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Vorwort

Eigentlich sollte die Beschäftigung mit der Mathematik ja Vergnügen berei-
ten! Aber auch wenn man nicht erwartet, dass sie ein billiges Vergnügen ist, so
muss man doch feststellen, dass sie vielen Menschen eher zum Missvergnügen
dient, leider auch solchen, die dieses Fach studieren.

Diesen will ich versuchen, so gut es mir in der kurzen Zeit gelingen mag, ein
wenig zu helfen. Ich will sie zum einen dabei unterstützen, die hohe Schwelle
von der Schul- zur Hochschul-Mathematik zu nehmen.

Zum anderen liegt mir am Herzen, gewisse krasse Defizite auszuräumen, auf
die ich leider immer wieder stoße. Diese Defizite liegen im Bereich der Bruch-
und Potenzrechnung. Es mag entwicklungspsychologische Gründe dafür ge-
ben. Aber spätestens zu Beginn des Studiums muss dieses Thema erledigt
sein.

Anmerkung: In dieses Skript habe ich einige Texte unverändert aufgenom-
men, die ursprünglich anderen Zwecken dienten. Das werden Sie merken. Ich
denke aber, dass sie deshalb nicht unbrauchbar sind. Die knappe Zeit wird
mich zwingen, auf manche Themen des Skriptes zu verzichten.
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1 Natürliche und ganze Zahlen

1.1 Die natürlichen Zahlen sind 0, 1, 2, 3, . . ., insgesamt unendlich viele, so
dass man sie nicht alle hinschreiben kann. (Übrigens gibt es unter Mathe-
matikern einen erbitterten Streit darüber, ob man die 0 wirklich zu ihnen
rechnen soll. Ich jedenfalls tue das und setze es hiermit für diesen Kurs fest.)

Die Menge (=Gesamtheit) der natürlichen Zahlen wird mit N bezeichnet,
also

N := {0, 1, 2, 3, . . .}

Mit N1 bezeichne ich die Menge der natürlichen Zahlen 6= 0 also N1 :=
{1, 2, 3, . . .} . (Wenn man will, kann man auch N2 := {2, 3, 4, . . .} definieren
usw.)

1.2 Die ganzen Zahlen sind

. . . ,−2,−1, 0, 1, 2, . . . (1)

Ihre Menge wird mit Z bezeichnet.

Auf naheliegende Weise kann man die ganzen Zahlen mit gewissen Punkten
auf einer Geraden identifizieren, wo der Abstand von n zu n + 1 für alle n
derselbe ist. Wir wollen später diese Gerade mit anderen Zahlen auffüllen,
um sie zur

”
Zahlengeraden“ zu machen.

1.3 Sie wissen, wie man ganze Zahlen addiert und multipliziert. Wahrschein-
lich kennen Sie auch folgende Gesetze für diese

”
Verknüpfungen“

(1)


m + n = n + m mn = nm Kommutativität
k + (m + n) = (k + m) + n k(mn) = (km)n Assoziativität
k(m + n) = km + kn Distributivität

(In der letzten Gleichung ist natürlich die Konvention
”
Punktrechnung geht

vor Strichrechnung“ anzuwenden; d.h. km + kn := (km) + (kn).) Beachten
Sie, dass das Distributivitätsgesetz die Addition und die Multiplikation voll-
kommen unterschiedlich behandelt. Die Ausdrücke k+mn und (k+m)(k+n)
haben fast immer verschiedene Werte!

Übrigens hielt ich als abc-Schütze die Kommutativität der Multiplikation
natürlicher Zahlen keinesfalls für selbstverständlich. Erst das Beispiel der
Apfelsinen, die in einer Kiste in 4 (waagerechten) Reihen à 5 Stück, d.h. aber
auch in 5 (‘senkrechten’)Reihen à 4 Stück angeordnet waren, machten mir
das Kommutativitätsgesetz für die Multiplikation augenfällig.
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Die Zahlen 0 und 1 spielen für die Addition, bzw. Multiplikation eine Son-
derrolle:

(2) 0 + n = n , 1n = n

Man nennt die 0 ein neutrales Element für die Addition und die 1 ein
solches für die Multiplikation.

1.4 Im Bereich aller ganzen Zahlen gilt folgende Existenzaussage, die für N
noch falsch ist:

(3) Zu jedem n ∈ Z gibt es genau ein n′ ∈ Z mit n + n′ = 0

Zum Beispiel ist (−2)′ = 2. Wir bezeichnen n′ mit −n, schreiben also
−(−2) = 2. Man nennt −n das additiv Inverse von n.

Definition 1.5 Eine Menge, die mit zwei Verknüpfungen +, · versehen ist,
für die neutrale Elemente existieren und die bislang angegebenen Gesetze
(einschließlich(3)) gelten, heißt ein Ring.

1.6 Die Gleichung
a + x = b

mit der Unbekannten x besitzt in Z (allgemeiner, in jedem Ring) eine ein-
deutigen Lösung, nämlich x = b + (−a).

Wir schreiben a− b := a + (−b) und bei längeren
”
arithmetischen Summen“

z.B. a− b + c− d = a + (−b) + c + (−d).

Merke: Ist c 6= 0, so ist a− b + c 6= a− (b + c).

Anstelle der Existenz des additiv Inversen, könnte man auch zu je zwei gan-
zen Zahlen m, n die Existenz ihrer Differenz m − n fordern, die dadurch
gekennzeichnet ist, dass sie die Gleichung (m− n) + n = m erfüllt.

1.7 Wir wollen zeigen, dass sich die Regel (−a)(−b) = ab, die manch einem
etwas willkührlich erscheinen mag, allein aus den Regeln (1),(2),(3) ergibt,
d.h. in jedem Ring gilt. Zunächst zeigen wir 0b = 0.

Es ist 0b = (0 + 0)b = 0b + 0b Durch Addition von −(0b) auf beiden Seiten
und Anwendung der Assoziativität ergibt sich 0 = 0b.

Jetzt zeigen wir: (−a)b = −(ab).

Da ab + (−a)b = (a + (−a))b = 0b = 0 ist, ist (−a)b das additiv Inverse von
ab, d.h. (−a)b = −(ab).

Da a + (−a) = 0 ist, ist a das additiv Inverse von −a, d.d. −(−a) = a.
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Schließlich ist (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

Wenn man also (−1)(−1) überhaupt definieren und dabei die o.a. Regeln
beibehalten will, bleibt einem nichts übrig, als (−1)(−1) = 1 zu setzen.

Der französische Schriftsteller Henri Beyle, der sich Stendhal nannte und sich
für Mathematik interessierte (dessen Romane ich sehr liebe) mochte sich mit
dieser Regel nicht anfreunden.

Es wäre schön, wenn Sie weitere – etwa geometrische – Gründe fänden, warum
die Regel (−a)(−b) = ab sinnvoll ist.

1.8 Man kann die ganzen Zahlen der Größe nach vergleichen: m < n heißt

”
m (ist) kleiner (als) n“. Dies ist äquivalent zu n > m, d.h.

”
n (ist ) größer

(als) m“. Ferner benutzt man das Zeichen m ≤ n (
”
m (ist) kleiner (oder)

gleich n“) in der Bedeutung

m ≤ n : ⇐⇒ m < n oder m = n

‘Umgekehrt’ gilt
m < n ⇐⇒ m ≤ n und m 6= n

Die
”
Relation“

”
≤“ genügt neben der Regel

”
0 ≤ n für alle natürlichen

Zahlen n“ den folgenden Gesetzen:

(4)


k ≤ m,m ≤ n =⇒ k ≤ n Transitivität
n ≤ n Reflexivität
m ≤ n, n ≤ m =⇒ m = n Antisymmetrie
m ≤ n oder n ≤ m Totalität

Was folgt daraus für
”
≥

”
? Man kann folgende Regeln ableiten:

(5) k ≤ m < n =⇒ k < n ; und k < m, m ≤ n =⇒ k < n

Bezüglich der Addition und Multiplikation gilt für ≤:

(6)

{
m ≤ n =⇒ k + m ≤ k + n
0 ≤ k, m ≤ n =⇒ km ≤ kn

Welche Regeln gelten für
”
<“?

1.9 Wichtig ist das
”
Induktionsprinzip“, das bei einer axiomatischen Be-

schreibung der natürlichen Zahlen gemeinhin eines der Axiome ist:

Sei m ∈ Z und A(n) eine Aussage über ganze Zahlen n. Es gelte:

A(m),

und
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wennimmer A(n) für ein n ≥ m richtig ist, so ist es auch A(n + 1).

Dann gilt A(n) für alle n ≥ m, n ∈ Z.

(Ein Beweis dafür, dass A(m) gilt, heißt
”
Induktionsanfang“. Ein Beweis

dafür, dass A(n + 1) aus A(n) folgt, heißt
”
Induktionsschluss“ Die Voraus-

setzung in diesem Schluss heißt auch
”
Induktionsvoraussetzung“ oder

”
In-

duktionsannahme“.)

Example 1.10 Wir beweisen für n ∈ N die Aussage A(n)

0 + 1 + 2 + · · ·+ n =
n(n + 1)

2

Die Aussage A(0)

0 =
0(0 + 1)

2

ist offenbar richtig. Unter der Annahme, dass A(n) gilt, wollen wir jetzt
A(n + 1) zeigen:

0 + 1 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ n + 1 =

n(n + 1) + 2(n + 1)

2
=

(n + 2)(n + 1)

2
=

(n + 1)((n + 1) + 1)

2

Also gilt A(n) für alle n ∈ N.

Hier haben wir das Rechnen mit
”
Brüchen“ verwendet. In Wahrheit sind

allerdings die Ausdrücke n(n + 1)/2 natürliche Zahlen für alle n ∈ N

In der Mathematik werden sehr häufig Beweise mit dem Induktionsprinzip
geführt.

Bevor wir ein hierzu (unter den o.a. Regeln, d.h. in einem geordneten Ring)
äquivalentes

”
Minimalprinzip“ formulieren, benötigen wir zwei Definitionen:

Definitions 1.11 a) Mit ∅ wird die leere Menge bezeichnet, d.h. diejenige,
die kein Element besitzt. Gilt für eine Menge M die Aussage M 6= ∅, so
nennt man M auch nichtleer. M ist also nichtleer genau dann, wenn M
mindestens ein Element besitzt.

b) Eine Teilmenge M von Z heißt nach unten (bzw. oben) beschränkt,
wenn es ein s ∈ Z gibt, so dass s ≤ x (bzw.) s ≥ x) für alle x ∈ M gilt. Ein
solches s heißt eine untere (bzw. obere) Schranke von M .

c) Ein kleinstes (bzw. größtes) Element einer Teilmenge M ⊂ Z ist ein
m ∈ M mit der Eigenschaft m ≤ x (bzw. m ≥ x) für alle x ∈ M .
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Ein kleinstes Element einer Teilmenge M von Z ist immer auch eine untere
Schranke, aber nicht umgekehrt. Z.B. ist 0 sowohl ein kleinstes Element,
als auch eine untere Schranke von N. Jedoch ist −1000 zwar eine untere
Schranke, aber kein kleinstes Element von N. Schließlich besitzt N weder
eine obere Schranke noch ein größtes Element.

1.12 Das Minimalprinzip lautet nun:

Ist M eine nach unten beschränkte nichtleere Teilmenge von Z, so besitzt M
ein kleinstes Element.

Remark 1.13 Eine wichtige Eigenschaft des Ringes der ganzen Zahlen ist
die Nullteilerfreiheit. Sie besagt:

ab = 0 =⇒ a = o mboxoderb = 0.

Es gibt verschiedene Möglichkeiten, sie zu beweisen. Dabei kommt es
natürlich darauf an, von welcher Grundlage aus man die Theorie der (natürli-
chen, bzw. ganzen) Zahlen betreibt: etwa ausgehend von den sogenannten
Peano-Axiomen oder auf sogenannte konstruktive Weise.

Von der Schule her sollten Sie dies für die natürlichen Zahlen für selbst-
verständlich halten. Für alle ganzen Zahlen erhält man die Nullteilerfreiheit
auf Grund der Regeln

(−a)b = −(ab) , (−a)(−b) = ab.

Aus der Nullteilerfreiheit ergibt sich die Kürzungsregel

a 6= 0 und ab = ac =⇒ b = c.

Denn ab = ac ⇒ ab− ac = 0 ⇒ a(b− c) = 0 ⇒ b− c = 0 ⇒ b = c.
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2 Eindeutige Primfaktorzerlegung

Definition 2.1 Seien m, n ∈ Z. Wir sagen n teilt m (oder n ist ein Teiler
von m, oder m ist ein Vielfaches von n) und schreiben n|m, wenn es ein
k ∈ Z mit kn = m gibt. Ist n kein Teiler von m, so schreiben wir n - m.

2.2 Eigenschaften: a) 1|n und n|0 für alle n ∈ Z

b) n|m, m|k =⇒ n|k

c) n|m1, n|m2 =⇒ n|a1m1 + a2m2 für alle a1, a2 ∈ Z.

d) n|m1, n - m2 =⇒ n - m1 + m2

e) Für n, m ∈ N1 (also n, m > 0 gilt: n|m =⇒ n ≤ m

Definition 2.3 Eine Primzahl ist eine ganze Zahl p > 1 die außer 1 und
p keine weiteren natürlichen Zahlen als Teiler hat.

Natürlich sind im Bereich aller ganzen Zahlen auch −1 und −p noch Teiler
von p.

Proposition 2.4 Jede ganze Zahl n > 1 ist ein Produkt von Primzahlen.

Dabei versteht man eine Primzahl als Produkt eines einzigen Faktors. (Wenn
man will, kann man die 1 als Produkt von 0 Faktoren auffassen.)

Proof: Angenommen, die Behauptung wäre falsch, d.h. die Menge derje-
nigen n > 1, die kein Produkt von Primzahlen sind, wäre nicht leer. Nach
dem Minimalprinzip hätte sie ein kleinstes Element m. Dieses kann keine
Primzahl sein, da eine solche als Produkt von Primzahlen (mit 1 Faktor)
gilt. Also gibt es einen Teiler d von m mit 1 < d < m. D.h. es gibt ein e ∈ N
mit m = de. Für e gilt gleichfalls 1 < e < m. Da m die kleinste ganze Zahl
> 1 ist, die nicht in Primfaktoren zerlegbar ist, müssen die kleineren d, e in
Primfaktoren zerlegbar sein, etwa

d = p1 · · · pr , e = p′1 · · · p′s

Also ist m = de = p1 · · · prp
′
1 · · · p′s doch in Primfaktoren zerlegbar. Wider-

spruch. �

Remark 2.5 Aus diesem Beweis, den ich bewusst auf recht abstrakte Weise
geführt habe, kann man nicht erkennen, wie man eine Primfaktorzerlegung
einer ganzen Zahl n > 1 effektiv herstellen kann. Dies ist aber prinzipiell
möglich. Durch systematisches Durchprobieren der Zahlen 2,3,4,... findet man
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nämlich die kleinste ganze Zahl p mit 2 ≤ p ≤ n, die ein Teiler von n ist. p
ist prim; denn jeder Teiler von p ist ≤ p und ein Teiler von n. Dann macht
man dasselbe mit n/p, wenn noch p 6= n ist. Usw.

