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Vorwort

Eigentlich sollte die Beschéftigung mit der Mathematik ja Vergniigen berei-
ten! Aber auch wenn man nicht erwartet, dass sie ein billiges Vergniigen ist, so
muss man doch feststellen, dass sie vielen Menschen eher zum Missvergniigen
dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein
wenig zu helfen. Ich will sie zum einen dabei unterstiitzen, die hohe Schwelle
von der Schul- zur Hochschul-Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszuraumen, auf
die ich leider immer wieder stofle. Diese Defizite liegen im Bereich der Bruch-
und Potenzrechnung. Es mag entwicklungspsychologische Griinde dafiir ge-
ben. Aber spétestens zu Beginn des Studiums muss dieses Thema erledigt
sein.

Anmerkung: In dieses Skript habe ich einige Texte unverindert aufgenom-
men, die urspriinglich anderen Zwecken dienten. Das werden Sie merken. Ich
denke aber, dass sie deshalb nicht unbrauchbar sind. Die knappe Zeit wird
mich zwingen, auf manche Themen des Skriptes zu verzichten.
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1 Natiirliche und ganze Zahlen

1.1 Die natiirlichen Zahlen sind 0,1, 2,3, ..., insgesamt unendlich viele, so
dass man sie nicht alle hinschreiben kann. (Ubrigens gibt es unter Mathe-
matikern einen erbitterten Streit dariiber, ob man die 0 wirklich zu ihnen
rechnen soll. Ich jedenfalls tue das und setze es hiermit fiir diesen Kurs fest.)

Die Menge (=Gesamtheit) der natiirlichen Zahlen wird mit N bezeichnet,
also

N:={0,1,2,3,...}
Mit N; bezeichne ich die Menge der natiirlichen Zahlen # 0 also N; :=
{1,2,3,...} . (Wenn man will, kann man auch Ny := {2,3,4, ...} definieren
usw.)

1.2 Die ganzen Zahlen sind
o, —2,-1,0,1,2,... (1)

Ihre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten
auf einer Geraden identifizieren, wo der Abstand von n zu n + 1 fiir alle n
derselbe ist. Wir wollen spéter diese Gerade mit anderen Zahlen auffiillen,
um sie zur ,,Zahlengeraden®“ zu machen.

1.3 Sie wissen, wie man ganze Zahlen addiert und multipliziert. Wahrschein-
lich kennen Sie auch folgende Gesetze fiir diese ,,Verkniipfungen*

m+n=n+m mn = nm Kommutativitéat
() k+(m+n)=(k+m)+n k(mn)=(km)n Assoziativitét
k(m +n) =km+ kn Distributivitét

(In der letzten Gleichung ist natiirlich die Konvention ,, Punktrechnung geht
vor Strichrechnung® anzuwenden; d.h. km + kn := (km) + (kn).) Beachten
Sie, dass das Distributivitéatsgesetz die Addition und die Multiplikation voll-
kommen unterschiedlich behandelt. Die Ausdriicke k+mn und (k+m)(k+n)
haben fast immer verschiedene Werte!

Ubrigens hielt ich als abc-Schiitze die Kommutativitit der Multiplikation
natiirlicher Zahlen keinesfalls fiir selbstversténdlich. Erst das Beispiel der
Apfelsinen, die in einer Kiste in 4 (waagerechten) Reihen a 5 Stiick, d.h. aber
auch in 5 (‘senkrechten’)Reihen a 4 Stiick angeordnet waren, machten mir
das Kommutativitatsgesetz fiir die Multiplikation augenfallig.



Die Zahlen 0 und 1 spielen fiir die Addition, bzw. Multiplikation eine Son-
derrolle:
(2) 0+n=n, In=n

Man nennt die 0 ein neutrales Element fiir die Addition und die 1 ein
solches fiir die Multiplikation.

1.4 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die fiir N
noch falsch ist:

(3) Zu jedem n € Z gibt es genau ein n' € Z mit n+n' =0

Zum Beispiel ist (—2)" = 2. Wir bezeichnen n’ mit —n, schreiben also
—(—2) = 2. Man nennt —n das additiv Inverse von n.

Definition 1.5 Fine Menge, die mit zwei Verkniipfungen +, - versehen ist,
fiir die neutrale Elemente existieren und die bislang angegebenen Gesetze
(einschliefSlich(3)) gelten, heifit ein Ring.

1.6 Die Gleichung
a+x=>

mit der Unbekannten x besitzt in Z (allgemeiner, in jedem Ring) eine ein-
deutigen Losung, ndmlich = b+ (—a).

Wir schreiben a — b := a + (—b) und bei ldngeren ,arithmetischen Summen*
zB.a—b+c—d=a+ (=b)+c+ (—d).

Merke: Ist ¢ #£0,soist a—b+c#a— (b+c).

Anstelle der Existenz des additiv Inversen, konnte man auch zu je zwei gan-
zen Zahlen m,n die Existenz ihrer Differenz m — n fordern, die dadurch
gekennzeichnet ist, dass sie die Gleichung (m — n) +n = m erfiillt.

1.7 Wir wollen zeigen, dass sich die Regel (—a)(—b) = ab, die manch einem
etwas willkiihrlich erscheinen mag, allein aus den Regeln (1),(2),(3) ergibt,
d.h. in jedem Ring gilt. Zunéchst zeigen wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b + 0b Durch Addition von —(0b) auf beiden Seiten
und Anwendung der Assoziativitdt ergibt sich 0 = 0b.

Jetzt zeigen wir: (—a)b = —(ab).

Da ab+ (—a)b = (a+ (—a))b = 0b = 0 ist, ist (—a)b das additiv Inverse von
ab, d.h. (—a)b = —(ab).

Da a + (—a) = 0 ist, ist a das additiv Inverse von —a, d.d. —(—a) = a.
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SchlieBlich ist (—a)(—b) = —(a(—b)) = —(—(ab)) = ab.

Wenn man also (—1)(—1) iiberhaupt definieren und dabei die o.a. Regeln
beibehalten will, bleibt einem nichts iibrig, als (—1)(—1) = 1 zu setzen.

Der franzosische Schriftsteller Henri Beyle, der sich Stendhal nannte und sich
fiir Mathematik interessierte (dessen Romane ich sehr liebe) mochte sich mit
dieser Regel nicht anfreunden.

Es wére schon, wenn Sie weitere — etwa geometrische — Griinde finden, warum
die Regel (—a)(—b) = ab sinnvoll ist.

1.8 Man kann die ganzen Zahlen der Groéfle nach vergleichen: m < n heifit
,m (ist) kleiner (als) n“. Dies ist dquivalent zu n > m, d.h. ,n (ist ) groSer
(als) m*“. Ferner benutzt man das Zeichen m < n (,m (ist) kleiner (oder)
gleich n“) in der Bedeutung

m<n :<= m<noderm=n

‘Umgekehrt’ gilt
m<n <= m<nundm#n

Die ,Relation“ ,<“ geniigt neben der Regel ,0 < n fiir alle natiirlichen
Zahlen n* den folgenden Gesetzen:

E<m,m<n=—k<n Transitivitit

(4) n<n Reflexivitat
m<n,n<m=—m=mn Antisymmetrie
m <nodern<m Totalitat

Was folgt daraus fiir ,,>,,7 Man kann folgende Regeln ableiten:

(5) k<m<n=k<n; und k<mm<n=—=k<n

Beziiglich der Addition und Multiplikation gilt fiir <:

(6) m<n — k+m<k+n
0<k m<n = km<kn

Welche Regeln gelten fiir ,,<“?

1.9 Wichtig ist das ,,Induktionsprinzip“, das bei einer axiomatischen Be-
schreibung der natiirlichen Zahlen gemeinhin eines der Axiome ist:

Sei m € Z und A(n) eine Aussage tiber ganze Zahlen n. Es gelte:
A(m),

und



wennimmer A(n) fir ein n > m richtig ist, so ist es auch A(n+1).
Dann gilt A(n) fir allen > m, n € Z.

(Ein Beweis dafiir, dass A(m) gilt, heifit ,,Induktionsanfang”. Ein Beweis
dafiir, dass A(n + 1) aus A(n) folgt, heifit ,Induktionsschluss* Die Voraus-
setzung in diesem Schluss heifit auch ,Induktionsvoraussetzung“ oder ,In-
duktionsannahme*.)

Example 1.10 Wir beweisen fiir n € N die Aussage A(n)

n(n+1)

0+1+2+4 - +n=——

Die Aussage A(0)
0(0 + 1)
2
ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt
A(n + 1) zeigen:

0:

n(n+1)

0+1+4tn+(n+l)=——

+tn+1=

nn+1)+2n+1) (n+2)(n+1) H+D({(n+1)+1)

2 2 2
Also gilt A(n) fiir alle n € N.

Hier haben wir das Rechnen mit ,Briichen® verwendet. In Wahrheit sind
allerdings die Ausdriicke n(n + 1)/2 natiirliche Zahlen fiir alle n € N

In der Mathematik werden sehr hédufig Beweise mit dem Induktionsprinzip
gefiihrt.

Bevor wir ein hierzu (unter den o.a. Regeln, d.h. in einem geordneten Ring)
dquivalentes ,, Minimalprinzip“ formulieren, ben6tigen wir zwei Definitionen:

Definitions 1.11 a) Mit () wird die leere Menge bezeichnet, d.h. diejenige,
die kein Element besitzt. Gilt fiir eine Menge M die Aussage M # 0, so
nennt man M auch nichtleer. M ist also nichtleer genau dann, wenn M
mindestens ein Element besitzt.

b) Eine Teilmenge M von Z heifst nach unten (bzw. oben) beschrinkt,
wenn es ein s € 7 gibt, so dass s < x (bzw.) s > x) fir alle x € M gilt. Ein
solches s heifst eine untere (bzw. obere) Schranke von M.

c¢) Fin kleinstes (bzw. grof3tes) Element ciner Teilmenge M C Z ist ein
m € M mit der Eigenschaft m <z (bzw. m > x) fir alle z € M.



Ein kleinstes Element einer Teilmenge M von Z ist immer auch eine untere
Schranke, aber nicht umgekehrt. Z.B. ist 0 sowohl ein kleinstes Element,
als auch eine untere Schranke von N. Jedoch ist —1000 zwar eine untere
Schranke, aber kein kleinstes Element von N. Schliefllich besitzt N weder
eine obere Schranke noch ein gréfites Element.

1.12 Das Minimalprinzip lautet nun:

Ist M eine nach unten beschrinkte nichtleere Teilmenge von Z, so besitzt M
ein kleinstes Element.

Remark 1.13 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist
die Nullteilerfreiheit. Sie besagt:

ab =0 = a = o mboxoderb = 0.

Es gibt verschiedene Moglichkeiten, sie zu beweisen. Dabei kommt es
natiirlich darauf an, von welcher Grundlage aus man die Theorie der (natiirli-
chen, bzw. ganzen) Zahlen betreibt: etwa ausgehend von den sogenannten
Peano-Axiomen oder auf sogenannte konstruktive Weise.

Von der Schule her sollten Sie dies fiir die natiirlichen Zahlen fiir selbst-
verstdndlich halten. Fiir alle ganzen Zahlen erhélt man die Nullteilerfreiheit
auf Grund der Regeln

(—a)b=—(ab) , (—a)(=b) = ab.
Aus der Nullteilerfreiheit ergibt sich die Kiirzungsregel
a# 0 und ab=ac = b=rc.

Denn ab=ac=ab—ac=0=a(b—c)=0=b—c=0=b=c



2 Eindeutige Primfaktorzerlegung

Definition 2.1 Seien m,n € Z. Wir sagen n teilt m (oder n ist ein Teiler
von m, oder m ist ein Vielfaches von n) und schreiben n|m, wenn es ein
k € Z mit kn = m gibt. Ist n kein Teiler von m, so schreiben wir n{m.

2.2 Eigenschaften: a) 1|n und n|0 fur alle n € Z
b) n|m, mlk = nlk

¢) nlmy, nlmey = nlaymy + agmy fiir alle a1, as € Z.
d) nlmy, nfme = ntmy+my

e) Fir n,m € Ny (also n,m > 0 gilt: njm = n <m

Definition 2.3 FEine Primzahl ist eine ganze Zahl p > 1 die aufler 1 und
p keine weiteren natirlichen Zahlen als Teiler hat.

Natiirlich sind im Bereich aller ganzen Zahlen auch —1 und —p noch Teiler
von p.

Proposition 2.4 Jede ganze Zahln > 1 ist ein Produkt von Primzahlen.

Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. (Wenn
man will, kann man die 1 als Produkt von 0 Faktoren auffassen.)

Proof: Angenommen, die Behauptung wére falsch, d.h. die Menge derje-
nigen n > 1, die kein Produkt von Primzahlen sind, wére nicht leer. Nach
dem Minimalprinzip hétte sie ein kleinstes Element m. Dieses kann keine
Primzahl sein, da eine solche als Produkt von Primzahlen (mit 1 Faktor)
gilt. Also gibt es einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e € N
mit m = de. Fiir e gilt gleichfalls 1 < e < m. Da m die kleinste ganze Zahl
> 1 ist, die nicht in Primfaktoren zerlegbar ist, miissen die kleineren d, e in
Primfaktoren zerlegbar sein, etwa

d=pi-p, e=py-p,
Also ist m = de = py ---p,p} - -+ P, doch in Primfaktoren zerlegbar. Wider-
spruch. ([l

Remark 2.5 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise
gefithrt habe, kann man nicht erkennen, wie man eine Primfaktorzerlegung
einer ganzen Zahl n > 1 effektiv herstellen kann. Dies ist aber prinzipiell
moglich. Durch systematisches Durchprobieren der Zahlen 2,3,4,... findet man
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néamlich die kleinste ganze Zahl p mit 2 < p < n, die ein Teiler von n ist. p
ist prim; denn jeder Teiler von p ist < p und ein Teiler von n. Dann macht
man dasselbe mit n/p, wenn noch p # n ist. Usw.

