Miinster J. of Math. 7 (2014), 149-223 Miinster Journal of Mathematics
urn:nbn:de:hbz:6-22359593713 © Miinster J. of Math. 2014

Refined Iwasawa theory for p-adic
representations and the structure
of Selmer groups

Masato Kurihara
(Communicated by Christopher Deninger)
Dedicated to Peter Schneider on his 60th birthday

Abstract. In this paper, we develop the idea in [16] to obtain finer results on the structure of
Selmer modules for p-adic representations than the usual main conjecture in Iwasawa theory.
We determine the higher Fitting ideals of the Selmer modules under several assumptions.
Especially, we describe the structure of the classical Selmer group of an elliptic curve over Q,
using the ideals defined from modular symbols. We also develop the theory of Euler systems
and Kolyvagin systems of Gauss sum type.

1. INTRODUCTION

1.1.  One of the most important and fascinating themes in number theory is
to pursue the relationship between the arithmetic objects and the zeta values
(L-values). In Iwasawa theory, such relationship is described by the main
conjecture, or its variant, the computation of the initial Fitting ideal of the
Selmer groups. In this paper, we prove the existence of finer relationship than
such main conjectures.

Our strategy is to assume the main conjecture, and to study more detailed
information on the Selmer groups. We assume that our p-adic representation V'
is coming from a critical motive over Q, and it is good ordinary at p. In order to
avoid the argument becoming unnecessarily complicated, we restrict ourselves
to study the case of the cyclotomic Z,-extension Qo./Q though our method
can be applied to a more general setting. We adopt Greenberg’s definition of
the Selmer group over the cyclotomic Z,-extension Q given in [6], and study
the structure of the Selmer group Sel(Qoo, A) where A =T ® Q,/Z,, for some
Z,-lattice T of V (see Subsection 2.1).

Put A = Z,[[Gal(Qw/Q)]] for the moment. If the Pontrjagin dual
Sel(Qoo, A)Y has no nontrivial finite A-submodule, we know that Sel(Qoo, A)Y
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has a presentation 0 — A° Lpe — Sel(Qoo, A)Y — 0. Let A be the
square matrix corresponding to the A-homomorphism f. The main conjecture
in the generalized Iwasawa theory for (V, Quo/Q) by Greenberg is the state-
ment that det A coincides with the p-adic L-function up to unit. What we
really want to do is to know not only det A but also A itself (up to conjuga-
tion) from the analytic information on V, namely the zeta values (L-values).
Very roughly speaking, we construct in this paper elements x,,, in a certain
cohomology group from which we get equations of the form Ax =y where x,
y are vectors in A* and some components of x, y are described by zeta values.
We get information on A from the above equations. This element x,,, is a
modification of a Kolyvagin system x,, ¢ of Gauss sum type on which we will
explain a little in this introduction later. (In the proof of Theorem B, we use
Km,¢ instead of z, ¢.)

We use the (higher) Fitting ideals to formulate our results. In the above
context, the i-th Fitting ideal is the ideal of A generated by all (a —i) x (a —1)
minors of A for any ¢ such that 0 <14 < a. The initial Fitting ideal (namely the
case i = 0) of Sel(Q, A)Y is generated by det A, so by the p-adic L-function
if we assume the main conjecture. We first consider the case that V is not
self-dual. More precisely, we assume the condition (C) in Subsection 9.1. In
this situation we will prove in Theorem A that all higher Fitting ideals of the
Selmer module are determined by analytic elements, namely some elements
coming from p-adic L-functions.

We will state our theorem. We assume that 7, is a local field such that
Fo/Qp is finite and unramified, and that V' is an F-vector space on which
Gq = Gal(Q/Q) acts F,-linearly and continuously. We take an O-lattice
T where O is the integer ring of F,,, and consider A = V/T. We put A =
O[[Gal(Qw/Q)]], and study the A-module Sel(Qo, A)Y. A very simple exam-
ple is V' = Qp(x) where x is an odd Dirichlet character of order prime to p
such that x # w.

For any i > 0 we define the higher Stickelberger ideal ©; of A in Subsec-
tion 4.3, using the p-adic L-functions over the cyclotomic Z,-extension Ko
for many K which are abelian p-extensions of Q. Under certain assumptions,
we determine all higher Fitting ideals of Sel(Qeso, A4)Y, which will give us much
finer information on the structure of the Selmer group as a Gal(Qo./Q)-module
than the usual main conjecture.

Theorem A. We assume (1), (1I-1), (II-3), (III) (especially the main conjec-
ture), (I)* in Subsection 2.1, (IV-1), (IV-2), (IV-3) in Subsection 5.1, (V-1),
(V-2) in Subsection 5.8, and (C) in Subsection 9.1. Then we have

Fitti,A(Sel(Qoo, A)v) =0;
for all i > 0.

The assumptions of Theorem A are satisfied for V' = Q,(x) where x is an
odd Dirichlet character of order prime to p such that x # w and x(p) # 1.
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This case was treated in our previous paper [16], so Theorem A is a gener-
alization of the main result in [16] to a p-adic representation satisfying some
conditions. (In [16, Rem. 2.2(4)], we announced that the condition x(p) # 1
can be removed, but it was premature and we still need this assumption to get
the above equality.)

This theorem determines the structure of the t-quotient Sel(Quo, A)Y @4
Z,[Image 1] completely for any character ¢ of Gal(Qoo/Q) including ¢ = 1 be-
cause knowing the higher Fitting ideals is equivalent to knowing the structure
over a discrete valuation ring. Mazur and Rubin have a structure theorem
(19, Thm. 4.5.9]) for the Selmer group over a discrete valuation ring. The
difference between our theorem and their theorem is that the structure is de-
scribed by analytic objects in our theorem, and the analytic elements in ©;
can be numerically computable, in principle, at least for the ideal class groups
of CM-fields and for the Selmer groups of elliptic modular forms.

1.2. First of all, we will determine the initial Fitting ideal of certain cohomol-
ogy groups. For an abelian p-extension K/Q satisfying some conditions, we
will study a certain Selmer module H¢, (Ok..[1/5], 4)" as an O[[Gal(K~/Q]]-
module in Section 3. We will prove that it is of projective dimension at most
1 and that the initial Fitting ideal is generated by a certain p-adic L-function

(1) Fitto,ny., (Hé: (Ok. [1/8], A)Y) = (€k...5)
(see Theorem 3.4 and Corollary 3.5). Using (1), we get an annihilation result
Ok HE, (Ok, A)Y =0

(see Theorem 6.7). Using (1), we also prove the inclusion from right to left
in Theorem A (see Corollary 4.5). We also get the modulo p"-version of this
inclusion (see Corollary 6.5), which is useful for numerical computations (see
Subsection 10.15).

1.3. In this paper we develop the theory of Euler systems and Kolyvagin
systems of Gauss sum type. The Euler system of Gauss sums was studied
as a very important example in the fundamental work of Kolyvagin [12], but
it seems to the author that the theory of Euler systems of Gauss sum type
has been neglected after Kolyvagin’s work. This theory of Euler systems and
Kolyvagin systems is used to obtain the other inclusion of Theorem A. We
proceed by following the argument in [16] where we studied the ideal class
groups. The author suggests the readers who are not familiar with this topic
to take a look at the paper [16] at first where we treated the classical setting
because it would be helpful to understand the whole picture. (Section 4 in
this paper corresponds to Sections 8 and 9 in [16], Section 6 in this paper
corresponds to Section 4 in [16], Section 7 in this paper corresponds to Sections
5 and 6 in [16], and Section 9 in this paper corresponds to Section 10 in [16].)

But there appear many differences between our general case and the ideal
class group case treated in [16], and many difficulties occur. One of the diffi-
culties lies in the fact that “the tame part” in the cohomology group is very
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small in general. (In the class group case, it is the whole.) By this reason, we
always work over mod p~ cohomologies. We first construct an Euler system
ge of Gauss sum type, using the annihilation result we mentioned above (gy
corresponds to the Gauss sum supported over a prime above £). Although the
usual Gauss sum is almost characterized by the prime decomposition, our ele-
ment g, is not characterized by the corresponding property, and we need more
properties to define gy. This element g, is a very subtle element and lives only
in mod p" cohomology, namely the cohomology with coefficients in 7% /p™v
and there is no corresponding element in the cohomology with coefficients in
T* where T* = Hom(4, Q,/Z,(1)) is a Galois representation which is a free
Z,-module of finite rank.