Diese Methode ist allerdings schon für Zahlen n, die im Dezimalsytem einige
100 Stellen haben, mit den besten Computern in vernünftiger Zeit nicht mehr
ausführbar. Es gibt zwar ein paar Tricks, schneller voranzukommen. Aber
die vermindern nur unwesentlich das Problem. (Man weiß allerdings, dass
sogenante Quantencomputer, wenn es sie denn je geben wird, dies Problem
lösen könnten.)

Andererseits ist es sehr wohl möglich, von Zahlen der angegebenen Größen-
ordnung in wenigen Sekunden oder Minuten festzustellen, ob sie prim sind –
ohne eine Faktorzerlegung im negativen Falle angeben zu können.

Auf Grund dieser Diskrepanz ist es möglich, Texte nach einem öffentlich
gemachten Schlüssel zu verschlüsseln, die man ohne eine zusätzliche Infor-
mation nicht mehr enschlüsseln kann.

Den Beweis der Eindeutigkeit der Primfaktorzerlegung bereiten wir durch
folgendes Lemma von Euklid vor:

Lemma 2.6 Seien m,n ∈ N und p eine Primzahl mit p|mn so gilt p|m oder
p|n.

Proof: Angenommen, die Aussage sei für gewisses p, m, n falsch. Dann
gibt es – bei festen p, n unter allen m ∈ N1, für die zwar p|mn, aber p - m,
p - n gilt, ein kleinstes Element, genannt a. Insbesondere ist p - a und a 6= 1,
Wir betrachten zwei Fälle:

1. Fall: a > p. Dann gilt p|(a − p) · n, aber p - a − p (da p - a) und p - n.
Widerspruch zur Minimalität von a.

2. Fall: a < p. Man kann dann p durch a mit Rest dividieren. D.h. es gibt
q, r ∈ N mit p = qa + r, r < a. Die Möglichkeit r = 0 ist ausgeschlossen, da
1 < a < p und p prim ist. Somit folgt auch p - qa. Wieder gilt: p|(p− qa)n =
rn, da p|pn und p|qan, aber p - r, p - n, r < a. �

Mit Hilfe von Induktion kann man das euklidische Lemma leicht auf mehr
als 2 Faktoren verallgemeinern.

Theorem 2.7 Seien
m = p1 · · · pr = q1 · · · qs

Primfaktorzerlegungen derselben ganzen Zahl m > 1. Dann ist r = s und
man kann die Reihenfolge der qj so ändern, dass p1 = q1, p2 = q2, . . . pr = qr

wird.
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Proof: Wir benutzen Induktion nach r, wobei der Fall r = 1 fast trivial
ist. Aus p1|m folgt mit Hilfe des euklidischen Lemmas: p1 teilt eines der qj.
Da wir die Reihenfolge der qj verändern dürfen, können wir annehmen p1|q1.
Da q1 prim und p1 > 1 ist muss p1 = q1 gelten. Also gilt

p1p2 · · · pr = p1q2 · · · qs und somit p2 · · · pr = q2 · · · qs

(Letzteres wegen der Kürzungsregel.) Nach Induktionsvoraussetzung sind wir
fertig. �
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3 Brüche, rationale Zahlen

3.1 Während das Rechnen mit ganzen Zahlen den allermeisten Studieren-
den keine Probleme bereitet, scheint das für das Rechnen mit Brüchen bereits
nicht mehr zu stimmen. Habe ich doch kürzlich in einer Staatsexamensklau-
sur die

absurde Unregel
1

a + b
=

1

a
+

1

b

lesen müssen, obgleich doch jeder, der mit dem Bruch 1
2

irgendeine vernünf-
tige Vorstellung verbindet, immer

1

2
+

1

2
= 1

rechnen würde.

3.2 Anschauliche Vorstellung einer rationalen Zahl

Die rationale Zahl
m

n
mit m, n ∈ Z, n > 0 kann man folgendermaßen auf dem

Zahlenstrahl konstruieren: Man teile Strecke von 0 nach 1 in n gleichgroße
Teilstrecken. Eine solche trage man dann m-mal von 0 aus nach rechts auf
dem Zahlenstrahl ab, wenn m ≥ 0 ist. Ist m < 0, d.h. −m > 0, so trage man
sie (−m)-mal nach links ab.

Man sieht, dass man den Punkt m/n auch konstruieren kann, indem man die
Strecke von 0 bis m in n gleiche Teilstrecken teilt und eine solche Teilstrecke
von 0 an in die Richtung von m abträgt.

3.3 Bekanntlich kann man dieselbe rationale Zahl auf viele verschiedene Ar-
ten schreiben, z.B.

9

15
=

3

5
=

6

10
Man kann ‘erweitern’ und ‘kürzen’. Man kann sich überlegen, dass es aufs
selbe hinausläuft, ob man ein 15-tel der Einheitstrecke 9-mal, oder ein 10-tel
der Einheitstrecke 6-mal von 0 aus (nach rechts) abträgt.

Am elegantesten definiert man die Gleichheit von Brüchen durch

a

b
=

a′

b′
⇐⇒ ab′ = a′b .

Wenn z.B. a′

b′ aus a
b

durch Erweitern mit c, d.h. a
b

aus a′

b′ durch Kürzen durch
c hervorgeht, folgt ab′ = a(bc) = (ac)b = a′b. Ist umgekehrt ab′ = a′b, dann
entsteht a′

b′ aus a
b

durch Erweitern und Kürzen, wie folgt:

a

b
=

ab′

bb′
=

a′b

bb′
=

a′

b′
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Ferner setzen wir fest
m

1
= m .

Auf diese Weise gilt Z ⊂ Q, der Menge der rationalen Zahlen.

3.4 Addition: Haben zwei Brüche den gleichen Nenner, so ist ihre Summe
einfach zu definieren:

m

n
+

m′

n
:=

m + m′

n

Dies entspricht der Addition von Strecken auf dem Zahlenstrahl – oder der
Subtraktion, wenn etwa m ≥ 0, m′ < 0 ist. Sind die Nenner nicht (notwendig)
gleich, so kann man sie durch Erweitern gleich machen, also z.B. rechnen

m

n
+

m′

n′
=

mn′

nn′
+

m′n

nn′
=

mn′ + m′n

nn′
,

Man sieht, dass sich Nenner und Zähler bei der Addition sehr verschieden
verhalten! Wenn m 6= 0, n, n′ > 0 ist, gilt immer:

m

n
+

m

n′
=

m(n′ + n)

nn′
6= m

n + n′

(Will man bei der Addition mit (absolut) möglichst kleinen Zahlen rechnen,
so nimmt man als gemeinsamen Nenner das kleinste gemeinsame Vielfache
von n, n′ statt nn′. Für allgemeine Überlegungen ist dies allerdings in den
meisten Fällen eher erschwerend.)

Offenbar ist 0 = 0
1

= 0
n

für alle n > 0 ein neutrales Element bezüglich der
Addition. Ferner gibt es ein additiv Inverses zu m

n
, nämlich −m

n
. Denn

m

n
+
−m

n
=

m−m

n
=

0

n
= 0

Man darf also −m
n

= −m
n

schreiben.

3.5 Multiplikation: Zunächst definieren wir k · m
n

für k ∈ Z. Ist k ≥ 0, so
sei k · m

n
die k-fache Summe von m

n
zu sich selbst, d.h.

k · m

n
:=

m

n
+ · · ·+ m

n
=

km

n
.

Dies muss man zwangsläufig so machen, wenn 1 ein neutrales Element für
die Multiplikation bleiben und die Distributivität und Kommutativität der
Multiplikation erhalten bleiben soll. Die Forderung, dass die Distributivität
weiter gelte, erzwingt dann auch

(−k) · m

n
= −km

n
, also k · m

n
=

km

n
für alle k ∈ Z .
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Insbesondere ergibt unsere Definition (für k ∈ Z, r ∈ N1)

k · 1

r
=

k

r
und r · 1

r
=

r

r
=

1

1
= 1 .

Soll die Assoziativität der Multiplikation weiterhin gelten, so muss

m

n
= 1 · m

n
= r · (1

r
· m

n
)

sein. D.h., ist 1
r
· n

m
= m′

n′ , so ist rm′

n′ = m
n
, also rm′n = n′m. d.h. m′

n‘
= m

rn
.

Wir definieren also
1

r
· m

n
:=

m

rn

und somit
k

r
· m

n
:= k · 1

r
· m

n
= k · m

rn
=

km

rn

Merke: Die Addition von Brüchen ist komplizierter als ihre Multiplikation!

Sind m, n,m′, n′ positive ganze Zahlen, so gilt immer

m

n
+

m′

n′
>

m + m′

n + n′

3.6 In Q gibt es nicht nur additiv inverse Elemente, sondern zu jedem a ∈
Q− {0} gibt es genau ein multiplikativ Inverses a−1, nämlich

Ist a =
m

n
, so ist a−1 =

n

m
(oder =

−n

−m
falls m < 0)

In Q kann man also die Gleichung ax = b mit der Unbekannten x lösen, wenn
a 6= 0 ist. Nämlich durch x = ba−1

3.7 Das Rechnen mit rationalen Zahlen genügt denselben Gesetzen wie
das mit den ganzen Zahlen. Es genügt sogar einem zusätzlichen Gesetz,
nämlich dem der Existenz von multiplikativ Inversen. Q ist ein sogenann-
ter Körper.

(Übrigens muss man bei der axiomatischen Definition eines Körpers folgen-
des bedenken: Eine Menge, die aus genau einem Element p besteht, für das
p + p = pp = p definiert ist, erfüllt alle o.a. Körperaxiome. Man will sie
aber nicht als Körper gelten lassen. Man verlangt deshalb zusätzlich, dass in
einem Körper 1 6= 0 ist, oder – äquivalent dazu – dass er aus mindestens 2
Elementen besteht. Es gibt einen nicht ganz unnützen Körper, der aus genau
2 Elementen besteht.)
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Remark 3.8 Die Nullteilerfreiheit, und damit die Kürzungsregel gilt
natürlich im Bereich der rationalen Zahlen auch. Offenbar gilt sie in jedem
Körper. (Warum?)

3.9 Da sowohl bei der Multiplikation wie bei der Addition von Brüchen der
Nenner (genauer: einer der möglichen Nenner) des Ergebnisses das Produkt
der Nenner der Faktoren, bzw. der Summanden ist, gibt es echte Teilmengen
von Q, die Z echt umfassen, die gegen Addition, Subtraktion und Multiplika-
tion abgeschlossen sind, sogenannte Unterringe von Q. Z.B. ist die Menge
der Brüche, die sich mit einem ungeraden Nenner schreiben lassen, ein sol-
cher Unterring. (Kann man in dieser Behauptung ‘ungerade’ durch ‘gerade’
ersetzen???)

3.10 Anodnung: Wie vergleicht man Brüche der Größe nach? Nun, wenn
zwei Brüche denselben positiven Nenner haben, ist die Sache einfach:

m

n
≤ m′

n
⇐⇒ m ≤ m′ .

Ansonsten muss man die (als positiv vorausgesetzten) Nenner gleich machen:

m

n
≤ m′

n′
⇐⇒ mn′

nn′
≤ m′n

nn′
⇐⇒ mn′ ≤ m′n .

Z.B. sieht man: Ist 0 < n ≤ n′, so gilt 1
n
≥ 1

n′ . Die Regeln der Verträglich-
keit der Anordnung mit Addition und Multiplikation bleiben erhalten. Das
Induktionsprinzip und das Minimumprinzip gilt natürlich für die rationalen
Zahlen nicht. Z.B. hat die Menge M := {a ∈ Q | 0 < a} die untere Schranke
0, aber kein kleinstes Element. Ist nämlich a ∈ M beliebig (klein), so ist
2−1a < a und 2−1a ∈ M .

3.11 Verallgemeinerung der Bruchschreibweise: Sei K ein beliebiger
Körper. Für a, b ∈ K, b 6= 0 schreibt man dann

a

b
:= ab−1

Aus den Körpergesetzen leitet man dann leicht ab:

a

b
+

a′

b′
=

ab′ + a′b

bb′
,

a

b
· a′

b′
=

aa′

bb′
,

(a

b

)−1

=
b

a

letzteres, wenn auch a 6= 0 ist.

Remark 3.12 auch für positive rationale Zahlen a, b, c, d gilt immer

a

b
+

c

d
>

a + c

b + d
.
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3.13 Wenn man im Körper der rationalen Zahlen Brüche rationaler Zahlen
bildet bekommt man ‘Mehrfachbrüche’, z.B.(

a
b

)
( c

d

) .

Man muss hier aufpassen, z.B.

a
b

c
=

(
a
b

)
c

und
a
b
c

=
a(
b
c

)
voneinander unterscheiden! Berechnen Sie(

1
2

)
3

und
1(
2
3

)
Ein Ausdruck der Form

a
—
b
—
c

hat keinen Sinn!

3.14 Standarddarstellung. Jede rationale Zahl kann als ein Bruch ge-
schrieben werden, in welchem Zähler und Nenner keinen gemeinsamen Prim-
faktor haben. Denn sonst kann man ja noch kürzen. Da bei jedem Kürzen
(durch eine ganze Zahl > 1) Zähler und Nenner (dem Betrag nach) kleiner
werden, muss der Kürzungsprozess nach dem Minimalprinzip irgendwann an-
halten. (Übrigens gibt es eine Algoritmus – von Euklid –, der es erlaubt, den
ggT von zwei Zahlen zu berechnen, ohne sie vorher in Primfaktoren zerlegt
zu haben.)

Verlangt man noch – wie wir es bisher meist getan haben – dass der Nenner
positiv ist, so ist die Darstellung einer rationalen Zahl als

”
gekürzter“ Bruch

eindeutig.

Beweis hierfür: Sei m
n

= m′

n′ , wo beide Brüche gekürzt sind. Dann gilt mn′ =
m′n. Wir verwenden die Eindeutigkeit der Primfaktorzerlegung. Ist p ein
Primfaktor von m, genauer, ist pk die höchste p-Potenz, die m teilt, so muss
sie auch m′ teilen, da nach Vorraussetzung p kein Teiler von n ist. Es folgt
m|m′, und ebenso m′|m. Also m = ±m′. Da nach Voraussetzung n, n′ > 0
ist, müssen auch die Vorzeichen von m und m′ übereinstimmen.

Ebenso folgt n = n′. –
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4 Reelle Zahlen

4.1 Man könnte meinen, die rationalen Zahlen füllten die ganze Zahlengera-
de aus. In beliebiger Nähe jeder rationalen Zahl liegen noch unendlich viele
weitere rationale Zahlen. Anders als bei den ganzen Zahlen gibt es zu einer
rationalen Zahl keine nächstkleinere oder nächstgrößere.

Trotzdem gilt die Bemerkung: Wenn man auf dem Einheitsintervall der
Zahlengerade von 0 bis 1 ein Quadrat errichtet und um 0 den Kreis schlägt,
der durch die rechte obere Ecke geht, so schneidet dieser die Zahlengerade in
keinem rationalen Punkt. M.a.W. Es gibt keine rationale Zahl r mit r2 = 2.