Diese Methode ist allerdings schon fiir Zahlen n, die im Dezimalsytem einige
100 Stellen haben, mit den besten Computern in verniinftiger Zeit nicht mehr
ausfithrbar. Es gibt zwar ein paar Tricks, schneller voranzukommen. Aber
die vermindern nur unwesentlich das Problem. (Man weif§ allerdings, dass
sogenante Quantencomputer, wenn es sie denn je geben wird, dies Problem
16sen konnten.)

Andererseits ist es sehr wohl moglich, von Zahlen der angegebenen Grofien-
ordnung in wenigen Sekunden oder Minuten festzustellen, ob sie prim sind —
ohne eine Faktorzerlegung im negativen Falle angeben zu kénnen.

Auf Grund dieser Diskrepanz ist es moglich, Texte nach einem offentlich
gemachten Schliissel zu verschliisseln, die man ohne eine zusétzliche Infor-
mation nicht mehr enschliisseln kann.

Den Beweis der Eindeutigkeit der Primfaktorzerlegung bereiten wir durch
folgendes Lemma von Euklid vor:

Lemma 2.6 Seien m,n € N und p eine Primzahl mit plmn so gilt p|m oder
pln.

Proof: Angenommen, die Aussage sei fiir gewisses p, m,n falsch. Dann
gibt es — bei festen p,n unter allen m € Ny, fiir die zwar p|mn, aber p t m,
p 1 n gilt, ein kleinstes Element, genannt a. Insbesondere ist p{ a und a # 1,
Wir betrachten zwei Félle:

1. Fall: @ > p. Dann gilt p|(a — p) - n, aber pta—p (dapta) und p 1 n.
Widerspruch zur Minimalitét von a.

2. Fall: a < p. Man kann dann p durch a mit Rest dividieren. D.h. es gibt
q,7 € Nmit p=qa+r, r < a. Die Moglichkeit » = 0 ist ausgeschlossen, da
1 < a < pund p prim ist. Somit folgt auch p { ga. Wieder gilt: p|(p — qa)n =
rn, da p|pn und p|gan, aber p{r, ptn, r < a. O

Mit Hilfe von Induktion kann man das euklidische Lemma leicht auf mehr
als 2 Faktoren verallgemeinern.

Theorem 2.7 Seien
m:pl...pr:ql...qs

Primfaktorzerlegungen derselben ganzen Zahl m > 1. Dann ist r = s und
man kann die Reithenfolge der q; so dndern, dass p1 = ¢, p2 = @2, ...Ppr = qr
wird.
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Proof: Wir benutzen Induktion nach r, wobei der Fall » = 1 fast trivial
ist. Aus pq|m folgt mit Hilfe des euklidischen Lemmas: p; teilt eines der g;.
Da wir die Reihenfolge der ¢; verdndern diirfen, konnen wir annehmen p;|q;.
Da ¢; prim und p; > 1 ist muss p; = q; gelten. Also gilt

p1p2..-pr:p1q2"'q5 undSOIIllt pQ"‘pTZQQ"'QS

(Letzteres wegen der Kiirzungsregel.) Nach Induktionsvoraussetzung sind wir
fertig. O
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3 Briiche, rationale Zahlen

3.1 Wahrend das Rechnen mit ganzen Zahlen den allermeisten Studieren-
den keine Probleme bereitet, scheint das fiir das Rechnen mit Briichen bereits
nicht mehr zu stimmen. Habe ich doch kiirzlich in einer Staatsexamensklau-
sur die
bsurde Unregel L = 1 + E
a a+b a b
lesen miissen, obgleich doch jeder, der mit dem Bruch % irgendeine verniinf-
tige Vorstellung verbindet, immer
1

5+

=1

N | —

rechnen wiirde.

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl -~ mit m,n € Z,n > 0 kann man folgendermaflen auf dem

Zahlenstrahl konstglieren: Man teile Strecke von 0 nach 1 in n gleichgrofle
Teilstrecken. Eine solche trage man dann m-mal von 0 aus nach rechts auf
dem Zahlenstrahl ab, wenn m > 0 ist. Ist m < 0, d.h. —m > 0, so trage man
sie (—m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die
Strecke von 0 bis m in n gleiche Teilstrecken teilt und eine solche Teilstrecke
von 0 an in die Richtung von m abtrigt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Ar-
ten schreiben, z.B.

9 3 6

15 5 10
Man kann ‘erweitern’ und ‘kiirzen’. Man kann sich iiberlegen, dass es aufs
selbe hinauslauft, ob man ein 15-tel der Einheitstrecke 9-mal, oder ein 10-tel
der Einheitstrecke 6-mal von 0 aus (nach rechts) abtrégt.

Am elegantesten definiert man die Gleichheit von Briichen durch
_ = — <> ab, = a/b .

Wenn z.B. Z—,/ aus ¢ durch Erweitern mit ¢, d.h. ¢ aus ‘Z—,, durch Kiirzen durch
¢ hervorgeht, folgt ab’ = a(bc) = (ac)b = a'b. Ist umgekehrt ab’ = a’b, dann
entsteht Z—: aus ¢ durch Erweitern und Kiirzen, wie folgt:

a abl adb d

b b b W
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Ferner setzen wir fest m

—=m.
1

Auf diese Weise gilt Z C Q, der Menge der rationalen Zahlen.

3.4 Addition: Haben zwei Briiche den gleichen Nenner, so ist ihre Summe
einfach zu definieren:

m m m+m

n o n n
Dies entspricht der Addition von Strecken auf dem Zahlenstrahl — oder der
Subtraktion, wenn etwa m > 0,m’ < 0 ist. Sind die Nenner nicht (notwendig)
gleich, so kann man sie durch Erweitern gleich machen, also z.B. rechnen

m m  mn mn mn +m'n
. r = / + / = / ’
non nn nn nn

Man sieht, dass sich Nenner und Zahler bei der Addition sehr verschieden
verhalten! Wenn m # 0,n,n’ > 0 ist, gilt immer:

m m  m(n +n) m

UL +

n n' nn'

n—+n

(Will man bei der Addition mit (absolut) moglichst kleinen Zahlen rechnen,
so nimmt man als gemeinsamen Nenner das kleinste gemeinsame Vielfache
von n,n’ statt nn’. Fiir allgemeine Uberlegungen ist dies allerdings in den
meisten Fallen eher erschwerend.)

Offenbar ist 0 = & = 2 fiir alle n > 0 ein neutrales Element beziiglich der
Addition. Ferner gibt es ein additiv Inverses zu 7, ndmlich . Denn
m —m  m-—m

0
n n n n

Man darf also % = —% schreiben.

3.5 Multiplikation: Zunéchst definieren wir k - % fir k € Z. Ist k > 0, so
sei k- 7* die k-fache Summe von * zu sich selbst, d.h.

m m m  km
ki—=—4+... 4 —=—,
n n n n
Dies muss man zwangslaufig so machen, wenn 1 ein neutrales Element fiir
die Multiplikation bleiben und die Distributivitdt und Kommutativitéit der
Multiplikation erhalten bleiben soll. Die Forderung, dass die Distributivitét
weiter gelte, erzwingt dann auch

=—firallekeZ.

m km m  km
n n
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Insbesondere ergibt unsere Definition (fiir £ € Z,r € Ny)

1 1
k:-—:ﬁundr-—:i:—zl.
T r T T 1

Soll die Assoziativitdt der Multiplikation weiterhin gelten, so muss

m m 1 m
R
n n ron
. . / . / /
sein. D.h., ist 1+ & = ™ 50 ist ™ =™ also rm/n = n'm. d.h. & = 2,
T m n n' n n ™M
Wir definieren also
1 m m
ron rn
und somit
kK m I 1 m m km
r n ron m rn

Merke: Die Addition von Briichen ist komplizierter als ihre Multiplikation!

Sind m,n,m’,n’ positive ganze Zahlen, so gilt immer

m m  m4+m
n n' n—+n

3.6 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a €
Q — {0} gibt es genau ein multiplikativ Inverses a~!, nimlich

(oder = " falls m < 0)

m . _1
Ista=—, soista™ " =
n -m

3=

In Q kann man also die Gleichung axz = b mit der Unbekannten z 16sen, wenn
a # 0 ist. Namlich durch z = ba™!

3.7 Das Rechnen mit rationalen Zahlen geniigt denselben Gesetzen wie
das mit den ganzen Zahlen. Es geniigt sogar einem zusitzlichen Gesetz,
nédmlich dem der Existenz von multiplikativ Inversen. Q ist ein sogenann-
ter Korper.

(Ubrigens muss man bei der axiomatischen Definition eines Korpers folgen-
des bedenken: Eine Menge, die aus genau einem Element p besteht, fiir das
p+p = pp = p definiert ist, erfiillt alle o.a. Koérperaxiome. Man will sie
aber nicht als Koérper gelten lassen. Man verlangt deshalb zusétzlich, dass in
einem Korper 1 # 0 ist, oder — dquivalent dazu — dass er aus mindestens 2
Elementen besteht. Es gibt einen nicht ganz unniitzen Korper, der aus genau
2 Elementen besteht.)
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Remark 3.8 Die Nullteilerfreiheit, und damit die Kiirzungsregel gilt
natiirlich im Bereich der rationalen Zahlen auch. Offenbar gilt sie in jedem
Korper. (Warum?)

3.9 Da sowohl bei der Multiplikation wie bei der Addition von Briichen der
Nenner (genauer: einer der moglichen Nenner) des Ergebnisses das Produkt
der Nenner der Faktoren, bzw. der Summanden ist, gibt es echte Teilmengen
von Q, die Z echt umfassen, die gegen Addition, Subtraktion und Multiplika-
tion abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die Menge
der Briiche, die sich mit einem ungeraden Nenner schreiben lassen, ein sol-
cher Unterring. (Kann man in dieser Behauptung ‘ungerade’ durch ‘gerade’
ersetzen???)

3.10 Anodnung: Wie vergleicht man Briiche der Gréfle nach? Nun, wenn
zwei Briiche denselben positiven Nenner haben, ist die Sache einfach:

m _m

— < — = m<m.
n n

Ansonsten muss man die (als positiv vorausgesetzten) Nenner gleich machen:

m _m mn' _ m'n
<l = <

- - < — = mn' <mn .
n - n nn nn

Z.B. sieht man: Ist 0 < n < n/, so gilt % > % Die Regeln der Vertraglich-
keit der Anordnung mit Addition und Multiplikation bleiben erhalten. Das
Induktionsprinzip und das Minimumprinzip gilt natiirlich fiir die rationalen
Zahlen nicht. Z.B. hat die Menge M := {a € Q | 0 < a} die untere Schranke
0, aber kein kleinstes Element. Ist ndmlich a € M beliebig (klein), so ist
27la < aund 27ta € M.

3.11 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger
Korper. Fiir a,b € K, b # 0 schreibt man dann
a

E = ab_l

Aus den Korpergesetzen leitet man dann leicht ab:

a a’_ab’+a’b !

Lo _aftab o a ad (2)‘1_9
b v by T b W b \b o

letzteres, wenn auch a # 0 ist.

Remark 3.12 auch fiir positive rationale Zahlen a, b, ¢, d gilt immer

a ¢ a+c

bt v d
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3.13 Wenn man im Korper der rationalen Zahlen Briiche rationaler Zahlen
bildet bekommt man ‘Mehrfachbriiche’, z.B.

(%)
(3)

Man muss hier aufpassen, z.B.

(5)

= 2> und

o |ole
ol
I

=

o

voneinander unterscheiden! Berechnen Sie

@ 1

und —~
3 3)

Ein Ausdruck der Form

hat keinen Sinn!

3.14 Standarddarstellung. Jede rationale Zahl kann als ein Bruch ge-
schrieben werden, in welchem Zéhler und Nenner keinen gemeinsamen Prim-
faktor haben. Denn sonst kann man ja noch kiirzen. Da bei jedem Kiirzen
(durch eine ganze Zahl > 1) Zéhler und Nenner (dem Betrag nach) kleiner
werden, muss der Kiirzungsprozess nach dem Minimalprinzip irgendwann an-
halten. (Ubrigens gibt es eine Algoritmus — von Euklid —, der es erlaubt, den
gegT von zwei Zahlen zu berechnen, ohne sie vorher in Primfaktoren zerlegt
zu haben.)

Verlangt man noch — wie wir es bisher meist getan haben — dass der Nenner
positiv ist, so ist die Darstellung einer rationalen Zahl als ,,gekiirzter® Bruch
eindeutig.

Beweis hierfiir: Sei ™ = TS—,,, wo beide Briiche gekiirzt sind. Dann gilt mn’ =
m/n. Wir verwenden die Eindeutigkeit der Primfaktorzerlegung. Ist p ein
Primfaktor von m, genauer, ist p* die hochste p-Potenz, die m teilt, so muss
sie auch m’ teilen, da nach Vorraussetzung p kein Teiler von n ist. Es folgt
m|m/, und ebenso m/|m. Also m = +m’. Da nach Voraussetzung n,n’ > 0
ist, miissen auch die Vorzeichen von m und m/’ iibereinstimmen.

