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Vorwort

Eigentlich sollte die Beschiftigung mit der Mathematik ja Vergniigen bereiten! Aber auch wenn
man nicht erwartet, dass sie ein billiges Vergniigen ist, so muss man doch feststellen, dass sie
vielen Menschen eher zum Missvergniigen dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein wenig zu helfen.
Ich will sie zum einen dabei unterstiitzen, die hohe Schwelle von der Schul- zur Hochschul-
Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszurdumen, auf die ich leider immer
wieder stofle. Diese Defizite liegen im Bereich der Bruch- und Potenzrechnung. Es mag entwick-
lungspsychologische Griinde dafiir geben. Aber spétestens zu Beginn des Studiums muss dieses
Thema erledigt sein.

Anmerkung: In dieses Skript habe ich einige Texte unveréindert aufgenommen, die urspriing-
lich anderen Zwecken dienten. Das werden Sie merken. Ich denke aber, dass sie deshalb nicht
unbrauchbar sind. Die knappe Zeit wird mich zwingen, auf manche Themen des Skriptes zu
verzichten. Es kann iiberhaupt nichts schaden, sich mit den Teilen des Skriptes zu befassen, die
nicht vorgetragen wurden. Fast alles in diesem Skript ist sehr wichtig fiir jeden Mathematiker,
Physiker und Informatiker. Nur Abschnitt 7 wurde weniger wegen seiner Wichtigkeit aufgenom-
men, sondern weil in ihm auf elementare Weise verbliiffende Tatsachen gezeigt werden.
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1 Natiirliche und ganze Zahlen

1.1 Die natiirlichen Zahlen sind 0,1, 2, 3,..., insgesamt unendlich viele, so dass man sie nicht
alle hinschreiben kann. (Ubrigens gibt es unter Mathematikern einen erbitterten Streit dariiber,
ob man die 0 wirklich zu ihnen rechnen soll. Ich jedenfalls tue das und setze es hiermit fiir diesen
Kurs fest.)

Die Menge (=Gesamtheit) der natiirlichen Zahlen wird mit N bezeichnet, also
N:={0,1,2,3,...}

Mit N; bezeichne ich die Menge der natiirlichen Zahlen # 0 also N; :={1,2,3,...} . (Wenn man
will, kann man auch Ny := {2,3,4,...} definieren usw.)

1.2 Die ganzen Zahlen sind
e, —2,-1,0,1,2,... (1)

Thre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten auf einer Geraden
identifizieren, wo der Abstand von n zu n + 1 fiir alle n derselbe ist. Wir wollen spéter diese
Gerade mit anderen Zahlen auffiillen, um sie zur ,,Zahlengeraden“ zu machen.

1.3 Sie wissen, wie man ganze Zahlen addiert und multipliziert. Wahrscheinlich kennen Sie auch
folgende Gesetze fiir diese ,, Verkniipfungen*

m+n=n-+m mn =nm Kommutativitat
() k+(m+n)=(k+m)+n k(mn)=(km)n Assoziativitit
k(m+n)=km+ kn Distributivitét

(In der letzten Gleichung ist natiirlich die Konvention ,, Punktrechnung geht vor Strichrechnung*
anzuwenden; d.h. km + kn := (km) + (kn).) Beachten Sie, dass das Distributivititsgesetz die
Addition und die Multiplikation vollkommen unterschiedlich behandelt. Die Ausdriicke k + mn
und (k + m)(k + n) haben fast immer verschiedene Werte!

Ubrigens hielt ich als abc-Schiitze die Kommutativitit der Multiplikation natiirlicher Zahlen
keinesfalls fiir selbstversténdlich. Erst das Beispiel der Apfelsinen, die in einer Kiste in 4 (waa-
gerechten) Reihen & 5 Stiick, d.h. aber auch in 5 (‘senkrechten’)Reihen & 4 Stiick angeordnet
waren, machten mir das Kommutativititsgesetz fiir die Multiplikation augenfillig.

Die Zahlen 0 und 1 spielen fiir die Addition, bzw. Multiplikation eine Sonderrolle:
(2) 0+n=n, In=n

Man nennt die 0 ein neutrales Element fiir die Addition und die 1 ein solches fiir die Multi-
plikation.

1.4 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die fiir N noch falsch ist:
(3) Zu jedem n € Z gibt es genau ein n’ € Z mit n+n' =0

Zum Beispiel ist (—2)" = 2. Wir bezeichnen n’ mit —n, schreiben also —(—2) = 2. Man nennt
—n das additiv Inverse von n.



Definition 1.5 Fine Menge, die mit zwei Verkniipfungen +,- versehen ist, fir die neutrale
Elemente existieren und die bislang angegebenen Gesetze (einschlieflich(3)) gelten, heifit ein
Ring.

1.6 Die Gleichung
a+x=>

mit der Unbekannten x besitzt in Z (allgemeiner, in jedem Ring) eine eindeutigen Losung,
nédmlich x = b+ (—a).

Wir schreiben a — b := a+ (—b) und bei léngeren , arithmetischen Summen* z.B. a —b+c—d =
a+(=b)+c+(—d).

Merke: Ist ¢ #0,s0ist a —b+c# a— (b+c¢).

Anstelle der Existenz des additiv Inversen, konnte man auch zu je zwei ganzen Zahlen m,n die
Existenz ihrer Differenz m — n fordern, die dadurch gekennzeichnet ist, dass sie die Gleichung
(m —n) +n = m erfillt.

1.7 Wir wollen zeigen, dass sich die Regel (—a)(—b) = ab, die manch einem etwas willkiihrlich
erscheinen mag, allein aus den Regeln (1),(2),(3) ergibt, d.h. in jedem Ring gilt. Zunéchst zeigen
wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b+ 0b Durch Addition von —(0b) auf beiden Seiten und Anwendung der
Assoziativitét ergibt sich 0 = 0b.

Jetzt zeigen wir: (—a)b = —(ab).

Da ab + (—a)b = (a + (—a))b = 0b = 0 ist, ist (—a)b das additiv Inverse von ab, d.h. (—a)b =
—(ab).

Da a + (—a) = 0 ist, ist a das additiv Inverse von —a, d.h. —(—a) = a.
SchlieBllich ist (—a)(—b) = —(a(—=b)) = —(—(ab)) = ab.

Wenn man also (—1)(—1) iiberhaupt definieren und dabei die o.a. Regeln beibehalten will, bleibt
einem nichts iibrig, als (—1)(—1) = 1 zu setzen.

Der franzosische Schriftsteller Henri Beyle, der sich Stendhal nannte und sich fiir Mathematik
interessierte (dessen Romane ich sehr liebe) mochte sich mit dieser Regel nicht anfreunden.

Es wire schon, wenn Sie weitere — etwa geometrische — Griinde finden, warum die Regel
(—a)(—b) = ab sinnvoll ist.

1.8 Man kann die ganzen Zahlen der Grofie nach vergleichen: m < n heifit ,m (ist) kleiner (als)
n“. Dies ist dquivalent zu n > m, d.h. ,n (ist ) groBer (als) m*“. Ferner benutzt man das Zeichen
m < n (,m (ist) kleiner (oder) gleich n*) in der Bedeutung

m<n :<= m<noderm=n

‘Umgekehrt’ gilt
m<n < m<nundm#n



Die ,,Relation* ,,<* geniigt neben der Regel ,,0 < n fiir alle natiirlichen Zahlen n* den folgenden

Gesetzen:
E<m,m<n=k<n Transitivitat

(4) n<n Reflexivitit
m<n,n<m=—m=mn Antisymmetrie
m <n odern<m Totalitat

Was folgt daraus fiir ,,>,, (was Sie richtig definieren miissen)? Man kann folgende Regeln ableiten:

5) kE<m<n=k<n; ud k<mm<n=k<n

Beziiglich der Addition und Multiplikation gilt fiir <:

(6) m<n = k+m<k+n
0<k, m<n = km<kn

Welche Regeln gelten fiir ,,<“?

1.9 Wichtig ist das ,Induktionsprinzip“, das bei einer axiomatischen Beschreibung der
natiirlichen Zahlen gemeinhin eines der Axiome ist:

Seim € Z und A(n) eine Aussage iiber ganze Zahlen n. Es gelte:
A(m),

und

wennimmer A(n) fir ein n > m richtig ist, so ist es auch A(n +1).
Dann gilt A(n) fir alle n >m, n € Z.

(Ein Beweis dafiir, dass .A(m) gilt, heifit ,Induktionsanfang“. Ein Beweis dafiir, dass A(n +
1) aus A(n) folgt, heifit ,,Induktionsschluss® Die Voraussetzung in diesem Schluss heifit auch
»Induktionsvoraussetzung® oder ,,Induktionsannahme“.)

Aquivalent zu o.a. Beschreibung kann man das Induktionsprinzip auch in der Sprache der Men-
gen darstellen:

Sei m € Z und M C Z eine Teilmenge von Z, die folgenden Eigenschaften geniigt:
meM

und
neM—n+1¢eM.

Dann gilt n € M fiir alle n > m.

Example 1.10 Wir beweisen fiir n € N die Aussage A(n)

1
0+1+2+-~-+n:”("2+)
Die Aussage A(0)
0(0 + 1)
0= ")
2



ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt A(n + 1) zeigen:

O+1+--~+n+(n+1):n(n;1)+n+1:
nn+1)+2(n+1) _ (n+2)(n+1) _ m+1)((n+1)+1)
2 2 2

Also gilt A(n) fiir alle n € N.

Hier haben wir das Rechnen mit ,,Briichen* verwendet. In Wahrheit sind allerdings die Ausdriicke
n(n + 1)/2 natiirliche Zahlen fiir alle n € N

In der Mathematik werden sehr hiufig Beweise mit dem Induktionsprinzip gefiihrt.

Bevor wir ein hierzu (unter den o.a. Regeln, d.h. in einem geordneten Ring) dquivalentes ,,Mi-
nimalprinzip“ formulieren, benétigen wir zwei Definitionen:

Definitions 1.11 a) Mit () wird die leere Menge bezeichnet, d.h. diejenige, die kein Element
besitzt. Gilt fiir eine Menge M die Aussage M # 0, so nennt man M auch nichtleer. M ist
also nichtleer genau dann, wenn M mindestens ein Element besitzt.

b) Eine Teilmenge M von Z heiffit nach unten (bzw. oben) beschrinkt, wenn es ein s € Z
gibt, so dass s < x (bzw. s > x) fir alle x € M gilt. Ein solches s heifst eine untere (bzw.
obere) Schranke von M.

¢) Ein kleinstes (bzw. grofites) Element einer Teilmenge M C Z ist ein m € M mit der
FEigenschaft m < z (bzw. m > x) fir alle x € M.

Ein kleinstes Element einer Teilmenge M von Z ist immer auch eine untere Schranke, aber nicht
umgekehrt. Z.B. ist 0 sowohl ein kleinstes Element, als auch eine untere Schranke von N. Jedoch
ist —1000 zwar eine untere Schranke, aber kein kleinstes Element von N. Schliellich besitzt N
weder eine obere Schranke noch ein gréfites Element.

1.12 Das Minimalprinzip lautet nun:

Ist M eine nach unten beschrinkte nichtleere Teilmenge von Z, so besitzt M ein kleinstes FEle-
ment.

Remark 1.13 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist die Nullteilerfrei-
heit. Sie besagt:
ab=0=a=0 oder b=0.

Es gibt verschiedene Moglichkeiten, sie zu beweisen. Dabei kommt es natiirlich darauf an, von
welcher Grundlage aus man die Theorie der (natiirlichen, bzw. ganzen) Zahlen betreibt: etwa
ausgehend von den sogenannten Peano-Axiomen oder auf sogenannte konstruktive Weise.

Von der Schule her sollten Sie dies fiir die natiirlichen Zahlen fiir selbstverstiandlich halten. Fiir
alle ganzen Zahlen erhélt man die Nullteilerfreiheit auf Grund der Regeln

(—a)b=—(ab) , (—a)(—b) = ab.
Aus der Nullteilerfreiheit ergibt sich die Kiirzungsregel
a#0und ab=ac=b=c.

Dennab=ac=ab—ac=0=alb—c)=0=b—c=0=b=c.



2 Eindeutige Primfaktorzerlegung

Definition 2.1 Seien m,n € Z. Wir sagen n teilt m (oder n ist ein Teiler von m, oder m ist
ein Vielfaches von n) und schreiben n|m, wenn es ein k € Z mit kn = m gibt. Ist n kein Teiler
von m, so schreiben wir n{m.

2.2 Eigenschaften: a) 1|n und n|0 fiir alle n € Z
a’) nm = +n|+tm

b) n|m, m|k = nlk

¢) nlmy, nlmg = nlaymi + agmy fiir alle a1, as € Z.
d) n|m1, n{me = n{mi+ ma

e) Fiir n,m € Ny (also n,m > 0) gilt: njm = n <m

Definition 2.3 Fine Primzahl st eine ganze Zahl p > 1 die auffer 1 und p keine weiteren
natirlichen Zahlen als Teiler hat.

Natiirlich sind im Bereich aller ganzen Zahlen auch —1 und —p noch Teiler von p.
Proposition 2.4 Jede ganze Zahl n > 1 ist ein Produkt von Primzahlen.

Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. (Wenn man will, kann
man die 1 als Produkt von 0 Faktoren auffassen.)

Proof: Angenommen, die Behauptung wére falsch, d.h. die Menge derjenigen n > 1, die kein
Produkt von Primzahlen sind, wére nicht leer. Nach dem Minimalprinzip hétte sie ein kleinstes
Element m. Dieses kann keine Primzahl sein, da eine solche als Produkt von Primzahlen (mit
1 Faktor) gilt. Also gibt es einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e € N mit
m = de. Fiir e gilt gleichfalls 1 < e < m. Da m die kleinste ganze Zahl > 1 ist, die nicht in
Primfaktoren zerlegbar ist, miissen die kleineren d, e in Primfaktoren zerlegbar sein, etwa

d=pi-pr, e=py-p,

Also ist m = de = py - - - pyp} - - - Pl doch in Primfaktoren zerlegbar. Widerspruch. O

Remark 2.5 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise gefiihrt habe,
kann man nicht erkennen, wie man eine Primfaktorzerlegung einer ganzen Zahl n > 1 effektiv
herstellen kann. Dies ist aber prinzipiell moglich. Durch systematisches Durchprobieren der
Zahlen 2,3.4,... findet man namlich die kleinste ganze Zahl p mit 2 < p < n, die ein Teiler von n
ist. p ist prim; denn jeder Teiler von p ist < p und ein Teiler von n. Dann macht man dasselbe
mit n/p, wenn noch p # n ist. Usw.

Diese Methode ist allerdings schon fiir Zahlen n, die im Dezimalsytem einige 100 Stellen haben,
mit den besten Computern in verniinftiger Zeit nicht mehr ausfithrbar. Es gibt zwar ein paar
Tricks, schneller voranzukommen. Aber die vermindern nur unwesentlich das Problem. (Man



weif} allerdings, dass sogenannte Quantencomputer, wenn es sie denn je geben wird, dies Problem
besser 16sen konnten. )

Andererseits ist es sehr wohl moglich, von Zahlen der angegebenen Grofienordnung in wenigen
Sekunden oder Minuten festzustellen, ob sie prim sind — ohne eine Faktorzerlegung im negativen
Falle angeben zu koénnen.

Auf Grund dieser Diskrepanz ist es moglich, Texte nach einem 6ffentlich gemachten Schliissel
zu verschliisseln, die man ohne eine zusétzliche Information nicht mehr enschliisseln kann.

Proposition 2.6 Die Zerlegung einer ganzen Zahl > 1 in Primfaktoren ist bis auf die Reihen-
folge eindeutig.