Beweis: Da 12 < 2 und bereits 22 > 2 ist, gibt es keine ganze Zahl n mit
n2 = 2. Wir nehmen an, es gäbe ein r ∈ Q mit r2 = 2. Wir schreiben r = m

n
in

gekürzer Form, d.h. so dass m und n keinen gemeinsamen Primfaktor haben.
Wir zerlegen m und n in Primfaktoren:

r =
m

n
=

p1 · · · pr

q1 · · · qs

Da r nicht ganz ist, ist n ≥ 2, d.h. s ≥ 1. Wegen der Teilerfremdheit von
m,n gilt pi 6= qj für alle i, j. Jetzt bilden wir

r2 =
p2

1 · · · p2
r

q2
1 · · · q2

s

Wegen der Eindeutigkeit der Primfaktorzerlegung hat sich an der Teiler-
fremdheit von Zähler und Nenner nichts geändert. D.h. r2 kann nicht ganz
sein, insbesondere ist r2 6= 2. –

Aus der Bemerkung folgen:

a) Die – nicht besonders komplizierte – Funktion f(x) = x2 − 2 hat zwar in
1 den negativen Wert −1 und in 2 den positiven Wert 2, aber zwischendurch
an keiner rationalen Stelle den Wert 0.

b) Sei A die Menge der rationalen Zahlen a, für die a < 0 oder a2 < 2 gilt,
und B die Menge der positiven rationalen Zahlen b mit b2 > 2. Dann ist
A∪B = Q und a < b für alle a ∈ A, b ∈ B , aber weder besitzt A ein größtes,
noch B ein kleinstes Element.

Auf dieselbe Weise wie obige Bemerkung beweist man:

Proposition 4.2 Sei n ≥ 2 ganz. Ist eine ganze Zahl k keine n-te Potenz
einer ganzen Zahl, so ist sie auch keine n-te Potenz einer rationalen Zahl.
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4.3 Man hat mit Erfolg den Körper Q zu einem Körper R der sogenannten
reellen Zahlen erweitert, in welchem außer den Rechen- und Anordnungs-
axiomen folgende zueinander äquivalente Aussagen erfüllt sind:

(i) Jede Zahlenfolge in R, die vernünftigerweise konvergieren sollte (d.h. eine
sogenannte Cauchyfolge ist), konvergiert auch. S.u.

(ii) Ist R = A ∪ B, derart dass sowohl A als auch B mindestens 1 Element
besitzt und a < b für alle a ∈ A, b ∈ B gilt, so hat entweder A ein größtes
oder B ein kleinstes Element.

(iii) Sei (an)n = (a0, a1, a2, . . .) eine monoton wachsende nach oben be-
schränkte Folge. D.h. für alle n gilt an ≤ an+1 und es gibt ein s mit an ≤ s
für alle n. Dann konvergiert die Folge (an)n.

(iii’) Dasselbe wie (iii) mit umgekehrten Ungleichungen.

(iv) Jede nichtleere (d.h. wenigstens eine Zahl besitzende) Teilmenge A von
R, die eine untere Schranke besitzt, d.h. für die es ein s ∈ R gibt mit s ≤ a
für alle a ∈ A, besitzt auch eine untere Grenze, d.h. ein u ∈ R mit u ≤ a
für alle a ∈ A, so das in beliebiger Nähe von u noch Elemente von A liegen.

(iv’) Dasselbe wie (iv), wo
”
untere“ durch

”
obere“ ersetzt ist.

Manche der genannen Begriffe bedürfen noch der Präzisierung, die wir in
einem späteren Paragrafen vornehmen werden.

”
Anschaulich“ ist es so, dass

die reellen Zahlen den Punkte auf der Zahlengeraden entsprechen, die beliebig
genau durch rationale Zahlen approximierbar sind. (Und diese sind dann wohl
alle Punkte auf der Zahlengeraden, was auch immer das heißen mag.)

Remark 4.4 Es gibt eine wichtige Eigenschaft des Körpers der reellen Zah-
len, die man aus jedem der o.a.

”
Axiome“ ableiten kann – aus (i) nur bei

entsprechender Definition von
”
Cauchy-Folgen“ – das sogenannte archimedi-

sche Axiom:

(a) Zu allen positiven reellen Zahlen a, b gibt es eine natürliche Zahl n mit
na > b.

Hierzu äquivalent ist folgende Aussage:

(b) Ist α eine reelle Zahl, so dass 0 ≤ α < 1/n für alle ganzen Zahlen n > 0
gilt, so ist α = 0.

Beweis der Äquivalenz:
”
(a)=⇒(b)“: Wäre α > 0, so gäbe es ein n ∈ N mit

nα > 1. Multiplikation mit der positiven Zahl 1/n ergäbe α > 1/n.

”
(b)=⇒(a)“: Wäre na ≤ b, so erhielte man durch Multiplikation mit der

positiven Zahl 1
nb

die Ungleichung a/b ≤ 1/n für alle n und somit aus a
b
≤ 1

n+1

die Ungleichung a/b < 1/n für alle n. –
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4.5 Man kann R z.B. als Menge aller unendlichen oder endlichen positiven
oder negativen Dezimalbrüche konstruieren.

Ohne auf die Probleme des Rechnens mit unendlichen Dezimalbrüchen ein-
zugehen, wollen wir uns überlegen, wie man die Eigenschaft (iv) für nach
unten beschränkte nichtleere Mengen B von Dezimalbrüchen zeigen kann.

Beweis: Man darf annehmen, A sei durch 0 nach unten beschränkt. (Sonst
verschiebe man die Menge.) Zunächst betrachten wir den

”
ganzen Anteil“,

d.h. die
”
Vorkommazahlen“ der Zahlen aus A. Unter diesen gibt es nach dem

Minimalprinzip eine kleinste, etwa m. Dieses m wird die Vorkommazahl der
gesuchten unteren Grenze. Dann betrachten wir alle a ∈ A, die die Vor-
kommazahl m haben und von diesen jeweils die erste Nachkommaziffer Die
kleinste dieser Ziffern sei n1. Dieses n1 ird die erste Nchkommaziffer der ge-
suchten unteren Grenze. Diese beginnt also mit m,n1. Von allen Zahlen aus
A, die mit m, n1 beginnen, betrachten wir die jeweils zweite Ziffer nach dem
Komma. Sei n2 die kleinste unter diesen. Unsere untere Grenze beginnt mit
m,n1n2, usw. Sei m, n1n2 . . . nk auf diese Weise bereits gefunden. In A gibt
es also mindestens eine Zahl, deren Dezimalzahldarstellung mit m, n1 . . . nk

beginnt. Und keine beginnt mit einer kleineren Zahl mit k Nachkommastel-
len. Man betrachte nun alle Zahlen aus A, die mit m, n1 . . . nk beginnen und
betrachte von jeder die (k+1)-te Ziffer nach dem Komma. Die kleinste unter
allen diesen sei nk+1. Diese ist auch die (k+1)-te Nachkommaziffer der gesuch-
te unteren Schranke. Wenn wir dies bis ins Unendliche fortsetzen, bekommen
wir einen Dezimalbruch u, der die gewünschte Eigenschaft hat. Denn keine
Zahl aus A ist kleiner als u. Und für jedes k gibt es eine Zahl aus A, deren
Vorkommazahl und deren erste k Nachkommaziffern mit u übereinstimmen.
Es gibt also Zahlen in A, die beliebig nahe bei u liegen. –

4.6 Übrigens gibt es reelle Zahlen, die auf zweierlei Weisen als unendliche
Dezimalbrüche darstellbar sind:

3, 72 = 3, 719 := 3, 71999 . . .

Seltsamer Weise gibt es viele Menschen, die glauben, die Zahlen 0, 9 und 1
seien in Wahrheit doch ein wenig verschieden. Man sollte sich aber überle-
gen, dass ihr Abstand kleiner ist als 10−n(= 1/10n) für jede natürliche Zahl
n, und sie deshalb auf Grund des archimedischen Axioms gleich sind. (Es gibt
angeordnete Körper, die das archimedische Axiom nicht erfüllen. Um deren
Elemente zu beschreiben, kommt man allerdings nicht mit Dezimalbrüchen
aus.) Was spricht denn dagegen, dass man ein und dieselbe Zahl auf mehre-
re Weisen schreiben kann? Die Darstellung einer rationalen Zahl als Bruch
zweier ganzer Zahlen ist ja überhaupt nicht eindeutig.
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5 Unendliche Reihen

Beispiel 1:
1

2
+

1

4
+

1

8
+

1

16
+· · · (= 2−1+2−2+2−3+2−4+· · · , =

∞∑
k=1

2−k =?

Anschaulich denke man sich einen Zylinder, der 1 Liter fasst. Dieser wird
zuerst halb gefüllt, dann wird durch hinzugießen von einem viertel Liter vom
freien Rest wieder die Hälfte gefüllt, und es bleibt 1/4 Liter frei. Dann bleibt
nach Hinzufügen von 1/8 l wieder 1/8 l frei. So geht es weiter: im n-ten
Schritt fügt man 2−n l hinzu, und der Literzylinder ist bis auf 2−n l gefüllt.
Der einzig sinnvolle Wert für o.a. unendliche Reihe (Summe) ist

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
+ · · · = 1

Beispiel 2:
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

n(n + 1)
+ · · · = ?

Es gilt
1

n
− 1

n + 1
=

(n + 1)− n

n(n + 1)
=

1

n(n + 1)
, z.B.

1

3
− 1

4
=

1

3 · 4
. Die

unendliche Reihe kann man also auch so schreiben:

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · · = (

1

1
− 1

2
)+(

1

2
− 1

3
)+(

1

3
− 1

4
)+(

1

4
− 1

5
)+ · · ·

Man sieht: Wenn man die ersten n Glieder der Reihe (in ihrer zweiten Gestalt)
addiert, so hebt sich viel weg und man erhält als Summe (der ersten n Glieder)

1− 1

n + 1
. Wieder ist der einzig sinnvolle Wert unserer unendlichen Reihe

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · ·+ 1

n(n + 1)
+ · · · = 1

Lässt man die ersten N Summanden dieser Reihe weg, so erhält man auf
dieslbe Weise

1

(N + 1)(N + 2)
+

1

(N + 2)(N + 3)
+

1

(N + 3)(N + 4)
+ · · · = 1

N + 1

Beispiel 3:
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n
+ · · · = ? (

”
Harmonische Reihe“)

Wir fassen die Glieder dieser Reihe wie folgt zusammen:

1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + (

1

9
+ · · ·+ 1

16
) + (

1

17
+ · · ·+ 1

32
) + · · ·

Nun ist
1

3
+

1

4
≥ 1

4
+

1

4
= 2 · 1

4
=

1

2
,

1

5
+ · · ·+ 1

8
≥ 1

8
+ · · ·+ 1

8
= 4 · 1

8
=

1

2
1

9
+ · · ·+ 1

16
≥ 8 · 1

16
=

1

2
, usw.
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Deshalb gilt

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · · ≥ 1 +

1

2
+

1

2
+

1

2
+ · · ·

Also bleibt als einzig sinnvoller Wert der harmonischen Reihe:

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · · = ∞

In den Beispielen 4 und 6 werden wir die harmonische Reihe auf zweierlei
Weise modifizieren und erhalten endliche Werte.

Beispiel 4: Wir quadrieren die Summanden:

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · ·+ 1

n2
+ · · · = ?

Es gilt (für n ≥ 2) die Beziehung
1

n2
<

1

(n− 1)n
, also

1

22
<

1

1 · 2
,

1

32
<

1

2 · 3
usw. Durch Vergleich mit Beispiel 2 erhält man hieraus – vorausgesetzt unsere
Reihe hat einen vernünftigen Wert –

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · < 1 + 1 = 2

Wenn man die reellen Zahlen axiomatisch einführt, kann man als eines der
Axiome z.B. folgendes nehmen:

Jede unendliche Summe positiver Summanden, die nach oben beschränkt ist,
hat einen reellen Wert,

In der Tat ist der Wert o.a. unendlicher Summe
π2

6
. Dies ist allerdings kei-

neswegs einfach zu sehen. Wenn Sie Glück haben, hören Sie einen Beweis
dafür am Ende des 1. Semesters in der Vorlesung

”
Analysis 1“. Sie können

einen Beweis im Buch O. Forster: Analysis 1 finden.

Beispiel 5: 1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ · · ·

Wenn wir den Summanden
1

1 · 2 · · ·n · (n + 1)
mit dem Summanden

1

n(n + 1)
der Reihe aus Beispiel 2 vergleichen, sehen wir dass unsere Summe einen Wert
< 3 hat. Man nennt diesen Wert in der Regel e. Es gilt also 2 < e < 3.

Mit Hilfe von Beispiel 2 kann man aber noch mehr zeigen:

Satz: e ist keine rationale Zahl, d.h. kein Bruch mit ganzem Zähler und
Nenner.

Beweis: Indirekt. Wäre e eine rationale Zahl mit dem Nenner N ≥ 2, so
wäre 1 · 2 · · ·N · e eine ganze Zahl. Wir zeigen, dass dem aber nicht so ist.
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Multiplizieren wir die ersten N + 1 Summanden von e mit 1 · 2 · · ·N , so
erhalten wir ganze Zahlen. Für den Rest r der Summe genügt es also 0 <
r < 1 zu zeigen. Offenbar gilt

r =
1

N + 1
+

1

(N + 1)(N + 2)
+

1

(N + 1)(N + 2)(N + 3)
+ · · ·

Mache wir, anfangend mit dem 2. Summanden von r den oben gemachten
Vergleich, so erhalten wir

r <
1

N + 1
+

1

(N + 1)(N + 2)
+

1

(N + 2)(N + 3)
+ · · · = 1

N + 1
+

1

N + 1
< 1

Beispiel 6: Wir versehen die
”
Hälfte“ der Summanden der harmonischen

Reihe mit dem Minus-Zeichen, d.h. wir bilden die sogenannte alternierende
harmonische Reihe:

1− 1

2
+

1

3
− 1

4
+

1

5
−+ · · ·+ (−1)n+1

n
+ · · · = ?.

Wenn wir die Teilsummen 1, 1− 1

2
, 1− 1

2
+

1

3
, 1− 1

2
+

1

3
− 1

4
usw. auf

der Zahlengeraden betrachten, so sehen wir sie hin- und herhüpfen; dabei
werden die Sprünge immer kleiner und ihre Länge geht gegen 0. Es ist also
plausibel, dass die Teilsummen gegen einen Grenzwert gehen, den Wert der
unendlichen Reihe. (

”
Leibnizsches Konvergenzkriterium“) Dieser Wert liegt

offenbar zwischen 1/2 und 1. Er ist gleich dem natürlichen Logarithmus von
2 (ln 2), wie man in den meisten Vorlesungen

”
Infinitesimalrechnung 1“ lernt.

Zuletzt möchte ich Ihnen noch einen Schock versetzen. In einer endlichen
Summe darf man die Summanden beliebig vertauschen, ohne dass sich der
Wert der Summe ändert. Dies gilt nicht für alle unendlichen Reihen.

Beispiel 7: Wir schreiben die Summanden der alternierenden harmoni-
schen Reihe in folgender Reihenfolge:

1−1

2
+

1

3
−1

4
+

1

5
−1

6
−1

8
+

1

7
− 1

10
− 1

12
− 1

14
− 1

16
+

1

9
− 1

18
−· · ·− 1

32
+

1

11
− 1

34
−· · ·

(Beginnend mit 1/3 nimmt man immer abwechselnd einen positiven und 2n

negative Summanden auf.)

