational ist.)

Ein weiteres Beispiel ist:

g : R → R, g(x) = x2 für x ≥ 0, g(x) = −x2 für x < 0

Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differenzierbar!

Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Element abgebildet wird,
z.B.

α : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 2, 3 7→ 3

β : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 3, 3 7→ 1

Definitions 10.1 Sei f : X → Y eine Abbildung.

a) X heißt die Startmenge (kurz: der Start) und Y die Zielmenge (kurz: das Ziel) von f .
(In manchen Situationen, insbesondere in der Linearen Algebra, ist man sehr streng und unter-
scheidet zwischen Abbildungen, die nur bis auf die Start- oder die Zielmenge übereinstimmen,
z.B. zwischen den Abbildungen f : R → R, x 7→ x2 und g : R → R+, x 7→ x2)

b) Die Bildmenge (auch das Bild im(f) = f(X) von f ist die Menge {f(x) | x ∈ X} =
{y ∈ Y | es existiert ein x ∈ X mit f(x) = y}.

c) f heißt injektiv, wenn verschiedene Elemente von X auch verschiedene Bilder haben, d.h.
wenn aus f(x) = f(x′) immer x = x′ folgt. (Dass aus x = x′ immer f(x) = f(x′) folgt, ist
aufgrund des Begriffes einer Abbildung klar, und hat deshalb nichts mit ‘injektiv’ zu tun!)

d) f heißt surjektiv, wenn jedes Element y ∈ Y das Bild (mindestens) eines x ∈ X ist, d.h.
wenn f(X) = Y gilt.

e) f heißt bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f) Sind f : X → Y, g : Y → Z Abbildungen, so definiert man ihre Verkettung g◦f : X → Z
durch (g◦f)(x) := g(f(x)).

38



Examples 10.2 a) Die o.a. Abbildung α ist weder injektiv, noch surjektiv; β hingegen ist
bijektiv.

b) Durch x 7→ x2 können, je nach Wahl von Start und Ziel, Abbildungen mit verschiedenen der
o.a. Eigenschaften definiert werden:

1) R → R, weder surjektiv noch injektiv,

2) R → R+, surjektiv aber nicht injektiv,

3) R+ → R, injektiv aber nicht surjektiv,

4) R+ → R+, sowohl surjektiv wie injektiv, also bijektiv.

10.3 Sei f : X → Y eine bijektive Abbildung. Dann gibt es zu jedem y ∈ Y genau ein (d.h. ein
eindeutig bestimmtes) x ∈ X mit f(x) = y. (Die Existenz dieses x folgt aus der Surjektivität,
seine Eindeutigkeit aus der Injektivität.)

Dieses x wird mit f−1(y) bezeichnet. Macht man obiges für alle y ∈ Y , so erhält man eine
Abbildung f−1 : Y → X. Man nennt f−1 auch die Umkehrabbildung von f . Sie ist nur dann
definiert, wenn f bijektiv ist. Natürlich ist auch f−1, wenn es überhaupt definierft ist. Achtung:
Die Abbildung

x 7→ 1
f(x)

hat nichts mit f−1 zu tun!

Ist f : X → Y eine bijektive Abbildung, so gilt f◦f−1 = idY und f−1◦f = idX .

Sind umgekehrt f : X → Y und g : Y → X Abbildungen mit g◦f = idX und f◦g = idY , so sind
f, g bijektiv, und es ist g = f−1.

Lemma 10.4 Sei
W

α−→ X
β−→ Y

γ−→ Z

eine Folge von Abbildungen. Dann gilt γ◦(β◦α) = (γ◦β)◦α.

Proof: Für w ∈ W gilt

(γ◦(β◦α))(w) = γ((β◦α)(w)) = γ(β(α(w)))

und
((γ◦β)◦α)(w) = (γ◦β)(α(w)) = γ(β(α(w)))

�

Mit anderen Worten: Sowohl γ◦(β◦α) als auch (γ◦β)◦α ist die Abbildung, die entsteht, indem
man erst α, dann β und schließlich γ ausführt.

Beachten Sie, dass α◦β in obiger Situation meistens nicht definiert ist.
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10.5 Sei f : X → Y eine beliebige Abbildung – die weder injektiv noch surjektiv sein muss.
Dann definiert man manchmal für Teilmengen V ⊂ Y die folgende Menge:

f−1(V ) := {x ∈ X | f(x) ∈ V }

Vorsicht: Trotz gleicher Bezeichnung handelt es sich hier nicht um die Umkehrabbildung von
f , welche ja nur dann definiert ist, wenn f bijektiv ist. Ist V ∩ im(f) = ∅, so ist f−1(V ) = ∅,
und umgekehrt.

Man kann f−1(V ) im Allgemeinen nicht als

f−1(V ) := {f−1(y) | y ∈ V }

definieren. Das geht nur, wenn f bijektiv ist.

Ist U ⊂ X eine Teilmenge, so wird definiert:

f(U) := {f(x) | x ∈ U}.
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11 Komplexe Zahlen

Wenn man von den natürlichen Zahlen aus über die ganzen und rationalen Zahlen schließlich zu
den reellen Zahlen gelangt ist, ist ein gewisser Abschluss erreicht. Man kann z.B. jeden Punkt des
(euklidischen) Raumes – nach Festlegung eines Koordinatensystems – durch ein Tripel reeller
Zahlen beschreiben, was bekanntlich nicht möglich ist, wenn man sich auf die rationalen oder
die positiven reellen Zahlen beschränkt. Wen kümmert es eigentlich ernsthaft, dass man aus
negativen Zahlen keine Quadratwurzeln ziehen kann? Man verzichtet ja auch darauf, durch 0 zu
dividieren.