Ebenso folgt n =n'. -
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4 Reelle Zahlen

4.1 Man konnte meinen, die rationalen Zahlen fiillten die ganze Zahlengera-
de aus. In beliebiger Néahe jeder rationalen Zahl liegen noch unendlich viele
weitere rationale Zahlen. Anders als bei den ganzen Zahlen gibt es zu einer
rationalen Zahl keine néchstkleinere oder nichstgrofiere.

Trotzdem gilt die BEMERKUNG: Wenn man auf dem Einheitsintervall der
Zahlengerade von 0 bis 1 ein Quadrat errichtet und um 0 den Kreis schlégt,
der durch die rechte obere Ecke geht, so schneidet dieser die Zahlengerade in
keinem rationalen Punkt. M.a.W. Es gibt keine rationale Zahl r mit r? = 2.

BEWEIS: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit
n* = 2. Wir nehmen an, es géibe ein r € Q mit r* = 2. Wir schreiben r =  in
gekiirzer Form, d.h. so dass m und n keinen gemeinsamen Primfaktor haben.
Wir zerlegen m und n in Primfaktoren:

n qi---gs
Da r nicht ganz ist, ist n > 2, d.h. s > 1. Wegen der Teilerfremdheit von
m,n gilt p; # g; fir alle 7, j. Jetzt bilden wir
2 _ p% s ‘p%
F

Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teiler-
fremdheit von Zihler und Nenner nichts gedndert. D.h. 7? kann nicht ganz
sein, insbesondere ist 72 # 2. —

Aus der Bemerkung folgen:

a) Die — nicht besonders komplizierte — Funktion f(z) = z? — 2 hat zwar in
1 den negativen Wert —1 und in 2 den positiven Wert 2, aber zwischendurch
an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, fiir die a < 0 oder a® < 2 gilt,
und B die Menge der positiven rationalen Zahlen b mit »* > 2. Dann ist
AUB=Qund a < bfiirallea € A,b € B, aber weder besitzt A ein grofites,
noch B ein kleinstes Element.

Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sei n > 2 ganz. Ist eine ganze Zahl k keine n-te Potenz
einer ganzen Zahl, so ist sie auch keine n-te Potenz einer rationalen Zahl.
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4.3 Man hat mit Erfolg den Korper Q zu einem Korper R der sogenannten
reellen Zahlen erweitert, in welchem aufler den Rechen- und Anordnungs-
axiomen folgende zueinander dquivalente Aussagen erfiillt sind:

(i) Jede Zahlenfolge in R, die verniinftigerweise konvergieren sollte (d.h. eine
sogenannte Cauchyfolge ist), konvergiert auch. S.u.

(ii) Ist R = AU B, derart dass sowohl A als auch B mindestens 1 Element
besitzt und a < b fiir alle a € A, b € B gilt, so hat entweder A ein grofites
oder B ein kleinstes Element.

(iii) Sei (an)n, = (ao,as,as,...) eine monoton wachsende nach oben be-
schrinkte Folge. D.h. fiir alle n gilt a,, < a,41 und es gibt ein s mit a,, < s

fiir alle n. Dann konvergiert die Folge (ay,)p.
(iii") Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von
R, die eine untere Schranke besitzt, d.h. fiir die es ein s € R gibt mit s < a
fiir alle a € A, besitzt auch eine untere Grenze, d.h. ein u € R mit u < a
fiir alle a € A, so das in beliebiger Ndhe von u noch Elemente von A liegen.

(iv’) Dasselbe wie (iv), wo ,,untere* durch ,obere“ ersetzt ist.

Manche der genannen Begriffe bediirfen noch der Préazisierung, die wir in
einem spéteren Paragrafen vornehmen werden. ,, Anschaulich® ist es so, dass
die reellen Zahlen den Punkte auf der Zahlengeraden entsprechen, die beliebig
genau durch rationale Zahlen approximierbar sind. (Und diese sind dann wohl
alle Punkte auf der Zahlengeraden, was auch immer das heilen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Korpers der reellen Zah-
len, die man aus jedem der o.a. ,Axiome*“ ableiten kann — aus (i) nur bei
entsprechender Definition von ,,Cauchy-Folgen* — das sogenannte archimedi-
sche Axiom:

(a) Zu allen positiven reellen Zahlen a,b gibt es eine natiirliche Zahl n mit
na > b.

Hierzu dquivalent ist folgende Aussage:

(b) Ist « eine reelle Zahl, so dass 0 < a < 1/n fiir alle ganzen Zahlen n > 0
gilt, so ist a = 0.

BeWEIS der Aquivalenz: ,,(a)==(b)“: Wire a > 0, so géibe es ein n € N mit
na > 1. Multiplikation mit der positiven Zahl 1/n ergibe o > 1/n.

»(b)=(a)“: Wire na < b, so erhielte man durch Multiplikation mit der
positiven Zahl = die Ungleichung a/b < 1/n fiir alle n und somit aus ¢ < n+r1
die Ungleichung a/b < 1/n fiir alle n. —
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4.5 Man kann R z.B. als Menge aller unendlichen oder endlichen positiven
oder negativen Dezimalbriiche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbriichen ein-
zugehen, wollen wir uns tiberlegen, wie man die Eigenschaft (iv) fiir nach
unten beschrénkte nichtleere Mengen B von Dezimalbriichen zeigen kann.

BEWEIS: Man darf annehmen, A sei durch 0 nach unten beschrénkt. (Sonst
verschiebe man die Menge.) Zunéchst betrachten wir den ,ganzen Anteil®,
d.h. die ,,Vorkommazahlen“ der Zahlen aus A. Unter diesen gibt es nach dem
Minimalprinzip eine kleinste, etwa m. Dieses m wird die Vorkommazahl der
gesuchten unteren Grenze. Dann betrachten wir alle a € A, die die Vor-
kommazahl m haben und von diesen jeweils die erste Nachkommaziffer Die
kleinste dieser Ziffern sei ny. Dieses n; ird die erste Nchkommaziffer der ge-
suchten unteren Grenze. Diese beginnt also mit m,n;. Von allen Zahlen aus
A, die mit m, n; beginnen, betrachten wir die jeweils zweite Ziffer nach dem
Komma. Sei ny die kleinste unter diesen. Unsere untere Grenze beginnt mit
m,ning, Usw. Sei m,nins...ny auf diese Weise bereits gefunden. In A gibt
es also mindestens eine Zahl, deren Dezimalzahldarstellung mit m,ny ... ng
beginnt. Und keine beginnt mit einer kleineren Zahl mit k& Nachkommastel-
len. Man betrachte nun alle Zahlen aus A, die mit m,n; ... n; beginnen und
betrachte von jeder die (k+ 1)-te Ziffer nach dem Komma. Die kleinste unter
allen diesen sei ny1. Diese ist auch die (k+1)-te Nachkommadziffer der gesuch-
te unteren Schranke. Wenn wir dies bis ins Unendliche fortsetzen, bekommen
wir einen Dezimalbruch u, der die gewiinschte Eigenschaft hat. Denn keine
Zahl aus A ist kleiner als u. Und fiir jedes k gibt es eine Zahl aus A, deren
Vorkommazahl und deren erste k Nachkommagziffern mit u iibereinstimmen.
Es gibt also Zahlen in A, die beliebig nahe bei u liegen. —

4.6 Ubrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche
Dezimalbriiche darstellbar sind:

3,72 =13,719 :=3,71999. ..

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0,9 und 1
seien in Wahrheit doch ein wenig verschieden. Man sollte sich aber iiberle-
gen, dass ihr Abstand kleiner ist als 107" (= 1/10") fir jede natiirliche Zahl
n, und sie deshalb auf Grund des archimedischen Axioms gleich sind. (Es gibt
angeordnete Korper, die das archimedische Axiom nicht erfiillen. Um deren
Elemente zu beschreiben, kommt man allerdings nicht mit Dezimalbriichen
aus.) Was spricht denn dagegen, dass man ein und dieselbe Zahl auf mehre-
re Weisen schreiben kann? Die Darstellung einer rationalen Zahl als Bruch
zweier ganzer Zahlen ist ja {iberhaupt nicht eindeutig.
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5 Unendliche Reihen

1 1.1 1 =
Beispiel 1: -4 —+—+—+--- (=27142724279 427 4. =) 27k =7
k=1

Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird
zuerst halb gefiillt, dann wird durch hinzugiefien von einem viertel Liter vom
freien Rest wieder die Halfte gefiillt, und es bleibt 1/4 Liter frei. Dann bleibt
nach Hinzufiigen von 1/8 1 wieder 1/8 1 frei. So geht es weiter: im n-ten
Schritt fiigt man 27" | hinzu, und der Literzylinder ist bis auf 27" 1 gefiillt.
Der einzig sinnvolle Wert fiir o.a. unendliche Reihe (Summe) ist

T L I
2 4 8 16 on N
1 1 1 1 1
Beispiel 2: e 4 =7
eispie etsstsatast  taman
1 1 1) — 1 1 1 1
Es gilt — — _(fh-n _ ,zB. - — - = — . Die
n  n+l n(n+1) n(n+1) 3 4 3-4
unendliche Reihe kann man also auch so schreiben:
1 1 1 1 1 1 1 1 1 1 1 1
223 5 tas TGP g)

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt)
addiert, so hebt sich viel weg und man erhélt als Summe (der ersten n Glieder)

1
1-— . Wieder ist der einzig sinnvolle Wert unserer unendlichen Reihe
n
IV
1-2 2-3 3-4 4-5 n(n+1) B

Lasst man die ersten N Summanden dieser Reihe weg, so erhélt man auf
dieslbe Weise

1 1 1 1
(N+1D)(N+2) (N+2)(N+3)  (N+3)(N+4) N +1
Beispiel 3t ~ 4~ 4~ 4+ 424ty =7 (,H ische Reihe“)
eispiel 3: 1t tstits - = 7 (,,Harmonische Reihe

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1+ +(1+1)+(1+1+1+1)+(1+ +1)+(1+ +1)+
2 '3 4 56 7 8 %9 167 17 32

Namist Lo ls b Lo b 1or ]
e 88 8 '8 2

Ly il L]

9 16 16 2"
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Deshalb gilt

TR S I
12737475 = T2727 9

Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:

1 N 1 N 1 N 1 n 1 -
172 3Tty
In den Beispielen 4 und 6 werden wir die harmonische Reihe auf zweierlei

Weise modifizieren und erhalten endliche Werte.
Beispiel 4: Wir quadrieren die Summanden:

1 1 1 1
92 T 32 T2 T2 e

| 1 - 1 1 - 1

— a0 = < —, = < —
(n—1)n’ 22 71-273 23
usw. Durch Vergleich mit Beispiel 2 erhélt man hieraus — vorausgesetzt unsere

Reihe hat einen verniinftigen Wert —

1 1 1 1
1+§+§+E+§+”'<1+1:2
Wenn man die reellen Zahlen axiomatisch einfiihrt, kann man als eines der
Axiome z.B. folgendes nehmen:

1
Es gilt (fiir n > 2) die Beziehung — <
n

Jede unendliche Summe positiver Summanden, die nach oben beschrankt ist,
hat einen reellen Wert,

2
In der Tat ist der Wert o.a. unendlicher Summe ™ Dies ist allerdings kei-
neswegs einfach zu sehen. Wenn Sie Gliick haben, héren Sie einen Beweis
dafiir am Ende des 1. Semesters in der Vorlesung ,, Analysis 1. Sie konnen
einen Beweis im Buch O. Forster: Analysis 1 finden.

Beispiel 5: 1+ ! + L + L +
eispiel 5: - .
P 17127 1.2-3
) 1 ) 1
Wenn wir den Summanden mit dem Summanden ——
1-2---n-(n+1) n(n+1)

der Reihe aus Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert
< 3 hat. Man nennt diesen Wert in der Regel e. Es gilt also 2 < e < 3.

Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:

Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Zahler und
Nenner.

Beweis: Indirekt. Wéare e eine rationale Zahl mit dem Nenner N > 2, so
wére 1-2--- N - e eine ganze Zahl. Wir zeigen, dass dem aber nicht so ist.
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Multiplizieren wir die ersten N + 1 Summanden von e mit 1-2--- N, so
erhalten wir ganze Zahlen. Fiir den Rest r der Summe geniigt es also 0 <
r < 1 zu zeigen. Offenbar gilt

1 1 1

TN N )(N 12 N DNV 3

Mache wir, anfangend mit dem 2. Summanden von r den oben gemachten
Vergleich, so erhalten wir

1 1 1 1 1

r< + + +oe= + <1
N+1 (N+1)(N+2) (N+2)(N+3) N+1 N+1

Beispiel 6: Wir versehen die , Hélfte der Summanden der harmonischen
Reihe mit dem Minus-Zeichen, d.h. wir bilden die sogenannte alternierende
harmonische Reihe:

TSI e U D I
2 3 4 5 n o
1 1 1 1 1 1
Wenn wir die Teilsummen 1, 1—5, 1—§+§, —5—1———1 usw. auf

der Zahlengeraden betrachten, so sehen wir sie hin- und herhiipfen; dabei
werden die Spriinge immer kleiner und ihre Lénge geht gegen 0. Es ist also
plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den Wert der
unendlichen Reihe. (,,Leibnizsches Konvergenzkriterium*) Dieser Wert liegt
offenbar zwischen 1/2 und 1. Er ist gleich dem natiirlichen Logarithmus von
2 (In 2), wie man in den meisten Vorlesungen , Infinitesimalrechnung 1¢ lernt.