Proof: (ZERMELO) Sei a € N; minimal unter allen natiirlichen Zahlen mit zwei verschiedenen
Zerlegungen in irreduzible Faktoren:

Aa=pr .. Pr=qL ... s

Dann sind r,s > 0, und es ist p; # ¢; fiir alle 4, j, da man sonst kiirzen kénnte.Man kann also
ohne Beschrinkung der Allgemeinheit annehmen, dass ¢; < p; ist. Beachte, dass ¢1 1 p1 — 1
gilt. Wenn man also p; — ¢ in irreduzible Faktoren zerlegt, kann keiner von diesen ¢ sein.

Die Zahl

b=pi—q)p2--.. pr=a—qp2-...-Pr=q(q2 ... qs—P2-... D)

besitzt zwei verschiedene Zerlegungen in irreduzible Faktoren. Indem man némlich die jeweiligen
Klammerausdriicke in irreduzible Faktoren zerlegt, erhélt man einerseits eine solche in der ¢;
nicht vorkommt, andererseits eine solche, in der g; sehr wohl vorkommt. (Das stimmt auch noch,
wenn p; — g1 = 1 ist.)

Ferner ist b echt kleiner als a (und gréfler als 0), im Widerspruch zur minimalen Wahl von a. O
Proposition 2.7 FEs gibt unendlich viele Primzahlen.

Proof: (EUKLID) Zu gegebenen endlich vielen Primzahlen py, ..., p, finden wir eine weitere.
Denn jeder Primfaktor von pj -« - p, + 1 ist von allen pq, ..., p, verschieden. O

Das heif3t nicht, dass p; - - - p, + 1 immer selbst prim wére. Z.B. ist

2:-3-5-7-11-13+1 = 30031 = 59 - 509.

Aufgabe: Aus dem Namen Zermelo mache man ein beschwingtes Wort, indem man je drei
Buchstaben zu Anfang und am Ende hinzufiigt!)



3 Briiche, rationale Zahlen

3.1 Wihrend das Rechnen mit ganzen Zahlen den allermeisten Studierenden keine Probleme
bereitet, scheint das fiir das Rechnen mit Briichen bereits nicht mehr zu stimmen. Habe ich doch
kiirzlich in einer Staatsexamensklausur die
1 1 1
bsurde U l ——=—+4+-
absurde Unrege Py a+b
lesen miissen, obgleich doch jeder, der mit dem Bruch % irgendeine verniinftige Vorstellung
verbindet, immer

rechnen wiirde.

Ohne Kommentar zitiere ich: ,,Die Fahigkeit, eine Bruchrechenaufgebe zu 16sen, war anscheinend
ein gutes Qualitdtsmerkmal, auf den Erfolg im Mathematikstudium zu schlieflen.“ (Johann Sjuts
in DMV mitteilungen 12-2/2004.)

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl * mit m,n € Z,n > 0 kann man folgendermaflen auf der Zahlengeraden

n
konstruieren: Man teile Strecke von 0 nach 1 in n gleichgrole Teilstrecken. Eine solche trage
man dann m-mal von 0 aus nach rechts auf der Zahlengeraden ab, wenn m > 0 ist. Ist m < 0,
d.h. —m > 0, so trage man sie (—m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die Strecke von 0 bis
m in n gleiche Teilstrecken teilt und eine solche Teilstrecke von 0 an in die Richtung von m
abtragt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Arten schreiben, z.B.
9 3 6

15 5 10
Man kann ‘erweitern’ und ‘kiirzen’. Man kann sich iiberlegen, dass es aufs selbe hinausléduft, ob
man ein 15-tel der Einheitstrecke 9-mal, oder ein 10-tel der Einheitstrecke 6-mal von 0 aus (nach

rechts) abtrigt.

Am elegantesten definiert man die Gleichheit von Briichen durch

a a

—=— <<= ab=4db.
b v
Diese Definition ist dquivalent dazu, dass § durch Erweitern und/oder Kiirzen zu ‘;—,/ wird:

Wenn z.B. ‘g—,/ aus ¢ durch Erweitern mit ¢, d.h. § aus Z—,/ durch Kiirzen durch ¢ hervorgeht, folgt

ab’ = a(bc) = (ac)b = a’b. Ist umgekehrt ab’ = a’b, dann entsteht ‘Z—,/ aus ¢ durch Erweitern und

Kiirzen, wie folgt:

a_af _dv_d
b by by Y
Ferner setzen wir fest
m
T =m.

Auf diese Weise gilt Z C Q, der Menge der rationalen Zahlen.
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3.4 Addition: Haben zwei Briiche den gleichen Nenner, so ist ihre Summe einfach zu definieren:

m m m+m'
7+7

n n n

Dies entspricht der Addition von Strecken auf der Zahlengeraden — oder der Subtraktion, wenn
etwa m > 0,m’ < 0 ist. Sind die Nenner nicht (notwendig) gleich, so kann man sie durch
Erweitern gleich machen, also z.B. rechnen

= + = s

m m mn mn mn+mn
n n' nn' nn' nn’

(Will man bei der Addition mit (absolut) moglichst kleinen Zahlen rechnen, so nimmt man als
gemeinsamen Nenner das kleinste gemeinsame Vielfache von n, n’ statt nn’. — Anschliefend kann
man moglicherweise noch weiter kiirzen. — Fiir allgemeine Uberlegungen ist dies allerdings in
den meisten Fillen eher erschwerend.)

Man sieht, dass sich Nenner und Zéahler bei der Addition sehr verschieden verhalten! Wenn
m,n,n’ > 0 sind, gilt immer:

m m  m(n +n) m n n  n+n
5, aber — 4 — =
n+n m

m m

Offenbar ist 0 = % = % fiir alle n > 0 ein neutrales Element beziiglich der Addition. Ferner gibt
es ein additiv Inverses zu 7, ndmlich =*. Denn

m  —m m-—m 0 0
n n n n
Man darf also % = —% schreiben.

3.5 Multiplikation: Zunichst definieren wir k- 7* fiir k € Z. Ist k > 0, so sei k- 7 die k-fache
Summe von 7 zu sich selbst, d.h.

Dies muss man zwangsldufig so machen, wenn 1 ein neutrales Element fiir die Multiplikation
bleiben und die Distributivitdt und Kommutativitidt der Multiplikation erhalten bleiben soll.
Die Forderung, dass die Distributivitit weiter gelte, erzwingt dann auch

m km m
n

=——, alsok-—:k—mfﬁrallekzez.
n n n

(—k)-
Insbesondere ergibt unsere Definition (fiir k € Z,r € Ny)

1 1
kom="undr--=l=>=1.
r T r r 1

Soll die Assoziativitit der Multiplikation weiterhin gelten, so muss
m m 1 m

L
n n r n

)
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: it Lon _om! iop rm! __m Iy — ! m' _ m
sein. D.h., ist & - % = 7% so ist T+ = %, also rm'n = n'm. d.h. T- = .

Wir definieren also

1 m . m
r n’
und somit
Em _1lm_, m_Fkm
r on ron ™ ™

Merke: Die Addition von Briichen ist komplizierter als ihre Multiplikation!
Sind m,n, m’,n’ positive ganze Zahlen, so gilt immer

m m m4+m

n n' n+n

3.6 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a € Q— {0} gibt es genau
ein multiplikativ Inverses ¢~ !, ndmlich

Ist a = @, soista! = = (oder = " falls m < 0)
n

m -m
In Q kann man also die Gleichung ax = b mit der Unbekannten x 16sen, wenn a # 0 ist. Namlich
durch z = ba™!

3.7 Das Rechnen mit rationalen Zahlen geniigt denselben Gesetzen wie das mit den ganzen
Zahlen. Es geniigt sogar einem zusétzlichen Gesetz, ndmlich dem der Existenz von multiplikativ
Inversen. Q ist ein sogenannter Korper.

(Ubrigens muss man bei der axiomatischen Definition eines Korpers folgendes bedenken: Eine
Menge, die aus genau einem Element p besteht, fiir das p + p = pp = p definiert ist, erfiillt
alle o.a. Korperaxiome. Man will sie aber nicht als Korper gelten lassen. Man verlangt deshalb
zusitzlich, dass in einem Korper 1 # 0 ist, oder — dquivalent dazu — dass er aus mindestens

2 Elementen besteht. Es gibt einen nicht ganz unniitzen Koérper, der aus genau 2 Elementen
besteht.)

Remark 3.8 Die Nullteilerfreiheit, und damit die Kiirzungsregel gilt natiirlich im Bereich der
rationalen Zahlen auch. Offenbar gilt sie in jedem Korper. (Warum?)

3.9 Da sowohl bei der Multiplikation wie bei der Addition von Briichen der Nenner (genauer:
einer der moglichen Nenner) des Ergebnisses das Produkt der Nenner der Faktoren, bzw. der
Summanden ist, gibt es echte Teilmengen von Q, die Z echt umfassen, die gegen Addition,
Subtraktion und Multiplikation abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die
Menge der Briiche, die sich mit einem ungeraden Nenner schreiben lassen, ein solcher Unterring.
(Kann man in dieser Behauptung ‘ungerade’ durch ‘gerade’ ersetzen???)
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3.10 Anodnung: Wie vergleicht man Briiche der Grofle nach? Nun, wenn zwei Briiche densel-
ben positiven Nenner haben, ist die Sache einfach:

m _m

—< = = m<m.
n n

Ansonsten muss man die (als positiv vorausgesetzten) Nenner gleich machen:

m _m mn' _ m'n

— < — = <
n n' nn' nn'

Z.B. sieht man: Ist 0 < n < n/, so gilt % > % Die Regeln der Vertriglichkeit der Anordnung mit
Addition und Multiplikation bleiben erhalten. Das Induktionsprinzip und das Minimumprinzip
gilt natiirlich fiir die rationalen Zahlen nicht. Z.B. hat die Menge M := {a € Q | 0 < a}
die untere Schranke 0, aber kein kleinstes Element. Ist ndmlich a € M beliebig (klein), so ist

271lg < aund 27ta € M.

/ /
<~ mn <mn.

3.11 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger Korper. Fiir a,b €

K, b # 0 schreibt man dann
a -1
g = CLb

Aus den Korpergesetzen leitet man dann leicht ab:

a a’_ab’—l—a’b !

Lo _af+db o o ad (2)—1_.f
bbb bbby b a

letzteres, wenn auch a # 0 ist.

Remark 3.12 Auch fiir positive rationale Zahlen a, b, ¢,d gilt immer

a-+c
b+d

a ¢
b d

3.13 Wenn man im Korper der rationalen Zahlen Briiche rationaler Zahlen bildet bekommt
man ‘Mehrfachbriiche’, z.B.

Salls]

—~
Qlo
~—

Man muss hier aufpassen, z.B.

a a
i (%) a_ a
2 =222 und - = —
c e (3
voneinander unterscheiden! Berechnen Sie
1
Q und %
3 3)

Ein Ausdruck der Form

hat keinen Sinn!
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3.14 Standarddarstellung. Jede rationale Zahl kann als ein Bruch geschrieben werden, in
welchem Zéhler und Nenner keinen gemeinsamen Primfaktor haben. Denn sonst kann man ja
noch kiirzen. Da bei jedem Kiirzen (durch eine ganze Zahl > 1) Z#hler und Nenner (dem Betrag
nach) kleiner werden, muss der Kiirzungsprozess nach dem Minimalprinzip irgendwann anhalten.
(Ubrigens gibt es eine Algoritmus — von Euklid —, der es erlaubt, den ggT von zwei Zahlen zu
berechnen, ohne sie vorher in Primfaktoren zerlegt zu haben.)

Verlangt man noch — wie wir es bisher meist getan haben — dass der Nenner positiv ist, so ist
die Darstellung einer rationalen Zahl als ,,gekiirzter* Bruch eindeutig.

Beweis hierfiir: Sei 7r = ’;’Z—,,, wo beide Briiche gekiirzt sind. Dann gilt mn’ = m/n. Wir verwenden
die Eindeutigkeit der Primfaktorzerlegung. Ist p ein Primfaktor von m, genauer, ist p* die hchste
p-Potenz, die m teilt, so muss sie auch m’ teilen, da nach Vorraussetzung p kein Teiler von n ist.
Es folgt m|m/, und ebenso m/|m. Also m = +m’. Da nach Voraussetzung n,n’ > 0 ist, miissen
auch die Vorzeichen von m und m’ iibereinstimmen.

Ebenso folgt n =n’. —
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4 Reelle Zahlen

4.1 Man konnte meinen, die rationalen Zahlen fiillten die ganze Zahlengerade aus. In beliebiger
Naihe jeder rationalen Zahl liegen noch unendlich viele weitere rationale Zahlen. Anders als bei
den ganzen Zahlen gibt es zu einer rationalen Zahl keine néchstkleinere oder néchstgrofiere.

Trotzdem gilt die BEMERKUNG: Wenn man auf dem Einheitsintervall der Zahlengerade von 0
bis 1 ein Quadrat errichtet und um 0 den Kreis schlégt, der durch die rechte obere Ecke geht, so
schneidet dieser die Zahlengerade in keinem rationalen Punkt. M.a.W. Es gibt keine rationale
Zahl r mit 2 = 2.

BEWEIS: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit n? = 2. Wir nehmen
an, es gibe ein r € Q mit 2 = 2. Wir schreiben r = - in gekiirzer Form, d.h. so dass m und n
keinen gemeinsamen Primfaktor haben. Wir zerlegen m und n in Primfaktoren:

m _pi-p
nooqedgs

Da r nicht ganz ist, ist n > 2, d.h. s > 1. Wegen der Teilerfremdheit von m,n gilt p; # ¢; fiir
alle 7, j. Jetzt bilden wir

o Di-opl
L N
Q1 qS

Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teilerfremdheit von Zahler
und Nenner nichts gedndert. D.h. 72 kann nicht ganz sein, insbesondere ist 72 # 2. —

Aus der Bemerkung folgen:

a) Die — nicht besonders komplizierte — Funktion f(x) = 22 —2 hat zwar in 1 den negativen Wert
—1 und in 2 den positiven Wert 2, aber zwischendurch an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, fiir die a < 0 oder a? < 2 gilt, und B die Menge der
positiven rationalen Zahlen b mit b? > 2. Dann ist AUB = Q und a < b fiir alle a € A,b € B,
aber weder besitzt A ein grofites, noch B ein kleinstes Element.

Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sei n > 2 ganz. Ist eine ganze Zahl k keine n-te Potenz einer ganzen Zahl,
so ist sie auch keine n-te Potenz einer rationalen Zahl.

4.3 Man hat mit Erfolg den Koérper Q zu einem Koérper R der sogenannten reellen Zahlen er-
weitert, in welchem aufler den Rechen- und Anordnungsaxiomen folgende zueinander dquivalente
Aussagen erfiillt sind:

(i) Jede Zahlenfolge in R, die verniinftigerweise konvergieren sollte (d.h. eine sogenannte Cauchy-
folge ist), konvergiert auch. S.u.

(ii) Ist R = AU B, derart dass sowohl A als auch B mindestens 1 Element besitzt und a < b fiir
alle a € A, b € B gilt, so hat entweder A ein grofites oder B ein kleinstes Element.

(iii) Sei (an)n = (ao,ai,as,...) eine monoton wachsende nach oben beschrénkte Folge. D.h. fiir
alle n gilt a,, < ap41 und es gibt ein s mit a, < s fiir alle n. Dann konvergiert die Folge (ay)y.-
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(iii”) Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von R, die eine untere
Schranke besitzt, d.h. fiir die es ein s € R gibt mit s < a fiir alle a € A, besitzt auch eine untere
Grenze, d.h. ein 4 € R mit u < q fiir alle a € A, so das in beliebiger Ndhe von u noch Elemente
von A liegen.

(iv’) Dasselbe wie (iv), wo ,untere“ durch ,obere* ersetzt ist.