Da −1

6
− 1

8
≤ −1

4
, − 1

10
−· · ·− 1

16
≤ −1

4
, usw. ist, gilt für einen möglichen

Wert w der o.a. umgeordneten alternierenden harmonischen Reihe w ≤ 1 −
1

2
+

1

3
− 1

4
+

1

5
− 1

4
+

1

7
− 1

4
+

1

9
− 1

4
+

1

11
−+ · · ·. Mit

−1

4
+

1

5
= − 1

4 · 5
= − 1

20
ist − 1

4
+

1

n
≤ − 1

20
für n ≥ 5 .

Also gilt

w ≤ 1− 1

2
+

1

3
− 1

20
− 1

2
− 1

20
− · · · = −∞ .
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Zusatzbemerkungen

Zu Beispiel 1: Allgemein gilt für q 6= 1 die Formel 1 + q + q2 + · · · + qn =
1− qn+1

1− q
, also für die unendliche Reihe 1 + q + q2 + · · · + qn + · · · =

1

1− q
,

vorausgesetzt, es ist −1 < q < 1. Setzt man q = 1/2, so erhält man Beispiel
1 mit dem zusätzlichen Summanden 1.

Zu den Beispielen 3 und 4: Die Quadratzahlen bilden eine Teilmenge
der Menge aller positiven ganzen Zahlen. Wir haben gesehen, dass die
Summe der Kehrwerte aller natürlichen Zahlen unendlich, dagegen die der
Kehrwerte aller Quadratzahlen endlich ist. Man kann sich für jede Teilmenge
der natürlichen Zahlen fragen, ob die Summe ihrer Kehrwerte endlich oder
unendlich ist. Man weiß, dass die Summe der Kehrwerte aller Primzahlen
unendlich ist. Das ist nicht trivial, aber auch nicht allzu schwer zu zeigen.
Siehe Chapter 1 in dem hübschen Buch

”
Proofs from THE BOOK“ von

M. Aigner und G.M. Ziegler (Springer Verlag) Wenn Ihnen unbekannt
sein sollte, dass es überhaupt unendlich viele Primzahlen gibt, hier ist der
uralte Beweis von Euklid: Zu endlich vielen Primzahlen p1, . . . , pn ist jeder
Primfaktor p der Zahl p1p2 · · · pn + 1 eine weitere (von allen p1, . . . , pn

verschiedene) Primzahl, nicht wahr??

Zu Beispiel 6: Die sogenannte Taylorentwicklung der Funktion ln(1 + x)

ist ln(1 + x) =
x

1
− x2

2
+

x3

3
− + · · ·. Diese Gleichung gilt für alle x mit

−1 < x ≤ 1, und man erhält unsere Behauptung, indem man x = 1 setzt.

Die Funktion ln(1 + x) ist die Stammfunktion von
1

1 + x
. Letztere Funktion

kann man, wie in der Bemerkung zu Beispiel 1 angegeben, als unendliche
Reihe schreiben: setze q = −x. Die Taylorentwicklung von ln(1 + x) erhält
man durch

”
gliedweise Integration“. Das alles funktioniert zunächst jedoch

nur für −1 < x < 1. Für x = 1 braucht man ein zusätzliches Argument, den

”
Abelschen Grenzwertsatz“.

Zu Beispiel 7: Durch geeignete Umordnung kann die alternierende
harmonische Reihe jede vorgegebene reelle Zahl als Wert annehmen. Wer
mathematisch geschickt ist, mag selbst versuchen, dies zu zeigen.
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6 Grenzwerte

Wir werden drei Grenzwertbegriffe – statt Grenzwert sagt man auch Limes–
kennenlernen:

a) den Grenzwert einer (unendlichen) Folge (an) = (an)n = (an)n∈N =
(a0, a1, a2, . . .), der lim

n→∞
an geschrieben wird, (Man kann die Folge auch mit

dem Index 1 oder irgendeiner anderen natürlichen Zahl beginnen lassen, und

schreibt z.B. lim
n→∞

1

n
obwohl 1

n
für n = 0 keine Bedeutung hat.)

b) den (Grenz-)Wert einer unendlichen Reihe (d.h. einer Summe mit unend-

lich vielen Summanden)
∞∑

n=0

bn,

c) den Grenzwert einer Funktion bei Annäherung an einen Punkt, an dem
sie vielleicht nicht definiert ist lim

x→x0

f(x).

Den Fall b) haben wir im letzten Paragrafen schon einmal ‘informell’, d.h.
ohne strikte Begriffsbildung vorbereitet. Bei allem Spaß, den das hoffentlich
gemacht hat, sollte jedoch klar sein, dass man ohne eine Präzisierung auf
Dauer nicht auskommt.

6.1 Abstand und Betrag: Der Abstand zweier Punkte a, b auf der rellen
Zahlengerade ist a− b oder b− a, je nachdem ob a ≥ b oder a < b ist. Man
kann dies einfacher ausdrücken, wenn man den Begriff des (Absolut-)Betrages
einführt: Der Betrag |a| einer reellen Zahl a ist definiert durch

|a| :=
{

a für a ≥ 0
−a für a < 0

Dann kann man den Abstand zweier Punkte a, b schreiben als |a− b| (wobei
eben |b− a| = |a− b| ist).

Der Betrag genügt folgenden formalen Regeln

a) 0 ≤ |a|, b) |a| = 0 ⇐⇒ a = 0, c) |ab| = |a| · |b|, d) |a + b| ≤ |a|+ |b|

Die letzte Regel – die man durch Betrachtung aller vier Fälle a ≥ 0, b ≥
0; a < 0, b ≥ 0; etc. leicht beweist – heißt die Dreiecksungleichung. (Der
Name kommt von einer allgemeineren Situation her, wo statt reeller Zahlen
Vektoren betrachtet werden und die Dreiecksungleichung für die Längen von
v, w, v + w gilt)

Eine Ungleichung der Form |a−b| < ε (mit ε > 0) bedeutet, dass der Abstand
von a und b kleiner als ε ist, d.h. a− ε < b < a+ ε gilt. (Natürlich kann man
das auch durch b− ε < a < b + ε ausdrücken.)
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6.2 Limes einer Folge. Wie kann man es präzise fassen, dass eine Folge
(a0, a1, a2, a3, . . .) sich einer reellen Zahl a beliebig annähert?

Seit ungefähr 200 Jahren macht man es so:

Definition 6.3 a) Man sagt, die Folge (an)n hat den Grenzwert (oder Li-
mes) a – oder konvergiert gegen a – und schreibt limn→∞, wenn zu je-
der (noch so kleinen) reellen Zahl ε > 0 ein N ∈ N existiert, derart dass
|an − a| < ε für alle n > N gilt.

b) Eine Folge reeller Zahlen heißt [konvergent, wenn sie eine reelle Zahl
als Limes hat. Andernfalls heißt sie divergent. Man sagt auch: Sie
konvergiert, bzw. divergiert.

Das heißt: In jeder noch so großen Nähe zu a liegen, bis auf höchstens endlich
viele Ausnahmen, alle Folgenglieder.

Ein triviales Beispiel einer gegen a konvergenten Folge ist die Folge (an)n∈N
mit an = a für alle n.

Den Zusatz
”
(noch so kleines)“ kann man in der Definition weglassen. Er

dient lediglich zur inhaltlichen Verdeutlichung des Begriffs.

Man mache sich klar, dass folgende Änderungen des obigen Wortlautes nicht
zu äquivalenten Aussagen führen:

”
Es gibt ein kleines ε > 0, derart dass . . .“

”
Es gibt ein N ∈ N, so dass für jedes ε > 0 . . .“

6.4 Obige Definition wird häufig von didaktisch Interessierten als sprachli-
ches Monstrum angesehen.

F. Vester (in
”
Denken, Lernen, Vergessen“) polemisiert gegen obige Definiti-

on und schlägt stattdessen vor, die Konvergenz gegen 0 folgendermaßen zu
definieren:

”
Eine Folge heißt eine Nullfolge; d.h eine gegen 0 konvergente Folge, wenn

– vom Vorzeichen einmal ganz abgesehen – in ihr jedes Glied kleiner ist als
das Vorangehende.“

Nun erfüllt die Folge (an) mit an = 1 + 1
n

sicher die Definition von Vester,
wird aber kaum als Nullfolge anzusehen sein. Andererseits wird man die Folge

(an) mit an :=

{
2−n für gerade n
n−1 für ungerade n

sicher als Nullfolge ansehen wollen, auch wenn sie Vesters Definitionsversuch
nicht erfüllt. Dieser ist also – diplomatisch gesprochen – wenig hilfreich.
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6.5 Es gibt einen anderen Versuch, die Grenzwertdefinition zu vereinfachen,
der nicht so sinnlos ist wie der von F. Vester. Man definiert einen verschärften
Konvergenzbegriff wie folgt:

Definition: Die Folge an konvergiert geometrisch gegen a, wenn es ein g
mit 0 < g < 1 gibt, derart dass |an − a| < gn für alle n gilt.

In dieser Definition kommt man mit nur 2 sogenannten Quantoren aus:
”
es

gibt . . ., so dass für alle . . ., während die die Definition 6.3 deren 3 benötigt:

”
für alle . . . gibt es ein . . ., so dass für alle . . .“

Dafür muss man in Kauf nehmen, dass z.B. die Folge ( 1
n
) nicht geometrisch

konvergiert.

Meine schlichte Meinung ist: Wer nicht willens und in der Lage ist, die
Definition 6.3 zu verstehen und anzuwenden, sollte nicht Mathe-
matik studieren! Auch Informatikern und Physikern ist sie zuzu-
muten!

Es ist nützlich, auch ∞ und −∞ als Grenzwerte zuzulassen:

Definition 6.6 Man sagt, die Folge (an)n divergiert bestimmt gegen ∞
und schreibt limn→∞ an = ∞, wenn es für jedes r ∈ R ein N ∈ N existiert,
so dass an > r für alle n ≥ N gilt.

Wie definiert man limn→∞ an = −∞??

6.7 Jetzt befassen wir uns mit unendlichen Reihen.

Zunächst wollen wir eine abkürzende Schreibweise für Summen der Art bm +
bm+1 + · · ·+ bn einführen – wo m ≤ n sei. Wir setzen

n∑
k=m

:= bm + bm+1 + · · ·+ bn

Insbesondere sei
n∑

k=n

bk = bn.

Falls n < m ist setzen wir
n∑

k=m

bk = 0

Das Symbol
∞∑

k=0

bn
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wird genau genommen in zwei verschiedenen Bedeutungen gebraucht: Erstens
bedeutet es die Folge (sn)n∈N, wo sn := b0 + b1 + · · ·+ bn =

∑n
k=0 bn definiert

ist, und zweitens bedeutet es den Limes dieser Folge.

Man sagt also z.B.: Die (unendliche) Reihe

∞∑
k=0

bn

konvergiert, und man schreibt

∞∑
k=0

bn = s,

wenn limn→∞ sn = s ist.

Wir haben also den Begriff der unendlichen Reihen samt ihrer Werte auf den
Begriff der Folgen und deren Grenzwerte zurückgeführt. Im Übrigen kann
man jede Folge (an)n∈N als unendliche Reihe

∑∞
k=0 bk schreiben, indem man

b0 = a0 und bk = ak − ak−1 für k ≥ 1 setzt.

Unendliche Reihen sind also nichts anderes, als auf spezielle Weise geschrie-
bene Folgen. Mal ist die eine, mal die andere Schreibweise nützlich oder von
der untersuchten Fragestellung her gegeben.

6.8 Der Limes eine Funktion f bei Annäherung an einen Punkt
x0 ∈ R hat nur dann Sinn, wenn in beliebiger Nähe von x0 Punkte des
Definitionsbereiches von f liegen. Sei also D ⊂ R, f : D → R eine Funktion.
Wir setzen voraus: Für jedes ε > 0 gebe es ein x ∈ D mit |x− x0| < ε.

Dann definieren wir: Es ist limx→x0 = a genau dann, wenn für jede Folge
(an)n mit an ∈ D und limn→∞ an = x0 die Gleichung limn→∞ f(an) = a gilt.

So ist auch der Begriff des Grenzwerts, dem sich eine Funktion bei Anäherung
an x0 nähert, auf den Begriff des Grenzwertes von Folgen zurückgeführt.

(Man kann diese Art Grenzwert auch anders definieren: Für jedes ε > 0
gibt es ein δ > 0, so dass für alle x ∈ D mit |x − x0| < δ die Ungleichung
|f(x)− a| < ε gilt.)

Man benötigt diesen nicht so einfachen Grenzwertbegriff, wenn man z.B. die
Ableitung einer Funktion als Grenzwert des Differenzenquotienten definieren
will:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0

Examples 6.9 a) Die Folge ( 1
n
) konvergiert gegen 0. Denn wegen des ar-

chimedischen Axioms gibt es keine reelle Zahl ε > 0 mit ε < 1
n

für alle n.
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Also ist 1
n
≤ ε für mindestens ein n ∈ N1. Da aber – wie man zeigen kann –

1
m+1

< 1
m

gilt, folgt aus 1
n
≤ ε, dass 1

m
< ε für alle m > n gilt. Ich erinnere

an die (bestimmte) Divergenz der harmonischen Reihe.

b) Für reelle x mit |x| < 1 konvergiert die Folge xn auch gegen 0. Dies ist
vielleicht jedem klar, aber nicht so unmittelbar rigoros zu beweisen. Ich will
auf den Beweis verzichten.

Für x = 1 konvergiert diese Folge offenbar gegen 1. Für x > 1 divergiert sie
bestimmt gegen ∞. Für x ≤ −1 hat sie keinen Limes, auch nicht den Limes
−∞.

c) Sehr wichtig, vor allem für theoretische Überlegungen, ist die geometrische
Reihe

∞∑
n=1

xn

Wir berechnen zunächst die endlichen Teilsummen
∑k

n=0 xn =: sk. Rechne

(1− x)sk = sk − xsk =
k∑

n=0

xk −
k+1∑
n=1

xk = 1− xk+1.

Es folgt für x 6= 1
k∑

n=0

xn =
1− xk+1

1− x

Da limk→∞ xk+1 = 0 für |x| < 1 gilt, hat man für diese x

∞∑
n=0

xn =
1

1− x

Für |x| ≥ 1 konvergiert die geometrische Reihe nicht.
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7 Allgemeine Potenzen

Anlass zu diesem Thema waren zwei überraschende Erlebnisse, negative
Überraschungen freilich.

1. Mehrere junge Leute, die kurz zuvor ihr Abitur mit einer
”
1+“ in Mathe-

matik bestanden hatten, wussten mit dem Ausdruck 2−2 nichts anzufangen.

2. In einer Staatsexamensklausur für das Fach Mathematik musste ich
mehrfach die

”
Regel“ ab − ac = ab−c lesen. Am liebsten hätte ich die

betreffende Person wegen seelischer Grausamkeit verklagt.

1. Wir studieren zunächst die Potenzen von 2:

21 = 2, 22 = 4, 23 = 8, . . . , 29 = 512, 210 = 1024, . . . .