Using this g¢, we construct x,, ¢, a Kolyvagin system of Gauss sum type for
a positive integer m and a prime ¢ satisfying certain conditions by a similar
strategy as in [16], but by a different method which is needed because we always
work over mod p”V cohomologies. We take m, £ such that mf is a squarefree
product whose prime divisors are all in P; which is defined in Subsection 5.8.
(The Kolyvagin derivative s, ¢ is defined by the usual method if ¢ satisfies
some condition (see Proposition 7.7), but we need K, ¢ for £ € P;. It is not
straightforward to define &, ¢ from g, for a prime £ € P, see Subsection 7.10.)
These elements satisfy the following four important properties;

(1) Or(Km,e) =

(2) 82('%171 Z) m,
(3) &r(Km,e) =0 for any prime divisor r of m,
(4) ¢e(Km,e) = —6me,

where 0, is a “boundary map”, ¢, is a kind of “reciprocity map”, and d,,,
Ome are elements defined from the values of L-functions (9, is the divisor map
and ¢, is the reciprocity map in the classical setting in [16]; for the precise
definition and properties of these maps and these elements, see Section 7 and
Propositions 7.13, 7.15, 7.16). Property (1) is a usual property of Euler system,
Property (3) is a property of Kolyvagin system which was discovered by Mazur
and Rubin [19], and (2), (4) are new properties for our Kolyvagin systems.
They describe the relations between our Kolyvagin systems and zeta values.
Property (2) is deduced directly from the definition. Property (4) is the deepest
among these 4 properties, and is a beautiful property of our Euler system.
We note that the standard argument cannot be applied even for the proof of
Property (1) since our Euler system is not a usual Euler system but a “finite”
Euler system (namely, this Euler system exists only over a finite extension of
number fields, and does not extend to an infinite extension; for example, our
Euler system does not give a norm compatible system for a Z,-extension). In
the usual theory of Euler systems, it is very difficult to compute the order
of the Kolyvagin derivative k,,. But we get some information on k,, ¢ from
the Properties (2) and (4) in our theory, because the elements d,,, dn¢ are
computable in several cases. This is an advantage of our Euler (Kolyvagin)
system of Gauss sum type.

¢T(/<am ¢) for any prime divisor r of m,
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Finally we construct elements z,, ¢ using these Kolyvagin systems by the
same method as [16]. Then these elements x,, ¢ yield information on the matrix
A, which is then used in order to prove Theorem A.

1.4. The above Theorem A cannot be applied to the Tate module V = V,,(E)
of an elliptic curve E over Q because V is self-dual (it does not satisfy (C)).
The main reason why the above argument does not work for V,(F) is that
we cannot apply Proposition 9.3 which is an argument using the Chebotarev
density theorem. In fact, the equality between the higher Fitting ideal and
the higher Stickelberger ideal does not hold in this case. (This fact is also
related to the functional equation of the p-adic L-functions, see the end of
Subsection 10.15.) In this paper, we study only the case that V is the Tate
module of an elliptic curve instead of studying general self-dual motives, for
simplicity. We cannot prove a theorem over A in this case, and only prove a
structure theorem of the classical Selmer group over Q.

Suppose that E is an elliptic curve defined over Q, p is a good ordinary
prime > 2, p does not divide Tam(E), the action of Gq is surjective on T),(E),
the p-invariant of (E, Qs /Q) is zero, and p is not anomalous (#E(F,) # 0
(mod p)). We also assume that the p-adic height pairing is nondegenerate,
and use the main conjecture for (F, Qo /Q), which was proved by Skinner
and Urban [34] under mild conditions. We define the ideals ©;(Q) of Z, by
the same method as above, which can be computed by using modular symbols
(see Subsection 10.15). Actually, in this case ©,(Q) is essentially generated by
some analytic elements b, which can be computed by modular symbols (see
(53) and (65)). In this setting, we prove the following structure theorem on the
(classical) Selmer group Sel(Q, E[p*]) with respect to E[p>]. This theorem
says that the structure of the Selmer group is completely determined by the
ideals ©;(Q).

Theorem B. If rankSel(Q, E[p>])Y =r (€ Z>o), we have
©0(Q)=--=6,1(Q) =0

and

Fitt; z, (Sel(Q, E[p™])") = ©:(Q)
for any i > r such that i = r (mod2). More concretely, suppose that
Sel(Q, E[p™>])Y is generated by exactly a elements. We write ©;(Q) = p™iZ,
for some n; € Zi>g U {0} for each i € Z>o. Then we have

ng =+ ="np_1 = 00,
n, = ordy(#(Sel(Q, E[p™])" )tors),
ng = 0,
and
(Sel(Q, E[poo])v)tors =
Z/p~ )R e (T )Pe e (@)
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Concerning 0;(Q) for ¢ such that ¢ # r (mod 2), we have

(2) 0:(Q) =0;-1(Q)

for any ¢ > r (this will be proved in the end of Subsection 10.15). In particular,
we do not have the equality Fitt;z, (Sel(Q, E[p>])¥) = ©;(Q) in general if
(Sel(Q, E[p>=])Y)tors # 0. This phenomenon is very different from that for the
ideal class groups in [14] and [16] where the equality always holds. Even so, the
above theorem tells us that the ideals ©;(Q) for all ¢ determine the structure
of Sel(Q, E[p*)).

1.5. Although Theorem B is a statement on the Selmer group over Q, in
order to prove it, we have to study the Selmer group Sel(Q,, E[p°]) over Q,
which is an intermediate field of the cyclotomic Zy-extension Q../Q. Because
of the self-duality of the motive, we can take a relation matrix of the dual
Sel(Qy,, E[p>=])¥ of the Selmer group to be skew-Hermitian. Such a matrix
is called an organizing matrix in Mazur and Rubin [20]. In our theory this
skew-Hermitian matrix appears very naturally from the localization sequence
of Selmer groups and a certain homomorphism ®g which is essentially defined
from the reciprocity map (see Subsection 10.1, especially the exact sequences
(41) and (43)). In this case, we do not need the elements x,, ¢. Instead of z, ¢,
the Kolyvagin systems s, ¢ play an essential role. In the usual Euler system
argument, when we bound the size of a Selmer group, we use a step-by-step
argument which studies the difference between the orders of x,, and &, such
that m divides m’ and m’/m is a prime. For our Euler system in the elliptic
curve case, the difference between ord,(d,,) and ord,(d,,/) carries no meaning
when m divides m’ and m//m is a prime (because we have (2)). We give a
new argument which relates ord,(d,,) with ord,(d,,/) where m divides m’ and
m’/m is a product of two primes (see the proof of Theorem 10.12).

1.6. We remark on the numerical computation of the ideals ©;. Currently,
we do not have an algorithm to determine ©;; in other words, we need infinite
time to compute them, or we do not know when the computation stops. We
know O; is generated by the elements of the form d,,, so we have to study the
upper bound of m, but we have not yet studied it. We propose in our paper
[17] a slightly different method which is suitable for numerical computations,
by which we get information on the structure of the Selmer group from a finite
number of computations of 8,,.

We can get similar results for nonordinary Galois representations, for ex-
ample, in the case that V is the Tate module of an elliptic curve which has
good supersingular reduction at p. We will study this case in our forthcoming
paper.

Finally, the author would like to propose a problem on the Euler system in
this paper. He thinks it is an important and interesting problem to construct
ge in this paper directly without using the main conjecture in Iwasawa theory
for the Tate module T,(f) of a modular form.
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group and the argument on the p-adic height pairing in [30] are essentially used
in the proof of our Theorem B), and who worked on Iwasawa theory for general
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2. PRELIMINARIES

2.1. Assumptions. Throughout this paper, p denotes an odd prime number.
Our theory can be applied in a more general setting, but for simplicity, in this
paper we work over abelian fields over Q. (For example, we worked on the
class groups of CM-fields over a totally real base field in our previous paper
[16].)

We consider a motive M over Q with F-coefficient where F is a finite
extension over Q. We consider the associated p-adic representation V which
is a finite dimensional JF,-vector space on which Gq = Gal(Q/Q) acts F-
linearly and continuously. Here, F; is the p-adic completion of F for a prime p
above p. We assume that p is unramified in F/Q. We denote by O the ring of
integers of F,. We assume V is critical and ordinary at p (we mainly consider
the good ordinary case). We take an O-lattice T of V', which is invariant under
the action of Gq = Gal(Q/Q), and put A = V/T.