Manche der genannen Begriffe bediirfen noch der Prazisierung, die wir in einem spéteren Pa-
ragrafen vornehmen werden. ,, Anschaulich® ist es so, dass die reellen Zahlen den Punkte auf
der Zahlengeraden entsprechen, die beliebig genau durch rationale Zahlen approximierbar sind.
(Und diese sind dann wohl alle Punkte auf der Zahlengeraden, was auch immer das heiflen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Korpers der reellen Zahlen, die man aus
jedem der o.a. ,Axiome*“ ableiten kann — aus (i) nur bei entsprechender Definition von ,,Cauchy-
Folgen“ — das sogenannte archimedische Axiom:

(a) Zu allen positiven reellen Zahlen a,b gibt es eine natiirliche Zahl n mit na > b.
Hierzu dquivalent ist folgende Aussage:
(b) Ist « eine reelle Zahl, so dass 0 < o < 1/n fiir alle ganzen Zahlen n > 0 gilt, so ist o = 0.

BEWEIS der Aquivalenz: ,,(a)=(b)“: Wire a > 0, so gibe es ein n € N mit na > 1. Multipli-
kation mit der positiven Zahl 1/n ergédbe a > 1/n.

»(b)=(a)“: Wire na < b fiir alle natiirlichen n, so erhielte man durch Multiplikation mit der
positiven Zahl % die Ungleichung a/b < 1/n fiir alle n und somit aus § < n%rl die Ungleichung
a/b < 1/n fur alle n. —

Fiir die reellen Zahlen kann man folgendes beweisen:

Proposition 4.5 Sei a > 0 reell und n > 2 ganz. Dann g¢ibt es eine reelle Zahl r > 0 mit
r" = a.

Man nennt r die n-te Wurzel von a und schreibt r = {/a.

Proof: Sei B die Menge der reellen Zahlen b > 0 mit "™ > a und A := R — A. Dann ist
offenbar AU B = R. Ferner sicht man leicht ¢ < b fiir ¢ € A, b € B. Die kleinste Zahl von B oder
die grofite von A ist dann das gesuchte 7. O

4.6 Man kann R z.B. als Menge aller unendlichen oder endlichen positiven oder negativen
Dezimalbriiche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbriichen einzugehen, wollen wir
uns iiberlegen, wie man die Eigenschaft (iv) fiir nach unten beschriankte nichtleere Mengen B
von Dezimalbriichen zeigen kann.

BEWEIS: Man darf annehmen, A sei durch 0 nach unten beschrankt. (Sonst verschiebe man die
Menge.) Zunichst betrachten wir den ,ganzen Anteil*, d.h. die ,, Vorkommazahlen* der Zahlen
aus A. Unter diesen gibt es nach dem Minimalprinzip eine kleinste, etwa m. Dieses m wird
die Vorkommazahl der gesuchten unteren Grenze. Dann betrachten wir alle a € A, die die
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Vorkommazahl m haben und von diesen jeweils die erste Nachkommagziffer Die kleinste dieser
Ziffern sei ni. Dieses ny wird die erste Nachkommaziffer der gesuchten unteren Grenze. Diese
beginnt also mit m,ni. Von allen Zahlen aus A, die mit m,n; beginnen, betrachten wir die
jeweils zweite Ziffer nach dem Komma. Sei ng die kleinste unter diesen. Unsere untere Grenze
beginnt mit m, ning, usw. Sei m,nino ...n; auf diese Weise bereits gefunden. In A gibt es also
mindestens eine Zahl, deren Dezimalzahldarstellung mit m,n; ...ny beginnt. Und keine beginnt
mit einer kleineren Zahl mit £ Nachkommastellen. Man betrachte nun alle Zahlen aus A, die mit
m,nj ...ng beginnen und betrachte von jeder die (k+1)-te Ziffer nach dem Komma. Die kleinste
unter allen diesen sei ny41. Diese ist auch die (k 4 1)-te Nachkommaziffer der gesuchte unteren
Schranke. Wenn wir dies bis ins Unendliche fortsetzen, bekommen wir einen Dezimalbruch u,
der die gewiinschte Eigenschaft hat. Denn keine Zahl aus A ist kleiner als w. Und fiir jedes
k gibt es eine Zahl aus A, deren Vorkommazahl und deren erste k& Nachkommaziffern mit u
tibereinstimmen. Es gibt also Zahlen in A, die beliebig nahe bei u liegen. —

4.7 Ubrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche Dezimalbriiche dar-
stellbar sind:
3,72 =3,719 := 3,71999.. ..

Jeder von 0 verschiedene, abbrechende Dezimalbruch (der, wollte man ihn als unendlichen De-
zimalbruch schreiben, bis auf endlich viele Ausnahmen nur die Ziffer 0 hat) lasst sich auch auf
die Weise schreiben, dass alle seine Ziffern bis auf endlich viele Ausnahmen 9 sind.

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0,9 und 1 seien in Wahr-
heit doch ein wenig verschieden. Man sollte sich aber iiberlegen, dass ihr Abstand kleiner ist
als 107"(= 1/10™) fiir jede natiirliche Zahl n, und sie deshalb auf Grund des archimedischen
Axioms gleich sind. (Es gibt angeordnete Korper, die das archimedische Axiom nicht erfiillen.
Um deren Elemente zu beschreiben, kommt man allerdings nicht mit Dezimalbriichen aus.) Was
spricht denn dagegen, dass man ein und dieselbe Zahl auf mehrere Weisen schreiben kann?
Die Darstellung einer rationalen Zahl als Bruch zweier ganzer Zahlen ist ja tiberhaupt nicht
eindeutig.

Wer verniinftig mit Dezimalbriichen als reellen Zahlen umgehen will, hat nur folgende
Wahlmoglichkeiten: Entweder er verbietet eine der beiden Schreibweisen, wo fast alle Ziffern
0 oder fast alle Ziffern 9 sind, oder er akzeptiert, dass gewisse reelle Zahlen 2 Schreibweisen als
Dezimalbriiche haben.
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5 Unendliche Reihen

P N T o1 52 -3, o4 Nk o
Beispiel 13 o+ o+ o+ 7o+ (=27t 42724923 274 4.0 _;2 =7
Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird zuerst halb gefiillt,
dann wird durch hinzugieen von einem viertel Liter vom freien Rest wieder die Hélfte gefiillt,
und es bleibt 1/4 Liter frei. Dann bleibt nach Hinzufiigen von 1/8 1 wieder 1/8 1 frei. So geht
es weiter: im n-ten Schritt fiigt man 27" | hinzu, und der Literzylinder ist bis auf 27" 1 gefiillt.
Der einzig sinnvolle Wert fiir o.a. unendliche Reihe (Summe) ist

I
2 4 8 16 2n -
Beispiel 20 —— 4 4 4 Loy Lo ?
eispiel 2: S H
P 1.2 23734 4.5 n(n+1)
1 1 1) — 1 1 1 1
Es gilt — — = (nt1)—n = , z.B. — — — = —— . Die unendliche Reihe kann
n n+1 n(n+1) n(n+1) 3 4 34
man also auch so schreiben:
1 1 1 1 1 1 1 1 1 1 1 1
retestsa st TGP G

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt) addiert, so hebt

sich viel weg und man erhilt als Summe (der ersten n Glieder) 1 — nl Wieder ist der einzig
n

sinnvolle Wert unserer unendlichen Reihe

! + ! + ! + ! + - ! +---=1
1-2 23 3-4 4-5 n(n+1) B
Lésst man die ersten N Summanden dieser Reihe weg, so erhélt man auf dieselbe Weise
1 1 1 1
+ + +-=
(N+1)(N+2) (N4+2)(N+3) (N+3)(N+4) N+1
Beispiel 3 1+1—|—1—|—1+1+ +1—|— ? (,H ische Reihe*)
ispi : -+ -+ —F -+ =4 =7 rmoni i
eispie T tgtstits - »,Harmonische Reihe

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1_|_1 (1_,_1)4_(1 1 1+1) (1 +i)+(i+. _|_i)_}_
2 3 4 5 6 7 8 9 16 17 32
NSRS S S USSP NS S SNV S BN P S
44 4 4 27 5 8 8 8 8 2
AR SR T T
9 16— 16 2’
Deshalb gilt
1 2 3 4 5 - 2 2 2

Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:
11 1 1 1
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(Wir betrachten oo nicht als reelle Zahl, weil man mit oo schlecht rechnen kann. Aber es spricht
nichts dagegen, oo als ,,Grenzwert“ zuzulassen.) In den Beispielen 4 und 6 werden wir die har-
monische Reihe auf zweierlei Weise modifizieren und erhalten endliche Werte.

Beispiel 4: Wir quadrieren die Summanden:

1 1 1 1 1 ,
1+?+?+E+?+“.+ﬁ+“.:'
Es gilt (fir n > 2) die Beziehung — < — 1 o = « — L 1 Durch
S £1 ur n 1€ ezienung — — Y, alS0 —& —, = — USW. urc
& = 802 S - 22 S 1.2 32~ 2.3

Vergleich mit Beispiel 2 erhélt man hieraus — vorausgesetzt unsere Reihe hat einen verniinftigen
Wert —

1 1 1 1 B
1+?+?+E+?+“'<1+1—2
Wenn man die reellen Zahlen axiomatisch einfiihrt, kann man als eines der Axiome z.B. folgendes
nehmen:

Jede unendliche Summe positiver Summanden, die nach oben beschrinkt ist, hat einen reellen
Wert,

2
In der Tat ist der Wert o.a. unendlicher Summe —. Dies ist allerdings keineswegs einfach zu
sehen. Wenn Sie Gliick haben, horen Sie einen Beweis dafiir am Ende des 1. Semesters in der
Vorlesung ,,Analysis 1. Sie kénnen einen Beweis im Buch O. Forster: Analysis 1 finden.

1 1
Beispiel 5: 1+ -+ ——
e1sple TR
. 1 . 1 .
Wenn wir den Summanden mit dem Summanden ——— der Reihe aus
1-2---n-(n+1) n(n+1)

Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert < 3 hat. Man nennt diesen
Wert in der Regel e. Es gilt also 2 < e < 3.

Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:
Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Z&hler und Nenner.

Beweis: Indirekt. Wére e eine rationale Zahl mit dem Nenner N > 2, so wiare 1-2--- N - e eine
ganze Zahl. Wir zeigen, dass dem aber nicht so ist.

Multiplizieren wir die ersten N + 1 Summanden von e mit 1-2--- N, so erhalten wir ganze
Zahlen. Fiir den Rest r der Summe geniigt es also 0 < r < 1 zu zeigen. Offenbar gilt

1 1 1

TN T NN ) T ovr ) T

Machen wir, anfangend mit dem 2. Summanden von 7 den oben gemachten Vergleich, so erhalten

wir
1 1 1 1 1

r < + + 4+ = + <1
N+1 (N+1)(N+2) (N+2)(N+3) N+1 N+1

Beispiel 6: Wir versehen die ,,Hélfte“ der Summanden der harmonischen Reihe mit dem Minus-
Zeichen, d.h. wir bilden die sogenannte alternierende harmonische Reihe:
1 1 1 1 (—1)ntt

[ T E T EU T T Sl A R
2+3 4+5 L n +
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1 1 1 1 1
Wenn wir die Teilsummen 1, 1—-, 1—=-+—-, 1— -+ 371 usw. auf der Zahlengeraden

betrachten, so sehen wir sie hin- und herhiipfen; dabei werden die Spriinge immer kleiner und ihre
Lénge geht gegen 0. Es ist also plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den
Wert der unendlichen Reihe. (,,Leibnizsches Konvergenzkriterium*) Dieser Wert liegt offenbar
zwischen 1/2 und 1. Er ist gleich dem natiirlichen Logarithmus von 2 (In 2), wie man in den
meisten Vorlesungen , Infinitesimalrechnung 1“ lernt.

Zuletzt mochte ich Thnen noch einen Schock versetzen. In einer endlichen Summe darf man die
Summanden beliebig vertauschen, ohne dass sich der Wert der Summe &ndert. Dies gilt nicht
fiir alle unendlichen Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmonischen Reihe in folgender
Reihenfolge:

1 1+1 1+1 1 1+1 1 1 1 1+1 1 1+1 1
2 3 4 5 6 8 7 10 12 14 16 9 18 32 11 34

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2" negative Summanden

auf.)

1 1 1 1 1
Da 68 < T 10 T 16 < - usw. ist, gilt fiir eirien TéglilcheanVel;t wlder ;).a.
1 i h isch ih <l-—Z 4 - _ -4 - _ 4 _ 4 _
?mgeirdneten alternierenden harmonischen Reihe w < 5 + 371 + E T 1 + =71 + 9
4 ... Mit
4+11 + 1
L ! Loy 142 fir n>5
——t o =—FTFT=—5;7 18t ——+—<—— fir n .
4 4-5 20 4 n— 2 -
Also gilt
1 1 1 1
w<l— =4 = —— — — — _ - %

Zusatzbemerkungen

1— n+1
Zu Beispiel 1: Allgemein gilt fiir ¢ # 1 die Formel 1 + g+ ¢+ --- +¢" = 17(], also fiir

1

die unendliche Reihe 1+ ¢+ ¢*+---+¢" +--- = 1 , vorausgesetzt, es ist —1 < g < 1. Setzt
—q

man g = 1/2, so erhélt man Beispiel 1 mit dem zusétzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge der Menge aller
positiven ganzen Zahlen. Wir haben gesehen, dass die Summe der Kehrwerte aller natiirlichen
Zahlen unendlich, dagegen die der Kehrwerte aller Quadratzahlen endlich ist. Man kann sich
fiir jede Teilmenge der natiirlichen Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder
unendlich ist. Man weif}, dass die Summe der Kehrwerte aller Primzahlen unendlich ist. Das ist
nicht trivial, aber auch nicht allzu schwer zu zeigen. Siehe Chapter 1 in dem hiibschen Buch
,Proofs from THE BOOK* von M. Aigner und G.M. Ziegler (Springer Verlag) Wenn Thnen
unbekannt sein sollte, dass es {iberhaupt unendlich viele Primzahlen gibt, hier ist der uralte
Beweis von Euklid: Zu endlich vielen Primzahlen py,...,p, ist jeder Primfaktor p der Zahl
pip2 -+ pn + 1 eine weitere (von allen py, ..., p, verschiedene) Primzahl, nicht wahr??
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$2

Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion In(1+x) ist In(14z) = %— ?—i—
3
x

3~ + -+ -. Diese Gleichung gilt fiir alle x mit —1 < 2 < 1, und man erhélt unsere Behauptung,

indem man z = 1 setzt.

Die Funktion In(1 4 ) ist die Stammfunktion von . Letztere Funktion kann man, wie

in der Bemerkung zu Beispiel 1 angegeben, als unendliﬁhe Reihe schreiben: setze ¢ = —=.
Die Taylorentwicklung von In(1 + z) erhélt man durch ,gliedweise Integration“. Das alles
funktioniert zunéchst jedoch nur fir —1 < x < 1. Fiir x = 1 braucht man ein zusétzliches
Argument, den ,,Abelschen Grenzwertsatz*.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende harmonische Reihe jede
vorgegebene reelle Zahl als Wert annehmen. Wer mathematisch geschickt ist, mag selbst
versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe — statt Grenzwert sagt man auch Limes — kennenlernen:

a) Den Grenzwert einer (unendlichen) Folge (a,) = (an)n = (an)nen = (ao,a1,a2,...), der
lim a, geschrieben wird, (Man kann die Folge auch mit dem Index 1 oder irgendeiner anderen
n—oo
1
natiirlichen Zahl beginnen lassen, und schreibt z.B. lim — = 0 obwohl % fiir n = 0 keine
n—oo N

Bedeutung hat.)

b) Den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unendlich vielen Summan-
o

den) Z bn,
n=0

c) Den Grenzwert einer Funktion bei Annéherung an einen Punkt, an dem sie vielleicht nicht
definiert ist lim f(z).
T—x0

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’, d.h. ohne strikte Begriffs-
bildung vorbereitet. Bei allem Spaf}, den das hoffentlich gemacht hat, sollte jedoch klar sein,
dass man ohne eine Prézisierung auf Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a,b auf der rellen Zahlengerade ist
a — b oder b — a, je nachdem ob a > b oder a < b ist. Man kann dies einfacher ausdriicken,
wenn man den Begriff des (Absolut-)Betrages einfiithrt: Der Betrag |a| einer reellen Zahl a ist
definiert durch

la] == a fir a>0
] —a fir a<0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a — b| (wobei eben |b—a| = |a—b|
ist).