Die erste Ahnung davon, dass sich möglicherweise hinter der durch reelle Zahlen beschriebenen
Realität eine mathematisch relevante Wirklichkeit verbirgt, bekamen unsere Vorfahren in der
Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen löst. Auf die soge-
nannte ”p-q-Formel“ kommt man durch die quadratische ”Ergänzung“. Wenn man analog eine

”kubische Ergänzung“ auf kubische Gleichungen (d.h. solche 3. Grades) anzuwenden versucht,
erreicht man lediglich eine Reduktion auf Gleichungen der Form x3 + px + q = 0. Eine Lösungs-
formel für diese Gleichung fand (wahrscheinlich) Tartaglia im Jahre 1535:

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27

Für die Gleichung x3−3x+2 = 0 z.B. liefert Tartaglias Formel die Lösung x = 3
√
−1 +

√
1− 1+

3
√
−1−

√
1− 1 = −2, die offenbar richtig ist. (Allerdings ist 1 eine weitere Lösung.) Ebenso erhält

man mit Tartaglias Formel die Lösung 0 der Gleichung x3+x = 0. (Diese ist übrigens die einzige
Lösung im Bereich der reellen Zahlen.)

Bei der ebenso simplen Gleichung x3 − x = 0 scheint allerdings Tartaglias Formel zu versagen.
Sie ergibt

x =
3

√√
− 1

27
+

3

√
−
√
− 1

27

Die (richtige) Lösung 0 erhält man nur dann, wenn man sich großzügig darüber hinwegsetzt,

dass der zweimal vorkommende Ausdruck
√
− 1

27 im Bereich der reellen Zahlen gar keinen Sinn
hat. (1 und -1 sind weitere Lösungen.)

Dies sollte weniger ein Grund zur Resignation sein, als einer dafür, Quadratwurzeln aus nega-
tiven Zahlen einen Sinn zu geben. Umso mehr, als in Tartaglias Formel solche merkwürdigen
Ausdrücke häufig genug auftreten, nämlich immer gerade dann, wenn die Gleichung drei
verschiedene reelle Lösungen hat.

Komplexe Zahlen: Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl dazu, die

”i“ genannt wurde und die merkwürdige Eigenschaft i2 = −1 hat, und betrachteten als neue,
sogenannte komplexe Zahlen die Ausdrücke der Gestalt a+ bi mit reellen Zahlen a, b. (Zunächst
sprach man von imaginären, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da man
teilweise unter imaginären Zahlen nur solche der Form bi mit reellem b verstand, kam man auf
den Namen ”komplexe Zahl“ für eine Summe aus einer reellen und einer (rein) imaginären Zahl.)
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So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so fasst man die
komplexen Zahlen als Punkte in einer Ebene auf, die komplexe Zahl a + bi bekommt die (recht-
winkligen) Koordinaten (a, b). Es ist auch nützlich, sich die Zahl a+bi als den Vektor vorzustellen,
der von (0, 0) nach (a, b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Bedingnis, dass immer
i2 = −1 sei. Also etwa

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i,

was geometrisch der Vektoraddition entspricht,

(a1 + b1i)(a2 + b2i) = a1a2 + a1b2i + a2b1i + b1b2i2 = (a1a2 − b1b2) + (a1b2 + a2b1)i,

(Vorsichtige Leute – wie ich z.B. – werden allerdings zunächst die komplexe Zahl a + bi als Paar
(a, b) reeller Zahlen a, b schreiben und dann (a1, b1)(a2, b2) := (a1a2 − b1b2 , a1b2 + a2b1) und
(a1, b1)+ (a2, b2) = (a1 + a2 , b1 + b2) definieren, um dann wirklich beweisen zu können, dass
alle gewohnten Rechenregeln gelten.)

Die Zahlen 0 = 0+0i und 1 = 1+0i behalten ihre bekannten Eigenschaften. Man kann natürlich
subtrahieren und sogar dividieren. Nämlich für a + bi 6= 0 gilt

1
a + bi

=
a− bi

(a + bi)(a− bi)
=

a

a2 + b2
− b

a2 + b2
i

(Beachten Sie, dass für a + bi 6= 0 mit a, b ∈ R auch a2 + b2 6= 0 ist.)

Als spezielles Beispiel rechnen wir (1+ i)2 = 1+2i−1 = 2i, also ( 1√
2
+ 1√

2
i)2 = 1

2(2i) = i, mithin

( 1√
2

+ 1√
2
i)4 = i2 = −1. Im Bereich der komplexen Zahlen ist also −1 nicht nur ein Quadrat,

sondern auch eine 4. Potenz (übrigens – wie wir unten sehen werden – auch eine 6., 8. usw.).
Wir bleiben bei diesem Beispiel und setzen abkürzend v := 1√

2
+ 1√

2
i. Dann ist v3 = v2v =

iv = − 1√
2

+ 1√
2
i, v5 = v4v = −v, v6 = v4v2 = −i v7 = v4v3 = −v3 = 1√

2
− 1√

2
i

und schließlich v8 = (v4)2 = (−1)2 = 1. Dann wiederholen sich die Werte der Potenzen, also
v9 = v8v = v, v10 = v8v2 = v2 = i, v11 = v8v3 = v3 = − 1√

2
+ 1√

2
i usw. Für jede beliebige

(ganze) Potenz vk gilt offenbar (vk)8 = (v8)k = 1k = 1. D.h. wir haben insgesamt 8 verschiedene
Zahlen gefunden, deren 8. Potenz 1 ergibt, nämlich 1, v, v2, . . . , v7.