We denote by P (resp. Phaa) the set of finite primes (prime numbers) of Q
(resp. the set of bad primes for V), and put P = P\ (Ppaa U {p}). We also
define

K ={K | K/Q is a finite abelian p-extension
in which Ppag U {p} is unramified}.
For K € K, we denote by K, /K the cyclotomic Z,-extension. We work under
the following assumptions.
(I) H°(Q,A4) = 0.

(IT) Selmer groups: Put Ax_ = O[[Gal(K«/Q)]] for K € K. We also use
the notation A = Aq_ . We regard A as a subring of Ax__ by the iden-
tification A = Aq. ~ O[[Gal(K/K)|] C Ak, ~ A[Gal(K/Q)] for
K € K. For a character ¢ : Gal(K/Q) — Q" with K € K, we put
Oy = O[Image(y)] and Ay = Oy[[Gal(K s /K)]]. Since Gal(K/Q) =
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Gal(K/Q) x Gal(K«/K), ¢ is naturally extended to a ring homomor-
phism Ag_ — Ay, which we also denote by .

Since we assumed that p is an ordinary prime for V, we can define
Greenberg’s Selmer group Sel(K ., A) which is a subgroup of H'(K.,
A), defined by the local conditions, see [6] and Subsection 2.2 below.
The Selmer group Sel(K, A) and its Pontrjagin dual Sel(K, A)" are
Ak -modules.

We assume for any K € K that
(II-1) Sel(K oo, A)Y is a finitely generated torsion A-module,

(II-2) Sel(K o, A)Y has no nontrivial finite A-submodule, and also that

(II-3) the p-invariant of Sel(K, A)Y as a A-module is zero.

(IIT) Existence of the p-adic L-function and the validity of the main conjecture
in the sense of Greenberg [6]. There is an element 0x_ € Ax_ which
is the p-adic L-function related to the L-values of V' and which satisfies
the following properties (see [2]). (The p-adic L-function 0. depends
on the choice of the lattice 7. Also, for simplicity we assume 0k __ is in
the integral group ring. This would occur at least when V' satisfies (I)
and (I)* which we will state below (see the end of Section 1 in Greenberg
6):

We put Py(z) = det(1 — Frob, ! x|y ) where Froby is the (arithmetic)
Frobenius of £. Suppose that K, L are in K and K C L. We denote by
cr. /K. * Ao, — Ak, the natural ring homomorphism induced by
the restriction map of the Galois groups. We have

3) er i (0r) = ( I PAFrobz%(m))eKm
teR(L/K)

where R(L/K) is the subset of P consisting of primes which are ram-
ified in L and unramified in K, and Frob, g is the Frobenius of ¢ in
Gal(K»/Q).

Suppose that K € K and ¢ : Gal(K/Q) — QX is a Dirichlet charac-
ter. We define the t-quotient (Sel(Ko, A)Y)y by (Sel(Koo, A)Y) @ay
Ay. We assume the main conjecture for (V,4). Namely, for any such
character v, the equality

(MC) chary, ((Sel(Koo, A)")y) = (¥ (0k..))

holds as ideals in Ay. Note that we are assuming that (7', 6k ) is chosen
suitably such that this equality holds.
We will use another normalization of the p-adic L-functions later (see Subsec-
tion 3.1).

We also consider the Kummer dual V* = Hom(V,Q,(1)), T* =
Hom(A,Qp/Zy(1)), and A* = V*/T*. Then V* is also an ordinary repre-
sentation. We assume V* is critical and assume the same properties for V*,
namely

(D)* HY(Q,A*) =0.
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(II-2)* Sel(K o, A*)Y has no nontrivial finite A-submodule for K € K.

The other Properties (II-1), (II-3), (III) for V* are consequences of our
assumptions (II-1), (II-3), (III) for V by Theorem 2 in Greenberg [6].

When Y is an odd Dirichlet character of order prime to p and x # w (where
w is the Teichmiiller character), these conditions are satisfied for V' = Q,(x).
Let E be an elliptic curve over Q such that p is a good ordinary prime and
the representation attached to the p-torsion points E[p] is irreducible. Take
V = V,(E) the Tate module. Then (I) is satisfied, (II-1) is a theorem of
Kato [11], (II-2) is proved by Greenberg [7, Prop. 4.14 and 4.15], and (II-3) is
conjectured by Greenberg. Concerning (III), the main conjecture (MC) for Qoo
was proved by Skinner and Urban in [34] under mild assumptions. The main
conjecture (MC) for general K € K is a consequence of the following results;
(i) the validity of the main conjecture for Q, (ii) the divisibility statement
(half of the main conjecture) due to Kato [11], and (iii) both the algebraic and
the analytic Kida’s formulae due to Hachimori and Matsuno [10], [18] under
the assumption (II-3). The conditions (I)* and (II-2)* are equivalent to (I)
and (II-2), respectively. For a general Galois representation V', we will prove
a related property to (II-2) in Proposition 2.10.

2.2. Local conditions. For a local field k such that [k : Q,] < oo, we use the
notation H}(k, V), H:(k,T), H!(k, A) where * = e, f, g, which are defined in
Bloch and Kato [1]. Especially, H!(k, A) is the image of H}(k,V) in H'(k, A).

Suppose that V' is an ordinary representation as above. We have the canon-
ical subspace F*V of V, and ™A is defined to be the image of FTV. We
denote by koo /k the cyclotomic Z,-extension, and koo nr the maximal unram-
ified extension of k... In this paper, we define Greenberg’s local condition
H (k,A) by

H, (ky A) = Ker(H (k, A) — H (koo nr, A/FTA)).
We know that V' is semi-stable and that
1 _ 1 1 +
Hy(k, V) =Ker(H (k,V) — H" (kn,, V/FTV))

by Flach [5, Prop. 2.4] where k,, is the maximal unramified extension of k.
This shows that
H,(k,A) C Hg,(k, A).
For the cyclotomic Z,-extension ks /k, we define H} (keo, A) = ligl Hl(ky,

A) where k,, is the n-th layer of ko /k and * = e, f, g, Gr. The subgroup
H{, (koo, A) is the local condition studied in Greenberg [6]. We have

H (koo, A) C Hj(koo, A) C Hy(koo, A) C Hi, (Koo, A).
In many examples, we have H }(koo, A) = HL (kso, A). For example,

Lemma 2.3. Suppose that V = Q,(r) withr € Z or V = V,(E) which is the
Tate module of an elliptic curve over k with good ordinary reduction. Then we
have

Hj(koo, A) = HE, (oo, A).
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Proof. In fact, this follows from Examples 3.9 and 3.11 in Bloch and Kato
[1] and Greenberg [6, Sec. 1 and 2] unless r = 1. For r = 1, since koo /ky, is
totally ramified for n >> 0, we have H}(koo, Qp/Zp(1)) = ligl (Or )®Qp/Z), =

ligl (k) ®Qp/Z, :Hcl;r(kooan/Zp(l))' O

But if V' = V,,(E) is the Tate module of an elliptic curve over k with split
multiplicative reduction at p, then we know that the index of H}(koo,A) in
H¢, (kso, A) is infinite (see [6, Prop. 9]). We put V* = Homgq, (V,Qp(1)),
T* = Hom(A, Qp/Zy(1)), and A* = Homgz (T,Qp/Zy(1)). Then V* is also
an ordinary representation, and we can define a subspace FT(V*), which is
nothing but Ker(V* — (FTV)*).

Lemma 2.4. We assume that
i) H(koo, V/FTV) = H(koo, V*/F*(V*)) = 0,

ii) Dexis(V)?=P" " =0 where ¢ is the Frobenius on Deys(V), and
111) Ho(koo’m’(p),A/F*A) is divisible where Koo nyr (p)/koo s the unramified
Z,-extension.

Then we have Hj(koo, A) = Hy, (koo A).

Remark 2.5. The following p-adic representation V' satisfies the above con-
ditions i), ii). Let X be a proper smooth variety over k with potentially good
reduction. We consider an etale cohomology group V = H (X7, Q,(r)) with
some r € Z and some odd i > 0. Then V satisfies the above conditions i), ii)
by Coates, Sujatha and Wintenberger [3, Cor. 1.6] (see also Kubo and Taguchi
[13]; note that both Ds(V/F*V) and Dy (V*/F*(V*)) have odd weights).