Der Betrag geniigt folgenden formalen Regeln
a) 0 <lal, b)fa]=0 <= a=0, c)lab] = |a|-[b], d)|a+b]<]|a|+ [b]

Die letzte Regel — die man durch Betrachtung aller vier Félle ¢ > 0,6 > 0; a < 0,0 > 0;
etc. leicht beweist — heifit die Dreiecksungleichung. (Der Name kommt von einer allgemeineren
Situation her, wo statt reeller Zahlen Vektoren betrachtet werden und die Dreiecksungleichung
fiir die Langen von v, w,v 4+ w gilt und die geometrische Bedutung hat, dass die Linge einer
Dreiecksseite hochstens so grofl ist wie die Summen der Léngen der beiden anderen Seiten.)

Eine Ungleichung der Form |a — b| < ¢ (mit € > 0) bedeutet, dass der Abstand von a und b
kleiner als € ist, d.h. a—e < b < a+e¢ gilt. (Natiirlich kann man das auch durch b—e < a < b+e¢
ausdriicken.)

6.2 Limes einer Folge. Wie kann man es prézise fassen, dass eine Folge (ag, a1, az, as, . . .) sich
einer reellen Zahl a beliebig annéhert?

Seit ungefihr 200 Jahren macht man es so:
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Definition 6.3 a) Sei a eine reelle Zahl und (ay) eine Folge reeller Zahlen. Man sagt, die
Folge (ap)y, hat den Grenzwert (oder Limes) a — oder konvergiert gegen a — und schreibt
lim,, o a, = a, wenn zu jeder (noch so kleinen) reellen Zahl e > 0 ein N € N existiert, derart
dass |a, — a| < € fir alle n > N gilt.

b) FEine Folge reeller Zahlen heifit konvergent, wenn sie eine reelle Zahl als Limes hat. An-
dernfalls heifit sie divergent. Man sagt auch: Sie konvergiert, bzw. divergiert.

Das heift: In jeder noch so grofien Nihe zu a liegen, bis auf héchstens endlich viele Ausnahmen,
alle Folgenglieder.

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (ap)nen mit a,, = a fiir alle
n.

Den Zusatz ,,(noch so kleinen)“ kann man in der Definition weglassen. Er dient lediglich zur
inhaltlichen Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Anderungen des obigen Wortlautes nicht zu #quivalenten
Aussagen fiithren:

»,Es gibt ein kleines € > 0, derart dass ...

»Hs gibt ein N € N; so dass fiir jedes e >0 ...“

6.4 Obige Definition wird haufig von didaktisch Interessierten als sprachliches Monstrum ange-
sehen.

F. Vester (in ,,Denken, Lernen, Vergessen*) polemisiert gegen obige Definition und schligt statt-
dessen vor, die Konvergenz gegen 0 folgendermafien zu definieren:

»,Eine Folge heifit eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn — vom Vorzeichen
einmal ganz abgesehen — in ihr jedes Glied kleiner ist als das Vorangehende.*

Nun erfiillt die Folge (a,,) mit a,, = 1 +  sicher die Definition von Vester, wird aber kaum als
Nullfolge anzusehen sein. Andererseits wird man die Folge

27" fiir gerade n

(an) mit ay ::{ 1

n fiir ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch nicht erfiillt. Dieser
ist also — diplomatisch gesprochen — wenig hilfreich.

6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen, der nicht so sinnlos
ist wie der von F. Vester. Man definiert einen verschérften Konvergenzbegriff wie folgt:

Definition: Die Folge a,, konvergiert geometrisch gegen a, wenn es ein ¢ mit 0 < g < 1 gibt,
derart dass |a, — a| < ¢g" fiir alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus: ,,es gibt ..., so dass fiir
alle ..., wihrend die die Definition 6.3 deren 3 bendétigt: ,.fiir alle ... gibt es ein ..., so dass fiir
alle ...«

Dafiir muss man in Kauf nehmen, dass z.B. die Folge (%) nicht geometrisch konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die Definition 6.3 zu
verstehen und anzuwenden, sollte nicht Mathematik studieren! Auch Informatikern
und Physikern ist sie zuzumuten!
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Es ist niitzlich, auch oo und —oco als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (ay), divergiert bestimmt gegen oo und schreibt
limy, o ay = 00, wenn es fiir jedes r € R ein N € N existiert, so dass an > r fiir allen > N
gilt.

Wie definiert man lim,, .o a;, = —0077?

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunéchst wollen wir eine abkiirzende Schreibweise fiir Summen der Art b, + bpy1 + -+ + by
einfithren — wo m < n sei. Wir setzen

D bk = by + byt o+ b

k=m

Insbesondere sei .
> b = by
k=n

Falls n < m ist setzen wir

Das Symbol
o
> b
k=0
wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens bedeutet es die

Folge (sp)nen, WO Sy :=bg+ b1+ -+ by = > }_ by definiert ist, und zweitens bedeutet es den
Limes dieser Folge.

Man sagt also z.B.: Die (unendliche) Reihe

S

k=

o
S

konvergiert, und man schreibt

wenn lim, .. 8, = s ist.

Wir haben also den Begriff der unendlichen Reihen und ihrer Werte auf den Begriff der Folgen
und deren Grenzwerte zuriickgefiihrt.

6.8 Im Ubrigen kann man jede Folge (an)nen als unendliche Reihe Y 3 by schreiben, indem
man by = ag und by, = a — ap_q fir k > 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschriebene Folgen. Mal
ist die eine, mal die andere Schreibweise niitzlich oder von der untersuchten Fragestellung her
gegeben.
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6.9 Der Limes einer Funktion f bei Annidherung an einen Punkt zy € R hat nur dann
Sinn, wenn in beliebiger N&he von xy Punkte des Definitionsbereiches von f liegen. Sei also
D CR, f: D — R eine Funktion. Wir setzen voraus: Fiir jedes ¢ > 0 gebe es ein x € D mit
|z — zo| < e.

Dann definieren wir: Es ist lim,_,,, = a genau dann, wenn fiir jede Folge (a,,), mit a, € D und
lim,, o0 an, = xo die Gleichung lim, .~ f(a,) = a gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei Andherung an zg nihert, auf
den Begriff des Grenzwertes von Folgen zuriickgefiihrt.

(Man kann diese Art Grenzwert auch anders definieren: Fiir jedes € > 0 gibt es ein § > 0, so
dass fiir alle x € D mit |z — x¢| < ¢ die Ungleichung |f(x) — a| < € gilt.)

Man benétigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die Ableitung einer
Funktion als Grenzwert des Differenzenquotienten definieren will:
f(@o + h) — f(z0) f(z) = f(zo)

/ BT _ .
fi(wo) = ]’1L1—>H6 h N wlggo T — X

Examples 6.10 a) Die Folge (%) konvergiert gegen 0. Denn wegen des archimedischen Axioms
gibt es keine reelle Zahl € > 0 mit ¢ < % fiir alle n. Also ist % < ¢ fiir mindestens ein n € Nj.
Da aber — wie wir wissen — %H < % gilt, folgt aus % < g, dass % < ¢ fiir alle m > n gilt. Ich
erinnere an die (bestimmte) Divergenz der harmonischen Reihe.

b) Fiir reelle  mit |z| < 1 konvergiert die Folge 2™ auch gegen 0. Dies ist vielleicht jedem klar,
aber nicht so unmittelbar rigoros zu beweisen. Ich will auf den Beweis verzichten.

Fiir z = 1 konvergiert diese Folge offenbar gegen 1. Fiir > 1 divergiert sie bestimmt gegen oo.
Fiir x < —1 hat sie keinen Limes, auch nicht den Limes —oo.

¢) Sehr wichtig, vor allem fiir theoretische Uberlegungen, ist die geometrische Reihe
oo
> "
n=1

Wir berechnen zunéchst die endlichen Teilsummen Zfz:() x" =: s;. Rechne

k k+1
(l—x)sk:sk—xskzg xk—g 2k =1— 2+t
n=0 n=1

Es folgt fiir x # 1
k E+1

1—=x
Zmn: 11—z

n=0

Da limy_o ¥+ = 0 fiir 2| < 1 gilt, hat man fiir diese =

Fiir |z| > 1 konvergiert die geometrische Reihe nicht.
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7 Allgemeine Potenzen

Anlass zu diesem Thema waren zwei iiberraschende Erlebnisse, negative Uberraschungen freilich.

1. Mehrere junge Leute, die kurz zuvor ihr Abitur mit einer ,,1+“ in Mathematik bestanden

hatten, wussten mit dem Ausdruck 272 nichts anzufangen.
2. In einer Staatsexamensklausur fiir das Fach Mathematik musste ich mehrfach die , Regel
a’ —a® = a’¢ lesen. Am liebsten hiitte ich die betreffende Person wegen seelischer Grausamkeit

verklagt.

1. Wir studieren zunéichst die Potenzen von 2:
21 =2 22=4 23=38,...,29 =512, 210 =1024,....

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen, und zwar mit der
Einheit 1 cm : Wandert man vom Nullpunkt aus auf der waagerechten Achse um 5 c¢m nach
rechts, so miissen wir von dort um 32 cm nach oben gehen, um den Wert 25 = 32 abzutragen.
4 cm weiter miissen wir schon um 5,12 m nach oben gehen. Noch einen cm weiter auf der
waagerechten Achse, so sind wir in der Hohe bereits bei mehr als 10 m angelangt, was bestimmt
die Dimension dieses Raumes sprengt. Selbst eine Tafel von der Hohe des Himalaya reicht nicht
aus, um den Punkt zu markieren, der dem Wert von 220 in Zentimetern entspricht.

Man spricht von exzponentiellem Wachstum.

Nun wollen wir doch gleich sowohl 219 — 2! als auch 2'°~! ausrechnen:
210 9l — 1024 —2=1022, 2971 =29 =512

Man sieht, dass im Allgemeinen 2% — 20 # 207 ist. Das Beispiel 22 — 2! = 2271 ist die grofie
Ausnahme!

2. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definieren, etwa 272? Ant-
wort: Man kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man den Exponenten um
1 erhoht, wird die Potenz verdoppelt: 2"+ = 27 . 2. Das bedeutet aber auch: Vermindert man
den Exponenten um eins (und bleibt er dabei positiv), so wird die Potenz halbiert:

1
2n71 —_.9n
2

Wenn man diese Regel fiir allgemeingiiltig erklért,, d.h. auf alle ganzen Zahlen n ausdehnt, erhlt
man

1 1 1 1 1 1
W=ol-t_" o1 27l =_ 1=, 272=_=_ . 27"=_ |
2 2 2 22 4 2n
Allgemein, ist a # 0 eine reelle Zahl, so definiert man
1
=1 a"=—

falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)72 = 4.)
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Geht das gut?

Ja! Und zwar in folgendem Sinne: Fiir jede reelle Zahl a # 0 und jede ganze Zahl n, sei sie
positiv, negativ oder 0, ist die Potenz a™ eindeutig definiert, und es gilt die fundamentale Regel:

fiir alle ganzen Zahlen m und n. Beachten Sie bitte: Auf der rechten Seite steht kein ,,+“!!!

(Wenn umgekehrt die Regel 2 gelten soll und a™ fiir n € Ny wie iiblich definiert ist, so muss

a®=1und a™" = ain fiir a # 0 gelten. Denn aus a’a = aa' = a®*! = a! = a folgt a® = 1 (fiir
1
a#0). Aus a™"a" = a """ = a® = 1 folgt dann o " = CTn)

Es gibt noch weitere Regeln:

Die Regel (4) folgt aus (2).

Wegen Regel (4) definiert man iibrigens a** := a(*). Beachten Sie dazu 2(3%) = 29 = 512, (23)2 =
8% = 64 = 2°.
Die Regeln ™™ = a™a™ und (ab)” = a™b" sind die Analoga zu dem Distributivgesetz der

Addition/Multiplikation. Man beachte, wie unterschiedlich Basis und Exponent behandelt
werden!

3. Wir wollen uns jetzt iiberlegen, ob, wann und wie man Potenzen mit rationalen Exponenten
definieren kann. Soll (1) und damit auch (3) (fiir rationale m und positive ganze n) weiterhin
gelten, so muss

(@) =a
sein, d.h. a'/™ sollte diejenige Zahl (die auch mit {/a bezeichnet wird) sein, deren n-te Potenz
a ist. Fiir ungerade n macht dies (im Bereich der reellen Zahlen) keine Probleme. Ist aber n
gerade, so gibt es fiir a > 0 zwei ,,n-te Wurzeln“ und fiir a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir @ > 0 voraussetzen und a(!/™ > 0
verlangen.

Wenn wir schliefllich noch
n my L n/m =\m n m
an = (a™)n = Vam (= (an)" = ({a)™)

fiir ganze m,n mit n > 0 definieren, so ist a” fiir reelle ¢ > 0 und rationale x so definiert, dass
die Regeln (2) bis (4) gelten.

Ubrigens ist a” rational, wenn a # 0 rational und n ganz ist. hingegen ist 2/2 — wir wir bereits
wissen — nicht rational.

4. Schliefflich wollen wir noch a” fiir beliebige reelle Zahlen x und a > 0 definieren. Die o.a.
Regeln (2) bis (4) geben alleine kein Rezept. Wir verlangen zusétzlich die sogenannte Stetigkeit
der Funktion = +— a”.
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Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir , definieren“ (und miissen das
auch tun, wenn a® | stetig® sein soll):
Ist z = lim b, mit b, € Q, so sei a® := lim a’". (5)
n—oo n—oo
Diese ,,Definition* hat natiirlich einen Haken. Die reelle Zahl z ist auf viele Weisen Limes einer
Folge rationaler Zahlen. Wir miissen uns fragen: Wenn lim,,_, b;l = limy_,o0 by, ist, ist dann
auch lim,, .~ abn = lim,, o0 abn?

Die Antwort ist: Ja. Allerdings ist der Beweis dafiir keineswegs trivial. Eine prézise Durchfiihrung
ist im Schulunterricht vielleicht nicht moglich. (Man kann den Beweis leicht auf die folgende
Behauptung reduzieren: ,,Ist (¢,) eine rationale Nullfolge, so ist lim, .~ a®» = 1.“ Aber letzteres
zu zeigen, ist nicht leicht.)

5. Ist die Funktion f(z) = a® (fiir a > 0) differenzierbar, und was ist gegebenenfalls die Ablei-
tung? Wir studieren den Differenzenquotienten:

z+h T axah — a® CLh -1

—Qa
= =qa -

h h h

h
a”—1
Man kann f also differenzieren, wenn lim =: c existiert. Dies ist so — allerdings nicht

a

h—0
ganz einfach zu zeigen. Man erhélt, dass die Ableitung von a® proportional zu a® ist, wobei der
Proportionalitdtsfaktor ¢ (monoton) von a abhéngt.

Es gibt nun — was wiederum nicht leicht zu beweisen ist — genau eine Zahl e > 0 mit der
Eigenschaft (e*)’ = e®. Dies ist iibrigens dieselbe Zahl e, die schon im Paragrafen 5. definiert
wurde.

6. Bei der Einfithrung der allgemeinen Potenz auf der Universitit geht man gemeinhin einen
Umweg, der es erlaubt, den unter 4. und 5. genannten Probleme elegant aus dem Wege zu gehen:

Man definiert zunéchst eine Funktion ,,exp“ durch
o0 :L’n
exp(x) = Z ] (6)
n=0
Die Reihe konvergiert fiir alle reellen (sogar komplexen) x. Dann zeigt man die fundamentale
Gleichung
exp(z +y) = exp(z) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Aufwand (Cauchy-
Produkt, Binomial-Formel) und darf nicht durch den Hinweis exp(z) = e* und Regel (1) erledigt
werden! Warum nicht?