Ein weiteres Beispiel. Setze w := 1
2 +

√
3

2 i. Dann ist w2 = 1
4 −

3
4 + 2 · 1

2

√
3

2 i = −1
2 +

√
3

2 i
und w3 = ww2 = (1

2 +
√

3
2 i)(−1

2 +
√

3
2 i) = −1

4 − 3
4 = −1. Weiter erhält man

w4 = w3w = −w, w5 = w3w2 = −w2 und w6 = w3w3 = (−1)(−1) = 1. Wie oben wie-
derholen sich jetzt die Potenzen: w7 = w1, w8 = w2 usw. Ebenso sieht man, dass für jede ganze
Potenz wk von w gilt: (wk)6 = 1. Es gibt also (mindestens) 6 verschiedene komplexe Zahlen,
die die Gleichung x6 = 1 erfüllen.

Zur geometrischen Deutung der Multiplikation. Sei c = a + bi, a, b ∈ R eine komplexe
Zahl. Ihr (Absolut-)Betrag wird definiert als |c| :=

√
a2 + b2, d.h. als Länge des entsprechenden

Vektors (Pytagoras). Sei c 6= 0, d.h. a 6= 0 oder b 6= 0. Der Vektor c hat zum Vektor 1 = 1 + 0i
einen (orientierten) Winkel, den man als Argument von c bezeichnet. (Das Argument ist im
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Grunde nur bis auf Addition eines Vielfachen von 2π definiert.) Ist ϕ das Argument von c, so
gilt offenbar

c = |c|(cos ϕ + i sinϕ), d.h. a = |c| cos ϕ, b = |c| sinϕ.

Für zwei von 0 verschiedene komplexe Zahlen c1, c2 mit den Argumenten ϕ1, ϕ2 erhalten wir mit
Hilfe der Additionstheoreme des Sinus und des Cosinus

c1c2 = |c1||c2|
(

cos ϕ1 cos ϕ2 − sinϕ1 sinϕ2 + i(sinϕ1 cos ϕ2 + cos ϕ1 sinϕ2)
)

=

|c1||c2|
(

cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)
)

D.h. der Betrag des Produktes ist das Produkt der Beträge und das Argument des Produktes
ist die Summe der Argumente der Faktoren. Es folgt z.B.

cn = |c|n(cos(nϕ) + i sin(nϕ).

Dies gilt für jede positive ganze Zahl n (und, wie man sich leicht überlegt, auch für jede ganze
Zahl n).

Sei c 6= 0 eine komplexe Zahl mit dem Argument ϕ und d := n
√
|c|(cos(ϕ/n)+i sin(ϕ/n)) (n > 0)

so gilt offenbar dn = c. D.h. man kann aus jeder komplexen Zahl für jede natürliche Zahl n > 0
eine n-te Wurzel ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene komplexe Zahlen d
mit dn = c, wenn nicht gerade c = 0 ist. Das mag man im Zusammenhang mit der Vieldeutigkeit
des Arguments einer komplexen Zahl sehen: Es ist cos(ϕ+k ·2π)+i sin(ϕ+k ·2π) = cos ϕ+i sinϕ
für jede ganze Zahl k. Also ist jede komplexe Zahl dk := n

√
|c|(cos(ϕ/n + k · 2π/n) + i sin(ϕ/n +

k · 2π/n)) eine n-te Wurzel aus c, d.h. dn
k = c. Die Zahlen d0, d1, . . . , dn−1 sind untereinander

verschieden, aber danach wiederholen sie sich: dn = d0, dn+1 = d1, . . ..

Insbesondere gibt es n verschiedene komplexe Zahlen z0, z1, . . . , zn−1, die alle die Gleichung
zn = 1 erfüllen. Eine von ihnen ist 1, alle haben den Betrag 1, d.h. sie befinden sich auf dem
Einheitskreis. Sie bilden offenbar die Ecken eines regelmäßigen n-Ecks. Von dieser Tatsache ist
Gauß ausgegangen, als es ihm kurz vor 1800 gelang, ein regelmäßiges 17-Eck allein mit Zirkel
und Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen beliebige Wurzeln
ziehen kann, lässt sich auch der ”Fundamentalsatz der Algebra“ beweisen:

Jedes Polynom zn + c1z
n−1 + · · ·+ cn−1z + cn mit komplexen Koeffizienten cj hat (mindestens)

eine komplexe Nullstelle. (Diesen Satz hat Gauß als erster vollständig bewiesen.)