Wir wollen versuchen, diese in einem (Funktions)-Diagramm darzustellen,
und zwar mit der Einheit 1 cm : Wandert man vom Nullpunkt aus auf der
waagerechten Achse um 5 cm nach rechts, so müssen wir von dort um 32 cm
nach oben gehen, um den Wert 25 = 32 abzutragen. 4 cm weiter müssen wir
schon um 5,12 m nach oben gehen. Noch einen cm weiter auf der waagerech-
ten Achse, so sind wir in der Höhe bereits bei mehr als 10 m angelangt, was
bestimmt die Dimension dieses Raumes sprengt. Selbst eine Tafel von der
Höhe des Himalaya reicht nicht aus, um den Punkt zu markieren, der dem
Wert von 220 in Zentimetern entspricht.

Man spricht von exponentiellem Wachstum.

Nun wollen wir doch gleich sowohl 210 − 21 als auch 210−1 ausrechnen:

210 − 21 = 1024− 2 = 1022 , 210−1 = 29 = 512.

Man sieht, dass im Allgemeinen 2a−2b 6= 2a−b ist. Das Beispiel 22−21 = 22−1

ist die große Ausnahme!

2. Kann man Potenzen mit negativen (ganzen) Exponenten sinnvoll definie-
ren, etwa 2−2? Antwort: Man kann!

Als Beispiel ziehen wir wieder die Potenzen von 2 heran. Immer wenn man
den Exponenten um 1 erhöht, wird die Potenz verdoppelt: 2n+1 = 2n · 2. Das
bedeutet aber auch: Vermindert man den Exponenten um eins (und bleibt
er dabei positiv), so wird die Potenz halbiert:

2n−1 =
1

2
· 2n

Wenn man diese Regel für allgemeingültig erklärt,, d.h. auf alle ganzen Zahlen
n ausdehnt, erhält man

20 = 21−1 =
1

2
· 2 = 1, 2−1 =

1

2
· 1 =

1

2
, 2−2 =

1

22
=

1

4
, . . . , 2−n =

1

2n
.
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Allgemein, ist a 6= 0 eine reelle Zahl, so definiert man

a0 := 1, a−n =
1

an

falls n eine positive ganze Zahl ist. (Z.B. ist (1/2)−2 = 4.)

Geht das gut?

Ja! Und zwar in folgendem Sinne: Für jede reelle Zahl a 6= 0 und jede ganze
Zahl n, sei sie positiv, negativ oder 0, ist die Potenz an eindeutig definiert,
und es gilt die fundamentale Regel:

am+n = am · an (2)

für alle ganzen Zahlen m und n. Beachten Sie bitte: Auf der rechten Seite
steht kein

”
+“!!!

(Wenn umgekehrt die Regel 2 gelten soll und an für n ∈ N1 wie üblich
definiert ist, so muss a0 = 1 und a−n = 1

an für a 6= 0 gelten. Denn aus a0a =
a0a1 = a0+1 = a1 = a folgt a0 = 1 (für a 6= 0). Aus a−nan = a−n+n = a0 = 1

folgt dann a−n =
1

an
.)

Es gibt noch weitere Regeln:

(ab)n = anbn (3)

(am)n = amn (4)

Die Regel (4) folgt aus (2).

Wegen Regel (4) definiert man übrigens abc
:= a(bc). Beachten Sie dazu 2(32) =

29 = 512, (23)2 = 82 = 64 = 26.

Die Regeln am+n = aman und (ab)n = anbn sind die Analoga zu dem Distri-
butivgesetz der Addition/Multiplikation. Man beachte, wie unterschiedlich
Basis und Exponent behandelt werden!

3. Wir wollen uns jetzt überlegen, ob, wann und wie man Potenzen mit
rationalen Exponenten definieren kann. Soll (1) und damit auch (3) (für
rationale m und positive ganze n) weiterhin gelten, so muss

(a
1
n )n = a

sein, d.h. a1/n sollte diejenige Zahl (die auch mit n
√

a bezeichnet wird) sein,
deren n-te Potenz a ist. Für ungerade n macht dies (im Bereich der reellen
Zahlen) keine Probleme. Ist aber n gerade, so gibt es für a > 0 zwei

”
n-te

Wurzeln“ und für a < 0 gar keine.

Wir befreien uns von diesen Schwierigkeiten, wenn wir a > 0 voraussetzen
und a(1/n) > 0 verlangen.
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Wenn wir schließlich noch

a
m
n := (am)

1
n = n

√
am (= (a

1
n )m = ( n

√
a)m)

für ganze m, n mit n > 0 definieren, so ist ax für reelle a > 0 und rationale
x so definiert, dass die Regeln (2) bis (4) gelten.

Übrigens ist an rational, wenn a 6= 0 rational und n ganz ist. hingegen ist
21/2 – wir wir bereits wissen – nicht rational.

4. Schließlich wollen wir noch ax für beliebige reelle Zahlen x und a > 0
definieren. Die o.a. Regeln (2) bis (4) geben alleine kein Rezept. Wir verlangen
zusätzlich die sogenannte Stetigkeit der Funktion x 7→ ax.

Jede reelle Zahl ist ein Limes einer Folge rationaler Zahlen. Wir
”
definieren“

(und müssen das auch tun, wenn ax

”
stetig“ sein soll):

Ist x = lim
n→∞

bn mit bn ∈ Q, so sei ax := lim
n→∞

abn . (5)

Diese
”
Definition“ hat natürlich einen Haken. Die reelle Zahl x ist auf viele

Weisen Limes einer Folge rationaler Zahlen. Wir müssen uns fragen: Wenn
limn→∞ b′n = limn→∞ bn ist, ist dann auch limn→∞ ab′

n = lim n →∞abn?

Die Antwort ist: Ja. Allerdings ist der Beweis dafür keineswegs trivial. Eine
präzise Durchführung ist im Schulunterricht wohl nicht möglich. (Man kann
den Beweis leicht auf die folgende Behauptung reduzieren: Ist (cn) eine
rationale Nullfolge, so ist limn→∞ acn = 1. Aber letzteres zu zeigen, ist nicht
leicht.)

5. Ist die Funktion f(x) = ax (für a > 0) differenzierbar, und was ist gege-
benenfalls die Ableitung? Wir studieren den Differenzenquotienten:

ax+h − ax

h
=

axah − ax

h
= ax · ah − 1

h
.

Man kann f also differenzieren, wenn lim
h→0

ah − 1

h
=: c existiert. Dies ist so –

allerdings nicht ganz einfach zu zeigen. Man erhält, dass die Ableitung von
ax proportional zu ax ist, wobei der Proportionalitätsfaktor c (monoton) von
a abhängt.

Es gibt nun – was wiederum nicht leicht zu beweisen ist – genau eine Zahl
e > 0 mit der Eigenschaft (ex)′ = ex. Dies ist übrigens dieselbe Zahl e, die
schon im Paragrafen 5. definiert wurde.

6. Bei der Einführung der allgemeinen Potenz auf der Universität geht man
gemeinhin einen Umweg, der es erlaubt, die unter 4. und 5. genannten Pro-
bleme elegant aus dem Wege zu räumen:
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Man definiert zunächst eine Funktion
”
exp“ durch

exp(x) :=
∞∑

n=0

xn

n!
(6)

Die Reihe konvergiert für alle reellen (sogar komplexen) x. Dann zeigt man
die fundamentale Gleichung

exp(x + y) = exp(x) exp(y) (7)

(Additionstheorem, Funktionalgleichung.) Der Beweis erfordert einigen Auf-
wand (Cauchy-Produkt, Binomial-Formel) und darf nicht durch den Hinweis
exp(x) = ex und Regel (1) erledigt werden! Warum nicht?

Aus (7) folgert man zunächst die Stetigkeit von exp. Auch die Differenzier-
barkeit und exp′ = exp ist leicht zu zeigen.

Man setzt e := exp(1), s. Paragraf 5.

Dann zeigt man mit Hilfe von (7) die Gleichung exp(x) = ex zunächst für
die natürlichen, danach für die ganzen und schließlich für die rationalen Zah-
len, wobei die rechte Seite wie unter 2. und 3. definiert sei.. Das geht wie
geschmiert!

Zwei stetige Funktionen auf R, die auf Q übereinstimmen, sind gleich, wie
man leicht sieht. Da exp stetig ist, gibt es also genau eine stetige Fortsetzung
von ex auf ganz R, nämlich ex := exp(x).

Man kann das auch so formulieren: Es ist gerechtfertigt exp(x) als x-te Potenz
von e anzusehen und mit ex zu bezeichnen.

Aber wir wollen natürlich auch ax für beliebige a > 0 definieren. Dazu de-
finiert man den Logarithmus als Umkehfunktion der Exponentialfunktion.
Man zeigt dazu exp(x) > 0, also exp′(x) > 0. Somit ist exp streng mono-
ton wachsend. Das Bild besteht ferner aus allen positiven reellen Zahlen:
exp(R) = R∗

+. Man hat also eine Umkehrabbildung, den natürlichen Loga-
rithmus

ln : R∗
+ → R

(Man schreibt auch
”
log“ statt

”
ln“.) Für beliebige a > 0 sieht man sofort,

dass die Funktion f(x) := exp(x ln(a)) die Gleichungen f(x + y) = f(x)f(y)
sowie f(1) = a erfüllt, und deshalb mit ax für alle rationalen x überein-
stimmt. Dies rechtfertigt es, ax := exp(x ln(a)) für alle reellen x zu definieren.

7. Seien c, z ∈ , c 6= 0 Man kann versuchen cz := exp(z ln(c)) zu defi-
nieren. Dies hat den Vorzug, dass man bis auf die Bedingung c 6= 0 keine
Einschränkung machen muss. Der Nachteil liegt darin, dass die

”
Funktion“

ln auf C× = C− {0} von Natur aus unendlich viele Werte hat, die sich um
Vielfache von 2πi unterscheiden. Das kommt daher, dass im Komplexen die

32



Funktion exp nicht injektiv ist. Jeder noch so geschickt ausgewählte, auf ganz
C× eindeutig definierte Logarithmus ist weder überall stetig, noch erfüllt er
allgemein die Gleichung ln(z1z2) = ln(z1) + ln(z2).

Man muss also damit leben, dass etwa der Ausdruck ii zunächst unendlich
viele (reelle) Werte hat und wenn man mit ihm rechnen will, angeben, welcher
der möglichen Werte gemeint ist.

33



8 Mengen und Logik

Die in diesem Abschnitt angesprochenen abstrakten Begriffe werden für viele
von Ihnen eine beachtliche Hürde sein, die Sie jedoch überwinden müssen,
wollen Sie mit Erfolg Mathematik, Informatik oder Physik studieren! Sie
sollten erkennen, wie simpel, ja geradezu primitiv diese Dinge sind. Die
Mengensprache ist eine wichtige und grundlegende Sprache der modernen
Mathematik. Man darf sie aber nicht mit dem eigentlichen Inhalt der Ma-
thematik verwechseln.

8.1 Eine Menge M wird dadurch konstituiert, dass man auf widerspruchs-
freie Weise angibt, welche Dinge zu ihr gehören sollen, d.h. für welche x das
Symbol x ∈ M gelten soll, d.h. welche Dinge Elemente der Menge sind..

Gilt dies für nur endlich viele Dinge, d.h ist die Menge M endlich, so kann
man sie durch Angabe aller ihrer Elemente beschreiben, wobei es auf die
Reihenfolge nicht ankommt, und auch nicht darauf, ob man zufällig eines
ihrer Elemente mehrfach angibt:

{3, 7, 2, 7, 1, 7} = {3, 7, 2, 3, 7, 1, 2} = {3, 7, 2, 1} = {1, 2, 3, 7}

Unendliche Mengen muss man anders beschreiben. Wir wollen z.B. die Men-
gen N, Z, Q, R als wohlbeschrieben ansehen und aus ihnen weitere Mengen
gewinnen, z.B. die Menge der geraden ganzen Zahlen, d.h. derjenigen n ∈ Z,
für die 2|n gilt. Diese Menge schreibt man so

{n
∣∣∣ n ∈ Z, 2|n} = {n ∈ Z

∣∣∣ 2|n}

(Statt des senkrechten Striches
∣∣∣ schreiben manche auch

”
;“ oder

”
:“ .) Da

a - b bedeuten soll, dass a kein Teiler von b ist, ist {n ∈ Z | 2 - n} die Menge
der ungeraden Zahlen.

Wichtige Mengen reeller Zahen sind die Intervalle. Seien a, b ∈ R mit a < b,
so schreibt man:

[a, b] := {x ∈ R | a ≤ x ≤ b} , ]a, b[:= {x ∈ R | a < x < b} ,

]a, b] := {x ∈ R | a < x ≤ b} , [a, b[:= {x ∈ R | a ≤ x < b}

Obwohl diese Mengen sich in höchstens 2 Elementen unterscheiden, darf man
sie nicht miteinander verwechseln.

Man zieht auch die Menge in Betracht, die gar keine Elemente besitzt, die
sogenante leere Menge, die mit ∅ bezeichnet wird.
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8.2 Seien M, N Mengen. Man nennt M eine Teilmenge von N (und manch-
mal N eine Obermenge von M) und schreibt M ⊂ N oder N ⊃ M , wenn
jedes Element von M auch ein solches von N ist:

M ⊂ N ⇐⇒
[
x ∈ M =⇒ x ∈ N

]
Dabei schließen wir die Gleichheit nicht aus. Es gilt mit dieser Definition also
M ⊂ M .

Zum Beispiel gelten

{1, 3, 7} ⊂ {1, 2, 3, 7} , {n ∈ Z
∣∣∣ 6|n} ⊂ {n ∈ Z

∣∣∣ 3|n} , [a, b[⊂ [a, b]

8.3 Für zwei Aussagen A, B bedeutet A =⇒ B eine der folgenden unerein-
ander äquivalenten Aussagen:

”
wenn A gilt, dann gilt auch B“

”
aus A folgt B“

”
A ist eine hinreichende Bedingung für B“

”
B ist eine notwendige Bedingung für A“

”
B gilt, oder A gilt nicht“

Man sagt dazu auch:
”
A impliziert B“.

8.4 Der Durchschnitt M1 ∩M2 zweier Mengen M1 und M2 ist die Menge
aller Elemente, die sowohl Elemente von M1 als auch solche von M2 sind:

M1 ∩M2 = {x | x ∈ M1 und x ∈ M2}

Beispiele: {1, 7, 3, 8, 4, 9} ∩ {3, 7, 2, 7, 1, 7} = {1, 3, 7}.
{n ∈ Z

∣∣∣ 2|n} ∩ {n ∈ | 3|n} = {n ∈ Z | 6|n}. ]0, 3[∩Z = {1, 2}.

Man beachte dass das Wort ‘Durchschnitt’ hier in einem ganz anderen Sinne
gebraucht wird als in dem Satz

”
Der Durchschnitt der Schokoladenpreise in

diesem Supermarkt ist 79 Zent“.

Die Vereinigung M1 ∪M2 zweier Mengen M1 und M2 ist die Menge aller
Elemente, die in M1 oder M2 liegen, d.h. die Element mindestens einer der
beiden Mengen sind.