Aus (7) folgert man zunichst die Stetigkeit von exp. Auch die Differenzierbarkeit und exp’ = exp
ist leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(x) = e® zunéichst fiir die natiirlichen, danach
fiir die ganzen und schliefflich fiir die rationalen Zahlen, wobei die rechte Seite wie unter 2. und
3. definiert sei.. Das geht wie geschmiert!

28



Zwei stetige Funktionen auf R, die auf Q iibereinstimmen, sind gleich, wie man leicht sieht. Da
exp stetig ist, gibt es also genau eine stetige Fortsetzung von e” auf ganz R, ndmlich e := exp(x).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(x) als z-te Potenz von e anzusehen
und mit e* zu bezeichnen.

Aber wir wollen natiirlich auch a® fiir beliebige @ > 0 definieren. Dazu definiert man den
Logarithmus als Umkehrfunktion der Exponentialfunktion. Man zeigt dazu exp(z) > 0, also
exp’(x) > 0. Somit ist exp streng monoton wachsend. Das Bild besteht ferner aus allen positiven
reellen Zahlen: exp(R) = R* . Man hat also eine Umkehrabbildung, den natiirlichen Logarithmus

In:R} — R

(Man schreibt auch ,log“ statt ,In“.) Fiir beliebige a > 0 sieht man sofort, dass die Funktion
f(x) := exp(xIn(a)) die Gleichungen f(x +y) = f(x)f(y) sowie f(1) = a erfiillt, und deshalb
mit o® fiir alle rationalen z iibereinstimmt. Dies rechtfertigt es, a® := exp(xIn(a)) fiir alle
reellen x zu definieren.

7. Seien ¢,z € C, ¢ # 0 Man kann versuchen ¢* := exp(zIn(c)) zu definieren. Dies hat den
Vorzug, dass man bis auf die Bedingung ¢ # 0 keine Einschrinkung machen muss. Der Nachteil
liegt darin, dass die ,Funktion® In auf C* = C — {0} von Natur aus unendlich viele Werte
hat, die sich um Vielfache von 27i unterscheiden. Das kommt daher, dass im Komplexen die
Funktion exp nicht injektiv ist. Jeder noch so geschickt ausgewihlte, auf ganz C* eindeutig
definierte Logarithmus ist weder iiberall stetig, noch erfiillt er allgemein die Gleichung In(z122) =
In(z1) + In(22).

Man muss also damit leben, dass etwa der Ausdruck i¢ zuniichst unendlich viele (reelle) Werte
hat und wenn man mit ihm rechnen will, angeben, welcher der moglichen Werte gemeint ist.
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8 Potenzen und Potenztiirme

1. Fiir beliebige (reelle) Zahlen a,b gilt: a+ b= b+ a und ab = ba.

Fiir Potenzen ist das anders:
23 = 8, aber 32 = 9.

Auch ohne Rechnen sieht man, dass 2% von 32 verschieden sein muss. Denn 2% = 2 -2 - 2 ist
gerade, 32 = 3 - 3 hingegen ungerade. Dieses Argument gilt nicht fiir 2* und 42, die ja gleich
sind. Ist nun etwa 2% = 82? Nein:

28 = 2672 — 9692 aher 8% = (2%)? = 232 = 26,

Die erste Potenz ist also viermal so grofl wie die zweite.

27 9
9\E L (27)
1) "3

Zunichst wollen wir uns daran erinnern, dass diese Ausdriicke sinnvoll sind. Z.B. ist fiir ¢ > 0
per definitionem:

Jetzt vergleichen wir

at = (Va)°
Und fragen Sie, ob die positive oder negative Wurzel gemeint ist, so ist die Antwort: Die positive!

Jetzt rechnen wir:

Allgemeiner gilt: Ist

so gilt a® = b2,
Fiir positive reelle x,y gilt

1 1
¥ :yar < ln(xy) :1n<yl‘) = y]nx:;plny — ﬂ — ny
x
Will man also Paare (z,y) positiver reeller Zahlen mit ¥ = y*, = # y finden, so hat man die

Funktion f(x) = 1“71 darauf zu untersuchen, ob sie mehrfach denselben Wert annimmt.

Deshalb werden wir diese Funktion auf ihrem Definitionsbereich, d.h. dem Bereich der positiven
reellen Zahlen, jetzt diskutieren:

1. Nullstellen:
fx)=0 <= lnz =0 < z=1.

Offenbar ist f(x) <0 fir 0 <z <1 und f(x) >0 fir z > 1.

2. Verhalten der Funktion nahe 0. Offenbar geht f(z) gegen —oo, wenn x gegen 0 geht.
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3. Die Ableitung:
1/z) -z —1-Inx 1—Inx
() = (1/z) : _ 1!

xT T

Also gilt folgendes
f'(z) =0 <= z =e, die Eulersche Zahl,

Ferner ist f/'(z) > 0 fiir 0 < x < e und f'(x) < 0 fiir x > e.

Also kann man sich bereits ein Bild der Funktion machen. Sie steigt zwischen 0 und e monoton
an. lduft bei 1 durch die z-Achse, erreicht bei e ein Maximum und fallt fiir > e monoton,
bleibt aber positiv.

4. Verhalten fiir grofle x. Man weif}, dass die Logarithmusfunktion sehr langsam wichst. Deshalb
gilt limg_,o0 f(x) = 0.

Was erkennt man daraus:

Zu jeder reellen Zahl x mit 1 < x < e gibt es genau eine weitere Zahl y mit f(z) = f(y), und
dieses y ist grofer als e.

Es gibt also sehr viele Paare positiver reeller Zahlen (z,y), fir die ¥ = y*, aber z # y gilt.
Verlangt man allerdings, dass x,y beide ganz (und positiv) sind, so ist, bis auf die Reihenfolge
(2,4) das einzige solche Paar, da 2 die einzige ganze Zahl zwischen 1 und e ist.

Beachte aber, dass auch (—2)~* = (_12)4 = &= (—4) % ist.

2. Auch das Assoziativgesetz gilt nicht fiir Potenzen. Wéhrend a + (b + ¢) = (a + b) + ¢ und
a(bc) = (ab)c gelten, ist
(3%)% =333 =39 aber 36"l =327 .

Da
. . C C
(a®)® = a® ist, setzen wir a® = a(*).

Analog fahren wir fort:
od . V22 2
a = q®) usw., z.B. \/5\/5 = \/i\/§ =...=92

Wir wollen fiir diesen Vortrag folgende Schreibweise einfiihren: a) Wir schreiben alll .= a, ol =

a?, al¥ = a9" usw., al"1l = q(@™),

Beachte, dass im Allgemeinen a7 £ (a[m})(a[n]) ist, z.B. 321 #£ (3123 wie wir schon wissen.
Ein weiteres Beispiel ist:

2242 — 92" 92! _ 916 aber (212)(2) — gt — 98

Nun betrachten wir die riesige Zahl 919 Sicher ist 3[19% zwar immer noch beachtlich grof, aber

viel kleiner. Wir stellen uns die Frage: Welches ist die kleinste natiirliche Zahl n mit 3% > 9[100]?
Sicher ist 3™*! = 3.3™ > 2.3™. Hieraus folgt: Sind k,m € N, so gilt
k>3 —=3F>2.3 (8)
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Wir setzen jetzt voraus, m,n seien natiirliche Zahlen mit 3" > 9", Da 9 eine Potenz von 3
(mit einem positiven ganzen Exponenten) ist, folgt mit (8), dass dann auch 3ml > 2.9l also

auch
glm+1] _ 33[’"] > 32-9[”] — gln+1]

gilt. Da 3% > 9, d.h. 311 > 9l folgt mit Induktion 3"+ > 9l
Es ist also bereits 3101 > 91901 (herraschend, nicht wahr?

Dasselbe gilt, wenn man 3 durch eine beliebige ganze Zahl a > 3 und 9 durch a®~! ersetzt. Der
Beweis hierfiir ist derselbe. (Fiir a = 2 ergibt sich eine triviale Aussage.)

3. Die Folge (2, 22, 222, .. .) ist streng monoton wachsend und besteht aus ganzen Zahlen. Deshalb
gilt lim,,_00 2" = 00. Auch die Folge (\/i[n])n ist streng monoton wachsend. Denn die Funktion
flx) = V2" ist streng monoton wachsend. Deshalb ist v/2 < \@ﬁ Hieraus folgt mit Induktion
\/i[n] < \@[nﬂ]. Analog gehts fiir alle (bI™) mit b > 1.

Sind die Limites dieser Folgen auch oco?

Uberraschender Weise gilt
lim V2" =2

n—oo

BEWEIS: Wenn man in dem Potenzturm /2 ] das oberste Stockwerk durch 2 ersetzt, erhélt man
(mit einem Teleskopargument) einerseits die Zahl 2, andererseits sicher ein géfieres Ergebnis als

ﬂ[n]. Es ist also \@[n] < 2 fiir alle n > 1. Da die Folge (\/i[n])n monoton wachsend und durch
2 nach oben beschriankt ist, hat sie einen endlichen Limes ¢ < 2.

Um t zu bestimmen, rechnen wir

n—oo

Die Gleichung \/it =t hat die Losungen ¢t = 2 und ¢t = 4. Durch eine Kurvendiskussion stellt
man fest, dass sie keine anderen haben kann. Wegen t < 2 folgt ¢t = 2. —

Diese Uberlegungen kann man allgemeiner, statt nur fiir 2'/2 fiir !/ mit @ > 1 anstellen. Da

ln(al/a) = Ina
a

ist, ist die grofte der Zahlen unter den a'/® die Zahl el/e.

Fiir a € [1,¢€] ist lim, .00 (a"/*) = a. Fiir @ > e ist lim, o (a'/*)" = b, wobei b €]1, e[ so
gewihlt ist, dass a® = b® ist. Nicht wahr?

Zum Schluss beweisen wir

lim b = 0o, falls b > e'/¢ gilt.

n—oo

Da die Folge (b[”]) monoton wachsend ist, geniigt es zu zeigen, dass sie keinen endlichen Limes
hat. Wiire dieser gleich ¢, so golte (s.0.) b* = t, also b < t*/. Deshalb wiire b < el/¢. —

Fragt man nach der Konvergenz von (b[”])n fiir b < 1, so kann man beweisen, dass dieselbe genau
fiir die b > (1/e)¢ gilt. Hier ist zu beachten, dass die Folge (bl™),, hier nicht mehr monoton ist.
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Remark 8.1 Es gilt
(Die zweite Ungleichung wird zu >, wenn n > 2 ist.)

Wenn man in dem Potenzturm 4™ die oberste 4 als 22 schreibt, erkennt man sofort die Giiltigkeit
der zweiten Ungleichung.

Die erste Ungleichung ist offenbar fiir n = 1 giiltig. Dann {iberlegt man sich: Sind k£ > [ gerade
Zahlen, so folgt aus 2¥ > 2! die Ungleichung 2* > 2 - 2!/ Es gelte nun

2lml > 4l ynd n > 1, (9)

also m > 2. Deshalb sind die beiden Terme in (9) Potenzen von 2 mit geraden Exponenten. Die
Ungleichung (9) impliziert also
olm] < 9. 4

also
glm-+1] > 22-4[n1 — yln+1]

Per Induktion folgt mithin 2["+2 > 4[],
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9 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden fiir viele von Ihnen eine
beachtliche Hiirde sein, die Sie jedoch iiberwinden miissen, wollen Sie mit Erfolg Mathematik,
Informatik oder Physik studieren! Sie sollten erkennen, wie simpel, ja geradezu primitiv die-
se Dinge sind. Die Mengensprache ist eine wichtige und grundlegende Sprache der modernen
Mathematik. Man darf sie aber nicht mit dem eigentlichen Inhalt der Mathematik verwechseln.

9.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchsfreie Weise angibt,
welche Dinge zu ihr gehoren sollen, d.h. fiir welche x das Symbol x € M gelten soll, d.h. welche
Dinge Elemente der Menge sind..

Gilt dies fiir nur endlich viele Dinge, d.h ist die Menge M endlich, so kann man sie durch Angabe
aller ihrer Elemente beschreiben, wobei es auf die Reihenfolge nicht ankommt, und auch nicht
darauf, ob man zuféllig eines ihrer Elemente mehrfach angibt:

{3,7,2,7,1,7} = {3,7,2,3,7,1,2} = {3,7,2,1} = {1,2,3,7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Mengen N,Z, Q,R als
wohlbeschrieben ansehen und aus ihnen weitere Mengen gewinnen, z.B. die Menge der geraden
ganzen Zahlen, d.h. derjenigen n € Z, fiir die 2|n gilt. Diese Menge schreibt man so

(n ] nez2n}={necZl2n}

(Statt des senkrechten Striches ’ schreiben manche auch ,;* oder ,,:“ .) Da a 1 b bedeuten soll,

dass a kein Teiler von b ist, ist {n € Z | 2t n} die Menge der ungeraden Zahlen.

Wichtige Mengen reeller Zahlen sind die Intervalle. Seien a,b € R mit a < b, so schreibt man:
[a,b] ={x eR|a<xz<b}, Ja,b={z€eR|a<z<b},

la,b) :={x eR|a<z<b}, [a,b={reR|a<z<b}

Obwohl diese Mengen sich in hochstens 2 Elementen unterscheiden, darf man sie nicht mitein-
ander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die sogenante leere
Menge, die mit () bezeichnet wird.

9.2 Seien M, N Mengen. Man nennt M eine Teilmenge von N (und manchmal N eine Ober-
menge von M) und schreibt M C N oder N D M, wenn jedes Element von M auch ein solches
von NN ist:

MCN <~ [wGM:>$€N]

Dabei schlieen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also M C M.

Zum Beispiel gelten

(1,3,7 € {1,2,3,7}, {nez ‘ 6ln} c {neZ ( 3n} , [a,b[C |a,b]
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9.3 Fiir zwei Aussagen A, B bedeutet A = B eine der folgenden untereinander dquivalenten
Aussagen:

,2wenn A gilt, dann gilt auch B*

»aus A folgt B

,,A ist eine hinreichende Bedingung fiir B*
,, B ist eine notwendige Bedingung fiir A“
»B gilt, oder A gilt nicht“

Man sagt dazu auch: , A impliziert B*.

9.4 Der Durchschnitt M; N M, zweier Mengen M; und Ms ist die Menge aller Elemente, die
sowohl Elemente von M; als auch solche von My sind:

MlﬂMQZ{l‘|JIEM1 undeMz}
Beispiele: {1,7,3,8,4,9} N{3,7,2,7,1,7} = {1,3,7}.
{neZ ‘ 2in}N{n e€Z | 3ln} ={n e Z|6|n}.]0,3[NZ = {1, 2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne gebraucht wird als
in dem Satz ,,Der Durchschnitt der Schokoladenpreise in diesem Supermarkt ist 79 Zent“.

Die Vereinigung M; U M, zweier Mengen M; und Ms ist die Menge aller Elemente, die in M;
oder M, liegen, d.h. die Element mindestens einer der beiden Mengen sind.

My UMy :={z | x € M; oder z € My}

Zum Beispiel {1,7,3,8,4,9} U {3,7,2,7,1,7} = {1,2,3,4,7,8,9} oder [0,2] U[2,3] = [0,3] oder
[0, 3[U[2, 4[= [0, 4]

Man mag geneigt sein zu sagen, die Elemente von M; U Ms seien die Elemente von M; und
von Ms. Man sollte sich dariiber im Klaren sein, dass bei dieser Sprechweise nicht gemeint ist:
M7 U My besteht aus den Elementen x, fiir die gilt, dass x sowohl Element von Mj, als auch
Element von My ist. (Letztere Menge wire gerade der Durchschnitt M; N Ms.)