Assume that V is ordinary, then there is a decreasing filtration {F*V}.
Suppose that j is the minimal integer € Z>q such that F~7V = V. If p > j+1
and k/Q, is a p-extension, we know that H(koo,nr, A/FTA) is divisible by
the argument of the proof of Proposition 10 in Greenberg [6]. This implies iii)
because the (profinite) degree of Gal(koo nr /Koo, nr,(p)) is Prime to p. Therefore,
for V = HZ (X%, Qp(r)) with some odd 4, if V' is ordinary, p is big enough and
k/Qp is a p-extension, then we always have Hj(keo, A) = HE, (oo, A).
Proof. For a cofinitely generated Z,-module M, we denote by Myg;, the maxi-
mal divisible subgroup of M. First of all, we have

lim H(kp, FTA)giy = H' (koo, FT A).

In fact, we have an injection H!(k,, FTA)/H (k,, F* A)qiy — H?(ky, FTT)
= H%kp,(FTA)*)V, but the latter is finite and bounded by our assump-
tion that HO(keo, (FTV)*) = H%keo,V*/FT(V*)) = 0. This shows that
ligl H'(ky, Ft A)g;y is of finite index in H'(ko, FTA). But the latter is p-
divisible because the p-cohomological dimension of k., is 1. Therefore, we
have ligl HY(kp, FtA)giy = H (koo, FTA).

We know that H;(kn, V) = Ker(H'(k,,V) — H(kpnr, V/FTV)) by
Flach. Moreover, by Bloch and Kato [1, Cor. 3.8.4], our assumption ii) implies
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that H}(kn, V) = H}(ky,,V). Since our assumption i) implies H%(k,,, V/F V)
=0, we know that H(k,, n/kn, (V/FTV)In) = 0 where ky, 5, is the maximal
unramified extension of k,, and I,, is the absolute Galois group of k,, . There-
fore, H' (ky, V/F*V) — H'(kppnr, V/FTV) is injective, and H}(kn, V) coin-
cides with the image of H' (k,, F*V) in H'(ky, V). This shows that H (k;,, A)
coincides with the image of H!(k,, F* A)q4;y. Thus we know that H}(koo,A)
coincides with the image of ligl HY(kp, FTA)giy = H (koo, FT A).
Our assumption HY(kso, V/F+V) = 0 implies that
Hl(koo,nr,(p)/koov (A/FJrA)IOO’(p))

is finite where I () is the absolute Galois group of ke r,(p)- On the other
hand, since (A/F*A)!=.w is divisible by iii), H* (koo nr,(p) /Koo, (A/FTA)=.)
is also divisible, therefore it is zero. This shows that H!(keo, A/FTA) —
HY (ko nr, (A/FTA)) is injective. Therefore, the image of H'(ks, FTA) in
H'(koo, A) coincides with HY, (keo, A). Thus we obtain H}(koo, A) = HL, (koo,
A). This completes the proof of Lemma 2.4. O

Next, suppose that £ # p and k is a local field with [k : Q] < co. As in
Bloch and Kato [1], H}(k,V) is defined to be Ker(H'(k,V) — H'(kn,, V)
where k,, is the maximal unramified extension of k, and H}c (k, A) is the image
of Hy(k,V) in H'(k,A). Let ke /k be the cyclotomic Z-extension. We note
that koo C knr and koo nr = knr. We define Hér(k, A) by

H, (k, A) = Ker(H' (k, A) — H'(kp,, A)).
Since Gal(kp,/koo) is profinite of order prime to p, we have H} (k, A) =

Ker(H(k, A) — H(koo, A)). If £ & Pyaq U {p}, it is well-known [28, Lemma
1.3.5(iv)] that

(4) H}(k, A) = H, (k, A) = HY,(Spec Oy, A)
where the right hand side is the etale cohomology of the integer ring of k.

For the cyclotomic Zy-extension koo /k, H! (koo, A) is defined by H}(koo, A) =
hgl H(ky,, A) for * = f, Gr. When £ # p, since ky,,/koo is of degree prime to

p, we have
(5) Hj(koo, A) = HE, (Koo, A) = 0.

2.6. Selmer groups over cyclotomic Z,-extensions. Let K be a number
field, and K /K the cyclotomic Z,-extension. For « = f, Gr, we define

H!(Ok..,A) = Ker(H' (Koo, A) — [[ H' (Koo,v, A)/H} (Koo,0, A))

where v runs over all finite primes of K, (since we are assuming p is odd, we
need only finite primes). We also denote H¢, (Ok_, A) by Sel(K s, A).

Let S be a set of prime numbers in Q. For any algebraic extension F/Q and
a finite prime v of F', we use the convention v € S which means that the prime
of Q below v is in S. We also use the notation v ¢ S similarly. (When we
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clarify the meaning, we denote by Sr the set of primes of F' which are above
S.) Let Ko be as above. We define

H!(Ok..[1/5), A) = Ker(H' (Koo, A) — [[ H' (Koo, A)/HH (Koo, A))
vgS

for x = f, Gr, namely no condition is imposed for the primes above S. In par-
ticular, Sel(K, A) corresponds to HL, (O [1/5], A) with empty S. By the
definitions of H{, (Ok. [1/5], A), H}(OKOO[I/S],A) and what we mentioned
in Subsection 2.2 we have

H}(OKao [1/S], A) C H, (Ok. [1/5], A).
For a number field K with [K : Q] < oo, we also use the notation

HI(Ox[1/8), A) = Kex(H' (K, A) — [[ H (K., 4)/HA(K, , 4)
V€S

where x = f, Gr. We denote by Ok[1/5] the ring of S-integers in K. If S is a
finite set which contains Pyaq U {p}, we have

(6) H}(Ok[1/S], A) = H, (Ok[1/S], A) = H}; (Spec Ok[1/5], A)
by (4) where the right hand side is the etale cohomology group.

2.7. mod p~ cohomologies. In this subsection, we fix a positive integer
N > 0. For a local field k (a finite extension of Qg where ¢ is an arbitrary
prime number), we defined H!(k, A) in Subsection 2.2, where x = f, Gr. We
define H}(k,T/p") to be the inverse image of H!(k, A) under the natural map
HY(k,T/pN) — H*'(k, A). Note that H{, is an artificial local condition and
does not give a good cohomology theory, while H} gives a good cohomology
theory. We know that H}(k, T/p™) and H} (k, T*/p™) are orthogonal comple-
ments under the cup product pairing (see Rubin [28, Prop. 1.4.3]).

For the cyclotomic Z,-extension ke /k, we also define H}(ks,T/p") to be
the inverse image of H}(ks, A) for * = f and * = Gr.

If T is unramified as a G-module and the characteristic of the residue field
of k is not p, H'(keo, T/p") — H'(kso, A) is injective. Hence in this case we
have

Hj(k,T/p™) = Héy (k, T/p") = Kex(H' (k, T/p™) — H" (kny, T/p"))

(see [28, Lemma 1.3.8]).

For a number field K and a finite set S of primes of K, we define
HI(Ok[1/S],T/p") to be the subgroup of H!(K,T/p") consisting of elements
whose local images are in H}(K,,T/p") for all finite primes v which are not
in S where * = f, Gr. In the case S is empty, H(Ok[1/S],T/p") is denoted
by Hi(Ox,T/p").

Let Koo/K be the cyclotomic Z,-extension and K,, be the n-th layer. Put
A = O[[Gal(K«/K)]]. We define H!(Og__[1/S],T/p") similarly.
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Lemma 2.8. Assume that H'(K,A) =0, H. (Ok_,A)Y (= Sel(Kw, A)Y) is
a finitely generated torsion A-module and the p-invariant is zero. Then for
any N > 0 we have

lim H} (O, T/p") = lim Hg, (Ox,,, T/p™) = 0.

Proof. Since H}(Ok,,,T/p"N) C HE,(Ok,,, T/p"), it suffices to prove the above
statement for Hl, (Ok,,T/p"). Since H°(K,A) = 0, the natural map
HE (Ok,,T/pN) — HL, (Ok_., T/p") is injective. We know that H} (Ok__,
T/p") is finite because we assumed that the p-invariant of H}, (Ok.., A)Y is
zero. Therefore, HS (Ok,,T/p™) = HE, (Ok..,T/pN) for sufficiently large
n. This shows that the corestriction map H¢,(Ok, , v, T/pY) — H,(Ok,,,
T/pN) is the multiplication by p¥ = 0 for n > 0, which implies that
tim H3, (Or,.. T/p™) = 0. O

2.9. Finite torsion submodules. Let K be a number field such that K €
K. From this subsection, we assume (I), (II-1), (II-3), (I)*. By Green-
berg [6, Thm. 2], H. (Ok_,A*)V is also a finitely generated torsion A =
O[[Gal(K /K )]]-module and the p-invariant is zero.