(N.B. Dass ein Polynom vom Grad n höchstens n Nullstellen hat, ist ebenfalls ein richtiger und
wichtiger – übrigens in allgemeineren Bereichen gültiger – Satz, der aber fast trivial zu beweisen
ist und nicht als Fundamentalsatz der Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Matematiker mit der
Entdeckung/Erfindung der komplexen Zahlen ein ”weites Feld“ öffnet, und er sich durch Be-
harren auf den reellen Zahlen viele Möglichkeiten verbauen würde. Als einzelnes Beispiel sei
genannt, dass manche Sätze über die Verteilung der Primzahlen sich am besten mit Hilfe der
komplexen Zahlen beweisen lassen. (Im Anhang finden Sie eine Ausführung über die komplexe
e-Funktion.)
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Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zunütze, ist auf dem
Holzweg: Keine Elektrotechnik und keine Quantenteorie ohne komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat es mit mehrdeutigen

Wurzel zu tun. Mit den Quadratwurzeln ist es einfach: Mit
√

q2

4 + p3

27 sei willkürlich eine der

beiden möglichen Wurzeln bezeichnet; −
√

q2

4 + p3

27 ist dann automatisch die andere. Jeder der
beiden Summanden in Tartaglias Formel ist nun eine kubische Wurzel mit 3 möglichen Werten.
So hat man insgesamt 9 mögliche Kombinationen. Es gibt nun eine Regel, welche 3 Kombina-
tionen die Nullstellen des kubischen Polynoms ergeben. Hierauf will ich nicht genauer eingehen
und verweise stattdessen auf das Buch ”Kubische und biquadratische Gleichungen“ von Heinrich
Dörrie (Leibniz Verlag München 1948).

Die komplexe e-Funktion: Für z = x + iy, x, y ∈ R, setzt man ez := ex(cos y + i sin y). Dies
ist keineswegs willkürlich. Denn für die so definierte Funktion gilt

ez =
∞∑

n=0

zn

n!
,

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im Komplexen. Ferner
erhält man auch für komplexe z1, z2 die Formel ez1+z2 = ez1ez2 . Die komplexe e-Funktiom bildet
die reelle Achse {a+ bi | a ∈ R, b = 0} auf die positive reelle Halbachse und die imaginäre Achse
{a + bi | a = 0, b ∈ R} auf die Einheitskreislinie {a + bi | a, b ∈ R, a2 + b2 = 1} ab.
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12 Vorkurs-Aufgaben

1. In einer Beschreibung wird die Größe eines Balkons als 80 cm2 angegeben. Was sagen Sie
dazu? Zeichnen Sie ein Rechteck von 80 cm2 Flächeninhalt, oder schneiden Sie ein solches
aus, vorausgesetzt, ein DIN A4-Blatt reicht dazu. Wie viele cm2 enthalten 0, 8 m2, wie
viele ein Quadrat mit der Seitenlänge 80 cm?

2. Ein Kaufmann hat 100 kg Gurken. Diese bestehen (gewichtsmäßig) zu 99 Prozent aus
Wasser. Wieviel kg Wasser müssen sie durch Austrocknen verlieren, damit sie nur noch zu
98 Prozent aus Wasser bestehen?

3. Eine Aktie hat am Montagmorgen den Kurs 100 Euro. Im Laufe des Montags gewinnt
sie 10 Prozent. Im Laufe des Dienstags verliert sie 10 Prozent. Wie hoch ist der Kurs am
Dienstagabend?

4. Wieviel Prozent de Bruttopreises beträgt die Mehrwertsteuer bei einem Mehrwertsteuer-
satz von 16 Prozent?

5. Berechnen Sie

a) 24 und 42, b) 34 und 43, c) (6± 4)3 und 63 ± 43.

6. Berechnen Sie

a) 23 · 23 und 23·3. b) (2 · 3)3 und 2(3·3).

7. Berechnen Sie

a) 22 − 21 und 22−1, b) 23 − 21 und 23−1, c) 22 + 22 und 22+2.

8. Nach welchen Regeln darf man am+n, amn, (ab)n umformen?

9. Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millionen, c) eine Milliarde,
d) eine Billion, e) one billion (amerikanisch).

10. Schreiben Sie in der Form 10xm die folgenden Längeneinheiten:

1 µm (Mikrometer), 1 nm (Nanometer), 1 pm (Picometer), 1 Å (Ångström)

11. Berechnen Sie ohne Rechner

a) sin π + sin π und sin(π + π), b) sin π
2 + sin π

2 und sin(π
2 + π

2 ),
c) sin(π

6 + π
3 ) und sin π

6 + sin π
3 . Welches Ergebnis ist größer?

12. Schreiben Sie (7a7 +6a6)2 als Summe von Potenzen von a mit ganzzahligen Koeffizienten.

13. Berechnen Sie
√

9 + 16 und
√

9 +
√

16.

14. Berechnen Sie 242
und (24)2. (Per definitionem ist abc

= a(bc).)

15. Berechnen Sie 231+1
und 231 · 231

.

16. Finden Sie, wenn möglich, eine natürliche Zahl n mit ((33)3)n = 333
.

17. Zeigen Sie: Zu jeder ungeraden Zahl u ∈ N gibt es ein m ∈ N mit u2 = 8m + 1.

18. Geben Sie allgemeine Formeln für (a + b)3 und (a + b)4 an.
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19. Berechnen Sie 10 . . . 014, wo zwischen den beiden Einsen 999 (oder allgemeiner n − 1)
Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl an, d.h. in ähnlicher Weise wie hier
die Basis der zu berechnenden Potenz angegeben ist.

20. Berechnen Sie (a− b)(a4 + a3b + a2b2 + ab3 + b4) und allgemein
(a− b)

∑n
j=0 an−jbj . (Dabei ist

∑n
j=0 an−jbj = an + an−1b + · · ·+ abn−1 + bn.)