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstédnde verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei Mengen bilden, ja
sogar von unendlich vielen Mengen.

9.5 Man betrachtet auch die Mengendifferenz M — N (auch M \ N geschrieben):
M-N:={zreM|xz¢N}

Zum Beispiel {1,3,4,7,8,9} — {1,2,3,5,7} = {4,8,9} oder Z—{n € Z | 24n} ={n € Z| 2n}

Die symmetrische Differenz zweier Mengen My, Mo ist
(Ml U Mg) - (Ml N Mg) = (M1 - Mg) U My — Ml)
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9.6 Zwei Aussagen A, B kann man logisch verkniipfen durch die ,,Junktoren* ‘und’ und ‘oder’.

Diese werden manchmal abgekiirzt: A heifit ‘und’, V heifit ‘oder’. Dabei bedeutet V kein aus-
schlieflendes ‘oder’.

AV B ist genau dann wahr, wenn mindestens eine der Aussagen A, B wahr ist.
A A B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (A A B) V C bedeutet etwas anderes als A A (B V C). Manche Unklarheiten in nicht
formalisierten Texten entstehen dadurch, dass man solcherlei nicht leicht unterschiedlich aus-
driicken kann. In verbalen Sitzen haben die Klammern — so man sie iiberhaupt verwendet — eine
andere Bedeutung als in mathematischen und logischen Formeln.

Die beiden folgenden Ausdriicke sind &quivalent: (AA B)V C und (AV C) A (BV C).
Selbiges gilt fir AA (BV C) und (AAB)V (AAC).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ | das man auch — A schreibt. Genau
dann ist — A richtig, wenn A falsch ist.

In der klassischen Logik,, die wir in der Regel benutzen ist — (— A) mit A &quivalent.
Die Aussage — (A A B) ist dquivalent zu (— A) V (— B).

Und — (A V B) ist dquivalent zu (— A) A (— B).

Die Aussage A = B bedeutet (in der klassischen Logik) nichts anderes als (— A) V B.
Und A <= B bedeutet natiirlich (A = B) A (B = A).

9.7 Der Zusammenhang zwischen den Mengenverkniipfungen und den Junktoren ist:
reEMNN < ze€MANxeN

€ MUN < zeMVzeN

Aus den o.a. logischen (Distributiv)Regeln ergibt sich fir Mengen (LN M)UN = (LUN)N
(M U N); und dasselbe , wenn man U mit N vertauscht.

9.8 Aufler den Junktoren braucht man noch die sogenannten Quantoren: ,fiir alle* und ,es
gibt*“, welch letzteres nichts anderes bedeutet als ,fiir ein“. Man braucht dazu Aussagen iiber
eine ,, Variable®, etwa z. Man schreibt A(x), was bedeuten soll: A gilt fiir x. Ein Beispiel ist die
Aussage zr e R = 2x =z + .

Die abkiirzenden Bezeichnungen sind: A\, A(z) in der Bedeutung: ,fir alle = gilt A“ (Allquan-
tor)

und: \/, A(z) in der Bedeutung: ,fiir (mindestens) ein x gilt A“ (Existenzquantor).
Mathematiker benutzen héufiger die Abkiirzungen V statt /\ und 3 statt \/.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt fiir zwei Existenzquantoren.
Hingegen wissen wir, dass man einen All- mit einem Existenzquantor nicht vertauschen darf.

In den natiirlichen Sprachen werden Allquantoren hiufig versteckt. Z.B. gilt folgender Satz:
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»Seien x,y (beliebige) reelle Zahlen. Dann gilt xy = yz.“ Damit ist gemeint:
/\/\((wERAyGR)zxy:ya,)
z Yy

Wenn man sagt, ,.fiir eine reelle Zahl x gilt 2z = z 4+ x“, so meint man: ,fiir alle reellen Zahlen
z gilt 2z = z + z“. Aus diesem Grunde empfiehlt es sich, den Existenzquantor mit ,es gibt“ zu
verbalisieren. Statt ,, Fiir eine reelle Zahl z gilt ¥ = zx“ sollte man sagen ,es gibt eine reelle
Zahl x mit * = xzz“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 9.9 a) Die Aussagen A, (z € N = 2% = zz) und A, (z € N = 2" # zx) sind
beide falsch.

b) Hingegen sind die Aussagen \/,(z € NA2* = zz) und \/, (2 € NA 2” # zx) beide richtig.
c) Fiir alle Mengen M, N gilt

McN < AzeM=2zcN)
xX

9.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X x Y (genannt nach Descartes)
versteht man die Menge aller Paare (z,y) mit x € X, y € Y. Zum Beispiel kann man die
euklidische Ebene bekanntlich als Menge aller Paare (z,y) reeller Zahlen auffassen. Also ,ist“
sie R x R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden. Statt R x R schreibt
man auch R2. Entsprechend ist R? usw. und R” zu verstehen. Die Elemente (x1, 22, . .., 7,) des
R™ heiflen n-tupel reeller Zahlen.

Ist K ein beliebiger Korper, so definiert man auf dem K™ eine Addition wie folgt:
(al,ag,...,an) + (bl,bg,...,bn) = (a1 + by, a2+b2,...,an—|—bn) (10)

Alle Axiome der Addition in einem Korper (oder Ring) sind fiir diese Addition erfiillt. Definiert
man noch eine Multiplikation durch

(al,ag, e ,an) . (bl,bg,. . .,bn) = (albl,agbg, e ,anbn)

so wird der K™ zu einem Ring, der aber fiir n > 1 kein Korper ist. (Warum nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen von K":
a-(by,...,by) = (aby,...,aby) (11)

fir a,b1,...,b, € K. Man nennt K" zusammen mit der Addition (10) und der Multiplikation
(11) einen sogenannten Vektorraum.
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10 Abbildungen

Ohne den Begriff ,, Abbildung* geht in der modernen Mathematik gar nichts. Zu einer Abbildung
gehoren eine Startmenge (Definitionsbereich) X und eine Zielmenge Y. Eine Abbildung F : X —
Y besteht nun darin, dass jedem Element x € X genau ein (d.h. ein, aber auch nur ein) Element
f(z) € Y zugeordnet wird. Wird durch f auch nur einem einzigen Element z € X kein oder
mehr als ein Element aus Y zugeordnet, so ist f keine Abbildung.

Z.B.ist f: R — R, f(x) := 1/x keine Abildung. Hingegen ist f : R — {0} — R, f(x) := 1/x sehr
wohl eine solche.

Anderen Einschrankungen ist der Begriff Abbildung nicht unterworfen. Z.B. ist folgendes eine
Abbildung

f:R — R definiert durch f(z)=1firx € Q, f(x)=0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber prizise definiert. (Dabei ist allerdings zuzuge-
ben, dass es bei einer gemessenen physikalischen Grofle keinen Sinn hat, zu fragen, ob sie rational
oder irrational ist.)

Ein weiteres Beispiel ist:
g:R—R, g(z)=2?firz>0, g(z) = —22 fir <0

Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differenzierbar!

Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Element abgebildet wird,
z.B.
a:{1,2,3} - {1,2,3}, 1—2,2+—2,3—3

B:{1,2,3} - {1,2,3}, 1—2,2—3,3—1

Definitions 10.1 Sei f: X — Y eine Abbildung.

a) X heifit die Startmenge (kurz: der Start) und Y die Zielmenge (kurz: das Ziel) von f.
(In manchen Situationen, insbesondere in der Linearen Algebra, ist man sehr streng und unter-
scheidet zwischen Abbildungen, die nur bis auf die Start- oder die Zielmenge tibereinstimmen,
2.B. zwischen den Abbildungen f:R — R, z+— 22 und g: R — Ry, x> 22)

b) Die Bildmenge (auch das Bild im(f) = f(X) von f ist die Menge {f(z) | z € X} =
{y € Y | es existiert ein x € X mit f(z) = y}.

c) [ heifst injektiv, wenn verschiedene Elemente von X auch verschiedene Bilder haben, d.h.
wenn aus f(x) = f(a') immer x = 2’ folgt. (Dass aus x = x’ immer f(z) = f(2') folgt, ist
aufgrund des Begriffes einer Abbildung klar, und hat deshalb nichts mit ‘injektiv’ zu tun!)

d) f heifit surjektiv, wenn jedes Element y € Y das Bild (mindestens) eines x € X ist, d.h.
wenn f(X) =Y gilt.

e) f heift bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f) Sind f: X =Y, g:Y — Z Abbildungen, so definiert man ihre Verkettung gof : X — Z
durch (gof)(z) := g(f(x)).
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Examples 10.2 a) Die o.a. Abbildung « ist weder injektiv, noch surjektiv; 3 hingegen ist
bijektiv.

b) Durch x — 22 koénnen, je nach Wahl von Start und Ziel, Abbildungen mit verschiedenen der
o.a. Eigenschaften definiert werden:

1) R — R, weder surjektiv noch injektiv,

2) R — R, surjektiv aber nicht injektiv,

3) Ry — R, injektiv aber nicht surjektiv,
4) Ry — R, sowohl surjektiv wie injektiv, also bijektiv.

)
)
)
)

10.3 Sei f: X — Y eine bijektive Abbildung. Dann gibt es zu jedem y € Y genau ein (d.h. ein
eindeutig bestimmtes) x € X mit f(x) = y. (Die Existenz dieses = folgt aus der Surjektivitiit,
seine Eindeutigkeit aus der Injektivitit.)

Dieses = wird mit f~!(y) bezeichnet. Macht man obiges fiir alle y € Y, so erhilt man eine
Abbildung f~!:Y — X. Man nennt f~! auch die Umkehrabbildung von f. Sie ist nur dann
definiert, wenn f bijektiv ist. Natiirlich ist auch f~!, wenn es iiberhaupt definierft ist. Achtung:

Die Abbildung
1

Trr— —

f(x)
hat nichts mit f~! zu tun!
Ist f: X — Y eine bijektive Abbildung, so gilt fof~' =idy und f~lof =idy.

Sind umgekehrt f: X — Y und ¢ : Y — X Abbildungen mit gof = idx und fog = idy, so sind
f, g bijektiv, und es ist g = f1.

Lemma 10.4 Se:
w-x- Ly Lz

eine Folge von Abbildungen. Dann gilt yo([Geat) = (yo3)ocr.

Proof: Fiir w € W gilt

(yo(fea))(w) = y((Bea)(w)) = ~v(B(a(w)))

und
(voB)ea)(w) = (vof)(a(w)) = v(B(e(w)))
O

Mit anderen Worten: Sowohl ~yo(fFecr) als auch (yof3)ec ist die Abbildung, die entsteht, indem
man erst «, dann 3 und schliellich v ausfiihrt.

Beachten Sie, dass aof in obiger Situation meistens nicht definiert ist.
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10.5 Sei f : X — Y eine beliebige Abbildung — die weder injektiv noch surjektiv sein muss.
Dann definiert man manchmal fiir Teilmengen V' C Y die folgende Menge:

V) ={zeX | flx)eV}

Vorsicht: Trotz gleicher Bezeichnung handelt es sich hier nicht um die Umkehrabbildung von
f, welche ja nur dann definiert ist, wenn f bijektiv ist. Ist V Nnim(f) = 0, so ist f~1(V) = 0,
und umgekehrt.

Man kann f~1(V) im Allgemeinen nicht als

definieren. Das geht nur, wenn f bijektiv ist.

Ist U C X eine Teilmenge, so wird definiert:
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11 Komplexe Zahlen

Wenn man von den natiirlichen Zahlen aus iiber die ganzen und rationalen Zahlen schliellich zu
den reellen Zahlen gelangt ist, ist ein gewisser Abschluss erreicht. Man kann z.B. jeden Punkt des
(euklidischen) Raumes — nach Festlegung eines Koordinatensystems — durch ein Tripel reeller
Zahlen beschreiben, was bekanntlich nicht moéglich ist, wenn man sich auf die rationalen oder
die positiven reellen Zahlen beschrankt. Wen kiimmert es eigentlich ernsthaft, dass man aus
negativen Zahlen keine Quadratwurzeln ziehen kann? Man verzichtet ja auch darauf, durch 0 zu
dividieren.

Die erste Ahnung davon, dass sich moéglicherweise hinter der durch reelle Zahlen beschriebenen
Realitdt eine mathematisch relevante Wirklichkeit verbirgt, bekamen unsere Vorfahren in der
Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen 16st. Auf die soge-
nannte ,,p-q-Formel“ kommt man durch die quadratische ,,Ergdnzung”. Wenn man analog eine
,kubische Ergénzung® auf kubische Gleichungen (d.h. solche 3. Grades) anzuwenden versucht,
erreicht man lediglich eine Reduktion auf Gleichungen der Form 3 + px + ¢ = 0. Eine Losungs-
formel fiir diese Gleichung fand (wahrscheinlich) Tartaglia im Jahre 1535:

2 3 2 3
— ¢4 @ g1 JTC P
x_\/2+\/4+27+\/2 Vi tar

Fiir die Gleichung 23 — 3242 = 0 z.B. liefert Tartaglias Formel die Losung x = v/—1 + /1 — 1+
v/ —1 — /1 —1 = —2, die offenbar richtig ist. (Allerdings ist 1 eine weitere Losung.) Ebenso erhlt
man mit Tartaglias Formel die Losung 0 der Gleichung 2% +x = 0. (Diese ist iibrigens die einzige
Losung im Bereich der reellen Zahlen.)

Bei der ebenso simplen Gleichung 22 — 2 = 0 scheint allerdings Tartaglias Formel zu versagen.

Sie ergibt
xr = 3 _i + 3 — _i
Ve V 27

Die (richtige) Losung 0 erhélt man nur dann, wenn man sich groBziigig dariiber hinwegsetzt,
dass der zweimal vorkommende Ausdruck w/—2—17 im Bereich der reellen Zahlen gar keinen Sinn

hat. (1 und -1 sind weitere Losungen.)

Dies sollte weniger ein Grund zur Resignation sein, als einer dafiir, Quadratwurzeln aus nega-
tiven Zahlen einen Sinn zu geben. Umso mehr, als in Tartaglias Formel solche merkwiirdigen
Ausdriicke haufig genug auftreten, ndmlich immer gerade dann, wenn die Gleichung drei
verschiedene reelle Losungen hat.

Komplexe Zahlen: Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl dazu, die
,i“ genannt wurde und die merkwiirdige Eigenschaft i> = —1 hat, und betrachteten als neue,
sogenannte komplexe Zahlen die Ausdriicke der Gestalt a + bi mit reellen Zahlen a,b. (Zunéchst
sprach man von imaginéren, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da man
teilweise unter imaginéren Zahlen nur solche der Form bi mit reellem b verstand, kam man auf
den Namen ,komplexe Zahl“ fiir eine Summe aus einer reellen und einer (rein) imaginéren Zahl.)
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So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so fasst man die
komplexen Zahlen als Punkte in einer Ebene auf, die komplexe Zahl a 4 bi bekommt die (recht-
winkligen) Koordinaten (a, b). Es ist auch niitzlich, sich die Zahl a+bi als den Vektor vorzustellen,
der von (0,0) nach (a,b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Bedingnis, dass immer

iZ = —1 sei. Also etwa

(a1 + bll) + (CL2 + bgl) = (a1 + CLQ) + (b1 + bz)i,
was geometrisch der Vektoraddition entspricht,
(a1 + b1i)(ag + bai) = ajag + arbai + agbii + biboei® = (ayag — bibe) + (arby + agby)i,

(Vorsichtige Leute — wie ich z.B. — werden allerdings zunéchst die komplexe Zahl a + bi als Paar
(a,b) reeller Zahlen a,b schreiben und dann (a1, b1)(ag,b2) := (ajag — biby , aibs + azb;) und
(a1,b1)+ (ag,b2) = (a1 + a2 , by +be) definieren, um dann wirklich beweisen zu kénnen, dass
alle gewohnten Rechenregeln gelten.)