Proposition 2.10. Under the above assumptions, H}(OKOO,A)V has no non-
trivial finite A-submodule.

Proof. By the global duality theorem (Tate-Poitou duality), we have an exact
sequence

N
— Hj(Ok,,T*) 2= H}(Ok,,T*) — H}{(Ok,,T*/p")

— H}(Ok,,A)Y BN H}(Ok,,A)Y — .

Since our assumptions imply that H (Ok__,A*) is A-cotorsion, Lemma 2.8
implies that 1<i_rr711H}(OKn,T*/pN) = 0. Taking the projective limit of the
N
above exact sequence, we have an exact sequence 0 — H}(OKOO,A)V AN
H}(Ok.,,A)Y. Since H}(Ok.,,A)" is A-torsion and the p-invariant is zero, it
is finitely generated over Z,. Therefore, the above exact sequence implies that
H }(O K., A)V is a free Z,-module of finite rank, which implies the conclusion.
This proposition can be also proved by the following method. We put
HYT/p) = HY (Ko, T/p)/H}(Koow,T/p) and we put HZ(A) =
H' (Koo, A)/H} (Koo, A) for any finite prime v of Ko. We simply write
Hi (Ok. [1/S], M) for H.,(Spec Ok [1/S], M). We have a diagram of exact
sequences:
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0 0 0

l l '

0 — HNOxo,T/p) — HM(Ox_[1/S),T/p) —= D Hi(T/p) 1

VESK

H;t<okw'[1/317 A) (N>R 1) p—

VESK

0— H}(OKoovA)

p p p

Hgt(oK;u /5], A) D @A)

| e

0 0
Here, the first horizontal row is exact by the global duality (see Mazur and
Rubin [19, Thm. 2.3.4] and also Rubin [28, Thm. 1.7.3]) and li<r_n H}(Ok,,T*/p)

= 0 which follows from Lemma 2.8. The second and the third horizontal rows

are also exact by the global duality ([19, Thm. 2.3.4] and [28, Thm. 1.7.3])

and lim H}(Og, ,T*) = limlim H}(Ok, ,T*/p") = 0. The central verti-
n TR SN SR

00— H}(OKoovA)

cal sequence is exact by HZ(Ok_[1/S]),T/p) = 0 which follows from the
vanishing of the p-invariant. The right vertical sequence is exact because
cdp(Koow) = 1 and H}(KOO,U,A) is divisible by definition. This diagram
shows that H}(Ok.,,A) is divisible, which implies that H}(Ok..,A)" is a
free Z,-module. O
2.11. The action of Galois groups on Selmer groups. Let P be the set
of primes of Q defined in Subsection 2.1, and K be the set of number fields

defined in Subsection 2.1. In this subsection, we still assume (I), (II-1), (II-2),
(I13), (1)".

Lemma 2.12 (Galois descent for H},). Let L/K be a finite extension such

that L, K € K, and S be a finite subset of P = P\ (Ppaa U {p}) such that S
contains all ramifying primes in L/K. Then we have an isomorphism

HE(Ox[1/8),A) = HE (01 [1/8], A)¢
where G = Gal(Loo /Koo).
Proof. First of all, our assumption H°(Q, A) = 0 implies H%(Lo., A) = 0. We
put S = S U (Pyaa U {p}), then the above implies that

H(Ok.[1/5),A) = Hi(Or [1/8"], A)¢

is an isomorphism. If v is a bad prime of K, or a prime above p, v is unramified
in Lo/Ks by our assumption. Therefore, if w is a prime of Lo, above v, we
have Lo wnr = Koo,vnr- The conclusion now follows from the definition of
HL (Ok_[1/8], A). |
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Lemma 2.13 (Surjectivity lemma). Suppose that S is a finite set of prime
numbers. Then the sequence

— P H'(Kaw, A)/HE (Koo, A) — 0
UGSKOO

s exact.

Proof. We have only to show that the first arrow in the second row is sur-
jective. Since H}(OKOO[I/S],A) C HL, (Ok_[1/5],A) and H}(KOO7U,A) C
HY (Koo, A), it is enough to show
Hf(OKoo ]-/S H@H 00,V /Hf( OOU7A)
veS

is surjective. Since our assumption implies that H}, (Ok_ , A*) is A-cotorsion,
we obtain the surjectivity of the above homomorphism from the global duality
(19, Thm. 2.3.4]) and 11(31 H}(Ok,,T*) = 0 which follows from Lemma 2.8

(cp. also the proof of Lemma 4.6 in Greenberg [7]). O
We note that we can deduce 1i<I_n H}(OKn,T*) = 0 only from (II-1) for V*

without using Lemma 2.8.
Corollary 2.14. We assume that S is a ﬁnite subset of P. Then the sequence
0 — HE, (0K, A) — HE, (Ok [1/S],A) — @ A(-1)'m — 0

VESK
is exact where Ty nr = Gal(Koo.vnr/ Koo v)-
Proof. Since v € Sk, is prime to p, we know by (5) that H}, (Koo, A) =
0. Since Ty, is profinite of order prime to p, we have H' (Ko, A) =

H'Y(Koo,v,nr, A)to . The absolute Galois group Gk, ., of Koo,vnr acts on
A trivially because v is a good reduction prime. Therefore, we get

H' (Koo, A)/HE (Koo, A) = H (Koo,0, A) = H' (Koo v,nr, A)'0m
= A(=1)vrr,
Now, Corollary 2.14 follows from the surjectivity lemma (Lemma 2.13). O

Corollary 2.15. Suppose S C P. Then HL (O [1/S], A)Y contains no
nontrivial finite A-submodule, and the p-invariant of HL (O [1/S], A)Y is
zero.

Proof. In fact, in Corollary 2.14 A(—1)'v»r is p-divisible because I'y ,, has
profinite order prime to p. Hence this corollary follows at once from Corol-
lary 2.14 and our assumption that H¢, (Ok_, A)Y contains no nontrivial finite
A-submodule and the p-invariant is zero. O

We go back to the setting of Lemma 2.12.
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Lemma 2.16 (Vanishing lemma for H},). Let L/K be a finite extension such
that L, K € K, and S be a finite subset of P such that S contains all ramifying
primes in L/K. Then, putting G = Gal(Lo/K~), we have

Hl(G, H(llr(OLoo[l/S]v A)) =0.

Proof. For a prime v of L., we denote by Lo o nr the maximal unramified
extension of Lo v, and put I'y nr = Gal(Loo,ynr/Loow). Suppose at first that
v is not lying over p. As we have seen in (5), H},(Loo,s, A) = 0. Suppose next
that v is a prime of L, lying over p. Since the cohomological dimension of
Ly is 1, HY(Loow, A) — HY(Loo v nry A)Tvm is surjective. We also have the
surjectivity of H'(Loo,v,nr, A) —> H'(Loo,vnr, A/F1A) from ¢d,(Gr ,.,..)
1, and the surjectivity of H'(Loo v nr, A)Vonr — HY(Loo v nry A/FFTA) vinr
from H'(Ty s H (Loo,v,nr, FTA)) = 0 which follows from H?(Leo,», FTA) =
0. Therefore, H*(Loo,v, A) —> HY(Loownr, A/FTA)Tvnr is surjective, and

HY(Loov, A)JHE (Loo vy A) —— H (Loo,o.nr, AJ/FTA)vnr

is an isomorphism.
Put S' = Pyaa U {p} and S’ = SUS’. Since all primes above S’ are
unramified in L/K, the above isomorphism implies the isomorphism

(1) D H' (Koo, A)/Hex (Koo, A) —

vES}{OO o
( &k Hl(LOW,A)/Hér(LOW,A)).

weSy
We consider an exact sequence which is obtained from the surjectivity lemma
(Lemma 2.13);
(8) 00— Hg, (O [1/5],A) — Hg (0L [1/58"], 4)
— P H (Lo A)/ By (Lo, A) — 0
weS’

(note that H, (Or[1/59"],A) = HL(Or_[1/5"],A)). The isomorphism (7)
together with the surjectivity lemma (Lemma 2.13) for K, implies that

G
) HL(05.[1/5"]. A (@H o A)/HA (L m,w,m)

weSs’

is surjective. On the other hand, since we assumed H¢, (O, A)Y is A-torsion,
we know by Greenberg [6, Prop. 3,4] (cp. also [6, p.121]) that H% (Ok__[1/S"],
A) = 0. Using our assumption H°(Ln,, A) = 0 and the Serre-Hochschild spec-
tral sequence, we have H*(G, H% (Or_[1/5"], A)) = 0. Taking the cohomology
of the exact sequence (8), we get

Hl(G7 Hé[‘(OLoo [1/5]7 A)) =0

from the surjectivity of (9) and HY(G, H4 (O [1/S"], A)) = 0. O
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Proposition 2.17. Let L/K be a finite extension of fields in K. We assume
that S is the subset of P consisting of primes that are ramified in Loo/K
Put ey = [Loow : Koow] for v € Sk, where w is a prime of Lo above v. Then
we have an exact sequence

0 — H&, Ok, A) — HE (O, A% — P A(-1) o [ey] — 0
VESK
and

HY(G,H.(Op_,A)) =0.