Zuletzt mochte ich Thnen noch einen Schock versetzen. In einer endlichen
Summe darf man die Summanden beliebig vertauschen, ohne dass sich der
Wert der Summe éndert. Dies gilt nicht fiir alle unendlichen Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmoni-
schen Reihe in folgender Reihenfolge:

1 111111 1 1 1 1 1 1 1 1 1

1-— -t - —_— .. —_— ..

537475 6 8T 10 12 14 1679 18 32711 34

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2"
negative Summanden auf.)

1 1 1 1 1 1
Da—-—-<—, ———--.—— < —— usw. ist, gilt fiir einen moglichen
6 8 4 10 16 = 4 )
Wert w der o.a. umgeordneten alternierenden harmonischen Reihe w <1 —
1 n 1 1 n 11 1 1 1 1 n 1 n Mit
—_— _—— - [ ———— [ ———— _—— - —_— o, 1
2 3 4 5 4 7 49 4 11
1+1_ 1 " 1+1< 1f" .
175 4.5 20 0 T4 a2 e
Also gilt
1 1 1
w<l—-4+-—-— === — - = —00
20 2 20



Zusatzbemerkungen

Zu Beispiel 1: Allgemein gilt fiir ¢ # 1 die Formel 1 +q +¢>+ -+ ¢" =
1— n+1 1
l—q’ also fiir die unendliche Reihe 1 + ¢+ ¢®> +---+¢" +--- = T

—q -9
vorausgesetzt, es ist —1 < ¢ < 1. Setzt man g = 1/2, so erhélt man Beispiel
1 mit dem zusétzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge
der Menge aller positiven ganzen Zahlen. Wir haben gesehen, dass die
Summe der Kehrwerte aller natiirlichen Zahlen unendlich, dagegen die der
Kehrwerte aller Quadratzahlen endlich ist. Man kann sich fiir jede Teilmenge
der natiirlichen Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder
unendlich ist. Man weif}, dass die Summe der Kehrwerte aller Primzahlen
unendlich ist. Das ist nicht trivial, aber auch nicht allzu schwer zu zeigen.
Siehe Chapter 1 in dem hiibschen Buch , Proofs from THE BOOK® von
M. Aigner und G.M. Ziegler (Springer Verlag) Wenn Ihnen unbekannt
sein sollte, dass es {iberhaupt unendlich viele Primzahlen gibt, hier ist der
uralte Beweis von Euklid: Zu endlich vielen Primzahlen py,...,p, ist jeder
Primfaktor p der Zahl pips---p, + 1 eine weitere (von allen py,...,p,
verschiedene) Primzahl, nicht wahr??

Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion In(1 + x)

x? 23

ist In(1+z) = % —3 + — — +---. Diese Gleichung gilt fiir alle  mit

—1 < 2 <1, und man erhélt unsere Behauptung, indem man x = 1 setzt.

. Letztere Funktion

Die Funktion In(1 + z) ist die Stammfunktion von

kann man, wie in der Bemerkung zu Beispiel 1 angegeben, als unendliche
Reihe schreiben: setze ¢ = —x. Die Taylorentwicklung von In(1 + z) erhélt
man durch ,gliedweise Integration“. Das alles funktioniert zunéchst jedoch
nur fiir —1 < z < 1. Fiir x = 1 braucht man ein zusétzliches Argument, den
,Abelschen Grenzwertsatz*.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende
harmonische Reihe jede vorgegebene reelle Zahl als Wert annehmen. Wer
mathematisch geschickt ist, mag selbst versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe — statt Grenzwert sagt man auch Limes—
kennenlernen:

a) den Grenzwert einer (unendlichen) Folge (a,) = (an)n = (an)nen =
(ag, a1, as,...), der lim a, geschrieben wird, (Man kann die Folge auch mit

dem Index 1 oder irgendeiner anderen natiirlichen Zahl beginnen lassen, und

1
schreibt z.B. lim — obwohl * fiir n = 0 keine Bedeutung hat.)

n—oo M, n

b) den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unend-

lich vielen Summanden) Z by,

n=0

c) den Grenzwert einer Funktion bei Anndherung an einen Punkt, an dem
sie vielleicht nicht definiert ist lim f(z).

Tr—XT0

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’; d.h.
ohne strikte Begriffsbildung vorbereitet. Bei allem Spafl; den das hoffentlich
gemacht hat, sollte jedoch klar sein, dass man ohne eine Prézisierung auf
Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a, b auf der rellen
Zahlengerade ist a — b oder b — a, je nachdem ob a > b oder a < b ist. Man
kann dies einfacher ausdriicken, wenn man den Begriff des (Absolut-)Betrages
einfiihrt: Der Betrag |a| einer reellen Zahl a ist definiert durch

la = a fir a>0
"] —a fir a<0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a — b| (wobei
eben |b — a| = |a — b] ist).

Der Betrag geniigt folgenden formalen Regeln
a) 0<lal, b)la|=0 <= a=0, c)|abl=a[-[b], d)|a+b] <la|+ [0

Die letzte Regel — die man durch Betrachtung aller vier Félle a > 0,b >
0; a < 0,b>0; etc. leicht beweist — heifit die Dreiecksungleichung. (Der
Name kommt von einer allgemeineren Situation her, wo statt reeller Zahlen
Vektoren betrachtet werden und die Dreiecksungleichung fiir die Langen von
v, w, v+ w gilt)

Eine Ungleichung der Form |a—b| < ¢ (mit € > 0) bedeutet, dass der Abstand
von a und b kleiner als € ist, d.h. a —e < b < a+¢ gilt. (Natiirlich kann man
das auch durch b — € < a < b+ ¢ ausdriicken.)
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6.2 Limes einer Folge. Wie kann man es prézise fassen, dass eine Folge
(ag, a1, as, as, ...) sich einer reellen Zahl a beliebig anndhert?

Seit ungefdhr 200 Jahren macht man es so:

Definition 6.3 a) Man sagt, die Folge (ay), hat den Grenzwert (oder Li-
mes) a — oder konvergiert gegen a — und schreibt lim,,_..,, wenn zu je-
der (noch so kleinen) reellen Zahl e > 0 ein N € N ezistiert, derart dass
la, —a| < e fir alle n > N gilt.

b) Eine Folge reeller Zahlen heifit [konvergent, wenn sie eine reelle Zahl
als Limes hat. Andernfalls heif3t sie divergent. Man sagt auch: Sie
konvergiert, bzw. divergiert.

Das heif3t: In jeder noch so groflen Néhe zu a liegen, bis auf héchstens endlich
viele Ausnahmen, alle Folgenglieder.

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (ay,)nen
mit a,, = a fir alle n.

Den Zusatz ,(noch so kleines)“ kann man in der Definition weglassen. Er
dient lediglich zur inhaltlichen Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Anderungen des obigen Wortlautes nicht
zu dquivalenten Aussagen fithren:

,Es gibt ein kleines £ > 0, derart dass ...

,Es gibt ein N € N, so dass fiir jedes e >0 ...

6.4 Obige Definition wird haufig von didaktisch Interessierten als sprachli-
ches Monstrum angesehen.

F. Vester (in ,,Denken, Lernen, Vergessen®) polemisiert gegen obige Definiti-
on und schligt stattdessen vor, die Konvergenz gegen 0 folgendermaflen zu
definieren:

,Eine Folge heiflit eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn
— vom Vorzeichen einmal ganz abgesehen — in ihr jedes Glied kleiner ist als
das Vorangehende.*

Nun erfiillt die Folge (a,) mit a, = 1 + % sicher die Definition von Vester,
wird aber kaum als Nullfolge anzusehen sein. Andererseits wird man die Folge

27" fiir gerade n

(ay) mit a, ;_{ B

n~" fiir ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch
nicht erfiillt. Dieser ist also — diplomatisch gesprochen — wenig hilfreich.
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6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen,
der nicht so sinnlos ist wie der von F. Vester. Man definiert einen verscharften
Konvergenzbegriff wie folgt:

Definition: Die Folge a,, konvergiert geometrisch gegen a, wenn es ein g
mit 0 < g < 1 gibt, derart dass |a,, — a| < g™ fiir alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus: ,,es
gibt ..., so dass fiir alle ..., widhrend die die Definition 6.3 deren 3 benétigt:
Hfiir alle ... gibt es ein ..., so dass fiir alle ...

Dafiir muss man in Kauf nehmen, dass z.B. die Folge (+) nicht geometrisch
konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die
Definition 6.3 zu verstehen und anzuwenden, sollte nicht Mathe-
matik studieren! Auch Informatikern und Physikern ist sie zuzu-
muten!

Es ist niitzlich, auch oo und —oo als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (a,), divergiert bestimmt gegen oo
und schreibt lim,, . a, = 0o, wenn es fir jedes r € R ein N € N existiert,
so dass a, > r fir allen > N gilt.

Wie definiert man lim,, .. a, = —00??

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunéchst wollen wir eine abkiirzende Schreibweise fiir Summen der Art b,, +
b1 + - -+ + b, einfithren — wo m < n sei. Wir setzen

n

> i=by A bpr+ e+ by

k=m

Insbesondere sei

Falls n < m ist setzen wir
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wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens
bedeutet es die Folge (s,,)nen, WO s, := by +b1 + -+ b, = >} _, by, definiert
ist, und zweitens bedeutet es den Limes dieser Folge.

Man sagt also z.B.: Die (unendliche) Reihe

k=0

konvergiert, und man schreibt

anzs,

0o
k=0

wenn lim,,_,o, S, = S ist.

Wir haben also den Begriff der unendlichen Reihen samt ihrer Werte auf den
Begriff der Folgen und deren Grenzwerte zuriickgefithrt. Im Ubrigen kann
man jede Folge (a,)nen als unendliche Reihe Y7 by, schreiben, indem man
bo = ap und by, = ay, — ap_q fir k > 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschrie-
bene Folgen. Mal ist die eine, mal die andere Schreibweise niitzlich oder von
der untersuchten Fragestellung her gegeben.

6.8 Der Limes eine Funktion f bei Annidherung an einen Punkt
o € R hat nur dann Sinn, wenn in beliebiger Ndhe von xy Punkte des
Definitionsbereiches von f liegen. Sei also D C R, f: D — R eine Funktion.
Wir setzen voraus: Fiir jedes € > 0 gebe es ein x € D mit |z — 2| < €.

Dann definieren wir: Es ist lim, ,,, = a genau dann, wenn fiir jede Folge
(apn)n mit a, € D und lim,,_, a, = z¢ die Gleichung lim,, ., f(a,) = a gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei Andherung
an xo nahert, auf den Begriff des Grenzwertes von Folgen zuriickgefiihrt.

(Man kann diese Art Grenzwert auch anders definieren: Fiir jedes € > 0
gibt es ein § > 0, so dass fiir alle z € D mit |x — x| < ¢ die Ungleichung

|f(z) —a] < e gilt.)

Man benétigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die
Ableitung einer Funktion als Grenzwert des Differenzenquotienten definieren

will:
(o) = lim f(xo+h) — f(xo) — lim f(z) — f(z0)

h—0 T—T0 T — Xy

Examples 6.9 a) Die Folge (%) konvergiert gegen 0. Denn wegen des ar-
chimedischen Axioms gibt es keine reelle Zahl ¢ > 0 mit ¢ < % fiir alle n.
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Also ist < ¢ fiir mindestens ein n E N;. Da aber — wie man zeigen kann —
— +1 < = gllt folgt aus + < ¢, dass + < ¢ fiir alle m > n gilt. Ich erinnere
an die (bestlmmte) Dlvergenz der harmonischen Reihe.

b) Fiir reelle z mit |z| < 1 konvergiert die Folge ™ auch gegen 0. Dies ist
vielleicht jedem klar, aber nicht so unmittelbar rigoros zu beweisen. Ich will
auf den Beweis verzichten.

Fiir x = 1 konvergiert diese Folge offenbar gegen 1. Fiir x > 1 divergiert sie
bestimmt gegen oco. Fiir x < —1 hat sie keinen Limes, auch nicht den Limes
—00.

¢) Sehr wichtig, vor allem fiir theoretische Uberlegungen, ist die geometrische
Reihe

e.¢]
>
n=1
Wir berechnen zunéchst die endlichen Teilsummen Zszo " =: s. Rechne
k k+1
(1 —x)sp = Sp — xSk = Zxk — Zxk =1— M
n=0 n=1
Es folgt fiir x #£ 1
k _ 1= L
2

k+1

Da limy_o 2" = 0 fiir |2| < 1 gilt, hat man fiir diese

oo
D "=

n=0

Fiir |x| > 1 konvergiert die geometrische Reihe nicht.
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7 Allgemeine Potenzen

Anlass zu diesem Thema waren zwei iiberraschende Erlebnisse, negative
Uberraschungen freilich.

1. Mehrere junge Leute, die kurz zuvor ihr Abitur mit einer ,, 14+ in Mathe-
matik bestanden hatten, wussten mit dem Ausdruck 272 nichts anzufangen.

2. In einer Staatsexamensklausur fiir das Fach Mathematik musste ich
mehrfach die ,Regel“ a® — a® = a’¢ lesen. Am liebsten hitte ich die
betreffende Person wegen seelischer Grausamkeit verklagt.