21. Auf das erste Feld eines Schachbretts sei 1 Reiskorn gelegt, auf das zweite 2 Reiskörner, auf
das dritte 4 usw., nämlich jeweils auf ein Feld doppelt soviele wie auf das vorangehende.
(Vernachlässigen Sie das Problem, dass möglicherweise die Felder zu klein für die Anzahl
der Reiskörner werden, die auf sie gelegt werden sollen.)

a) Berechnen Sie in möglichst wenigen Schritten exakt die Anzahl N der Reiskörner,
die insgesamt auf das Schachbrett gelegt werden sollen, im Dezimalsystem. (Ich habe
Verständnis dafür, wenn Sie diese Rechnungen nicht ausführen wollen. Dann müssen Sie
aber angeben, wie eine möglichst effiziente Berechnung zu erfolgen hat.)
b) Berechnen Sie N im Binärsystem.
c) Zerlegen Sie N in zwei ganzzahlige Faktoren, die annähernd gleich groß sind.
d) Zeigen Sie, dass N durch 17 teilbar ist.

22. Bitte machen Sie sich ein paar Gedanken über den Sinn und Nutzen negativer Zahlen. Die
Gleichung

x2 + 312 = 37x

hat die Lösungen 13 und 24, wie man leicht durch Rechnen in N (also im Positiven)
nachprüft. Das bekannte Lösungsverfahren – mit quadratischer Ergänzung – benutzt je-
doch mit Gewinn das Rechnen mit negativen Zahlen. An diesem Beispiel sieht man auch,
wie richtig und wichtig es ist, das Produkt negativer Zahlen so zu definieren, dass z.B.
(−37/2)2 = 1369/4 ist.

23. Zeigen Sie (etwa mit Induktion): a) Für alle ganzen Zahlen n ≥ 3 ist n2 > 2n + 1.

b) Für alle ganzen Zahlen n ≥ 5 ist 2n > n2.

24. Zeigen Sie:
n∑

k=0

k ·k! = (n+1)!−1. (Dies geschieht mit vollständiger Induktion ohne Mühe.)

25. Ein Zahlenrätsel:
EULER = SB · RLE

GAUSS = L · A · LUL · EE

ABEL = A · RR · RL · L

Wenn man jeden Buchstaben durch eine Ziffer des Dezimalsystems ersetzt, steht in jeder
Gleichung rechts die Primfaktorzerlegung der linken Seite. (Natürlich sind gleiche Buch-
staben durch gleiche Ziffern zu ersetzen, aber nicht notwendig verschiedene Buchstaben
durch verschiedene Ziffern. Die Zahlen dürfen mit der Ziffer 0 beginnen. Aber man darf
natürlich verwenden, dass 0 keine Primzahl ist.)
Bestimmen Sie sämtliche Lösungen. (Durch geschicktes Vorgehen kann man sehr schnell
zum Ziel kommen.)

26. Bestimmen Sie alle natürlichen Zahlen, die genau 3 verschiedene positive Teiler haben.
(Z.B. hat 4 die Teiler 1,2,4.)
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27. Zeigen Sie: Für jedes n ∈ N ist 2 · 53n+1 + 4n durch 11 teilbar, d.h. es gibt zu jedem n ein
(von n abhängiges) k ∈ N mit 11 · k = 2 · 53n+1 + 4n. (Tipp: Induktion.)

28. Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man mit Postkarten lücken-
los und ohne Überlappungen bedecken kann? Die Länge einer Postkarte verhält sich zur
Breite wie

√
2 : 1. (Natürlich soll die Kantenlänge der Tischplatte nicht 0 sein.)

(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenlängen breit. Wie viele
Karten brauchen Sie, um eine Fläche entsprechenden Ausmaßes zu bedecken?)

29. Seien a, b, c positive (ganze) Zahlen. Wann gilt

a + b

a + c
=

b

c
, wann

ab

ac
=

b

c
?

30. Seien m,n ∈ N1. Zeigen Sie:
19m

17n
ist nicht ganz.

31. Finden Sie (etwa durch Probieren) ganze Zahlen m, n mit

m

3
+

n

5
=

1
15

und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

32. Finden Sie natürliche Zahlen m,n mit

m

3
+

n

5
=

14
15

33. Finden Sie untereinander verschiedene ganze Zahlen k, l,m, n > 0 mit

1
k

+
1
l

+
1
m

+
1
n

= 1

34. Finden Sie ganze Zahlen m, n mit n 6= 0 und

m

3
+

n

5
=

1
3

35. Berechnen Sie
3
2 + 5

7
2
3 + 7

5

und
1
3 + 1

6
1

3+6

.

36. Sei p eine Primzahl und k eine ganze Zahl mit 1 ≤ k ≤ p− 1. Sie dürfen annehmen, dass
(der Binomialkoeffizient)

(
p
k

)
= p!

k!(p−k)! eine ganze Zahl ist. Zeigen Sie, dass
(
p
k

)
durch p

teilbar ist.

37. Berechnen Sie
a

b
+

b

a
und zeigen Sie, dass

a

b
+

b

a
> 2 ist, wenn a > b > 0 gilt.

38. Bringen Sie auf einen Bruchstrich:

a

bc
+

b

ac
+

c

ab
und

bc

a
+

ac

b
+

ab

c

39. Schreiben Sie tanx + cot x als rationalen Ausdruck in sin 2x.
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40. Lösen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem einen oder anderen
Fall nicht möglich ist:

2
3 + 7

6
3
4 −

1
x

= 1 ,
4
3 −

1
6

7
6 + 1

x

= 1

41. a) Kürzen Sie den Bruch
x12 − x3

x6

so gut es allgemein möglich ist.

b) Kann man denselben Bruch als Differenz zweier Potenzen von x schreiben, wo jeder
Exponent auch negativ sein darf (aber nicht muss)?

c) Kann man dasselbe für den Kehrwert des Bruches machen?