Proof. Corollary 2.14 implies that there is a commutative diagram of exact
sequences

Fv,nr
— 0

0— Hér(oKoo7 ) - HGr(OKoo [1/5

vES
| T
0 —> H&(Oro, A)Y — HE, (0L [1/5], A ( P A Fw) ,

weS

The second vertical arrow is bijective by the Galois descent lemma (Lem
2.12). Concerning the third vertical arrow, we know that I'y ., = I‘w i
A(=1)Pvnr = A(-1)Fwnr is divisible, and G trivially acts on it. Since
Loow/ Koo is totally ramified and the corestriction map H'(Loow, A) —
H'(Kw v, A) is bijective, the above map A(—1)F'vnr —s A(—1)Vwnr is the
multiplication by e,. Therefore, the third horizontal arrow in the lower exact
sequence is surjective. We obtain the first claim of Proposition 2.17 by the
snake lemma from this commutative diagram. The second claim is obtained
by taking the cohomology of the above exact sequence for L., and by using
the vanishing lemma for H}, (Lemma 2.16). O

Proposition 2.18. Suppose that K is in K, and S is a finite subset of P
such that S contains all ramifying primes in K/Q. Put G = Gal(K»/Qoo) =
Gal(K/Q). Then both HL (O [1/5], A) and H}, (Ok. [1/S], A)V are coho-
mologically trivial as G-modules.

In the elliptic curve case, this was proved in Greenberg [8, Thm. 1].

Proof. By Corollary 2.15, H} (Oq..[1/S], A) is divisible. Therefore, the core-
striction map H, (O [1/5], A) — HL (Oq..[1/S], A) is surjective. By the
Calois descent lemma (Lemma 2.12), this implies that H°(G, HL (O [1/9],
A)) = 0. Using this together with the vanishing lemma for H},, (Lemma 2.16),
we know that H. (Ok_ [1/S], A) is cohomologically trivial by Serre [32, Chap.
IX Théoreme 8.

For a discrete G-module M such that the Pontrjagin dual MV is a finitely
generated Z,-module, if M is cohomologically trivial, we know that MV is
also cohomologically trivial, using the same theorem in Serre [32], because
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HY(G,MY) = H(G,M)" =0 and H*(G,M") = H~'(G,M)" = 0. There-
fore, we also get the conclusion for H}, (Ok_ [1/S], A)Y. O

Corollary 2.19. Assume that K € K and S is a finite subset of P which
contains all ramifying primes in K/Q. As a Ax_ = O[|Gal(Ko/Q)]]-module,
HL (Ok. [1/S],A)Y is of projective dimension at most 1.

Proof. Since H} (Ok. [1/S],A)Y is a free O-module of finite rank under
our assumptions, the projective dimension of HY (Ok_[1/S],A)" as a A =
O[[Gal(K/K)]]-module is at most 1. Therefore, the cohomological triviality
of H., (Ok_ [1/5], A)V as a G-module implies that the projective dimension of
HL (Ok.[1/5],A)Y as a Ak__-module is at most 1 by Popescu [25, Prop. 2.3].

U

Corollary 2.19 implies that the initial Fitting ideal
Fitto . (H& (O [1/5],A)Y) is a principal ideal. We will describe a
generator of this ideal in the next section.

3. INITIAL FITTING IDEALS

In Sections 3-7, we assume all the assumptions in Subsection 2.1.

3.1. Modified p-adic L-functions. First of all, we consider a slightly modi-
fied p-adic L-function. For an algebraic extension F//Q, we denote by R(F/Q)
the set of all finite primes of Q ramifying in F//Q. For a finite set S of finite
primes of Q and a Dirichlet character ¢, we denote by Lg(V, %) the L-function
obtained by removing the Euler factors of primes in S. Note that the p-adic L-
function O, interpolates the values Lz x_/q)(V, %) for a Dirichlet character
¥ of Gal(K,,/Q) for some n.

We will introduce a modified p-adic L-function x_ s € Ak, . This {x s

is related to Ug in Greither [9, Prop. 8] in the classical setting, namely in the
case V = Q,(x). We will first construct from {0x_} a family {{x. } with
¢k € Ak for any K € K, satisfying the following properties.
(I11-1)" Let V* = VV(1) be the Kummer dual of V. For ¢ € P, we put
Pj(x) = det(1 — Froby x|y« ). For any K, L € K such that K C L, we consider
the natural map c;_/x_ : Ar., — Ak, asin (III) in Subsection 2.1. Then
these elements satisfy

ot =TT Pobi ) e
LeR(L/K)
(II1-2) If 9 is a faithful character of Gal(K/Q) for some K € K, we have
charp,, ((Sel(Koo, A)Y)y) = (¥(€x..))

oo

as ideals of Ay.

For any n which is prime to p and whose prime divisors are good primes,
we denote by Q(n) € K the maximal p-subextension of Q in Q(uy,). Put
n¢ = ordy(¢ — 1) and dy, = [],,, p"*. We have [Q(n) : Q] = d.
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We will first construct {qn).. from Oq,). . We have
Py(z) = Pj(z) mod ¢ — 1.

Using this congruence, we obtain the existence of {q(y).. from the following
lemma.

Lemma 3.2. Let N be the set of squarefree products of primes in P. Sup-
pose that {\p}nen is a family such that N\, € Aqe).. Forn € N and
L€ P, we are also given my pn, m27n, U € AQ(n).., which are compatible un-
der the restriction maps, namely which satisfy cqmn).. /Qn'). (Men) = My,
CQn)oo / Q") oo (M) = MY 115 €Q)oc / Q") oo (W) = s for all m, n' with
n'In. We assume that uen is a unit for all £ € P and n € N, and that
CQ(nl) o /Q(1) e (Ane) = Mo An and ugnmy , = m@m mod p™ for alln € N and
¢ € P such that nt € N. Then there is a family {pinfnen with pn, € Aq)..
such that
(1) €Qne)o/Q(n)oe (Hnt) = My pin for alln € N and £ € P such that nl € N,
(i) for any n € N and for any Dirichlet character v of conductor np® with
some s € Z>o, (V(An)) = (¥(un)) holds as ideals of Ay, and
(ii3) pn is congruent to ul, modulo I, where u = Hz\n“&n and I, is the
ideal of Aqn).. generated by all vq(n)/qa)(Aa) with dn and d # n (for
any divisor d of n, we denote by vq(n)../Q(d).. the norm (corestriction)
map VQn)e /Q(d)w * Aad)w — AQ(n).. which is defined by o — Y 7
where for 0 € Gal(Q(d)w/Q), T Tuns over elements of Gal(Q(n)s/Q)
such that the restriction of T to Q(d)oo s 0.)