Die Zahlen 0 = 04 0i und 1 = 14 0i behalten ihre bekannten Eigenschaften. Man kann natiirlich
subtrahieren und sogar dividieren. Namlich fiir a + bi # 0 gilt
- a—bi a b

a+bi (a+bi)(a—>bi) a®+0b? Y

(Beachten Sie, dass fiir a + bi # 0 mit a,b € R auch a® + b% # 0 ist.)

Als spezielles Beispiel rechnen wir (1+1)% = 1+2i—1 = 2i, also (\[ \1[) = 1(2i) = i, mithin
(% + %1)4 = i2 = —1. Im Bereich der komplexen Zahlen ist also —1 nicht nur ein Quadrat,
sondern auch eine 4. Potenz (iibrigens — wie wir unten sehen werden — auch eine 6., 8. usw.).
Wir bleiben bei diesem Beispiel und setzen abkiirzend v := % + %i Dann ist v = v?v =
S BT O 5 _ .4 A2 s T ptd — 3 = L
= ——5+ 5l v v* v, 00 = vty i v vt v N
und schlieflich v® = (v*)2 = (~1)? = 1. Dann wiederholen smh d1e Werte der Potenzen, also
v? =08 = v, v10 = %% =02 =i, Vv = ¥? =03 = f \[1 usw. Fiir jede beliebige
(ganze) Potenz v* gilt offenbar (v*)® = (v8)* = 1¥ = 1. D.h. wir haben insgesamt 8 verschiedene
Zahlen gefunden, deren 8. Potenz 1 ergibt, nimlich 1,v,v2,...,v".

Fin weiteres Beispiel. Setze = % + @i Dann ist w? = i — % + 2 %?1 = —% + @i
und w3 = ww?® = (3 + % (-3 + ‘?1) = -1 — 3 = —1. Weiter erhélt man
w* = wdw = —w, w5 = ww? = —w? und Wb = wWIw? = (~1)(~1) = 1. Wie oben wie-

1,8 2

derholen sich jetzt die Potenzen: w’ = w*, w® = w* usw. Ebenso sieht man, dass fiir jede ganze
Potenz w”* von w gilt: (w*)® = 1. Es gibt also (mindestens) 6 verschiedene komplexe Zahlen,
die die Gleichung 2% = 1 erfiillen.

Zur geometrischen Deutung der Multiplikation. Sei ¢ = a + bi, a,b € R eine komplexe
Zahl. Thr (Absolut-)Betrag wird definiert als |¢| := va? + b2, d.h. als Lénge des entsprechenden
Vektors (Pytagoras). Sei ¢ # 0, d.h. a # 0 oder b # 0. Der Vektor ¢ hat zum Vektor 1 =1+ 0i
einen (orientierten) Winkel, den man als Argument von ¢ bezeichnet. (Das Argument ist im
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Grunde nur bis auf Addition eines Vielfachen von 27 definiert.) Ist ¢ das Argument von ¢, so
gilt offenbar
¢ =|c|(cosp +ising), d.h. a=|c|cosp, b=|c|sinep.

Fiir zwei von 0 verschiedene komplexe Zahlen ¢y, co mit den Argumenten @1, 9 erhalten wir mit
Hilfe der Additionstheoreme des Sinus und des Cosinus

c1c = |cl||02|<cos (1 COS (pg — sin 1 sin @y + i(sin @1 cos p2 + cos p; sin @2)) =

eallez! (cos(ipr + w2) + isin(p1 + ¢2) )

D.h. der Betrag des Produktes ist das Produkt der Betrige und das Argument des Produktes
ist die Summe der Argumente der Faktoren. Es folgt z.B.

" = |c|™(cos(np) + isin(nep).

Dies gilt fiir jede positive ganze Zahl n (und, wie man sich leicht tiberlegt, auch fiir jede ganze
Zahl n).

Sei ¢ # 0 eine komplexe Zahl mit dem Argument ¢ und d := {/|c|(cos(¢/n)+isin(p/n)) (n > 0)
so gilt offenbar d” = c¢. D.h. man kann aus jeder komplexen Zahl fiir jede natiirliche Zahl n > 0
eine n-te Wurzel ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene komplexe Zahlen d
mit d"* = ¢, wenn nicht gerade ¢ = 0 ist. Das mag man im Zusammenhang mit der Vieldeutigkeit
des Arguments einer komplexen Zahl sehen: Es ist cos(¢+k-2m)+isin(@+k-2m) = cos p+isin ¢
fiir jede ganze Zahl k. Also ist jede komplexe Zahl dj, := {/|c[(cos(¢/n + k- 27 /n) +isin(p/n +
k-2m/n)) eine n-te Wurzel aus ¢, d.h. d}} = c. Die Zahlen do,dy, ..., d,—1 sind untereinander
verschieden, aber danach wiederholen sie sich: d,, = dg, dp+1 =d1, ...

Insbesondere gibt es n verschiedene komplexe Zahlen zg, 21,...,2,—1, die alle die Gleichung
z™ = 1 erfiillen. Eine von ihnen ist 1, alle haben den Betrag 1, d.h. sie befinden sich auf dem
Einheitskreis. Sie bilden offenbar die Ecken eines regelméfigen n-Ecks. Von dieser Tatsache ist
Gauf} ausgegangen, als es ihm kurz vor 1800 gelang, ein regelméfliges 17-Eck allein mit Zirkel
und Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen beliebige Wurzeln
ziehen kann, lisst sich auch der ,,Fundamentalsatz der Algebra* beweisen:

Jedes Polynom 2™ + ¢12" 1 + -+ + ¢,_12 + ¢, mit komplexen Koeffizienten c¢; hat (mindestens)
eine komplexe Nullstelle. (Diesen Satz hat Gauf} als erster vollstdndig bewiesen.)

(N.B. Dass ein Polynom vom Grad n hochstens n Nullstellen hat, ist ebenfalls ein richtiger und
wichtiger — iibrigens in allgemeineren Bereichen giiltiger — Satz, der aber fast trivial zu beweisen
ist und nicht als Fundamentalsatz der Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Matematiker mit der
Entdeckung/Erfindung der komplexen Zahlen ein ,weites Feld“ 6ffnet, und er sich durch Be-
harren auf den reellen Zahlen viele Moglichkeiten verbauen wiirde. Als einzelnes Beispiel sei
genannt, dass manche Sétze iiber die Verteilung der Primzahlen sich am besten mit Hilfe der
komplexen Zahlen beweisen lassen. (Im Anhang finden Sie eine Ausfiithrung iiber die komplexe
e-Funktion.)
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Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zuniitze, ist auf dem
Holzweg: Keine Elektrotechnik und keine Quantenteorie ohne komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat es mit mehrdeutigen

Wurzel zu tun. Mit den Quadratwurzeln ist es einfach: Mit 4/ % + 12’—; sei willkiirlich eine der

beiden moglichen Wurzeln bezeichnet; —4/ % + 129—?7) ist dann automatisch die andere. Jeder der
beiden Summanden in Tartaglias Formel ist nun eine kubische Wurzel mit 3 moglichen Werten.
So hat man insgesamt 9 mogliche Kombinationen. Es gibt nun eine Regel, welche 3 Kombina-
tionen die Nullstellen des kubischen Polynoms ergeben. Hierauf will ich nicht genauer eingehen
und verweise stattdessen auf das Buch ,,Kubische und biquadratische Gleichungen* von Heinrich
Dérrie (Leibniz Verlag Miinchen 1948).

Die komplexe e-Funktion: Fiir z = = + iy, z,y € R, setzt man e* := e”(cosy + isiny). Dies
ist keineswegs willkiirlich. Denn fiir die so definierte Funktion gilt

0o
z 2"
=2 o

n.

n:

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im Komplexen. Ferner
erhiilt man auch fiir komplexe 21, 2o die Formel e*17%2 = e*1¢*2, Die komplexe e-Funktiom bildet
die reelle Achse {a+bi | a € R,b = 0} auf die positive reelle Halbachse und die imaginére Achse
{a+bi|a=0,b€cR} auf die Einheitskreislinie {a + bi | a,b € R, a? + b* = 1} ab.
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12

10.

11.

12.
13.
14.
15.
16.
17.

18.

Vorkurs-Aufgaben

. In einer Beschreibung wird die Gréfle eines Balkons als 80 cm? angegeben. Was sagen Sie

dazu? Zeichnen Sie ein Rechteck von 80 cm? Flicheninhalt, oder schneiden Sie ein solches
aus, vorausgesetzt, ein DIN A4-Blatt reicht dazu. Wie viele cm? enthalten 0,8 m2, wie
viele ein Quadrat mit der Seitenldnge 80 cm?

. Ein Kaufmann hat 100 kg Gurken. Diese bestehen (gewichtsméBig) zu 99 Prozent aus

Wasser. Wieviel kg Wasser miissen sie durch Austrocknen verlieren, damit sie nur noch zu
98 Prozent aus Wasser bestehen?

. Eine Aktie hat am Montagmorgen den Kurs 100 Euro. Im Laufe des Montags gewinnt

sie 10 Prozent. Im Laufe des Dienstags verliert sie 10 Prozent. Wie hoch ist der Kurs am
Dienstagabend?

. Wieviel Prozent de Bruttopreises betridgt die Mehrwertsteuer bei einem Mehrwertsteuer-

satz von 16 Prozent?

. Berechnen Sie

a) 2% und 42, b) 3% und 43, c) (6 £4)3 und 63 4 43.

. Berechnen Sie

a) 2% - 2% und 2%3. b) (2-3)3 und 263),

Berechnen Sie
a) 22 — 21 und 2271, b) 23 — 21 und 231, c) 22 + 2% und 222,

. Nach welchen Regeln darf man a™*", a™", (ab)" umformen?

. Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millionen, c¢) eine Milliarde,

d) eine Billion, e) one billion (amerikanisch).

Schreiben Sie in der Form 10*m die folgenden Léngeneinheiten:

1 pm (Mikrometer), 1 nm (Nanometer), 1 pm (Picometer), 1 A (Angstrom)

Berechnen Sie ohne Rechner

a) sinm + sin7 und sin(7 + ), b) sin § + sin § und sin(§ + §),
c) sin(g + %) und sin § + sin §. Welches Ergebnis ist groBer?

Schreiben Sie (7a” + 6a%)? als Summe von Potenzen von a mit ganzzahligen Koeffizienten.
Berechnen Sie v/9 + 16 und v/9 + V/16.

Berechnen Sie 24* und (24)2. (Per definitionem ist a®* = a(*).)

Berechnen Sie 23" und 23" - 23",

Finden Sie, wenn méglich, eine natiirliche Zahl n mit ((3%)3)" = 33"

Zeigen Sie: Zu jeder ungeraden Zahl u € N gibt es ein m € N mit u? = 8m + 1.

Geben Sie allgemeine Formeln fiir (a + )% und (a + b)* an.
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19.

20.

21.

22.

23.

24.

25.

26.

Berechnen Sie 10...01%, wo zwischen den beiden Einsen 999 (oder allgemeiner n — 1)
Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl an, d.h. in dhnlicher Weise wie hier
die Basis der zu berechnenden Potenz angegeben ist.

Berechnen Sie (a — b)(a* + a®b + a?b? + ab® + b*) und allgemein

a— ' a7, (Dabeiist Y qa" IV =a® +a" b+ - 4 ab? b0
b) Sy a"ibi. (Dab " anibi I 1 4 b

Auf das erste Feld eines Schachbretts sei 1 Reiskorn gelegt, auf das zweite 2 Reiskérner, auf
das dritte 4 usw., ndmlich jeweils auf ein Feld doppelt soviele wie auf das vorangehende.
(Vernachlissigen Sie das Problem, dass moglicherweise die Felder zu klein fiir die Anzahl
der Reiskorner werden, die auf sie gelegt werden sollen.)

a) Berechnen Sie in moglichst wenigen Schritten exakt die Anzahl N der Reiskorner,
die insgesamt auf das Schachbrett gelegt werden sollen, im Dezimalsystem. (Ich habe
Verstandnis dafiir, wenn Sie diese Rechnungen nicht ausfithren wollen. Dann miissen Sie
aber angeben, wie eine moglichst effiziente Berechnung zu erfolgen hat.)

b) Berechnen Sie N im Binérsystem.

c) Zerlegen Sie N in zwei ganzzahlige Faktoren, die anndhernd gleich grof§ sind.

d) Zeigen Sie, dass N durch 17 teilbar ist.

Bitte machen Sie sich ein paar Gedanken iiber den Sinn und Nutzen negativer Zahlen. Die
Gleichung
z® +312 = 37z

hat die Losungen 13 und 24, wie man leicht durch Rechnen in N (also im Positiven)
nachpriift. Das bekannte Losungsverfahren — mit quadratischer Ergéinzung — benutzt je-
doch mit Gewinn das Rechnen mit negativen Zahlen. An diesem Beispiel sieht man auch,
wie richtig und wichtig es ist, das Produkt negativer Zahlen so zu definieren, dass z.B.
(—37/2)% = 1369/4 ist.

Zeigen Sie (etwa mit Induktion): a) Fiir alle ganzen Zahlen n > 3 ist n? > 2n + 1.
b) Fiir alle ganzen Zahlen n > 5 ist 2" > n2.

Zeigen Sie: Z k-k! = (n+1)!—1. (Dies geschieht mit vollstdndiger Induktion ohne Miihe.)
k=0
Ein Zahlenrétsel:
EULER = SB-RLF
GAUSS = L-A-LUL-E*
ABEL = A-RR-RL-L

Wenn man jeden Buchstaben durch eine Ziffer des Dezimalsystems ersetzt, steht in jeder
Gleichung rechts die Primfaktorzerlegung der linken Seite. (Natiirlich sind gleiche Buch-
staben durch gleiche Ziffern zu ersetzen, aber nicht notwendig verschiedene Buchstaben
durch verschiedene Ziffern. Die Zahlen diirfen mit der Ziffer 0 beginnen. Aber man darf
natiirlich verwenden, dass 0 keine Primzahl ist.)

Bestimmen Sie sémtliche Losungen. (Durch geschicktes Vorgehen kann man sehr schnell
zum Ziel kommen.)

Bestimmen Sie alle natiirlichen Zahlen, die genau 3 verschiedene positive Teiler haben.
(Z.B. hat 4 die Teiler 1,2,4.)
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Zeigen Sie: Fiir jedes n € N ist 2 - 53"+ 4- 4™ durch 11 teilbar, d.h. es gibt zu jedem n ein
(von n abhingiges) k € N mit 11 -k = 2- 53! 4+ 47 (Tipp: Induktion.)

Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man mit Postkarten liicken-
los und ohne Uberlappungen bedecken kann? Die Linge einer Postkarte verhilt sich zur
Breite wie v/2 : 1. (Natiirlich soll die Kantenléinge der Tischplatte nicht 0 sein.)
(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenldngen breit. Wie viele
Karten brauchen Sie, um eine Fléche entsprechenden Ausmafes zu bedecken?)

Seien a, b, ¢ positive (ganze) Zahlen. Wann gilt

a+b b ab

=—,wann — = - 7
a—+c c ac c
m

Seien m,n € Nj. Zeigen Sie: T ist nicht ganz.