42. Das entsprechende wie oben für den Bruch

t7 − t2 + t

t5

43. Vereinfachen Sie
a

(k + 1)!(n− k − 1)!
+

a

k!(n− k)!

44. Berechnen Sie
6∑

n=1

1
n

,

4∑
n=−3

n(n + 2)

45. Seien p1, . . . , pn verschiedene Primzahlen mit n ≥ 2. Zeigen Sie, dass der Nenner von

a :=
n∑

j=1

1
pj

in der Standardform gleich p1 · · · pn ist. (D.h. nach erfolgter Addition der auf den kleinsten
gemeinsamen Nenner gebrachten Summanden kann man nicht kürzen.)

46. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1
k

keine ganze Zahl. (Tipp: Sei m das kleinste gemeinsame

Vielfache aller Nenner. Was gilt für am/2 ? Betrachte die größte 2-Potenz unter den
Nennern.)

47. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1
k!

keine ganze Zahl.

48. Sei Q eine Menge von Primzahlen und S die Menge aller s ∈ N1, deren Primfaktoren
sämtlich zu Q gehören. Zeigen Sie, dass die Menge

A := {a

s
| a ∈ Z, s ∈ S}

ein Unterring von Q ist.

49. Zeigen Sie: Die abbrechenden Dezimalbrüche bilden einen Unterring von Q.
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50. Betrachten Sie

K := {a + b
√

2 | a, b ∈ Q} , L := {a + 2b
√

2 | a, b ∈ Q} ,

R := {a + b
√

2 | a, b ∈ Z} , S := {a + 2b
√

2 | a, b ∈ Z} .

a) Zeigen Sie: K und L sind Teilkörper von R. Zeigen Sie ferner K = L.

b) Zeigen Sie: R und S sind beide keine Teilkörper, aber Teilringe von R. Zeigen Sie ferner
R ⊃ S und R 6= S.

51. Zeigen Sie, dass die Menge {−1, 0, 1} auf folgende Weise zu einem Körper wird: Die
Multiplikation ist die Übliche. Die Addition ⊕ wird definiert durch 1⊕ 1 := −1 , (−1)⊕
(−1) := 1 und a ⊕ b := a + b in allen übrigen Fällen. (Den Beweis der Assoziativität
der Addition und der Distributivität brauchen Sie jeweils nur für einen weniger trivialen
Spezialfall auszuführen. Es gibt auch einen Beweis, der die Assoziativität der Addition
und die Distributivität auf die entsprechenden Gesetze in Z zurückführt.)

52. a) Seien p, q verschiedene Primzahlen. Zeigen Sie, dass
ln p

ln q
irrational ist. (Tipp: Ansonsten

erhielte man einen Widerspruch zur eindeutigen Primfaktorzerlegung.)

b) Folgern Sie, dass es höchstens eine Primzahl gibt, deren Logarithmus rational ist.

53. Im ”großen Brockhaus - Kompaktausgabe“ findet sich unter dem Stichwort ‘reell’ der Satz:

”Jede r[eelle] Zahl besitzt genau eine Darstellung als Dezimalzahl.“ Was sagen Sie dazu?

54. Seien a, b, c, d > 0 reell. Zeigen Sie

a

b
≤ c

d
=⇒ a

b
≤ a + c

b + d
≤ c

d

Schließen Sie daraus, dass
a

b
+

c

d
6= a + c

b + d

ist.

55. Zwei Menschen wandern einander auf der gleichen Straße entgegen. Der eine startet in

A und wandert mit einer Geschwindigkeit von
23
6

km
h

. Der zweite startet im 19,5 km
entfernten B eine halbe Stunde später als der erste und wandert mit der Geschwindigkeit
21
4

km
h

. Wann und wo treffen sich die beiden?

56. Seien a, b ∈ Q mit a + b
√

2 = 0. Zeigen Sie a = b = 0.

57. Geben Sie systematisch alle Tripel (a, b, c) ganzer Zahlen an, für die folgendes gilt:

0 < a ≤ b ≤ c und
1
a

+
1
b

+
1
c
∈ Z

Ohne einen Text, der beweist, dass Sie wirklich alle möglichen Tripel gefunden
haben. ist Ihre Lösung nichts wert!

58. Finden Sie verschiedene a, b ∈ N, derart dass
√

a,
√

b beide irrational sind, (
√

a +
√

b)2

aber rational ist.
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59. Zeigen Sie, dass
√

2 +
√

3 irrational ist.

60. a) Zeigen Sie a2 + b2 ≥ 2ab für alle a, b ∈ R. (Tipp: x2 ≥ 0.)

b) Folgern Sie a2 + b2 ≥ ab für a, b ∈ R. (Beachten Sie, dass 2ab ≥ ab nicht immer richtig
ist! Unterscheiden Sie 2 Fälle.)

c) Folgern Sie (aus a)), dass a2 + b2 + c2 ≥ ab + bc + ac für alle a, b, c ∈ R gilt.

61. Sei α ∈ R eine Nullstelle des Polynoms xn + a1x
n−1 + · · ·+ an−1x + an mit aj ∈ Z. Zeigen

sie: Ist α /∈ Z, so ist α /∈ Q.