Proof. For any ¢ € P, we define ¢,, = (m@n — Up M) /P € AQn)e. -
Suppose that n € N and d is a divisor of n. We put

Ogpn = <H€£7d) <Hw,d) Ad € Aqay.. -
0z 0ld

In particular, o, , = (Hz\nuém))‘n- We put

fn = D VQ(n) e /Qd) (Vd,n).
d|n

We simply write ¢, for cqm).. /Qn)e a0d Vi n for vqm).. /Q(n).. - Then we
have

CnE,n(,unZ) = Cnt,n ( Z an,d(ad,ni) + Z V7LE,d£(adE,nZ)>

d|n d|n
=p" Z Un,a(€¢,a0d,n) + Z Un,d(Car,a(Cde ne))
d|n d|n
= Z Un,a((my g — we,ame,q)an) + Z Un,d(We,dMe,dCtd,n,)
d|n d|n
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= Una(m} g0a.n)
d|n
= m%,nﬂ‘?’b
If ¢ is of conductor np®, we have ¥ (pn) = ¥Y(ann) = Y(u)(A,) where u =
Héln Ug . It is clear that g, is congruent to wM, modulo I,,. This completes
the proof of Lemma 3.2. g

For general K € K whose conductor is n, we define {x.. = cqmn). /K.
(§Q(n)o)- Then these elements satisfy the conditions (IT1-1)" and (IT1-2)".
For a finite set S C P, we define {x_ s by

€Koo,5 = me H Pé(FI‘ObZ}(OO) S AKoo'
LeS\(SNR(K/Q))

Note that (i, = k. R(k/qQ)- When we consider K, L € K such that K C L,
we have

CLm/Km(ng,S) = < H PZ/(FrObz,%(m))gKao,S'

LeER(L/K) ¢S
3.3. Initial Fitting ideals of certain cohomology groups. In this sub-

section, we first prove

Theorem 3.4. We assume all the assumptions in Subsection 2.1. Suppose
that K € IC and S is a subset of primes which contains all ramifying primes in
K/Q. Then the projective dimension of Hk, (Ok.__ [1/S], A)V as a Ak__-module
is at most 1, and we have

Fittony, (Hé:(Or. [1/5],4)Y) = (€x..s)-
Proof. We already proved the statement concerning projective dimension in
Corollary 2.19. Let v : Gal(K/Q) — Q; be a character of Gal(K/Q),
and Oy, Ay be as in (III) in Subsection 2.1 (we consider any character ¢
of Gal(K/Q) and do not assume that ¢ is faithful). Since the projective
dimension of HE, (Ok_[1/5], A)Y is at most 1, Fitto a,_ (H&, (Ok. [1/5], A)Y)
is principal. Therefore, by [14, Cor. 4.1], in order to prove Theorem 3.4, we
have only to show
Fitto,a,, (He, (Ok.[1/5], A)Y ®oicair/q) Ov) = ($(Ek..s))

for all characters 1 of Gal(K/Q).

Let M be the field corresponding to the kernel of ¢ : Gq — QX. We know
M € K. For any discrete O[Gal(K/Q)]-module P, we know

PY @ojaair/q)) Ou = (PEUMD)Y @oaq/q) Op-
Hence it follows from the Galois descent lemma (Lemma 2.12) that
Hé Ok [1/8],A)Y @oicai(r/@) O = Hé (O [1/8], A)Y @ojcain/q) Oy
Suppose that M’ is the subfield of M such that [M : M’'] = p (note that M/Q

is a cyclic extension). We write No = Ngaiavr/mr) = ZUGG&I(M/M,) o. We
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have Oy = O[Gal(M/Q)]/Ny. For any O[Gal(M/Q)]-module X, we define
XY =Ker(Ny : X — X), and Xy = X/NoX = X ®o[Gal(M/Q)] Oy From
the exact sequence in Corollary 2.14, we get an exact sequence

P
0 — HE (On, A —> HL(Oni [1/8], AP —> ( D A(_l)ru,m) |

VES Mo

Since Ext&gaiar/q))(Ovs H: (O, A)) = H*(Gal(M/Q), H, (O, , A)) is
finite by Proposition 2.17, the cokernel of the last map in the above exact
sequence is finite.

Let R(M/Q) be the set of prime numbers which are ramified in M, and
S’ =S\ R(M/Q). We have

(( &b A(_1)p,,,m>w )v = P (Ay/(Frobe s, —1) @ T, & (finite)

VES M Les

where for a prime v above £ we wrote I'¢ ,,, for I'y 5, which is independent of
the choice of v. Let P}(z) be the polynomial defined in (TII-1)". For ¢ € S’, we
have

chary,, ((Ay/(Frobear, —1)) @ Tr, ) = (det((z — Frobe ar,)|v+) jz=Froby ., )
= (P;(Frobgy, )

in Ay. Therefore, by the main conjecture (III—2)I and the above exact sequence,
we have

chara,, (H&, (Onr [1/5], A)Y)y) = (zb (é‘Mm 1T P/ (Froby 5, )))

Les’

:(¢(§Km I Pé(FrobZ}(m))>

LeS\R(K/Q)

= (Y(K.s))

where we used (III-1)’ to get the second equality.

Next, we will prove that (HY, (O [1/S], A)V)y contains no nontrivial finite
submodule. Since H'(Gal(M/M'), H. (O [1/S], A)) = 0 by the vanishing
lemma for HY,, (Lemma 2.16), 0 —1: HL (O [1/5], A) — HL, (O [1/5],
A)¥ is surjective where o is a generator of Gal(M/M'). Therefore, taking the
dual, we know that there is an injective homomorphism from (H}, (Oar., [1/5],
AWy to HE, (Opr [1/5], A)Y which contains no nontrivial finite submodule
by Corollary 2.15. Hence we have shown that (H¢, (Oar._[1/S], 4)¥)y contains
no nontrivial finite submodule.

This fact together with the equality of the characteristic ideal above implies
that

Fitto,n, (Hg: (Onm [1/5], 4)Y)y) = (Y (Ek.c.5))-
This completes the proof of Theorem 3.4. ]
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Corollary 3.5.
k.. € Fittoa, (H&:(Ok..,A)Y) = Fittoa,_ (Sel(Koo, A)Y)

Proof. Take S = R(K/Q) to be the set of prime numbers ramifying in K.
This corollary follows from the surjectivity of

Hg, (O [1/8],A)Y — HE Ok, A)Y
and fKoo :gKao7S' O

Remark 3.6. If we assume only one half of the Main Conjecture (MC) in
Subsection 2.1, that is, the inclusion chary, ((Sel(Ku, A)Y)y) D (¢¥(0k..)) for
any v, then we obtain £k 4 € Fittoa, (H, (Ok.[1/5],A)Y) by the same
method as the proof of Theorem 3.4 using [14, Lemma 4.1]. Therefore, this
“half” of (MC) implies Corollary 3.5. Note that this half of (MC) is a theorem
of Kato [11] when V is the p-adic representation attached to an elliptic modular
form.

4. HIGHER FITTING IDEALS

By the same method as in [14], [15], [16], we obtain information on the
higher Fitting ideals.

4.1. Preliminaries. Let R be a commutative ring which is flat over Z,. We
first fix positive integers N > 0 and s > 0. In the formal power series ring
R[[T]] in one variable, we consider an ideal (p™, T**!) = pV R[[T]]+T** R[[T]]
and take the smallest positive integer n(N, s) such that

A+T)P""7 —1e (N, T,

For example, n(N,1) =---=n(N,p—1) = N and n(N,p) = N + 1.

We consider a finite abelian p-group G such that G can be written as G ~
Z/pMZ @ --- D Z/p"rZ for some r € Z~g and that ni,...,n. > n(N,s). We
take generators oy, ...,0, of G, and identify the group ring R[G] with

R[[S1,..., S ]/(1+S)P"™" —1,...,(1+5,)P" —1)
by o; <+ 1+ .5; (1 < j <r). Note that by the definition of n(N, s) there is a
surjective ring homomorphism
R[G) — R/pM[[S1, ..., S, ]1/(S7H, ..., S5,

For an element f € R[G] and i € Zxg, we define the ideal I; s(f) of R/p"
as follows. Using the above identification, we write f = Zil,...,uzo Qiy .. i
Sit ... S mod Z wherea;, ;, € RandZ = ((1+S1)P"" —1,..., (14+5,)P"" —1).
For i € Z>g, we define I; 5(f) to be the ideal of R/p"™ generated by

ey

{ai,. 4. mode|O§i1,...,ir <sand i +---+i. <i}.

This ideal does not depend on the choice of the generators o1, ...,0, (see [16,
Sec. 8], [15, Sec. 3]).
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Lemma 4.2. Let R, G be as above. Suppose that M, M’ are finitely generated
R[G]-modules, G acts on M’ trivially, and that there is a surjective homomor-
phism M — M'. For any f € Fitty giq (M) and for any i > 0, we have
I s(f) C Fitt; gpn (M'/pN).