1. Wir studieren zunéachst die Potenzen von 2:
20=2 22=4 25=8,...,29=512 210=1024,....

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen,
und zwar mit der Einheit 1 cm : Wandert man vom Nullpunkt aus auf der
waagerechten Achse um 5 cm nach rechts, so miissen wir von dort um 32 cm
nach oben gehen, um den Wert 2° = 32 abzutragen. 4 cm weiter miissen wir
schon um 5,12 m nach oben gehen. Noch einen cm weiter auf der waagerech-
ten Achse, so sind wir in der Hohe bereits bei mehr als 10 m angelangt, was
bestimmt die Dimension dieses Raumes sprengt. Selbst eine Tafel von der
Hohe des Himalaya reicht nicht aus, um den Punkt zu markieren, der dem
Wert von 2% in Zentimetern entspricht.

Man spricht von exponentiellem Wachstum.

21071

Nun wollen wir doch gleich sowohl 2% — 2! als auch ausrechnen:

210 _ ol — 1024 —2=1022, 2071 =2%9=75]12.

Man sieht, dass im Allgemeinen 2% — 2 # 297% ist. Das Beispiel 22 —2! = 22-1
ist die grofle Ausnahme!

2. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definie-
ren, etwa 2727 Antwort: Man kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man
den Exponenten um 1 erhoht, wird die Potenz verdoppelt: 2" = 27 .2, Das
bedeutet aber auch: Vermindert man den Exponenten um eins (und bleibt
er dabei positiv), so wird die Potenz halbiert:

1
2n—1 _ .271
2

Wenn man diese Regel fiir allgemeingiiltig erklért,, d.h. auf alle ganzen Zahlen
n ausdehnt, erhdlt man

1 1 1 1
20:21—1:__2:17 -1 2.1 — =— ...
2 2 2 22 4



Allgemein, ist a # 0 eine reelle Zahl, so definiert man

an
falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)7% = 4.)
Geht das gut?

Ja! Und zwar in folgendem Sinne: Fiir jede reelle Zahl a # 0 und jede ganze
Zahl n, sei sie positiv, negativ oder 0, ist die Potenz a™ eindeutig definiert,
und es gilt die fundamentale Regel:

m—+n m . .n (2>

fiir alle ganzen Zahlen m und n. Beachten Sie bitte: Auf der rechten Seite
steht kein, +“!!!

(Wenn umgekehrt die Regel 2 gelten soll und o™ fiir n € N; wie iiblich

definiert ist, so muss @’ = 1 und a™" = ain fiir a # 0 gelten. Denn aus a’a =

a’a’ = a"! =a! = afolgt a® =1 (fiir a #0). Ausa"a" =a """ =a’ =1

folgt dann ™" = —.)
a/n

Es gibt noch weitere Regeln:
(ab)" = a™b" (3)
()" = (4)
Die Regel (4) folgt aus (2).
Wegen Regel (4) definiert man iibrigens a** := a*). Beachten Sie dazu 2% =
29 =512, (2%)? =82=64 =25

Die Regeln a™™™ = a™a™ und (ab)” = a™b™ sind die Analoga zu dem Distri-
butivgesetz der Addition/Multiplikation. Man beachte, wie unterschiedlich
Basis und Exponent behandelt werden!

3. Wir wollen uns jetzt iiberlegen, ob, wann und wie man Potenzen mit
rationalen Exponenten definieren kann. Soll (1) und damit auch (3) (fiir
rationale m und positive ganze n) weiterhin gelten, so muss

(ar)" =a

sein, d.h. a*/™ sollte diejenige Zahl (die auch mit {/a bezeichnet wird) sein,
deren n-te Potenz a ist. Fiir ungerade n macht dies (im Bereich der reellen
Zahlen) keine Probleme. Ist aber n gerade, so gibt es fiir a > 0 zwei ,n-te
Wurzeln“ und fiir a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir @ > 0 voraussetzen
und a/™ > 0 verlangen.
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Wenn wir schliefllich noch

a5 = (@™ = Vam (= (an)™ = (Ya)™)

313

fiir ganze m,n mit n > 0 definieren, so ist a” fiir reelle @ > 0 und rationale
x so definiert, dass die Regeln (2) bis (4) gelten.

Ubrigens ist a™ rational, wenn a # 0 rational und n ganz ist. hingegen ist
21/2 _ wir wir bereits wissen — nicht rational.

4. Schliefllich wollen wir noch a* fiir beliebige reelle Zahlen z und a > 0
definieren. Die o.a. Regeln (2) bis (4) geben alleine kein Rezept. Wir verlangen
zusétzlich die sogenannte Stetigkeit der Funktion x — a”.

Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir , definieren*
(und miissen das auch tun, wenn a” ,stetig® sein soll):

Ist z = lim b, mit b, € Q, so sei a® := lim a’". (5)
n—oo n—oo
Diese ,,Definition“ hat natiirlich einen Haken. Die reelle Zahl x ist auf viele
Weisen Limes einer Folge rationaler Zahlen. Wir miissen uns fragen: Wenn
lim,, o0 b}, = lim,, . by, ist, ist dann auch lim,, a = limn — ocoab"?

Die Antwort ist: Ja. Allerdings ist der Beweis dafiir keineswegs trivial. Eine
préazise Durchfiihrung ist im Schulunterricht wohl nicht méglich. (Man kann
den Beweis leicht auf die folgende Behauptung reduzieren: Ist (c,) eine
rationale Nullfolge, so ist lim,,_,,, a®» = 1. Aber letzteres zu zeigen, ist nicht
leicht.)

5. Ist die Funktion f(z) = a® (fur a > 0) differenzierbar, und was ist gege-
benenfalls die Ableitung? Wir studieren den Differenzenquotienten:

z+h T

a®™ —a a®a" — a® , a"—1
= :a .

h h h

a — 1

Man kann f also differenzieren, wenn lim =: ¢ existiert. Dies ist so —

h—0
allerdings nicht ganz einfach zu zeigen. Man erhélt, dass die Ableitung von

a® proportional zu a” ist, wobei der Proportionalitéitsfaktor ¢ (monoton) von
a abhéngt.

Es gibt nun — was wiederum nicht leicht zu beweisen ist — genau eine Zahl
e > 0 mit der Eigenschaft (e”) = e”. Dies ist iibrigens dieselbe Zahl e, die
schon im Paragrafen 5. definiert wurde.

6. Bei der Einfiihrung der allgemeinen Potenz auf der Universitiat geht man
gemeinhin einen Umweg, der es erlaubt, die unter 4. und 5. genannten Pro-
bleme elegant aus dem Wege zu rdumen:
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Man definiert zunéchst eine Funktion ,,exp“ durch

exp(r) =D (6)

n=0

Die Reihe konvergiert fiir alle reellen (sogar komplexen) z. Dann zeigt man
die fundamentale Gleichung

exp(z +y) = exp(z) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Auf-
wand (Cauchy-Produkt, Binomial-Formel) und darf nicht durch den Hinweis
exp(z) = e” und Regel (1) erledigt werden! Warum nicht?

Aus (7) folgert man zunéchst die Stetigkeit von exp. Auch die Differenzier-
barkeit und exp’ = exp ist leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(z) = e® zunéchst fiir
die natiirlichen, danach fiir die ganzen und schliefflich fiir die rationalen Zah-
len, wobei die rechte Seite wie unter 2. und 3. definiert sei.. Das geht wie
geschmiert!

Zwei stetige Funktionen auf R, die auf QQ iibereinstimmen, sind gleich, wie
man leicht sieht. Da exp stetig ist, gibt es also genau eine stetige Fortsetzung
von e” auf ganz R, ndmlich e* := exp(z).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(z) als z-te Potenz
von e anzusehen und mit e” zu bezeichnen.

Aber wir wollen natiirlich auch a” fiir beliebige a > 0 definieren. Dazu de-
finiert man den Logarithmus als Umkehfunktion der Exponentialfunktion.
Man zeigt dazu exp(z) > 0, also exp’(z) > 0. Somit ist exp streng mono-
ton wachsend. Das Bild besteht ferner aus allen positiven reellen Zahlen:
exp(R) = R%. Man hat also eine Umkehrabbildung, den natiirlichen Loga-
rithmus

In: R} =R

(Man schreibt auch ,log* statt ,In“.) Fiir beliebige a > 0 sieht man sofort,
dass die Funktion f(z) := exp(x1In(a)) die Gleichungen f(z +y) = f(x)f(y)
sowie f(1) = a erfiillt, und deshalb mit a® fiir alle rationalen z iiberein-
stimmt. Dies rechtfertigt es, a® := exp(x In(a)) fiir alle reellen x zu definieren.

7. Seien ¢,z € , ¢ # 0 Man kann versuchen ¢® := exp(zIn(c)) zu defi-
nieren. Dies hat den Vorzug, dass man bis auf die Bedingung ¢ # 0 keine
Einschriankung machen muss. Der Nachteil liegt darin, dass die ,,Funktion*
In auf C* = C — {0} von Natur aus unendlich viele Werte hat, die sich um
Vielfache von 2m¢ unterscheiden. Das kommt daher, dass im Komplexen die
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Funktion exp nicht injektiv ist. Jeder noch so geschickt ausgewéhlte, auf ganz
C* eindeutig definierte Logarithmus ist weder {iberall stetig, noch erfiillt er
allgemein die Gleichung In(z;25) = In(21) + In(22).

Man muss also damit leben, dass etwa der Ausdruck ¢ zunichst unendlich
viele (reelle) Werte hat und wenn man mit ihm rechnen will, angeben, welcher
der moglichen Werte gemeint ist.
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8 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden fiir viele
von Thnen eine beachtliche Hiirde sein, die Sie jedoch iiberwinden miissen,
wollen Sie mit Erfolg Mathematik, Informatik oder Physik studieren! Sie
sollten erkennen, wie simpel, ja geradezu primitiv diese Dinge sind. Die
Mengensprache ist eine wichtige und grundlegende Sprache der modernen
Mathematik. Man darf sie aber nicht mit dem eigentlichen Inhalt der Ma-
thematik verwechseln.

8.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchs-
freie Weise angibt, welche Dinge zu ihr gehoren sollen, d.h. fiir welche x das
Symbol x € M gelten soll, d.h. welche Dinge Elemente der Menge sind..

Gilt dies fiir nur endlich viele Dinge, d.h ist die Menge M endlich, so kann
man sie durch Angabe aller ihrer Elemente beschreiben, wobei es auf die
Reihenfolge nicht ankommt, und auch nicht darauf, ob man zufillig eines
ihrer Elemente mehrfach angibt:

{3,7,2,7,1,7} = {3,7,2,3,7,1,2} = {3,7,2,1} = {1,2,3,7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Men-
gen N, Z. Q,R als wohlbeschrieben ansehen und aus ihnen weitere Mengen
gewinnen, z.B. die Menge der geraden ganzen Zahlen, d.h. derjenigen n € Z,
fiir die 2|n gilt. Diese Menge schreibt man so

(n \ neZ2nl={nekl2mn

(Statt des senkrechten Striches ’ schreiben manche auch ;¢ oder ,:“ .) Da

a {1 b bedeuten soll, dass a kein Teiler von b ist, ist {n € Z | 2t n} die Menge
der ungeraden Zahlen.

Wichtige Mengen reeller Zahen sind die Intervalle. Seien a,b € R mit a < b,
so schreibt man:

[a, 0] ={x eR|a<z<b}, |la,b[={r€R|a<z<b},

Ja,b] ={z eR|a<z<b}, [a,b={r eR|a<z<b}

Obwohl diese Mengen sich in héchstens 2 Elementen unterscheiden, darf man
sie nicht miteinander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die
sogenante leere Menge, die mit () bezeichnet wird.

34



8.2 Seien M, N Mengen. Man nennt M eine Teilmenge von N (und manch-
mal N eine Obermenge von M) und schreibt M C N oder N D M, wenn
jedes Element von M auch ein solches von N ist:

MCN <« [IGM:>x€N

Dabei schlieflen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also
McCM.

Zum Beispiel gelten

{1,3,7} € {1,2,3,7}, {n€Z|6ln} C{neZ|3|n}, la,blC [a,b]

8.3 Fiir zwei Aussagen A, B bedeutet A = B eine der folgenden unerein-
ander dquivalenten Aussagen:

,wenn A gilt, dann gilt auch B*

yaus A folgt B¢

,A ist eine hinreichende Bedingung fiir B¢
, B ist eine notwendige Bedingung fiir A*
,B gilt, oder A gilt nicht*

Man sagt dazu auch: | A impliziert B*.

8.4 Der Durchschnitt M; N M, zweier Mengen M; und M, ist die Menge
aller Elemente, die sowohl Elemente von M, als auch solche von M, sind:

MlﬂMQZ{I | fleMl undeMQ}
Beispiele: {1,7,3,8,4,9} N {3,7,2,7,1,7} ={1,3,7}.
nez ‘ olny N {ne |3n} ={neZ|6n}.10,3NZ = {1,2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne
gebraucht wird als in dem Satz ,Der Durchschnitt der Schokoladenpreise in
diesem Supermarkt ist 79 Zent“.

Die Vereinigung M; U M, zweier Mengen M; und M, ist die Menge aller
Elemente, die in M; oder M, liegen, d.h. die Element mindestens einer der
beiden Mengen sind.

My UMy :={z | x € M; oder x € My}

Zum Beispiel {1,7,3,8,4,9}U{3,7,2,7,1,7} = {1,2,3,4,7,8,9} oder [0,2]U
2,3] = [0, 3] oder [0, 3[U[2,4[= [0, 4]
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Man mag geneigt sein zu sagen, die Elemente von M; U M, seien die Ele-
mente von M; und von M. Man sollte sich dariiber im Klaren sein, dass bei
dieser Sprechweise nicht gemeint ist: M; U My besteht aus den Elementen,
die Elemente von M; und auch Elemente von M sind.