62. Berechnen Sie
∞∑

k=0

xmk+l, wo m, l > 0 sind, für diejenigen x, für welche die Reihe konver-

giert.

63. Zeigen Sie a)
∞∑

k=0

1
2k + 1

= ∞, b)
∞∑

k=1

1
k3

< ∞, c)
∞∑

k=2

1
k2 − k

< ∞.

64. Zeigen Sie a) lim
n→∞

n!
nn

= 0, b)
∞∑

n=1

n!
nn

< ∞.

65. Geben Sie eine nicht konvergente Folge (an) und eine Zahl a an, die folgende Bedingung
erfüllen: ”Es gibt ein ε > 0, derart dass für alle n ∈ N die Ungleichung |an − a| < ε gilt.“

66. Geben Sie eine gegen a konvergente Folge (an) an, die folgende Bedingung nicht erfüllt:

”Es gibt ein N ∈ N, derart dass für alle ε > 0 und n ≥ N die Ungleichung |an − a| < ε
gilt.“

67. Sei c ∈ R. Finden Sie a, b ∈ R derart, dass (x2 − axy + by2)(x2 + axy + by2) = x4 + 4c2y4

für alle reellen x, y gilt. Welche bemerkenswerte Identität ergibt sich, wenn man y = c = 1
setzt?

68. Berechnen Sie
1

x2 − 2xy + 2y2
− 1

x2 + 2xy + 2y2

69. Berechnen Sie ohne Taschenrechner
881/3 − (88)1/3

3
5 + 5

13

70. Bestimmen Sie die reellen Nullstellen des Polynoms
x8 − 25x6 − (42x3 − 216)(x− 5)(x + 5) .

71. Begründen Sie die p, q-Formel für die Lösung einer quadratischen Gleichung.

72. Ein Aufzug bewegt sich mit 4 m/sec aufwärts. Eine kleine Eisenkugel fällt auf das Dach
der Aufzugkabine. Und zwar wurde sie in dem Augenblick losgelassen, als das Kabinendach
22,1 m entfernt war. Wie lange dauert es, bis die Kugel aufprallt, und welche Weglänge
hat sie zurückgelegt? (Vernachlässigen Sie den Luftwiderstand und rechnen Sie mit einer
Erdbeschleunigung von 10 m/sec2.)

73. Zeigen Sie, dass Gleichungen der Form x3 + ax2 + a2

3 x + b = 0 mit a, b ∈ R genau eine
reelle Lösung haben, und geben Sie für diese eine Formel an.
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74. In der Musik werden zwei Tonintervalle als ”gleichgroß“ bezeichnet – und auch als gleich-
groß empfunden, wenn die beiden Tonfrequenzverhältnisse des jeweils höheren Tones zum
jeweils tieferen Ton eines Intervalles gleich sind.
a) Die Frequenzverhältnisse sind bei einer (reinen) Oktave 2, bei einer reinen Quint 3

2 , bei
einer reinen großen Terz 5

4 .
Wenn man von einem Grundton aus 4 reine Quinten auf- und anschließend 2 Oktaven
absteigt, ist man dann eine reine große Terz oberhalb des Grundtones gelandet? (”Synto-
nisches“ oder ”didymisches Komma“)
Könnte man dieses eventuell erreichen, indem man andere Anzahlen von Quinten und Ok-
taven auf- und absteigt?
b) Die Oktave sei in n (∈ N1) gleichgroße Tonschritte (Intervalle) geteilt. Was ist das
Frequenzverhältnis der beiden Töne eines solchen Tonschrittes? (Für n = 12 erhält man
die 12 Halbtonschritte der temperierten Stimmung.)
c) Gesucht ist ein n ∈ N1, so dass für die Unterteilung der Oktave in n gleichgroße Ton-
schritte folgendes gilt:
Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte aufsteigt, landet
man eine reine Quinte oberhalb des Grundtones.
Frage: Gibt es ein solches n ?
d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf- und anschließend 3
Oktaven absteigt, andererseits 6 reine Quinten ab- und anschließend 4 Oktaven aufsteigt,
trifft man dann auf exakt denselben Ton? (Beim ersten Verfahren landet man auf dem
fis, beim zweiten auf dem ges, wenn man jeweils mit dem c beginnt. ”Pythagoreisches
Komma“)

75. Zeigen Sie, dass die Menge Q2 der Menge aller Paare rationaler Zahlen durch die Defini-
tionen

(a, b) + (a′, b′) := (a + a′, b + b′) und (a, b)(a′, b′) := (aa′, bb′)

zwar zu einem Ring, aber nicht zu einem Körper wird.

76. Seien p, q ∈ R. Beschreiben Sie die Menge der (x, y) ∈ R2 mit
x2 + pxy + qy2 = 0 möglichst konkret.

77. a) Wird durch die Angabe ”f(x) sei diejenige reelle Zahl y, für die y4 = x gilt“ eine
Abbildung f : R → R definiert?

b) Was ‘muss’ man in a) ändern, damit eine Abbildung definiert wird? (Mindestens zwei-
erlei!)

78. a) Wird durch die Angabe ”f(x) sei diejenige reelle Zahl y, für die sin y = x gilt“ eine
Abbildung f : R → R definiert?

b) Was ‘muss’ man in a) ändern, damit eine Abbildung definiert wird? (Mindestens zwei-
erlei!)