M1 ∪M2 := {x | x ∈ M1 oder x ∈ M2}

Zum Beispiel {1, 7, 3, 8, 4, 9}∪{3, 7, 2, 7, 1, 7} = {1, 2, 3, 4, 7, 8, 9} oder [0, 2]∪
[2, 3] = [0, 3] oder [0, 3[∪[2, 4[= [0, 4[
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Man mag geneigt sein zu sagen, die Elemente von M1 ∪ M2 seien die Ele-
mente von M1 und von M2. Man sollte sich darüber im Klaren sein, dass bei
dieser Sprechweise nicht gemeint ist: M1 ∪ M2 besteht aus den Elementen,
die Elemente von M1 und auch Elemente von M2 sind.

Man muss unterscheiden, ob das ‘und’ Aussagen oder Gegenstände verbindet.

Man kann auch den Durchschnitt und die Vereinigung von mehr als zwei
Mengen bilden, ja sogar von unendlich vielen Mengen.

8.5 Man betrachtet auch die Mengendifferenz M − N (auch M \ N ge-
schrieben):

M −N := {x ∈ M | x /∈ N}

Zum Beispiel {1, 3, 4, 7, 8, 9} − {1, 2, 3, 5, 7} = {4, 8, 9} oder Z− {n ∈ Z
∣∣∣ 2 -

n} = {n ∈ Z | 2|n}

Die symmetrische Differenz zweier Mengen M1, M2 ist
(M1 ∪M2)− (M1 ∩M2) = (M1 −M2) ∪M2 −M1).

8.6 Zwei Aussagen A, B kann man logisch verknüpfen durch die
”
Junkto-

ren“ ‘und’ und ‘oder’. Diese werden abgekürzt: ∧ heißt ‘und’, ∨ heißt ‘oder’.
Dabei bedeutet ∨ kein ausschließendes ‘oder’.

A ∨ B ist genau dann wahr, wenn mindestens eine der Aussagen A, B wahr
ist.

A ∧B ist genau dann wahr, wenn beide Aussagen wahr sind.

Beachte: (A∧B)∨C bedeutet etwas anderes als A∧(B∨C). Manche Unklar-
heiten in nicht formalisierten Texten entstehen dadurch, dass man solcherlei
nicht leicht unterschiedlich ausdrücken kann. In verbalen Sätzen haben die
Klammern – so man sie überhaupt verwendet – eine andere Bedeutung als
in mathematischen und logischen Formeln.

Die beiden folgenden Ausdrücke sind äquivalent: (A∧B)∨C und (A∨C)∧
(B ∨ C).

Selbiges gilt für A ∧ (B ∨ C) und (A ∧B) ∨ (A ∧ C).

Ferner kann man die Aussage A verneinen durch ‘nicht A’ , das man auch
⇁ A schreibt. Genau dann ist ⇁ A richtig, wenn A falsch ist.

In der klassischen Logik,, die wir in der Regel benutzen ist ⇁ (⇁ A) mit A
äquivalent.

Die Aussage ⇁ (A ∧B) ist äquivalent zu (⇁ A) ∨ (⇁ B).

Und ⇁ (A ∨B) ist äquivalent zu (⇁ A) ∧ (⇁ B).
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Die Aussage A =⇒ B bedeutet (in der klassischen Logik) nichts anderes als
(⇁ A) ∨B.

Und A ⇐⇒ B bedeutet natürlich (A =⇒ B) ∧ (B =⇒ A).

8.7 Der Zusammenhang zwischen den Mengenverknüpfungen und den Junk-
toren ist:

x ∈ M ∩N ⇐⇒ x ∈ M ∧ x ∈ N

x ∈ M ∪N ⇐⇒ x ∈ M ∨ x ∈ N

8.8 Außer den Junktoren braucht man noch die sogenannten Quantoren:

”
für alle“ und

”
es gibt“, welch letzteres nichts anderes bedeutet als

”
für ein“.

Man braucht dazu Aussagen über eine
”
Variable“, etwa x. Man schreibt A(x),

was bedeuten soll: A gilt für x. Ein Beispiel ist die Aussage x ∈ R =⇒ 2x =
x + x.

Die abkürzenden Bezeichnungen sind:
∧

x A(x) in der Bedeutung:
”
für alle x

gilt A“ (Allquantor)

und:
∨

x A(x) in der Bedeutung:
”
für (mindestens) ein x gilt A“ (Existenz-

quantor).

Mathematiker benutzen häufiger die Abkürzungen ∀ statt
∧

und ∃ statt
∨

.

Zwei Allquantoren darf man miteinander vertauschen; dasselbe gilt für zwei
Existenzquantoren. Hingegen wissen wir, dass man einen All- mit einem Exi-
stenzquantor nicht vertauschen darf.

In den natürlichen Sprachen werden Allquantoren häufig versteckt. Z.B. gilt
folgender Satz:

”
Seien x, y (beliebige) reelle Zahlen. Dann gilt xy = yx.“ Damit ist gemeint:∧

x

∧
y

(
(x ∈ R ∧ y ∈ R) =⇒ xy = yx

)
Wenn man sagt,

”
für eine reelle Zahl x gilt 2x = x + x“, so meint man:

”
für alle reellen Zahlen x gilt 2x = x + x“. Aus diesem Grunde empfiehlt

es sich, den Existenzquantor mit
”
es gibt“ zu verbalisieren. Statt

”
Für eine

reelle Zahl x gilt xx = xx“ sollte man sagen
”
es gibt eine reelle Zahl x mit

xx = xx“. (Dies ist eine richtige Aussage, nicht wahr??)

Examples 8.9 a) Die Aussagen
∧

x(x ∈ N =⇒ xx = xx) und
∧

x(x ∈ N =⇒
xx 6= xx) sind beide falsch.

b) Hingegen sind die Aussagen
∨

x(x ∈ N∧xx = xx) und
∨

x(x ∈ N∧xx 6= xx)
beide richtig.
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c) Für alle Mengen M, N gilt

M ⊂ N ⇐⇒
∧
x

(x ∈ M =⇒ x ∈ N)

8.10 Seien X, Y Mengen. Unter dem cartesischen Produkt X × Y
(genannt nach Descartes) versteht man die Menge aller Paare (x, y) mit
x ∈ X, y ∈ Y . Zum Beispiel kann man die euklidische Ebene bekanntlich als
Menge aller Paare (x, y) reeller Zahlen auffassen. Also

”
ist“ sie R× R.

Ebenso kann man das cartesische Produkt von 3 oder mehr Mengen bilden.
Statt R×R schreibt man auch R2. Entsprechend ist R3 usw. und Rn zu ver-
stehen. Die Elemente (x1, x2, . . . , xn) des Rn heißen n-tupel reeller Zahlen.

Ist K ein beliebiger Körper, so definiert man auf dem Kn eine Addition wie
folgt:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) := (a1 + b1 , a2 + b2, . . . , an + bn) (8)

Alle Axiome der Addition in einem Körper (oder Ring) sind für diese Addi-
tion erfüllt. Definiert man noch eine Multiplikation durch

(a1, a2, . . . , an) · (b1, b2, . . . , bn) := (a1b1, a2b2, . . . , anbn)

so wird der Kn zu einem Ring, der aber für n > 1 kein Körper ist. (Warum
nicht?)

Wichtiger ist die Multiplikation eines Elementes von K mit einem solchen
von Kn:

a · (b1, . . . , bn) := (ab1, . . . , abn) (9)

für a, b1, . . . , bn ∈ K. Man nennt Kn zusammen mit der Addition (8) und
der Multiplikation (9) einen sogenannten Vektorraum.
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9 Abbildungen

Ohne den Begriff
”
Abbildung“ geht in der modernen Mathematik gar nichts.

Wichtig ist, dass man sich nicht von vorne herein irgendwie einschränkt. Z.B.
ist folgendes eine Abbildung

f : R → R definiert durch f(x) = 1 für x ∈ Q, f(x) = 0 sonst.

Diese Abbildung ist zwar nirgendwo stetig, aber präzise definiert. (Dabei
ist allerdings zuzugeben, dass es bei einer gemessenen physikalischen Größe
keinen Sinn hat, zu fragen, ob sie rational oder irrational ist.)

Ein weiteres Beispiel ist:

g : R → R, g(x) = x2 für x ≥ 0, g(x) = −x2 für x < 0

Diese Abbildung ist stetig, sogar differenzierbar, aber nicht 2-mal differen-
zierbar!

Bei endlichen Mengen kann man konkret angeben, wohin jedes einzelne Ele-
ment abgebildet wird, z.B.

α : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 2, 3 7→ 3

β : {1, 2, 3} → {1, 2, 3}, 1 7→ 2, 2 7→ 3, 3 7→ 1

Definitions 9.1 Sei f : X → Y eine Abbildung.

a) X heißt die Startmenge (kurz: der Start) und Y die Zielmenge (kurz:
das Ziel) von f . (In manchen Situationen, insbesondere in der Linearen
Algebra, ist man sehr streng und unterscheidet zwischen Abbildungen, die
nur bis auf die Start- oder die Zielmenge übereinstimmen, z.B. zwischen den
Abbildungen f : R → R, x 7→ x2 und g : R → R+, x 7→ x2)

b) Die Bildmenge (auch das Bild im(f) = f(X) von f ist die Menge
{f(x) | x ∈ X} =
{y ∈ Y | es existiert ein x ∈ X mit f(x) = y}.

c) f heißt injektiv, wenn verschiedene Elemente von X auch verschiedene
Bilder haben, d.h. wenn aus f(x) = f(x′) immer x = x′ folgt.

d) f heißt surjektiv, wenn jedes Element y ∈ Y das Bild (mindestens) eines
x ∈ X ist, d.h. wenn f(X) = Y gilt.

e) f heißt bijektiv, wenn f sowohl injektiv wie surjektiv ist.

f) Sind f : X → Y, g : Y → Z Abbildungen, so definiert man ihre Verket-
tung g◦f : X → Z durch (g◦f)(x) := g(f(x)).
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Examples 9.2 a) Die o.a. Abbildung α ist weder injektiv, noch surjektiv; β
hingegen ist bijektiv.

b) Durch x 7→ x2 können, je nach Wahl von Start und Ziel, Abbildungen mit
verschiedenen der o.a. Eigenschaften definiert werden:

1) R → R, weder surjektiv noch injektiv,

2) R → R+, surjektiv aber nicht injektiv,

3) R+ → R, injektiv aber nicht surjektiv,

4) R+ → R+, sowohl surjektiv wie injektiv, also bijektiv.

9.3 Sei f : X → Y eine bijektive Abbildung. Dann gibt es zu jedem y ∈ Y
genau ein (d.h. ein eindeutig bestimmtes) x ∈ X mit f(x) = y. (Die Existenz
dieses x folgt aus der Surjektivität, seine Eindeutigkeit aus der Injektivität.)

Dieses x wird mit f−1(y) bezeichnet. Macht man obiges für alle y ∈ Y , so
erhält man eine Abbildung f−1 : Y → X. Man nennt f−1 auch die Umkehr-
abbildung von f . Sie ist nur dann definiert, wenn f bijektiv ist. Achtung:
Die Abbildung

x 7→ 1

f(x)

hat nichts mit f−1 zu tun!

Lemma 9.4 Sei
W

α−→ X
β−→ Y

γ−→ Z

eine Folge von Abbildungen. Dann gilt γ◦(β◦α) = (γ◦β)◦α.

Proof: Für w ∈ W gilt

(γ◦(β◦α))(w) = γ((β◦α)(w)) = γ(β(α(w)))

und
((γ◦β)◦α)(w) = (γ◦β)(α(w)) = γ(β(α(w)))

�

Mit anderen Worten: Sowohl γ◦(β◦α) als auch (γ◦β)◦α ist die Abbildung, die
entsteht, indem man erst α, dann β und schließlich γ ausführt.

Beachten Sie, dass α◦β in obiger Situation meistens nicht definiert ist.

9.5 Natürliche Zahlen. Man kann die natürlichen Zahlen und das Rechnen
mit ihnen über die Mengenlehre einführen. Die natürlichen Zahlen sind dann
die sogenannten Kardinalzahlen (Elementeanzahlen) endlicher Mengen.

Ist m = #M, n = #N und M ∩ N = ∅, so kann man definieren m + n :=
#(M ∪ N). Ebenso definiert man mn := #(M × N), wobei man hier nicht
fordern muss, dass M ∩N = sei.

Die Rechengesetze ergeben sich dann auf natürliche Weise.
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10 Komplexe Zahlen

Wenn man von den natürlichen Zahlen aus über die ganzen und rationalen
Zahlen schließlich zu den reellen Zahlen gelangt ist, ist ein gewisser Abschluss
erreicht. Man kann z.B. jeden Punkt des (euklidischen) Raumes – nach Festle-
gung eines Koordinatensystems – durch ein Tripel reeller Zahlen beschreiben,
was bekanntlich nicht möglich ist, wenn man sich auf die rationalen oder die
positiven reellen Zahlen beschränkt. Wen kümmert es eigentlich ernsthaft,
dass man aus negativen Zahlen keine Quadratwurzeln ziehen kann? Man
verzichtet ja auch darauf, durch 0 zu dividieren.

Die erste Ahnung davon, dass sich möglicherweise hinter der durch reelle Zah-
len beschriebenen Realität eine matematisch relevante Wirklichkeit verbirgt,
bekamen unsere Vorfahren in der Renaissance.

Kubische Gleichungen: Sie wissen, wie man quadratische Gleichungen
löst. Auf die sogenannte

”
p-q-Formel“ kommt man durch die quadratische

”
Ergänzung“. Wenn man analog eine

”
kubische Ergänzung“ auf kubische

Gleichungen (d.h. solche 3. Grades) anzuwenden versucht, erreicht man le-
diglich eine Reduktion auf Gleichungen der Form x3 + px + q = 0. Eine
Lösungsformel für diese Gleichung fand (wahrscheinlich) Tartaglia im Jahre
1535:

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−

√
q2

4
+

p3

27

Für die Gleichung x3−3x+2 = 0 z.B. liefert Tartaglias Formel die Lösung x =
3
√
−1 +

√
1− 1+ 3

√
−1−

√
1− 1 = −2, die offenbar richtig ist. (Allerdings ist

1 eine weitere Lösung.) Ebenso erhält man mit Tartaglias Formel die Lösung
0 der Gleichung x3 +x = 0. (Diese ist übrigens die einzige Lösung im Bereich
der reellen Zahlen.)

Bei der ebenso simplen Gleichung x3 − x = 0 scheint allerdings Tartaglias
Formel zu versagen. Sie ergibt

x =
3

√√
− 1

27
+

3

√
−

√
− 1

27

Die (richtige) Lösung 0 erhält man nur dann, wenn man sich großzügig

darüber hinwegsetzt, dass der zweimal vorkommende Ausdruck
√
− 1

27
im

Bereich der reellen Zahlen gar keinen Sinn hat. (1 und -1 sind weitere Lösun-
gen.)

Dies sollte weniger ein Grund zur Resignation sein, als einer dafür, Qua-
dratwurzeln aus negativen Zahlen einen Sinn zu geben. Umso mehr, als in
Tartaglias Formel solche merkwürdigen Ausdrücke häufig genug auftreten,
nämlich immer gerade dann, wenn die Gleichung drei verschiedene reelle
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Lösungen hat.