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstédnde verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei
Mengen bilden, ja sogar von unendlich vielen Mengen.

8.5 Man betrachtet auch die Mengendifferenz M — N (auch M \ N ge-
schrieben):

M—-N:={reM|x¢N}
Zum Beispiel {1,3,4,7,8 9} — {1,2,3,5,7} ={4,8,9} oder Z—{n € Z | 2¢
n}={neZ]j2n}

Die symmetrische Differenz zweier Mengen M, M, ist
(MU M) — (My N My) = (My — My) U My — My).

8.6 Zwei Aussagen A, B kann man logisch verkniipfen durch die ,,Junkto-
ren* ‘und’ und ‘oder’. Diese werden abgekiirzt: A heifit ‘und’, V heifit ‘oder’.
Dabei bedeutet V kein ausschlielendes ‘oder’.

AV B ist genau dann wahr, wenn mindestens eine der Aussagen A, B wahr
ist.

A A B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (AA B)VC bedeutet etwas anderes als AA (B V(). Manche Unklar-
heiten in nicht formalisierten Texten entstehen dadurch, dass man solcherlei
nicht leicht unterschiedlich ausdriicken kann. In verbalen Sdtzen haben die
Klammern — so man sie iiberhaupt verwendet — eine andere Bedeutung als
in mathematischen und logischen Formeln.

Die beiden folgenden Ausdriicke sind dquivalent: (AA B)V C und (AV C) A
(BVC).

Selbiges gilt fir AA (BV C)und (AAB)V (AAC).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ , das man auch
— A schreibt. Genau dann ist — A richtig, wenn A falsch ist.

In der klassischen Logik,, die wir in der Regel benutzen ist — (— A) mit A
dquivalent.

Die Aussage — (A A B) ist dquivalent zu (— A) V (— B).
Und — (A V B) ist dquivalent zu (— A) A (— B).
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Die Aussage A == B bedeutet (in der klassischen Logik) nichts anderes als
(— A)V B.

Und A <= B bedeutet natiirlich (A = B) A (B = A).

8.7 Der Zusammenhang zwischen den Mengenverkniipfungen und den Junk-
toren ist:
re€MNN < zeMANxeN

reMUN < rxeMVzeN

8.8 Aufler den Junktoren braucht man noch die sogenannten Quantoren:
Hfiir alle” und , es gibt“, welch letzteres nichts anderes bedeutet als ,,fiir ein*.
Man braucht dazu Aussagen iiber eine ,, Variable®, etwa x. Man schreibt A(x),
was bedeuten soll: A gilt fiir x. Ein Beispiel ist die Aussage © € R = 2z =
T+ x.

Die abkiirzenden Bezeichnungen sind: A, A(z) in der Bedeutung: ,,fiir alle x
gilt A“ (Allquantor)

und: \/, A(z) in der Bedeutung: ,fiir (mindestens) ein z gilt A“ (Existenz-
quantor).

Mathematiker benutzen haufiger die Abkiirzungen V statt A und 3 statt \/.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt fiir zwei
Existenzquantoren. Hingegen wissen wir, dass man einen All- mit einem Exi-
stenzquantor nicht vertauschen darf.

In den natiirlichen Sprachen werden Allquantoren haufig versteckt. Z.B. gilt
folgender Satz:

»Seien x,y (beliebige) reelle Zahlen. Dann gilt zy = yz.“ Damit ist gemeint:
/\/\((:céR/\yER)ixyzyaz)
Ty

Wenn man sagt, ,fiir eine reelle Zahl x gilt 2z = x + z“, so meint man:
Hfiir alle reellen Zahlen z gilt 2x = x + z“. Aus diesem Grunde empfiehlt
es sich, den Existenzquantor mit ,,es gibt“ zu verbalisieren. Statt ,, Fiir eine
reelle Zahl x gilt 2 = xz* sollte man sagen ,es gibt eine reelle Zahl x mit
x® = xzz“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 8.9 a) Die Aussagen A\ (r € N= 2" =zz) und A\ (r e N=
x® # xx) sind beide falsch.

b) Hingegen sind die Aussagen \/(z € NAz® = zz) und \/ (v € NAz® # zx)
beide richtig.
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c) Fiir alle Mengen M, N gilt

McN < NzeM=zecN)

8.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X x Y
(genannt nach Descartes) versteht man die Menge aller Paare (z,y) mit
x € X, y € Y. Zum Beispiel kann man die euklidische Ebene bekanntlich als
Menge aller Paare (z,y) reeller Zahlen auffassen. Also ,ist* sie R x R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden.
Statt R x R schreibt man auch R?. Entsprechend ist R? usw. und R” zu ver-
stehen. Die Elemente (z1,xs, ..., x,) des R™ heiflen n-tupel reeller Zahlen.

Ist K ein beliebiger Korper, so definiert man auf dem K™ eine Addition wie
folgt:

(al,CLQ,...,CLn)—|—(b1,b2,...,bn> = (a1+b1 s a2+b2,...,an+bn) (8)

Alle Axiome der Addition in einem Korper (oder Ring) sind fiir diese Addi-
tion erfiillt. Definiert man noch eine Multiplikation durch

(al,ag, PN ,an) . (bl,bg, PN 7bn) = (albhagbg, PN ,anbn)

so wird der K™ zu einem Ring, der aber fiir n > 1 kein Korper ist. (Warum
nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen
von K™
a-(by,...,by) = (aby,...,aby,) 9)

fir a,by,...,b, € K. Man nennt K" zusammen mit der Addition (8) und
der Multiplikation (9) einen sogenannten Vektorraum.
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9 Abbildungen

Ohne den Begriff ,, Abbildung“ geht in der modernen Mathematik gar nichts.
Wichtig ist, dass man sich nicht von vorne herein irgendwie einschrénkt. Z.B.
ist folgendes eine Abbildung

f:R — R definiert durch f(z) =1fiirx € Q, f(x)=0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber prizise definiert. (Dabei
ist allerdings zuzugeben, dass es bei einer gemessenen physikalischen Grofie
keinen Sinn hat, zu fragen, ob sie rational oder irrational ist.)

Ein weiteres Beispiel ist:
g:R—=R, g(x)=2*firz>0, gx) = —2* fiir v <0
Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differen-
zierbar!
Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Ele-
ment abgebildet wird, z.B.
a:{1,2,3} - {1,2,3}, 1—2 2—2 3+—3

3:{1,2,3} > {1,2,3}, 1—2,2—3,3—1

Definitions 9.1 Sei f: X — Y eine Abbildung.

a) X heifit die Startmenge (kurz: der Start) und Y die Zielmenge (kurz:
das Ziel) von f. (In manchen Situationen, insbesondere in der Linearen
Algebra, ist man sehr streng und unterscheidet zwischen Abbildungen, die
nur bis auf die Start- oder die Zielmenge tibereinstimmen, z.B. zwischen den

Abbildungen f R - R, z— 2? und g: R — R, 2+ 2?)

b) Die Bildmenge (auch das Bild im(f) = f(X) von f ist die Menge

{f(z) | v e X} =
{y €Y | es existiert ein x € X mit f(x) =y}.

c) f heifit injektiv, wenn verschiedene Elemente von X auch verschiedene
Bilder haben, d.h. wenn aus f(x) = f(z') immer x = 2’ folgt.

d) [ heifit surjektiv, wenn jedes Elementy € Y das Bild (mindestens) eines
x € X ist, d.h. wenn f(X) =Y gilt.

e) [ heifit bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f)Sind f: X =Y, g:Y — Z Abbildungen, so definiert man ihre Verket-
tung gof : X — Z durch (gof)(x) = g(f(2)).
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Examples 9.2 a) Die o.a. Abbildung « ist weder injektiv, noch surjektiv; (3
hingegen ist bijektiv.

b) Durch x +— x? konnen, je nach Wahl von Start und Ziel, Abbildungen mit
verschiedenen der o.a. Eigenschaften definiert werden:

1) R — R, weder surjektiv noch injektiv,

2) R — R, surjektiv aber nicht injektiv,

3) R, — R, injektiv aber nicht surjektiv,
)

4) Ry — R, , sowohl surjektiv wie injektiv, also bijektiv.

9.3 Sei f: X — Y eine bijektive Abbildung. Dann gibt es zu jedem y € Y
genau ein (d.h. ein eindeutig bestimmtes) x € X mit f(z) = y. (Die Existenz
dieses x folgt aus der Surjektivitét, seine Eindeutigkeit aus der Injektivitét.)

Dieses x wird mit f~1(y) bezeichnet. Macht man obiges fiir alle y € Y, so
erhilt man eine Abbildung f~!: Y — X. Man nennt f~! auch die Umkehr-
abbildung von f. Sie ist nur dann definiert, wenn f bijektiv ist. Achtung:
Die Abbildung

hat nichts mit f~! zu tun!
Lemma 9.4 Se:
w-x Ly Lz
eine Folge von Abbildungen. Dann gilt ~yo(Foa) = (vo3)ocr.

Proof: Fiir we W gilt
(yo(Bear))(w) = ((Bear)(w)) = y(Bla(w)))

und
((yoB)ea)(w) = (vof3)(a(w)) = v(B(a(w)))
O

Mit anderen Worten: Sowohl vo(fecr) als auch (yo3)e« ist die Abbildung, die
entsteht, indem man erst «, dann # und schliefSlich v ausfiihrt.

Beachten Sie, dass acf in obiger Situation meistens nicht definiert ist.
9.5 Natiirliche Zahlen. Man kann die natiirlichen Zahlen und das Rechnen

mit ihnen iiber die Mengenlehre einfithren. Die natiirlichen Zahlen sind dann
die sogenannten Kardinalzahlen (Elementeanzahlen) endlicher Mengen.

Ist m = #M, n =#N und M NN = (), so kann man definieren m + n :=
#(M U N). Ebenso definiert man mn := #(M x N), wobei man hier nicht
fordern muss, dass M N N = sei.

Die Rechengesetze ergeben sich dann auf natiirliche Weise.
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10 Komplexe Zahlen

Wenn man von den natiirlichen Zahlen aus iiber die ganzen und rationalen
Zahlen schlielich zu den reellen Zahlen gelangt ist, ist ein gewisser Abschluss
erreicht. Man kann z.B. jeden Punkt des (euklidischen) Raumes — nach Festle-
gung eines Koordinatensystems — durch ein Tripel reeller Zahlen beschreiben,
was bekanntlich nicht moglich ist, wenn man sich auf die rationalen oder die
positiven reellen Zahlen beschrinkt. Wen kiimmert es eigentlich ernsthaft,
dass man aus negativen Zahlen keine Quadratwurzeln ziehen kann? Man
verzichtet ja auch darauf, durch 0 zu dividieren.

Die erste Ahnung davon, dass sich moglicherweise hinter der durch reelle Zah-
len beschriebenen Realitét eine matematisch relevante Wirklichkeit verbirgt,
bekamen unsere Vorfahren in der Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen
16st. Auf die sogenannte ,,p-q-Formel“ kommt man durch die quadratische
,Ergdnzung“. Wenn man analog eine , kubische Ergénzung“ auf kubische
Gleichungen (d.h. solche 3. Grades) anzuwenden versucht, erreicht man le-
diglich eine Reduktion auf Gleichungen der Form 2 + pz + ¢ = 0. Eine
Losungsformel fiir diese Gleichung fand (wahrscheinlich) Tartaglia im Jahre

1535:
3l q ? P sl q ¢ p
x_\/2+\/4+27+\/2 T

Fiir die Gleichung 23 —3x+2 = 0 z.B. liefert Tartaglias Formel die Lésung x =
\3/—1 ++v1-=14+ {’/—1 — /1 —1= =2 die offenbar richtig ist. (Allerdings ist
1 eine weitere Losung.) Ebenso erhdlt man mit Tartaglias Formel die Losung
0 der Gleichung 3+ = 0. (Diese ist iibrigens die einzige Lésung im Bereich
der reellen Zahlen.)

Bei der ebenso simplen Gleichung 2® — x = 0 scheint allerdings Tartaglias
Formel zu versagen. Sie ergibt

38 1 43 1
TV T V 27
Die (richtige) Losung 0 erhdlt man nur dann, wenn man sich grofziigig

dariiber hinwegsetzt, dass der zweimal vorkommende Ausdruck ,/—=% im

27
Bereich der reellen Zahlen gar keinen Sinn hat. (1 und -1 sind weitere Losun-

gen.)
Dies sollte weniger ein Grund zur Resignation sein, als einer dafiir, Qua-
dratwurzeln aus negativen Zahlen einen Sinn zu geben. Umso mehr, als in

Tartaglias Formel solche merkwiirdigen Ausdriicke haufig genug auftreten,
nédmlich immer gerade dann, wenn die Gleichung drei verschiedene reelle
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Losungen hat.

Komplexe Zahlen: Die Matematiker erfanden zu den reellen Zahlen eine
neue Zahl dazu, die ,i“ genannt wurde und die merkwiirdige Eigenschaft
i2 = —1 hat, und betrachteten als neue, sogenannte komplexe Zahlen die
Ausdriicke der Gestalt a + bi mit reellen Zahlen a,b. (Zundchst sprach man
von imagindren, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da
man teilweise unter imaginédren Zahlen nur solche der Form bi mit reellem
b verstand, kam man auf den Namen ,komplexe Zahl“ fiir eine Summe aus

einer reellen und einer (rein) imaginéren Zahl.)