79. Für jede reelle Zahl x sei f(x) die Stelle unmittelbar vor dem Komma in der Dezimal-
bruchentwixklung von x. Was muss man präzisieren, damit f zu einer Abbildung R → R
wird?

80. Sei p(x) ein Polynom vom Grad 3. Für jedes reelle x sei f(x) die kleinste reelle Zahl y mit
p(y) = x. Beschreibt f eine Abbildung R → R? (Sie dürfen verwenden, dass jedes Polynom
3. Grades mindestens eine, aber höchstens 3 reelle Nullstellen hat.)
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81. Untersuchen Sie die beiden Funktionen f1, f2 : R → R mit f1(x) = x3 + x, f2(x) = x3 − x
auf Injektivität und Surjektivitat.

82. Für jedes x ∈ [−1, 1] sei f(x) die kleinste (bzw. größte) reelle Zahl y > 0 mit sin(1/y) = x.
In welchem der beiden Fälle wird eine Abbildung f : [−1, 1] → R beschrieben?

83. a) Durch f seien jedem n ∈ N die natürlichen Zahlen m < n zugeordnet. Ist das eine
Abbildung N → N?

b) Durch f sei jedem n ∈ N die Menge der natürlichen Zahlen m < n zugeordnet. Ist
das eine Abbildung N → P (N)? (Mit P (N) sei die Menge aller Teilmengen von N, die
sogenannte Potenzmenge von N, bezeichnet.)

84. Untersuchen Sie folgende ”Abbildungen“ darauf, ob sie wirklich Abbildungen sind, und ob
sie gegebenenfalls injektiv oder surjektiv oder beides sind.

a) f : [0, 1[→ [0, 1[ mit f(x) = x + 1
2 für x < 1

2 und f(x) = x− 1
2 für x ≥ 1

2 .

b) f : N → N ordne jedem n ∈ N diejenigen m ∈ N zu, die ≥ 2n sind.

c) f :]− π, π[→ [−1, 1], x 7→ cos x.

d) f : R → R, x 7→ ex − e−x3
.

e) f : R → R, x 7→ x3 − x.

f) g : R → R, definiert durch ”g(y) = x ⇐⇒ y = x3 − x“.

85. Seien X
α−→ Y

β−→ Z Abbildungen. Zeigen Sie:

a) Sind α und β beide injektiv (bzw. surjektiv), so ist es auch β◦α.

b) Ist β◦α injektiv, so ist es auch α.

c) Ist β◦α surjektiv, so ist es auch β.

d) Geben Sie zwei Beispiele, wo β◦α bijektiv ist, aber weder β injektiv noch α surjektiv
ist. Wählen Sie im ersten Beispiel für X, Y, Z endliche Mengen und im zweiten X = Y =
Z = N.

86. a) Zeigen Sie, dass die folgenden Abbildungen fj : R → R bijektiv sind:

f1(x) :=
{

1− x für 0 < x < 1
x sonst

, f2(x) :=
{

x für x ≤ 0
x−1 für x > 0

b) Tun Sie dasselbe für die Abbildung f3 : R → R mit

f3(x) :=
{

x für x ∈ Q
x + 1 für x /∈ Q

87. Sei E ⊂ R und f : R → R definiert durch

f(x) :=
{

x3 falls x ∈ E
x falls x ∈ R− E

Untersuchen Sie f auf Injektivität und Surjektivität
a) im Falle E = Q, b) im Falle E = R−Q.

88. Ist die Abbildung f : Q2 → R, (x, y) 7→ x + y
√

2 injektiv? (Antwort mit Begründung!)
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89. Beschreiben Sie in einem Venn-Diagramm mit den Mengen A,B, C die Mengen A∪(B∩C)
und (A ∪B) ∩ C.

90. Zeigen Sie (A−B) ∩ C = (A ∩ C)− (B ∩ C) = (A ∩ C)−B.

91. Zeigen Sie (A ∪ C)− (B ∪ C) = A− (B ∪ C) = (A−B)− C.

92. Machen Sie sich ein (inneres) Bild der Funktion sin 1
x und überlegen Sie sich (zumindest

anschaulich), warum

lim
x→0

sin
1
x

nicht existiert, aber lim
x→0

x sin
1
x

= 0 ist.

93. Geben Sie eine bijektive Abbildung Z → N an.

94. Zeigen Sie, dass es eine bijektive Abbildung N → Q gibt. (Wer das zustande bringt, ohne
irgendeinen Hinweis von anderen erhalten zu haben, ist wirklich gut.)

95. Seien x > 0, a := (1 + 1/x)x und b := (1 + 1/x)x+1. Zeigen Sie: ab = ba.

96. In einem populärwissenschaftlichen Artikel steht – in etwa – folgendes: ”Die Wahrschein-
lichkeit eines Nachbebens nimmt mit der Zeit exponentiell ab. Unmittelbar nach dem
Hauptbeben hat sie ihr Maximum, 10 Tage später beträgt sie nur noch 10 % hiervon, nach
100 Tagen nur noch 1 %, usw.“ Was sagen Sie dazu?

97. Was sagen Sie dazu, wenn jemand meint, die Anzahl der bei einer internationalen Kon-
ferenz benötigten Simultandolmetscher hänge exponentiell von der Anzahl der gesproche-
nen Sprachen ab. (Wieviele Dolmetscher werden benötigt, wenn jeder nur für 2 Sprachen
zuständig ist?)

98. Lösen Sie folgende Gleichungen:

a) 2x + 2111110 = 2111111 b) 2x2
= 512x+28
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