Komplexe Zahlen: Die Matematiker erfanden zu den reellen Zahlen eine
neue Zahl dazu, die

”
i“ genannt wurde und die merkwürdige Eigenschaft

i2 = −1 hat, und betrachteten als neue, sogenannte komplexe Zahlen die
Ausdrücke der Gestalt a + bi mit reellen Zahlen a, b. (Zunächst sprach man
von imaginären, d.h. eingebildeten Zahlen. Daher auch der Buchstabe i. Da
man teilweise unter imaginären Zahlen nur solche der Form bi mit reellem
b verstand, kam man auf den Namen

”
komplexe Zahl“ für eine Summe aus

einer reellen und einer (rein) imaginären Zahl.)

So wie man die reellen Zahlen als Punkte auf einer Geraden auffassen kann, so
fasst man die komplexen Zahlen als Punkte in einer Ebene auf, die komplexe
Zahl a + bi bekommt die (rechtwinkligen) Koordinaten (a, b). Es ist auch
nützlich, sich die Zahl a + bi als den Vektor vorzustellen, der von (0, 0) nach
(a, b) geht.

Mit komplexen Zahlen wird gerechnet wie gewohnt, allerdings unter der Be-
dingnis, dass immer i2 = −1 sei. Also etwa

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i,

was geometrisch der Vektoraddition entspricht,

(a1+b1i)(a2+b2i) = a1a2+a1b2i+a2b1i+b1b2i
2 = (a1a2−b1b2)+(a1b2+a2b1)i,

(Vorsichtige Leute – wie ich z.B. – werden allerdings zunächst die kom-
plexe Zahl a + bi als Paar (a, b) reeller Zahlen a, b schreiben und dann
(a1, b1)(a2, b2) := (a1a2 − b1b2 , a1b2 + a2b1) und ((a1, b1) + (a2, b2) =
(a1 + a2 , b1 + b2) definieren, um dann wirklich beweisen zu können, dass
alle gewohnten Rechenregeln gelten.)

Die Zahlen 0 = 0 + 0i und 1 = 1 + 0i behalten ihre bekannten Eigenschaften.
Man kann natürlich subtrahieren und sogar dividieren. Nämlich für a+bi 6= 0
gilt

1

a + bi
=

a− bi

(a + bi)(a− bi)
=

a

a2 + b2
− b

a2 + b2
i

(Beachten Sie, dass für a + bi 6= 0 mit a, b ∈ R auch a2 + b2 6= 0 ist.)

Als spezielles Beispiel rechnen wir (1+i)2 = 1+2i−1 = 2i, also ( 1√
2
+ 1√

2
i)2 =

1
2
(2i) = i, mithin ( 1√

2
+ 1√

2
i)4 = i2 = −1. Im Bereich der komplexen Zahlen

ist also −1 nicht nur ein Quadrat, sondern auch eine 4. Potenz (übrigens –
wie wir unten sehen werden – auch eine 6., 8. usw.). Wir bleiben bei diesem
Beispiel und setzen abkürzend v := 1√

2
+ 1√

2
i. Dann ist v3 = v2v = iv =

− 1√
2
+ 1√

2
i, v5 = v4v = −v, v6 = v4v2 = −i v7 = v4v3 = −v3 =

1√
2
− 1√

2
i und schließlich v8 = (v4)2 = (−1)2 = 1. Dann wiederholen sich die
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Werte der Potenzen, also v9 = v8v = v, v10 = v8v2 = v2 = i, v11 = v8v3 =
v3 = − 1√

2
+ 1√

2
i usw. Für jede beliebige (ganze) Potenz vk gilt offenbar

(vk)8 = (v8)k = 1k = 1. D.h. wir haben insgesamt 8 verschiedene Zahlen
gefunden, deren 8. Potenz 1 ergibt, nämlich 1, v, v2, . . . , v7.

Ein weiteres Beispiel. Setze w := 1
2

+
√

3
2

i. Dann ist w2 = 1
4
− 3

4
+ 2 · 1

2

√
3

2
i =

−1
2
+

√
3

2
i und w3 = ww2 = (1

2
+

√
3

2
i)(−1

2
+

√
3

2
i) = −1

4
− 3

4
= −1. Weiter erhält

man w4 = w3w = −w, w5 = w3w2 = −w2 und w6 = w3w3 = (−1)(−1) = 1.
Wie oben wiederholen sich jetzt die Potenzen: w7 = w1, w8 = w2 usw.
Ebenso sieht man, dass für jede ganze Potenz wk von w gilt: (wk)6 = 1. Es
gibt also (mindestens) 6 verschiedene komplexe Zahlen, die die Gleichung
x6 = 1 erfüllen.

Zur geometrischen Deutung der Multiplikation. Sei c = a+bi, a, b ∈ R
eine komplexe Zahl. Ihr (Absolut-)Betrag wird definiert als |c| :=

√
a2 + b2,

d.h. als Länge des entsprechenden Vektors (Pytagoras). Sei c 6= 0, d.h. a 6= 0
oder b 6= 0. Der Vektor c hat zum Vektor 1 = 1 + 0i einen (orientierten)
Winkel, den man als Argument von c bezeichnet. (Das Argument ist im
Grunde nur bis auf Addition eines Vielfachen von 2π definiert.) Ist ϕ das
Argument von c, so gilt offenbar

c = |c|(cos ϕ + i sin ϕ), d.h. a = |c| cos ϕ, b = |c| sin ϕ.

Für zwei von 0 verschiedene komplexe Zahlen c1, c2 mit den Argumenten
ϕ1, ϕ2 erhalten wir mit Hilfe der Additionstheoreme des Sinus und des Cosi-
nus

c1c2 = |c1||c2|
(

cos ϕ1 cos ϕ2− sin ϕ1 sin ϕ2 +i(sin ϕ1 cos ϕ2 +cos ϕ1 sin ϕ2)
)

=

|c1||c2|
(

cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)
)

D.h. der Betrag des Produktes ist das Produkt der Beträge und das Argument
des Produktes ist die Summe der Argumente der Faktoren. Es folgt z.B.

cn = |c|n(cos(nϕ) + i sin(nϕ).

Dies gilt für jede positive ganze Zahl n (und, wie man sich leicht überlegt,
auch für jede ganze Zahl n).

Sei c 6= 0 eine komplexe Zahl mit dem Argument ϕ und d := n
√
|c|(cos(ϕ/n)+

i sin(ϕ/n)) (n > 0) so gilt offenbar dn = c. D.h. man kann aus jeder komple-
xen Zahl für jede natürliche Zahl n > 0 eine n-te Wurzel ziehen.

Allerdings ist das Wurzelziehen nicht eindeutig: Es gibt genau n verschiedene
komplexe Zahlen d mit dn = c, wenn nicht gerade c = 0 ist. Das mag man
im Zusammenhang mit der Vieldeutigkeit des Arguments einer komplexen
Zahl sehen: Es ist cos(ϕ + k · 2π) + i sin(ϕ + k · 2π) = cos ϕ + i sin ϕ für
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jede ganze Zahl k. Also ist jede komplexe Zahl dk := n
√
|c|(cos(ϕ/n + k ·

2π/n)+ i sin(ϕ/n+k ·2π/n)) eine n-te Wurzel aus c, d.h. dn
k = c. Die Zahlen

d0, d1, . . . , dn−1 sind untereinander verschieden, aber danach wiederholen sie
sich: dn = d0, dn+1 = d1, . . ..

Insbesondere gibt es n verschiedene komplexe Zahlen z0, z1, . . . , zn−1, die alle
die Gleichung zn = 1 erfüllen. Eine von ihnen ist 1, alle haben den Betrag
1, d.h. sie befinden sich auf dem Einheitskreis. Sie bilden offenbar die Ecken
eines regelmäßigen n-Ecks. Von dieser Tatsache ist Gauß ausgegangen, als
es ihm kurz vor 1800 gelang, ein regelmäßiges 17-Eck allein mit Zirkel und
Lineal zu konstruieren.

Von der Tatsache ausgehend, dass man im Bereich der komplexen Zahlen
beliebige Wurzeln ziehen kann, lässt sich auch der

”
Fundamentalsatz der

Algebra“ beweisen:

Jedes Polynom zn + c1z
n−1 + · · ·+ cn−1z + cn mit komplexen Koeffizienten cj

hat (mindestens) eine komplexe Nullstelle. (Diesen Satz hat Gauß als erster
vollständig bewiesen.)

(N.B. Dass ein Polynom vom Grad n höchstens n Nullstellen hat, ist ebenfalls
ein richtiger und wichtiger – übrigens in allgemeineren Bereichen gültiger –
Satz, der aber fast trivial zu beweisen ist und nicht als Fundamentalsatz der
Algebra bezeichnet werden sollte!)

Vielleicht machen diese wenigen Beispiele schon deutlich, dass sich dem Ma-
tematiker mit der Entdeckung/Erfindung der komplexen Zahlen ein

”
weites

Feld“ öffnet, und er sich durch Beharren auf den reellen Zahlen viele Möglich-
keiten verbauen würde. Als einzelnes Beispiel sei genannt, dass manche Sätze
über die Verteilung der Primzahlen sich am besten mit Hilfe der komplexen
Zahlen beweisen lassen. (Im Anhang finden Sie eine Ausführung über die
komplexe e-Funktion.)

Wer nun glaubt, komplexe Zahlen seien lediglich den Matematikern zunütze,
ist auf dem Holzweg: Keine Elektrotechnik und keine Quantenteorie ohne
komplexe Zahlen.

Anhang

Zu Tartaglias Formel: Wenn man sie im Komplexen anwenden will, hat
es mit mehrdeutigen Wurzel zu tun. Mit den Quadratwurzeln ist es einfach:

Mit
√

q2

4
+ p3

27
sei willkürlich eine der beiden möglichen Wurzeln bezeichnet;

−
√

q2

4
+ p3

27
ist dann automatisch die andere. Jeder der beiden Summanden

in Tartaglias Formel ist nun eine kubische Wurzel mit 3 möglichen Werten.
So hat man insgesamt 9 mögliche Kombinationen. Es gibt nun eine Regel,
welche 3 Kombinationen die Nullstellen des kubischen Polynoms ergeben.
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Hierauf will ich nicht genauer eingehen und verweise stattdessen auf das Buch

”
Kubische und biquadratische Gleichungen“ von Heinrich Dörrie (Leibniz

Verlag München 1948).

Die komplexe e-Funktion: Für z = x + iy, x, y ∈ R, setzt man ez :=
ex(cos y + i sin y). Dies ist keineswegs willkürlich. Denn für die so definierte
Funktion gilt

ez =
∞∑

n=0

zn

n!
,

d.h. die aus dem Reellen bekannte Potenzreihenentwicklung gilt auch im
Komplexen. Ferner erhält man auch für komplexe z1, z2 die Formel ez1+z2 =
ez1ez2 . Die komplexe e-Funktiom bildet die reelle Achse {a+bi | a ∈ R, b = 0}
auf die positive reelle Halbachse und die imaginäre Achse {a + bi | a = 0, b ∈
R} auf die Einheitskreislinie {a + bi | a, b ∈ R, a2 + b2 = 1} ab.

45



11 Vorkurs-Aufgaben

1. Berechnen Sie

a) 24 und 42, b) 34 und 43, c) (6± 4)3 und 63 ± 43.

2. Berechnen Sie

a) 23 · 23 und 23·3. b) (2 · 3)3 und 2(3·3).

3. Berechnen Sie

a) sin π + sin π und sin(π + π), b) sin π
2

+ sin π
2

und sin(π
2

+ π
2
).

4. a) Berechnen Sie 22 − 21 und 22−1.

b) Berechnen Sie 23 − 21 und 23−1.

c) Berechnen Sie 32 − 31 und 32−1.

d) Was haben Sie aus a), b) und c) gelernt?

5. Nach welchen Regeln darf man am+n, amn, (ab)n umformen?

6. Schreiben Sie (7a7 + 6a6)2 als Summe von Potenzen von a mit ganz-
zahligen Koeffizienten.

7. Berechnen Sie
√

9 + 16 und
√

9 +
√

16.

8. Berechnen Sie sin(π
6

+ π
3
) und sin π

6
+ sin π

3
möglichst ohne Rechner.

Welches Ergebnis ist größer?

9. Berechnen Sie 242
und (24)2. (Per definitionem ist abc

= a(bc).)

10. Berechnen Sie 231+1
und 231 · 231

.

11. Finden Sie, wenn möglich, eine natürliche Zahl n mit ((33)3)n = 333
.

12. Zeigen Sie: Zu jeder ungeraden Zahl u ∈ N gibt es ein m ∈ N mit
u2 = 8m + 1.

13. Geben Sie allgemeine Formeln für (a + b)3 und (a + b)4 an.

14. Berechnen Sie 10 . . . 014, wo zwischen den beiden Einsen 999 (oder all-
gemeiner n−1) Nullen stehen. Geben Sie das Ergebnis als Dezimalzahl
an, d.h. in ähnlicher Weise wie hier die Basis der zu berechnenden Po-
tenz angegeben ist.

15. Berechnen Sie (a− b)(a4 + a3b + a2b2 + ab3 + b4) und allgemein
(a−b)

∑n
j=0 an−jbj. (Dabei ist

∑n
j=0 an−jbj = an +an−1b+ · · ·+abn−1 +

+bn.)

16. Schreiben Sie als Potenzen von 10: a) hunderttausend, b) zehn Millio-
nen, c) eine Milliarde, d) eine Billion, e) one billion (amerikanisch).
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17. Bitte machen Sie sich ein paar Gedanken über den Sinn und Nutzen
negativer Zahlen. Die Gleichung

x2 + 312 = 37x

hat die Lösungen 13 und 24, wie man leicht durch Rechnen in N nach-
prüft. Das bekannte Lösungsverfahren – mit quadratischer Ergänzung –
benutzt jedoch mit Gewinn das Rechnen mit negativen Zahlen. An die-
sem Beispiel sieht man auch, wie richtig und wichtig es ist, das Produkt
negativer Zahlen so zu definieren, dass z.B. (−13)(−24) = 312(> 0) ist.

18. Zeigen Sie (etwa mit Induktion): a) Für alle ganzen Zahlen n ≥ 3 ist
n2 > 2n + 1.

b) Für alle ganzen Zahlen n ≥ 5 ist 2n > n2.

19. Ein Zahlenrätsel:

EULER = SB · RLE

GAUSS = L · A · LUL · EE

ABEL = A · RR · RL · L

Wenn man jeden Buchstaben durch eine Ziffer des Dezimalsystems er-
setzt, steht in jeder Gleichung rechts die Primfaktorzerlegung der linken
Seite. (Natürlich sind gleiche Buchstaben durch gleiche Ziffern zu erset-
zen, aber nicht notwendig verschiedene Buchstaben durch verschiedene
Ziffern. Die Zahlen dürfen mit der Ziffer 0 beginnen. Aber man darf
natürlich verwenden, dass 0 keine Primzahl ist.)
Bestimmen Sie sämtliche Lösungen. (Durch geschicktes Vorgehen kann
man sehr schnell zum Ziel kommen. Insofern habe ich es mir nicht so
einfach gemacht, wie manche vielleicht vermuten.)