So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so
fasst man die komplexen Zahlen als Punkte in einer Ebene auf, die komplexe
Zahl a + bi bekommt die (rechtwinkligen) Koordinaten (a,b). Es ist auch
niitzlich, sich die Zahl a + bi als den Vektor vorzustellen, der von (0,0) nach
(a,b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Be-
dingnis, dass immer i = —1 sei. Also etwa

(CLl -+ bll) + (CLQ —+ bgl) = (a1 + CLQ) -+ (bl + bg)i,
was geometrisch der Vektoraddition entspricht,
(a1 +b11)(a2+bgl) = a1a2+a1bgi+a2bli+b1b2i2 = (alag—blbg)—i-(a1b2+a2b1)i,

(Vorsichtige Leute — wie ich z.B. — werden allerdings zunéchst die kom-
plexe Zahl a + bi als Paar (a,b) reeller Zahlen a,b schreiben und dann
(a1,b1)(ag,by) = (ajas — biby , aiby + asby) und ((ay,b1) + (ag,by) =
(a1 + ag , by + by) definieren, um dann wirklich beweisen zu kénnen, dass
alle gewohnten Rechenregeln gelten.)

Die Zahlen 0 = 0+ 0i und 1 = 1+ 0i behalten ihre bekannten Eigenschaften.
Man kann natiirlich subtrahieren und sogar dividieren. Némlich fiir a+bi # 0
gilt

I a — bi . a b

a+bi  (a+bi)(a—b) a>+b 2+ 02
(Beachten Sie, dass fiir a + bi # 0 mit a,b € R auch a* + b* # 0 ist.)

Als spezielles Beispiel rechnen wir (1+i)% = 1+2i—1 = 2i, also (- 7+ \f i)? =

£(2i) = i, mithin (\/i5 + %1)4 = i? = —1. Im Bereich der komplexen Zahlen
ist also —1 nicht nur ein Quadrat, sondern auch eine 4. Potenz (iibrigens —

wie wir unten sehen werden — auch eine 6., 8. usw.). Wir bleiben bei diesem

Beispiel und setzen abkiirzend v := 75 + % Dann ist v® = v?v = iv =
—\} + \1[ v = vt = —v, v = vh? = vl =vtd = 03 =
\/Li \}ii und schliellich v® = (v*)? = (=1)? = 1. Dann wiederholen sich die
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Werte der Potenzen, also v? = v%v = v, v'0 = 0v%0? = 0% =i, v!! =83 =
v} = —Lz + \%i usw. Fiir jede beliebige (ganze) Potenz v* gllt offenbar
(v*)® = (v®)% = 1* = 1. D.h. wir haben insgesamt 8 verschiedene Zahlen
gefunden, deren 8. Potenz 1 ergibt, niimlich 1,v,0?%,...,0".

Ein weiteres Beispiel. Setze w := % + %gi. Dann ist w? = i — % 2 - %‘/751 =
— 143 und w? = ww? = (%+‘/7§i)(—%+*/7§i) = —1-3 = 1. Weiter erhlt
man w* = ww = —w, W’ = ww? = —w? und W® = w3 = (-1)(-1) = 1.
Wie oben wiederholen sich jetzt die Potenzen: w’ = w!, w® = w? usw.

k

Ebenso sieht man, dass fiir jede ganze Potenz w"” von w gllt (w*)® = 1. Es
gibt also (mlndestens) 6 verschiedene komplexe Zahlen, die die Gleichung
2% = 1 erfiillen.

Zur geometrischen Deutung der Multiplikation. Sei ¢ = a+bi, a,b € R
eine komplexe Zahl. Thr (Absolut-)Betrag wird definiert als |c| := va? + b2,
d.h. als Lange des entsprechenden Vektors (Pytagoras). Sei ¢ # 0, d.h. a # 0
oder b # 0. Der Vektor ¢ hat zum Vektor 1 = 1 + 0i einen (orientierten)
Winkel, den man als Argument von ¢ bezeichnet. (Das Argument ist im
Grunde nur bis auf Addition eines Vielfachen von 27 definiert.) Ist ¢ das
Argument von ¢, so gilt offenbar

¢ =|c|(cosp +ising), d.h. a = |c|cosp, b= |c|sinp.

Fiir zwei von 0 verschiedene komplexe Zahlen ¢, co mit den Argumenten
©1, w2 erhalten wir mit Hilfe der Additionstheoreme des Sinus und des Cosi-
nus

c1co = |eq]|es (cos 1 COS (g — Sin 1 sin g +1i(sin 1 cos o + cos @1 sin 902)) =

ealleal(cos(ipr + 2) +isin(er + )

D.h. der Betrag des Produktes ist das Produkt der Betréige und das Argument
des Produktes ist die Summe der Argumente der Faktoren. Es folgt z.B.

" =" (cos(ny) + isin(ny).
Dies gilt fiir jede positive ganze Zahl n (und, wie man sich leicht iiberlegt,
auch fiir jede ganze Zahl n).

Sei ¢ # 0 eine komplexe Zahl mit dem Argument ¢ und d := {/|c|(cos(¢/n)+
isin(¢/n)) (n > 0) so gilt offenbar d"” = ¢. D.h. man kann aus jeder komple-
xen Zahl fiir jede natiirliche Zahl n > 0 eine n-te Wurzel ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene
komplexe Zahlen d mit d"” = ¢, wenn nicht gerade ¢ = 0 ist. Das mag man
im Zusammenhang mit der Vieldeutigkeit des Arguments einer komplexen
Zahl sehen: Es ist cos(p + k - 2m) + isin(¢ + k - 27) = cosg + isiny fir
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jede ganze Zahl k. Also ist jede komplexe Zahl dj, := {/|c|(cos(¢/n + k -
27 /n) +isin(¢/n+k-27/n)) eine n-te Wurzel aus ¢, d.h. d} = ¢. Die Zahlen
do,dq, ..., d,_1 sind untereinander verschieden, aber danach wiederholen sie
sich: dn = do, dn—i—l = d17 cee

Insbesondere gibt es n verschiedene komplexe Zahlen zy, 21, ..., z,_1, die alle
die Gleichung z" = 1 erfiillen. Eine von ihnen ist 1, alle haben den Betrag
1, d.h. sie befinden sich auf dem Einheitskreis. Sie bilden offenbar die Ecken
eines regelméfligen n-Ecks. Von dieser Tatsache ist Gaul ausgegangen, als
es ihm kurz vor 1800 gelang, ein regelméfliges 17-Eck allein mit Zirkel und
Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen
beliebige Wurzeln ziehen kann, lédsst sich auch der ,Fundamentalsatz der
Algebra“ beweisen:

Jedes Polynom 2" +¢;2" ' +- -+ +¢,_12 + ¢, mit komplexen Koeffizienten Cj
hat (mindestens) eine komplexe Nullstelle. (Diesen Satz hat GauB als erster
vollstandig bewiesen.)

(N.B. Dass ein Polynom vom Grad n héchstens n Nullstellen hat, ist ebenfalls
ein richtiger und wichtiger — iibrigens in allgemeineren Bereichen giiltiger —
Satz, der aber fast trivial zu beweisen ist und nicht als Fundamentalsatz der
Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Ma-
tematiker mit der Entdeckung/Erfindung der komplexen Zahlen ein , weites
Feld“ 6ffnet, und er sich durch Beharren auf den reellen Zahlen viele Méglich-
keiten verbauen wiirde. Als einzelnes Beispiel sei genannt, dass manche Sétze
iiber die Verteilung der Primzahlen sich am besten mit Hilfe der komplexen
Zahlen beweisen lassen. (Im Anhang finden Sie eine Ausfithrung iiber die
komplexe e-Funktion.)

Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zuniitze,
ist auf dem Holzweg: Keine Elektrotechnik und keine Quantenteorie ohne
komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat
es mit mehrdeutigen Wurzel zu tun. Mit den Quadratwurzeln ist es einfach:

Mit 4/ % + ’2’—?; sei willkiirlich eine der beiden mdoglichen Wurzeln bezeichnet;

—1/ % + g—i ist dann automatisch die andere. Jeder der beiden Summanden

in Tartaglias Formel ist nun eine kubische Wurzel mit 3 moglichen Werten.
So hat man insgesamt 9 mdgliche Kombinationen. Es gibt nun eine Regel,
welche 3 Kombinationen die Nullstellen des kubischen Polynoms ergeben.
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Hierauf will ich nicht genauer eingehen und verweise stattdessen auf das Buch
,Kubische und biquadratische Gleichungen* von Heinrich Dérrie (Leibniz
Verlag Miinchen 1948).

Die komplexe e-Funktion: Fiir z = x + iy, z,y € R, setzt man e* :=
e*(cosy + isiny). Dies ist keineswegs willkiirlich. Denn fiir die so definierte

Funktion gilt
oo Zn
L — _—
- ; n!’

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im
Komplexen. Ferner erhilt man auch fiir komplexe z1, 25 die Formel e* %2 =
e*1e*?. Die komplexe e-Funktiom bildet die reelle Achse {a+bi |a € R,b =0}
auf die positive reelle Halbachse und die imaginére Achse {a+bi | a = 0,b €
R} auf die Einheitskreislinie {a + bi | a,b € R,a? + b* = 1} ab.
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11

10.
11.
12.

13.
14.

15.

16.

Vorkurs-Aufgaben

. Berechnen Sie

a) 2* und 42, b) 3% und 43, c) (64 4)3 und 63 + 43.

Berechnen Sie
a) 2% - 2% und 2%3. b) (2-3)% und 263,

Berechnen Sie

a) sin + sin7 und sin(7 + ), b) sin § 4 sin § und sin(§ + §).

)

) Berechnen Sie 22 — 2! und 271
b) Berechnen Sie 2% — 2! und 2371
c) Berechnen Sie 3% — 3! und 3271

d) Was haben Sie aus a), b) und ¢) gelernt?

a

Nach welchen Regeln darf man a™*", a™", (ab)™ umformen?

Schreiben Sie (7a” + 6a%)? als Summe von Potenzen von a mit ganz-
zahligen Koeffizienten.

Berechnen Sie v/9 + 16 und v/9 + v/16.

Berechnen Sie sin(g + %) und sin § + sin

Welches Ergebnis ist grofier?

us

5 moglichst ohne Rechner.

Berechnen Sie 2% und (24)2. (Per definitionem ist a* = a®).)
Berechnen Sie 23" und 23" - 23",
Finden Sie, wenn mdglich, eine natiirliche Zahl n mit ((3%)?)" = 33"

Zeigen Sie: Zu jeder ungeraden Zahl u € N gibt es ein m € N mit
u? = 8m + 1.

Geben Sie allgemeine Formeln fiir (a + b)® und (a + b)* an.

Berechnen Sie 10...01%, wo zwischen den beiden Einsen 999 (oder all-
gemeiner n— 1) Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl
an, d.h. in dhnlicher Weise wie hier die Basis der zu berechnenden Po-
tenz angegeben ist.

Berechnen Sie (a — b)(a* + a®b + a?V* 4 ab® 4+ b*) und allgemein
(a—0) > 0 oa" b (Dabeiist 337 a" 70 = a"+a" b4 +ab" '+
+0".)

Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millio-
nen, c) eine Milliarde, d) eine Billion, e) one billion (amerikanisch).
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17.

18.

19.

20.

21.

22.

Bitte machen Sie sich ein paar Gedanken {iber den Sinn und Nutzen
negativer Zahlen. Die Gleichung

22+ 312 =37z

hat die Losungen 13 und 24, wie man leicht durch Rechnen in N nach-
priift. Das bekannte Losungsverfahren — mit quadratischer Ergdnzung —
benutzt jedoch mit Gewinn das Rechnen mit negativen Zahlen. An die-
sem Beispiel sieht man auch, wie richtig und wichtig es ist, das Produkt
negativer Zahlen so zu definieren, dass z.B. (—13)(—24) = 312(> 0) ist.

Zeigen Sie (etwa mit Induktion): a) Fiir alle ganzen Zahlen n > 3 ist
n?>2n+1.

b) Fiir alle ganzen Zahlen n > 5 ist 2" > n?.
Ein Zahlenratsel:

EULER = SB - RL*
GAUSS L-A-LUL-EF
ABEL = A-RR-RL-L

Wenn man jeden Buchstaben durch eine Ziffer des Dezimalsystems er-
setzt, steht in jeder Gleichung rechts die Primfaktorzerlegung der linken
Seite. (Natiirlich sind gleiche Buchstaben durch gleiche Ziffern zu erset-
zen, aber nicht notwendig verschiedene Buchstaben durch verschiedene
Ziffern. Die Zahlen diirfen mit der Ziffer 0 beginnen. Aber man darf
natiirlich verwenden, dass 0 keine Primzahl ist.)

Bestimmen Sie simtliche Losungen. (Durch geschicktes Vorgehen kann
man sehr schnell zum Ziel kommen. Insofern habe ich es mir nicht so
einfach gemacht, wie manche vielleicht vermuten.)

Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man
mit Postkarten liickenlos und ohne Uberlappungen bedecken kann? Die
Lénge einer Postkarte verhélt sich zur Breite wie V21, (Nattirlich soll
die Kantenlénge der Tischplatte nicht 0 sein.)

(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenlan-
gen breit. Wie viele Karten brauchen Sie, um eine Flache entsprechen-
den AusmaBes zu bedecken?)