Finden Sie (etwa durch Probieren) ganze Zahlen m,n mit

m.on_ 1
35 15
und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

Finden Sie natiirliche Zahlen m,n mit

m+n_14
3 5 15

Finden Sie untereinander verschiedene ganze Zahlen k,[,m,n > 0 mit
1 1 1 1

S E g |
k:+l+m+n

Finden Sie ganze Zahlen m,n mit n # 0 und

m+n_1
3 5
Berechnen Sie 5 s L
7+, 7_‘_,
g ; und 316.
315 376

Sei p eine Primzahl und £ eine ganze Zahl mit 1 < k < p — 1. Sie diirfen annehmen, dass
(der Binomialkoeffizient) (i) = ﬁlk)! eine ganze Zahl ist. Zeigen Sie, dass (i) durch p
teilbar ist.

b b
Berechnen Sie % + — und zeigen Sie, dass % + — > 2 ist, wenn a > b > 0 gilt.
a a

Bringen Sie auf einen Bruchstrich:

a b c bc ac ab
—+—+— und —+ — + —
bc  ac ab a b c

Schreiben Sie tan z + cot x als rationalen Ausdruck in sin 2z.
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40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Losen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem einen oder anderen
Fall nicht moglich ist:

2,7 41
3T _, 378 _,4
3_1 ' T 17
4 T 6 T
a) Kiirzen Sie den Bruch
212 _ 43
26

so gut es allgemein moglich ist.

b) Kann man denselben Bruch als Differenz zweier Potenzen von z schreiben, wo jeder
Exponent auch negativ sein darf (aber nicht muss)?

¢) Kann man dasselbe fiir den Kehrwert des Bruches machen?
Das entsprechende wie oben fiir den Bruch

tT—t2 4t
t5

Vereinfachen Sie a a
G+ Dln—Fk=1! " Ko —#)

Berechnen Sie

6 1 4
nz:l o ; n+ 2)
Seien p1,...,p, verschiedene Primzahlen mit n > 2. Zeigen Sie, dass der Nenner von
1
“= 2y

in der Standardform gleich p; - - - p,, ist. (D.h. nach erfolgter Addition der auf den kleinsten
gemeinsamen Nenner gebrachten Summanden kann man nicht kiirzen.)

n
1
Zeigen Sie: Fiirn > 2ist a := Z z keine ganze Zahl. (Tipp: Sei m das kleinste gemeinsame

k=2
Vielfache aller Nenner. Was gilt fiir am/2 7 Betrachte die grofite 2-Potenz unter den

Nennern.)

n
1
Zeigen Sie: Fiir n > 2 ist a := Z 7l keine ganze Zahl.
k=2

Sei @ eine Menge von Primzahlen und S die Menge aller s € Ny, deren Primfaktoren
samtlich zu ) gehoren. Zeigen Sie, dass die Menge

A::{%|(IEZ,SES}

ein Unterring von Q ist.

Zeigen Sie: Die abbrechenden Dezimalbriiche bilden einen Unterring von Q.

48



50.

51.

52.

53.

54.

55.

56.
57.

58.

Betrachten Sie
K:={a+b/2|a,beQ}, L:={a+20v2]|a,beqQ},

R={a+W2|abeZ}, S:={a+20v2|a,beZ}.
a) Zeigen Sie: K und L sind Teilkorper von R. Zeigen Sie ferner K = L.

b) Zeigen Sie: R und S sind beide keine Teilkorper, aber Teilringe von R. Zeigen Sie ferner
R>Sund R #S.

Zeigen Sie, dass die Menge {—1, 0, 1} auf folgende Weise zu einem Koérper wird: Die
Multiplikation ist die Ubliche. Die Addition @ wird definiert durch 1®1:=—1, (-1)®
(=1) == 1 und a® b := a + b in allen iibrigen Fillen. (Den Beweis der Assoziativitéit
der Addition und der Distributivitéit brauchen Sie jeweils nur fiir einen weniger trivialen
Spezialfall auszufiihren. Es gibt auch einen Beweis, der die Assoziativitdt der Addition
und die Distributivitéit auf die entsprechenden Gesetze in Z zuriickfiihrt.)

1
a) Seien p, g verschiedene Primzahlen. Zeigen Sie, dass P rational ist. (Tipp: Ansonsten
ng
erhielte man einen Widerspruch zur eindeutigen Primfaktorzerlegung.)
b) Folgern Sie, dass es hochstens eine Primzahl gibt, deren Logarithmus rational ist.
Im ,,groflen Brockhaus - Kompaktausgabe“ findet sich unter dem Stichwort ‘reell’ der Satz:
»Jede r[eelle] Zahl besitzt genau eine Darstellung als Dezimalzahl.“ Was sagen Sie dazu?

Seien a, b, ¢, d > 0 reell. Zeigen Sie

a_c_,a_ate_c
b~ d b~ b+d— d
Schlieflen Sie daraus, dass
a c a—+c
v ta7 brd

ist.

Zwei Menschen wandern einander auf der gleichen Strafle entgegen. Der eine startet in

23 km
A und wandert mit einer Geschwindigkeit von o n Der zweite startet im 19,5 km

entfernten B eine halbe Stunde spéter als der erste und wandert mit der Geschwindigkeit

24—11{% Wann und wo treffen sich die beiden?

Seien a,b € Q mit a + byv/2 = 0. Zeigen Sie a = b = 0.
Geben Sie systematisch alle Tripel (a, b, ¢) ganzer Zahlen an, fiir die folgendes gilt:

1 1 1
O<a<b<cund —+-+-€7Z
a b ¢

Ohne einen Text, der beweist, dass Sie wirklich alle méglichen Tripel gefunden
haben. ist IThre Lésung nichts wert!

Finden Sie verschiedene a,b € N, derart dass \/a, /b beide irrational sind, (v/a + v/b)?
aber rational ist.
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59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

Zeigen Sie, dass V2 + /3 irrational ist.

a) Zeigen Sie a® + b% > 2ab fiir alle a,b € R. (Tipp: 22 > 0.)

b) Folgern Sie a? + b? > ab fiir a,b € R. (Beachten Sie, dass 2ab > ab nicht immer richtig
ist! Unterscheiden Sie 2 Félle.)

c) Folgern Sie (aus a)), dass a® + b* + ¢ > ab + bc + ac fiir alle a,b, c € R gilt.

Sei a € R eine Nullstelle des Polynoms z" + a12" 1 + - - - 4+ a,—17 + a,, mit a; € Z. Zeigen
sie: Ist o ¢ Z, so ist a ¢ Q.

(e e}
Berechnen Sie mek+l, wo m,l > 0 sind, fiir diejenigen z, fiir welche die Reihe konver-

k=0
giert.
ZeigenSiea)22k+12007 b)Zg<OO> C>Zm<°°'
k=0 k=1 k=2
Zeigen Sie 8) lim 2. b3
eigen Sie a) nLIgom—O, )Zlnn<oo'
n=

Geben Sie eine nicht konvergente Folge (a,) und eine Zahl a an, die folgende Bedingung
erfiillen: ,Es gibt ein € > 0, derart dass fiir alle n € N die Ungleichung |a,, — a| < € gilt.“

Geben Sie eine gegen a konvergente Folge (a,) an, die folgende Bedingung nicht erfiillt:
»Es gibt ein N € N, derart dass fiir alle ¢ > 0 und n > N die Ungleichung |a, —a| < €
gilt.“

Sei ¢ € R. Finden Sie a,b € R derart, dass (22 — azy + by?)(2? + axy + by?) = 2* + 4c2y*
fiir alle reellen «, y gilt. Welche bemerkenswerte Identitédt ergibt sich, wenn man y =c =1
setzt?

1 1
22 —2xy +2y2 22+ 2xy + 292

Berechnen Sie

Berechnen Sie ohne Taschenrechner

Bestimmen Sie die reellen Nullstellen des Polynoms
28 — 2520 — (4223 — 216)(z — 5)(z +5) .

Begriinden Sie die p, g-Formel fiir die Losung einer quadratischen Gleichung.

Ein Aufzug bewegt sich mit 4 m/sec aufwérts. Eine kleine Eisenkugel fillt auf das Dach
der Aufzugkabine. Und zwar wurde sie in dem Augenblick losgelassen, als das Kabinendach
22,1 m entfernt war. Wie lange dauert es, bis die Kugel aufprallt, und welche Weglédnge
hat sie zuriickgelegt? (Vernachlissigen Sie den Luftwiderstand und rechnen Sie mit einer
Erdbeschleunigung von 10 m/sec?.)

Zeigen Sie, dass Gleichungen der Form z3 + ax? + %1‘ +b = 0 mit a,b € R genau eine
reelle Losung haben, und geben Sie fiir diese eine Formel an.
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74.

75.

76.

7.

78.

79.

80.

In der Musik werden zwei Tonintervalle als , gleichgro“ bezeichnet — und auch als gleich-
grof3 empfunden, wenn die beiden Tonfrequenzverhéltnisse des jeweils hoheren Tones zum
jeweils tieferen Ton eines Intervalles gleich sind.

a) Die Frequenzverhiltnisse sind bei einer (reinen) Oktave 2, bei einer reinen Quint %, bei
einer reinen groflen Terz 2.

Wenn man von einem Grundton aus 4 reine Quinten auf- und anschliefend 2 Oktaven
absteigt, ist man dann eine reine grofie Terz oberhalb des Grundtones gelandet? (,,Synto-
nisches“ oder ,,didymisches Komma“)

Konnte man dieses eventuell erreichen, indem man andere Anzahlen von Quinten und Ok-
taven auf- und absteigt?

b) Die Oktave sei in n (€ Nj) gleichgrofie Tonschritte (Intervalle) geteilt. Was ist das
Frequenzverhiltnis der beiden Téne eines solchen Tonschrittes? (Fiir n = 12 erhélt man
die 12 Halbtonschritte der temperierten Stimmung.)

c¢) Gesucht ist ein n € Ny, so dass fiir die Unterteilung der Oktave in n gleichgrofie Ton-
schritte folgendes gilt:

Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte aufsteigt, landet
man eine reine Quinte oberhalb des Grundtones.

Frage: Gibt es ein solches n 7

d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf- und anschliefiend 3
Oktaven absteigt, andererseits 6 reine Quinten ab- und anschlieBend 4 Oktaven aufsteigt,
trifft man dann auf exakt denselben Ton? (Beim ersten Verfahren landet man auf dem
fis, beim zweiten auf dem ges, wenn man jeweils mit dem c beginnt. ,,Pythagoreisches
Komma*)

Zeigen Sie, dass die Menge Q? der Menge aller Paare rationaler Zahlen durch die Defini-
tionen

(a,b) + (a',b') := (a+d',b+ V) und (a,b)(d’,b") := (ad’,bb’)
zwar zu einem Ring, aber nicht zu einem Koérper wird.

Seien p, ¢ € R. Beschreiben Sie die Menge der (z,y) € R? mit
z? + pry + qy? = 0 moglichst konkret.

a) Wird durch die Angabe , f(z) sei diejenige reelle Zahl y, fiir die y* = z gilt® eine
Abbildung f : R — R definiert?

b) Was ‘muss’ man in a) dndern, damit eine Abbildung definiert wird? (Mindestens zwei-
erlei!)

a) Wird durch die Angabe ,, f(z) sei diejenige reelle Zahl y, fiir die siny = z gilt* eine
Abbildung f : R — R definiert?

b) Was ‘muss’ man in a) dndern, damit eine Abbildung definiert wird? (Mindestens zwei-
erlei!)

Fiir jede reelle Zahl x sei f(x) die Stelle unmittelbar vor dem Komma in der Dezimal-
bruchentwixklung von x. Was muss man prézisieren, damit f zu einer Abbildung R — R
wird?

Sei p(x) ein Polynom vom Grad 3. Fiir jedes reelle x sei f(z) die kleinste reelle Zahl y mit
p(y) = x. Beschreibt f eine Abbildung R — R? (Sie diirfen verwenden, dass jedes Polynom
3. Grades mindestens eine, aber hochstens 3 reelle Nullstellen hat.)
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81.

82.

83.

84.

85.

86.

87.

88.

Untersuchen Sie die beiden Funktionen fi, f2 : R — R mit fi(z) = 23 +z, fo(z) =23 -2
auf Injektivitdt und Surjektivitat.

Fiir jedes z € [—1,1] sei f(x) die kleinste (bzw. grofite) reelle Zahl y > 0 mit sin(1/y) = «.
In welchem der beiden Félle wird eine Abbildung f : [—1,1] — R beschrieben?

a) Durch f seien jedem n € N die natiirlichen Zahlen m < n zugeordnet. Ist das eine
Abbildung N — N?

b) Durch f sei jedem n € N die Menge der natiirlichen Zahlen m < n zugeordnet. Ist
das eine Abbildung N — P(N)? (Mit P(N) sei die Menge aller Teilmengen von N, die
sogenannte Potenzmenge von N, bezeichnet.)

Untersuchen Sie folgende ,,Abbildungen* darauf, ob sie wirklich Abbildungen sind, und ob
sie gegebenenfalls injektiv oder surjektiv oder beides sind.

a) f:[0,1[— [0,1[ mit f(z) =z + 3 fir 2 < § und f(z) =z — 3 fir z > 3.

b) f: N — N ordne jedem n € N diejenigen m € N zu, die > 2n sind.

c) fi]—mn—[-1,1], x + cosz.

d) f:RoR, z—e"—e ™.

e) f:R—-R, x— 2°—u.

f) g : R — R, definiert durch ,g(y) =z +—= y = 2>

—x“.

Seien X -5 Y Pz Abbildungen. Zeigen Sie:

a) Sind o und (3 beide injektiv (bzw. surjektiv), so ist es auch foa.
b) Ist Boa injektiv, so ist es auch a.

c) Ist foa surjektiv, so ist es auch 3.

d) Geben Sie zwei Beispiele, wo foar bijektiv ist, aber weder 3 injektiv noch « surjektiv
ist. Wahlen Sie im ersten Beispiel fiir X, Y, Z endliche Mengen und im zweiten X =Y =
Z =N.

a) Zeigen Sie, dass die folgenden Abbildungen f; : R — R bijektiv sind:

z fir <0

nw={ 2

l—2 fir O<z<l1

T sonst T fir >0

fiz) = {
b) Tun Sie dasselbe fiir die Abbildung f3 : R — R mit

T fir z€Q

fs(x) ::{ x+1 fir 2¢Q
Sei E C R und f: R — R definiert durch

fz) = 23 falls r€eF
V=Y z falls 2eR—E

Untersuchen Sie f auf Injektivitdt und Surjektivitéat
a) im Falle £ = Q, b) im Falle E =R — Q.

Ist die Abbildung f: Q? — R, (z,%) — z + yv/2 injektiv? (Antwort mit Begriindung!)

52



89.

90.
91.

92.

93.
94.

95.
96.

97.

98.

Beschreiben Sie in einem Venn-Diagramm mit den Mengen A, B, C' die Mengen AU(BNC)
und (AUB)NC.

Zeigen Sie (A—B)NC =(ANC)—(BNC)=(ANnC) - B.
Zeigen Sie (AUC) - (BUC)=A—-(BUC)=(A-B)-C.
Machen Sie sich ein (inneres) Bild der Funktion sin 1 und iiberlegen Sie sich (zumindest

anschaulich), warum

1 1
lim sin — nicht existiert, aber lim xsin — =0 ist.
x

x—0 xT z—0

Geben Sie eine bijektive Abbildung Z — N an.

Zeigen Sie, dass es eine bijektive Abbildung N — Q gibt. (Wer das zustande bringt, ohne
irgendeinen Hinweis von anderen erhalten zu haben, ist wirklich gut.)

Seien > 0, a:= (1 +1/2)% und b := (1 + 1/2)**L. Zeigen Sie: a® = b%.

In einem populdrwissenschaftlichen Artikel steht — in etwa — folgendes: ,,Die Wahrschein-
lichkeit eines Nachbebens nimmt mit der Zeit exponentiell ab. Unmittelbar nach dem
Hauptbeben hat sie ihr Maximum, 10 Tage spéter betrigt sie nur noch 10 % hiervon, nach
100 Tagen nur noch 1 %, usw.“ Was sagen Sie dazu?

Was sagen Sie dazu, wenn jemand meint, die Anzahl der bei einer internationalen Kon-
ferenz benétigten Simultandolmetscher hinge exponentiell von der Anzahl der gesproche-
nen Sprachen ab. (Wieviele Dolmetscher werden benétigt, wenn jeder nur fiir 2 Sprachen
zusténdig ist?)

Losen Sie folgende Gleichungen:

a) 2% + 9111110 _ 9111111 b) 9x® _ 5191+28
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