20. Etwas zum Knobeln: Gibt es eine quadratische Tischplatte, die man
mit Postkarten lückenlos und ohne Überlappungen bedecken kann? Die
Länge einer Postkarte verhält sich zur Breite wie

√
2 : 1. (Natürlich soll

die Kantenlänge der Tischplatte nicht 0 sein.)

(Nehmen Sie an, die Tischplatte sei n Kartenbreiten plus m Kartenlän-
gen breit. Wie viele Karten brauchen Sie, um eine Fläche entsprechen-
den Ausmaßes zu bedecken?)

21. Finden Sie (etwa durch Probieren) ganze Zahlen m, n mit

m

3
+

n

5
=

1

15

und vergessen Sie dabei nicht, dass es auch negative ganze Zahlen gibt.

22. Seien m, n ∈ N1. Zeigen Sie:
19m

17n
ist nicht ganz.
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23. Finden Sie natürliche Zahlen m, n mit

m

3
+

n

5
=

14

15

24. Finden Sie ganze Zahlen m, n mit n 6= 0 und

m

3
+

n

5
=

1

3

25. Berechnen Sie
3
2

+ 5
7

2
3

+ 7
5

und
1
3

+ 1
6

1
3+6

.

26. Berechnen Sie
a

b
+

b

a
und zeigen Sie, dass

a

b
+

b

a
> 2 ist, wenn a > b > 0

gilt.

27. Bringen Sie auf einen Bruchstrich:

a

bc
+

b

ac
+

c

ab
und

bc

a
+

ac

b
+

ab

c

28. Schreiben Sie tan x + cot x als rationalen Ausdruck in sin 2x.

29. Lösen Sie die folgenden Gleichungen, oder zeigen Sie, dass es in dem
einen oder anderen Fall nicht möglich ist:

2
3

+ 7
6

3
4
− 1

x

= 1 ,
4
3
− 1

6
7
6

+ 1
x

= 1

30. a) Kürzen Sie den Bruch
x12 − x3

x6

so gut es allgemein möglich ist.

b) Kann man denselben Bruch als Differenz zweier Potenzen von x
schreiben, wo jeder Exponent auch negativ sein darf (aber nicht muss)?

c) Kann man dasselbe für den Kehrwert des Bruches machen?

31. Das entsprechende wie oben für den Bruch

t7 − t2 + t

t5

32. Vereinfachen Sie

a

(k + 1)!(n− k − 1)!
+

a

k!(n− k)!
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33. Seien p1, . . . , pn verschiedene Primzahlen mit n ≥ 2. Zeigen Sie, dass

a :=
1

p1

+ · · ·+ 1

pn

keine ganze Zahl ist. (Tipp: Es ist nicht einmal p1 · · · pn−1a ganz.)

34. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1

k
keine ganze Zahl. (Tipp: Sei m

das kleinste gemeinsame Vielfache aller Nenner. Was gilt für am/2 ?
Betrachte die größte 2-Potenz unter den Nennern.)

35. Zeigen Sie: Für n ≥ 2 ist a :=
n∑

k=2

1

k!
keine ganze Zahl.

36. Zeigen Sie: Für n ≥ 1 ist a :=
n∑

k=1

1

k(k + 1)
keine ganze Zahl. (Das

Einfachste ist es wohl, die Summe zu berechnen.)

37. Sei Q eine Menge von Primzahlen und S die Menge aller s ∈ N1, deren
Primfaktoren sämtlich zu Q gehören. Zeigen Sie, dass die Menge

{a

s
| a ∈ Z, s ∈ S}

ein Unterring von Q ist.

38. Betrachten Sie

K := {a + b
√

2 | a, b ∈ Q} , L := {a + 2b
√

2 | a, b ∈ Q} ,

R := {a + b
√

2 | a, b ∈ Z} , S := {a + 2b
√

2 | a, b ∈ Z .

a) Zeigen Sie: K und L sind Teilkörper von R. Zeigen Sie ferner K = L.

b) Zeigen Sie: R und S sind beide keine Teilkörper, aber Teilringe von
R. Zeigen Sie ferner R ⊃ S und R 6= S.

39. Zeigen Sie, dass die Menge {−1, 0, 1} auf folgende Weise zu einem
Körper wird: Die Multiplikation ist die Übliche. Die Addition ⊕ wird
definiert durch 1⊕1 := −1 , (−1)⊕(−1) := 1 und a⊕b := a+b in allen
übrigen Fällen. (Den Beweis der Assoziativität der Addition und der
Distributivität brauchen Sie jeweils nur für einen weniger trivialen Spe-
zialfall auszuführen. Es gibt auch einen Beweis, der die Assoziativität
der Addition und die Distributivität auf die entsprechenden Gesetze in
Z zurückführt.)

40. Seien m, n ∈ N1. Zeigen Sie n!|m(m + 1) · · · (m + n)
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41. a) Seien p, q verschiedene Primzahlen. Zeigen Sie, dass
ln p

ln q
irrational

ist. (Tipp: Ansonsten erhielte man einen Widerspruch zur eindeutigen
Primfaktorzerlegung.)

b) Folgern Sie, dass es höchstens eine Primzahl gibt, deren Logarithmus
rational ist.

42. Seien a, b, c, d > 0 reell. Zeigen Sie

a

b
≤ c

d
=⇒ a

b
≤ a + c

b + d
≤ c

d

Schließen Sie daraus, dass

a

b
+

c

d
6= a + c

b + d

ist.

43. Zeigen Sie: Die abbrechenden Dezimalbrüche bilden einen Unterring
von Q.

44. Bei einer Uhr seien der Stunden-, der Minuten- und der Sekundenzei-
ger kontinuierlich laufend, zentral angebracht und genau koordiniert,
so dass um Punkt 0 Uhr alle 3 Zeiger genau übereinanderstehen. Zu
welchen anderen Zeiten stehen alle 3 Zeiger genau übereinander?

45. Zwei Menschen wandern einander auf der gleichen Straße entgegen. Der

eine startet in A und wandert mit einer Geschwindigkeit von
23

6

km

h
.

Der zweite startet im 19,5 km entfernten B eine halbe Stunde später

als der erste und wandert mit der Geschwindigkeit
21

4

km

h
. Wann und

wo treffen sich die beiden?

46. Seien a, b ∈ Q mit a + b
√

2 = 0. Zeigen Sie a = b = 0.

47. Geben Sie systematisch alle Tripel (a, b, c) ganzer Zahlen an, für die

0 < a ≤ b ≤ c und
1

a
+

1

b
+

1

c
∈ Z

gilt. Ohne einen Text, der beweist, dass Sie wirklich alle mögli-
chen Tripel gefunden haben. ist Ihre Lösung nichts wert!

48. Berechnen Sie
6∑

n=1

1

n
,

4∑
n=−3

n(n + 2)
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49. Seien m, n ∈ N1 und m ≤ n. Zeigen Sie

n∑
k=m

1

k(k + 1)
=

1

m
− 1

n + 1

50. Finden Sie a, b ∈ N, derart dass
√

a,
√

b beide irrational sind, (
√

a+
√

b)2

aber rational ist.

51. Zeigen Sie, dass
√

2 +
√

3 irrational ist.

52. a) Zeigen Sie a2 + b2 ≥ 2ab für alle a, b ∈ R. (Tipp: x2 ≥ 0.)

b) Folgern Sie a2 + b2 ≥ ab für a, b ∈ R. (Beachten Sie, dass 2ab ≥ ab
nicht immer richtig ist! Unterscheiden Sie 2 Fälle.)

c) Folgern Sie a2 + b2 + c2 ≥ ab + bc + ac für alle a, b, c ∈ R aus a).

53. Sei α ∈ R eine Nullstelle des Polynoms xn + a1x
n−1 + · · ·+ an−1x + an

mit aj ∈ Z. Zeigen sie: Ist α /∈ Z, so ist α /∈ Q.

54. Berechnen Sie lim
n→∞

(2n+ 1
n − 2n)

55. Berechnen Sie
∞∑

k=0

xmk+l, wo m, l > 0 sind, für diejenigen x, für welche

die Reihe konvergiert.

56. Zeigen Sie
∞∑

k=0

1

2k + 1
= ∞.

57. Zeigen Sie
∞∑

k=1

1

k3
< ∞.

58. Zeigen Sie
∞∑

k=2

1

k2 − k
< ∞.

59. Finden Sie a, b ∈ R derart, dass (x2 − axy + by2)(x2 + axy + by2) =
x4+4y4 für alle reellen x, y gilt. Welche bemerkenswerte Identität ergibt
sich, wenn man y = 1 setzt?

60. Berechnen Sie
1

x2 − 2xy + 2y2
− 1

x2 + 2xy + 2y2

61. Zeigen Sie lim
n→∞

n!

nn
= 0 .

62. Zeigen Sie
∞∑

n=1

n!

nn
< ∞
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63. Zeigen Sie
∞∑

k=2

1

k2 − k
< ∞.

64. Berechnen Sie ohne Taschenrechner
881/3 − (88)1/3

3
5

+ 5
13

65. Bestimmen Sie die reellen Nullstellen des Polynoms
x8 − 25x6 − (42x3 − 216)(x− 5)(x + 5) .

66. Begründen Sie die p, q-Formel für die Lösung einer quadratischen Glei-
chung.

67. Ein Aufzug bewegt sich mit 4 m/sec aufwärts. Eine kleine Eisenku-
gel fällt auf das Dach der Aufzugkabine. Und zwar wurde sie in dem
Augenblick losgelassen, als das Kabinendach 22,1 m entfernt war. Wie
lange dauert es, bis die Kugel aufprallt, und welche Weglänge hat sie
zurückgelegt? (Vernachlässigen Sie den Luftwiderstand und rechnen Sie
mit einer Erdbeschleunigung von 10 m/sec2.)

68. Zeigen Sie, dass Gleichungen der Form x3 + ax2 + a2

3
x + b = 0 mit

a, b ∈ R genau eine reelle Lösung haben, und geben Sie für diese eine
Formel an.

69. In der Musik werden zwei Tonintervalle als
”
gleichgroß“ bezeichnet

– und auch als gleichgroß empfunden, wenn die beiden Tonfrequenz-
verhältnisse des jeweils höheren Tones zum jeweils tieferen Ton eines
Intervalles gleich sind.
a) Die Frequenzverhältnisse sind bei einer (reinen) Oktave 2, bei einer
reinen Quint 3

2
, bei einer reinen großen Terz 5

4
.

Wenn man von einem Grundton aus 4 reine Quinten auf- und an-
schließend 2 Oktaven absteigt, ist man dann eine reine große Terz
oberhalb des Grundtones gelandet? (

”
Syntonisches“ oder

”
didymisches

Komma“)
Könnte man dieses eventuell erreichen, indem man andere Anzahlen
von Quinten und Oktaven auf- und absteigt?
b) Die Oktave sei in n (∈ N1) gleichgroße Tonschritte (Intervalle) ge-
teilt. Was ist das Frequenzverhältnis der beiden Töne eines solchen
Tonschrittes? (Für n = 12 erhält man die 12 Halbtonschritte der tem-
perierten Stimmung.)
c) Gesucht ist ein n ∈ N1, so dass für die Unterteilung der Oktave in n
gleichgroße Tonschritte folgendes gilt:
Wenn man vom Grundton der Oktave geeignet viele solche Tonschritte
aufsteigt, landet man eine reine Quinte oberhalb des Grundtones.
Frage: Gibt es ein solches n ?
d) Wenn man von einem Grundton aus einerseits 6 reine Quinten auf-
und anschließend 3 Oktaven absteigt, andererseits 6 reine Quinten ab-
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und anschließend 4 Oktaven aufsteigt, trifft man dann auf exakt densel-
ben Ton? (Beim ersten Verfahren landet man auf dem fis, beim zweiten
auf dem ges, wenn man jeweils mit dem c beginnt.

”
Pythagoreisches

Komma“)

70. Zeigen Sie, dass die Menge Q2 der Menge aller Paare rationaler Zahlen
durch die Definitionen

(a, b) + (a′, b′) := (a + a′, b + b′) und (a, b)(a′, b′) := (aa′, bb′)

zwar zu einem Ring, aber nicht zu einem Körper wird.

71. Seien p, q ∈ R. Beschreiben Sie die Menge der (x, y) ∈ R2 mit
x2 + pxy + qy2 = 0 möglichst konkret.

72. Zeigen Sie lim
n→∞

n!

nn
= 0 .

73. Zeigen Sie: Für jedes n ∈ N ist 2 · 53n+1 + 4n durch 11 teilbar, d.h. es
gibt zu jedem n ein (von n abhängiges) k ∈ N mit 11 ·k = 2 ·53n+1 +4n.
(Tipp: Induktion.)

74. Zeigen Sie:
n∑

k=0

k · k! = (n + 1)! − 1. (Dies geschieht mit vollständiger

Induktion ohne Mühe.)

75. Schreiben Sie
1

n(n + 1)
(für n ≥ 1) als Differenz zweier Stammbrüche.

76. Zeigen Sie
n∑

k=1

k

(k + 1)!
= 1− 1

(n + 1)!
. Was folgt daraus für die unend-

liche Reihe
∞∑

k=1

k

(k + 1)!
?

77. Seien X
α−→ Y

β−→ Z Abbildungen. Zeigen Sie:

a) Sind α und β beide injektiv (bzw. surjektiv), so ist es auch β◦α.

b) Ist β◦α injektiv, so ist es auch α.

c) Ist β◦α surjektiv, so ist es auch β.

d) Geben Sie zwei Beispiele, wo β◦α bijektiv ist, aber weder β injektiv
noch α surjektiv ist. Wählen Sie im ersten Beispiel für X, Y, Z endliche
Mengen und im zweiten X = Y = Z = N.

78. a) Zeigen Sie, dass die folgenden Abbildungen fj : R → R bijektiv sind:

f1(x) :=

{
1− x für 0 < x < 1

x sonst
, f2(x) :=

{
x für x ≤ 0

x−1 für x > 0
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b) Tun Sie dasselbe für die Abbildung f3 : R → R mit

f3(x) :=

{
x für x ∈ Q

x + 1 für x /∈ Q

79. Sei E ⊂ R und f : R → R definiert durch

f(x) :=

{
x3 falls x ∈ E
x falls x ∈ R− E

Untersuchen Sie f auf Injektivität und Surjektivität
a) im Falle E = Q, b) im Falle E = R−Q.

80. Ist die Abbildung f : Q2 → R, (x, y) 7→ x + y
√

2 injektiv? (Antwort
mit Begründung!)

81. Beschreiben Sie in einem Venn-Diagramm mit den Mengen A, B, C die
Mengen A ∪ (B ∩ C) und (A ∪B) ∩ C.

82. Zeigen Sie (A−B) ∩ C = (A ∩ C)− (B ∩ C) = (A ∩ C)−B.

83. Zeigen Sie (A ∪ C)− (B ∪ C) = A− (B ∪ C) = (A−B)− C.

84. Machen Sie sich ein (inneres) Bild der Funktion sin 1
x

und überlegen
Sie sich (zumindest anschaulich), warum

lim
x→0

sin
1

x
nicht existiert, aber lim

x→0
x sin

1

x
= 0 ist.
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