Finden Sie (etwa durch Probieren) ganze Zahlen m,n mit

1

m
3 15

+ .
==
und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

Seien m,n € N;. Zeigen Sie: T ist nicht ganz.
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Finden Sie natiirliche Zahlen m,n mit

14

m,on_=
3 5 15

Finden Sie ganze Zahlen m,n mit n # 0 und

m+n_1

3 5 3

Berechnen Sie s s L
__|__ _+_

3 ;undg’l6

3ts3 316

b b
Berechnen Sie %—i— — und zeigen Sie, dass %+ — > 2ist,wenna >b>0
a a

gilt.
Bringen Sie auf einen Bruchstrich:

a b c bc ac ab
—+—+— und —+ —+ —
bc  ac ab a b c

Schreiben Sie tan z + cot x als rationalen Ausdruck in sin 2z.

Losen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem
einen oder anderen Fall nicht mdoglich ist:

2,7 41
3+6_1 3 6_1
3_1- ' T 17
4 x 6 T
a) Kiirzen Sie den Bruch
212 _ 3
26

so gut es allgemein moglich ist.

b) Kann man denselben Bruch als Differenz zweier Potenzen von x
schreiben, wo jeder Exponent auch negativ sein darf (aber nicht muss)?

¢) Kann man dasselbe fiir den Kehrwert des Bruches machen?
Das entsprechende wie oben fiir den Bruch

th— 1?4t
1o

Vereinfachen Sie

G+ D)l —k=1! " kK —&)
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33.

34.

35.

36.

37.

38.

39.

40.

Seien pq, ..., p, verschiedene Primzahlen mit n > 2. Zeigen Sie, dass

1 1
a:_+_|__
Y4 Pn

keine ganze Zahl ist. (Tipp: Es ist nicht einmal p; - - - p,_1a ganz.)

1

Zeigen Sie: Fiir n > 2 ist a := Z T keine ganze Zahl. (Tipp: Sei m
k=2

das kleinste gemeinsame Vielfache aller Nenner. Was gilt fiir am/2 ?

Betrachte die grofite 2-Potenz unter den Nennern.)

n

Zeigen Sie: Fiir n > 2 ist a := il keine ganze Zahl.
k=2

—~ 1
Zeigen Sie: Fiir n > 1 ist a := ;m keine ganze Zahl. (Das
Einfachste ist es wohl, die Summe zu berechnen.)

Sei @ eine Menge von Primzahlen und S die Menge aller s € Ny, deren
Primfaktoren sdmtlich zu () gehoren. Zeigen Sie, dass die Menge

{g|a€Z,seS}

ein Unterring von Q ist.

Betrachten Sie
K:={a+0v/2|abeQ}, L:={a+20v2|abeQ},

R={a+bV2|abecZ}, S:={a+20vV2|abeZ.
a) Zeigen Sie: K und L sind Teilkorper von R. Zeigen Sie ferner K = L.

b) Zeigen Sie: R und S sind beide keine Teilkorper, aber Teilringe von
R. Zeigen Sie ferner R D S und R # S.

Zeigen Sie, dass die Menge {—1, 0, 1} auf folgende Weise zu einem
Korper wird: Die Multiplikation ist die Ubliche. Die Addition & wird
definiert durch 11 := -1, (—1)®(—1) := 1 und a®b := a+bin allen
iibrigen Féllen. (Den Beweis der Assoziativitdt der Addition und der
Distributivitét brauchen Sie jeweils nur fiir einen weniger trivialen Spe-
zialfall auszufithren. Es gibt auch einen Beweis, der die Assoziativitit
der Addition und die Distributivitit auf die entsprechenden Gesetze in
Z zuriickfiihrt.)

Seien m,n € Ny. Zeigen Sie n!|m(m +1)---(m +n)
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41.

42.

43.

44.

45.

46.
47.

48.

n
a) Seien p, q verschiedene Primzahlen. Zeigen Sie, dass 1_p irrational
nqg
ist. (Tipp: Ansonsten erhielte man einen Widerspruch zur eindeutigen

Primfaktorzerlegung.)

b) Folgern Sie, dass es hochstens eine Primzahl gibt, deren Logarithmus
rational ist.

Seien a, b, c,d > 0 reell. Zeigen Sie

a_c_,a_ate ¢
b~ d b~ b+d— d
Schlieflen Sie daraus, dass
a ¢ ,a+tc
bt a7 bt

ist.

Zeigen Sie: Die abbrechenden Dezimalbriiche bilden einen Unterring
von Q.

Bei einer Uhr seien der Stunden-, der Minuten- und der Sekundenzei-
ger kontinuierlich laufend, zentral angebracht und genau koordiniert,
so dass um Punkt 0 Uhr alle 3 Zeiger genau iibereinanderstehen. Zu
welchen anderen Zeiten stehen alle 3 Zeiger genau iibereinander?

Zwei Menschen wandern einander auf der gleichen Strafle entgegen. Der
23 km
eine startet in A und wandert mit einer Geschwindigkeit von T

Der zweite startet im 19,5 km entfernten B eine halbe Stunde spéter

als der erste und wandert mit der Geschwindigkeit Z_m Wann und

h

wo treffen sich die beiden?
Seien a,b € Q mit a + bv/2 = 0. Zeigen Sie a = b = 0.
Geben Sie systematisch alle Tripel (a, b, ¢) ganzer Zahlen an, fiir die

1 1 1
O<a<b<cund —-+-+-€7%Z
a b ¢

gilt. Ohne einen Text, der beweist, dass Sie wirklich alle mogli-
chen Tripel gefunden haben. ist Ihre Losung nichts wert!

Berechnen Sie

Z%, > n(n+2)

n=1 n=—3
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49.

50.

ol.

52.

53.

54.

99.

56.

57.

58.

99.

60.

61.

62.

Seien m,n € Ny und m < n. Zeigen Sie

RRENEI
—k(k+1) m n+l

Finden Sie a,b € N, derart dass \/a, v/ beide irrational sind, (y/a+v/b)?
aber rational ist.

Zeigen Sie, dass V2 + /3 irrational ist.

a) Zeigen Sie a® + b* > 2ab fiir alle a,b € R. (Tipp: 22 > 0.)

b) Folgern Sie a® + b* > ab fiir a,b € R. (Beachten Sie, dass 2ab > ab
nicht immer richtig ist! Unterscheiden Sie 2 Fille.)

c) Folgern Sie a® + b? + ¢® > ab + bc + ac fiir alle a,b,c € R aus a).

Sei a € R eine Nullstelle des Polynoms 2" + 12"t + - -+ 4+ ap_17 + ayp,
mit a; € Z. Zeigen sie: Ist o ¢ Z, so ist o ¢ Q.

Berechnen Sie lim (27t — 27)

n—oo

[o.¢]
Berechnen Sie Z 2™+ wo m, 1 > 0 sind, fiir diejenigen z, fiir welche

k=0
die Reihe konvergiert.

o0

1

Zeigen Sie Z 1 00

o0

Zeigen Sie s < 0.

k=1

= 1
Zeigen Sie Z " < 00.
k=2

Finden Sie a,b € R derart, dass (2% — axy + by?)(2? + axy + by?) =
2 4-4y* fiir alle reellen x, y gilt. Welche bemerkenswerte Identitét ergibt
sich, wenn man y = 1 setzt?

1 1

Berechnen Sie -
FECHnER o1 22 —2xy + 29?2 x?+ 2xy + 292

|
Zeigen Sie lim — =0 .
n—oo N

[e.e]
|
Zeigen Sie Z — <00
n

n=1
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63.

64.

65.

66.

67.

68.

69.

=1
Zeigen Sie Z e < 0.
k=2

881/3 o (88)1/3

Berechnen Sie ohne Taschenrechner ————-—
5 1T 13
Bestimmen Sie die reellen Nullstellen des Polynoms

x® — 2525 — (4223 — 216)(z — 5)(z +5) .

Begriinden Sie die p, g-Formel fiir die Losung einer quadratischen Glei-
chung.

Ein Aufzug bewegt sich mit 4 m/sec aufwérts. Eine kleine Eisenku-
gel fillt auf das Dach der Aufzugkabine. Und zwar wurde sie in dem
Augenblick losgelassen, als das Kabinendach 22,1 m entfernt war. Wie
lange dauert es, bis die Kugel aufprallt, und welche Weglénge hat sie
zuriickgelegt? (Vernachlédssigen Sie den Luftwiderstand und rechnen Sie
mit einer Erdbeschleunigung von 10 m/sec?.)

Zeigen Sie, dass Gleichungen der Form 22 + ax? + %x + b = 0 mit
a,b € R genau eine reelle Losung haben, und geben Sie fiir diese eine
Formel an.

In der Musik werden zwei Tonintervalle als ,gleichgrof8“ bezeichnet
— und auch als gleichgro3 empfunden, wenn die beiden Tonfrequenz-
verhéltnisse des jeweils hoheren Tones zum jeweils tieferen Ton eines
Intervalles gleich sind.

a) Die Frequenzverhéltnisse sind bei einer (reinen) Oktave 2, bei einer
reinen Quint %, bei einer reinen grofien Terz %.

Wenn man von einem Grundton aus 4 reine Quinten auf- und an-
schliefend 2 Oktaven absteigt, ist man dann eine reine groflie Terz
oberhalb des Grundtones gelandet? (,,Syntonisches® oder ,,didymisches
Komma®)

Koénnte man dieses eventuell erreichen, indem man andere Anzahlen
von Quinten und Oktaven auf- und absteigt?

b) Die Oktave sei in n (€ Ny) gleichgrofie Tonschritte (Intervalle) ge-
teilt. Was ist das Frequenzverhéltnis der beiden Tone eines solchen
Tonschrittes? (Fiir n = 12 erhidlt man die 12 Halbtonschritte der tem-
perierten Stimmung.)

c¢) Gesucht ist ein n € Ny, so dass fiir die Unterteilung der Oktave in n
gleichgrofle Tonschritte folgendes gilt:

Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte
aufsteigt, landet man eine reine Quinte oberhalb des Grundtones.
Frage: Gibt es ein solches n ?

d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf-
und anschliefend 3 Oktaven absteigt, andererseits 6 reine Quinten ab-
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70.

71.

72.

73.

74.

75.

76.

77.

78.

und anschliefend 4 Oktaven aufsteigt, trifft man dann auf exakt densel-
ben Ton? (Beim ersten Verfahren landet man auf dem fis, beim zweiten
auf dem ges, wenn man jeweils mit dem ¢ beginnt. ,Pythagoreisches
Komma®)

Zeigen Sie, dass die Menge Q? der Menge aller Paare rationaler Zahlen
durch die Definitionen

(a,b) + (a',b") ;== (a+d',b+ ) und (a,b)(d,b") := (ad’,bV)
zwar zu einem Ring, aber nicht zu einem Korper wird.

Seien p, ¢ € R. Beschreiben Sie die Menge der (z,y) € R? mit
22 + pry + qy* = 0 moglichst konkret.
n!

Zeigen Sie lim — =0 .

n—oo N
Zeigen Sie: Fiir jedes n € N ist 2 - 53"+ 4+ 4" durch 11 teilbar, d.h. es
gibt zu jedem n ein (von n abhingiges) k € N mit 11-k = 2.5 47,
(Tipp: Induktion.)

Zeigen Sie: Z k-k!'= (n+1)! — 1. (Dies geschieht mit vollstandiger
k=0
Induktion ohne Miihe.)

1
Schreiben Sie —— (fiir n > 1) als Differenz zweier Stammbriiche.
n(n+1)
Zeigen Sie i L =1- ; Was folgt daraus fiir die unend
& —(k+1 T (Dl &

=k
liche Reihe Z ?
hﬂk+U!

Seien X Y -2 7 Abbildungen. Zeigen Sie:

a) Sind « und 3 beide injektiv (bzw. surjektiv), so ist es auch [oa.
b) Ist foar injektiv, so ist es auch a.

c) Ist Bear surjektiv, so ist es auch f.

d) Geben Sie zwei Beispiele, wo (o« bijektiv ist, aber weder /3 injektiv
noch « surjektiv ist. Wahlen Sie im ersten Beispiel fiir X, Y, Z endliche
Mengen und im zweiten X =Y = Z =N.

a) Zeigen Sie, dass die folgenden Abbildungen f; : R — R bijektiv sind:

11—z fir O<z<l1 z fir z<0
fl(a:)::{ { =

xr  sonst , Jao(2) = ! fir x>0
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79.

80.

81.

82.
83.
84.

b) Tun Sie dasselbe fiir die Abbildung f3 : R — R mit

o x fir z€Q
f?’(x)'_{x—l—l fir ¢ Q

Sei F C Rund f: R — R definiert durch

o) = 23 falls x€eFE
V=1 o falls r€R—E

Untersuchen Sie f auf Injektivitdt und Surjektivitat
a) im Falle £ =@Q, b) im Falle E =R — Q.

Ist die Abbildung f : Q* — R, (x,y) — = + yv/2 injektiv? (Antwort
mit Begriindung!)

Beschreiben Sie in einem Venn-Diagramm mit den Mengen A, B, C die

Mengen AU (BN C)und (AUB)NC.
Zeigen Sie (A—B)NC=(AnC)—(BNnC)=(AnC) - B.
Zeigen Sie (AUC) — (BUC)=A—-(BU(C)=(A-B)—-C.

1

Machen Sie sich ein (inneres) Bild der Funktion sin - und iiberlegen

Sie sich (zumindest anschaulich), warum

A S . . 1 .
lim sin — nicht existiert, aber lim zsin — =0 ist.
z—0 T z—0 T

o4