Proof. This can be proved by the same method as [16, Thm. 9.11]. We have

a surjective homomorphism Mg — M’, so it is enough to prove I, ;(f) C
Fitt; g/~ (Mg). By the definition of n(N, s), we have an isomorphism

R/pNIGI/ (ST, 8 = R/pN([Sy, . S /(ST L S5,
We put R’ = R/pN[[S1,...,S:]/(SiT,...,85FY). If M is generated by n

elements, we know

FittO,R[G] (MG) = Z Fitti,R(MG)(Slv SRR S’I“)iv

i=0
so we have Fitto r (Ma ®pig) R') = Y1 Fitt; g/pv (Ma)(S1,...,S,)" in R
Therefore, f S FittO’R[G] (M) implies Ii,s(f) C Fitti’R/pN (Mg) U

We also use a slight modification. We define n(N, s)" to be the smallest
positive integer such that

1 n(N,s)
T((H—T)p o0 —1) e (pV, T+,
For example, n(N,1) =---=n(N,p—2) = Nand n(N,p—1) = N+ 1. We

consider a finite abelian p-group G such that G can be written as G ~ Z/p"* Z®
- @®Z/p"Z for some r € Z~ and that ny,...,n, > n(N,s). We define I; ;(f)
as above. Since n(N,s)’ > n(N,s), we can apply Lemma 4.2 to this G. Note

that I; s(f) is determined by f mod (Sil((l—f—gl)p"l —1),..., 5 (A+5,)P" -
1)) in this case.

4.3. Higher Stickelberger ideals. We will define ideals ©; ; and ©;. Sup-
pose that N, s € Zg, and i € Z>o. Put A = Aq_ = O[[Gal(Qx/Q)]]. For a
squarefree positive integer n whose prime divisors are all in P, we let Q(n) € K
be the subfield of Q(u,) defined in Subsection 3.1, and put G,, = Gal(Q(n)/Q).
We have G, = [[,,, G¢. For K = Q(n), using the canonical decomposition
Gal(Kw/Q) = Gal(Qw/Q) x Gal(K/Q), we identify Ax__ with A[G,]. Sup-
pose that n = £y - - - £,. Taking a generator of Gy, for each £;, we identify A[G,]
with A[S1,...,S,]/1 where I = ((L+ S1)P"" —1,...,(1+ S,)P"" — 1) with
n; = ordy(f; — 1).

We use the positive integer n(N, s)’ which was defined in the previous sub-
section. We define a set

Ks ={K € K| K = Q(n) for some n whose all prime divisors ¢ satisfy
ne = ord,(£ — 1) > n(N,s)'} U {Q}.
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Suppose that a family g = (g ) ke, with gk € Ak is given (we will take
9k, = Ok, k. later). We apply the argument in the previous subsection,
and consider the ideal I; s(gx. ) C A/pY for g € Ak, = A[Gal(K/Q)]. As
we mentioned in the previous subsection, the ideal I; (g9x., ) does not depend
on the choice of the generators of the Galois group Gal(K/Q). We define

@g,}:) (g) to be the ideal of A/pY generated by
U Ii,s(gKaQ)a

Kek,
and @EN)(g) to be the ideal generated by (J, @g) (g). We define 0, s(g) =
: (N) (o) — T @)
tim €% (g) € A and ©,(g) = lim 0 (g) C A,
We consider § = (0k_ ) and £ = (k. ) in Subsection 3.1.
Lemma 4.4. For K € K, we have I, ;(0k_) = L (k.. ).

Proof. Suppose that K = Q(n) and n = £y---£,. Put Nj = > o
J

define I to be the ideal of Ax_ generated by all V; with 1 < j < r. By the
construction of {x_ and Lemma 3.2 (iii), we have 0x_ =k mod I.

Let 0; be a generator of Gy, and S; = 0; — 1. By the definition of n(N,s)’,
N; =0in Ak, /(pN,S;*"). This implies that I; s(0x,.) = L s(¢x.,)- O

o and

This lemma implies that O (8) = OV (€), 0;,5(8) = ©,,4(€), and ©,(8) =
©;(¢). (In this sense, ©;(0) does not depend on the normalization of the p-
adic L-functions.) We simply write @gﬁ), @gN), ©;,s, ©; for 95’];])(9), @§N) 6),
ei,s(a)a 61(0)

We obtain the following corollary from Theorem 3.4 (from Corollary 3.5).

Corollary 4.5. For any K € Ks and any i > 0, we have
Lis(§x..) C Fitty p /v (Sel(Qoo, A)” @ Z/p™).
Hence we obtain @)g) C Fitty p/pn (Sel(Qoo, A)Y ® Z/p™) and
0,5 C O, C Fitt; 5 (Sel(Quo, A)Y).

Proof. First of all, since we assumed H°(Q, A) = 0, we also have H°(Qoo, A) =
0, and Sel(Quw,A) —> Sel(K o, A) is injective. Applying Lemma 4.2 and
Corollary 3.5 to our case, we obtain the first assertion. This implies @g)(f ) C
Fitt, A/~ (Sel(Qoo, A)Y @ Z/p"). Hence, taking the limit, we obtain the final
assertion. O

5. SELMER GROUPS AND (GALOIS GROUPS

5.1. More assumptions. From this section on, we further assume
(IV-1) Both H°(Q¢,o0, A) and H°(Qg o, A*) are divisible for £ € Ppaq,
(IV-2) H°(Qp, A/F*A) = H(Qp, A*/F*(A%)) =0,

(IV-3) Deris(V)?=! = Deyis(V)?=P"" = 0.
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For an odd Dirichlet character x of order prime to p such that x # w, these
conditions are satisfied for V' = Q,(x) if x(p) # 1. When V = V,(E) is the
Tate module of an elliptic curve over Q with good ordinary reduction at p,
(IV-1) is equivalent to p  Tam(E), (IV-2) is equivalent to E(F,)[p] = 0 (see
Greenberg [7, Sec. 2 and 3]), and (IV-3) is satisfied.

Recall that we defined K in Subsection 2.1 by

K ={K | K/Q is a finite abelian p-extension
in which Phag U {p} is unramified}.
We also define a set K(,) which contains K by
Ky ={K | K/Q is a finite abelian p-extension
(10) in which Ppaq is unramified}
={K | K C F, for some F € K and some n € Z>o}

where F), is the n-th layer of the cyclotomic Z,-extension F,/F.

Lemma 5.2. Suppose that K is in K(,y. Under the assumptions (IV-1), (IV-

2), (IV-3), we have

(1) Hi(Ky, A) = HE, (Ko, A) and Hj(K,, A*) = HE, (K,, A*) for any finite
prime v of K,

(2) HNOK[1/S,A) = HL(Ok[1/S],4) and HNOx[1/S),A") =
HE, (Ok[1/85], A*) for any finite set S of finite primes of Q,

(3) Hy(Ok[1/S],T/p") = H§, (Ok[1/S], T/p") and Hy(Ok[1/S],T*/pN) =
HE (Ok[1/S],T*/p") for any positive integer N > 0 and any finite set S
of finite primes of Q.

Proof. Tt is enough to prove (1). We prove H}(K,, A) = HE,(K,, A). Put

k = K,. Suppose at first that v is a prime above p. Since k/Q, is an abelian p-

extension, we have H2(k, F*T) = H(k, A*/F*(A*)) = 0 by (IV-2), which im-

plies H'(k, F* A)aiy = H'(k, F* A). We know H,(k,V) = Ker(H'(k,V) —

H'(kny, V/F+V)) by Flach. Since H'(k,V/F*V) — H'(kny, V/FTV) is

injective by (IV-2) and Deis(V)#=P" = 0 in (IV-3) implies Hi(k, V) =

H(k,V), we have H}(k, V)=H)(k,V) = H'(k, F*V). Therefore, H}(k,A)

= HY(k,FTA)aiy = HY(k,F*A). Let koonrp/koo be the unramified Z,-

extension. Since H®(koo prp, A/FTA) = 0 by (IV-2), the natural map

HY(k,A/JFTA) — H'(koonrp, A/FTA) is injective. Therefore, we get

H, (k, A) = H' (k, FTA) = H}(k, A).

Next, we suppose that v is a prime such that v € Pyaq. Since K/Q is
unramified at v, we have ks = Q.00 and H?(ky, A) is divisible by (IV-1).
Thus, H, (k, A) = H' (ko /k, H(ks, A)) is also divisible. Therefore, we get
Hj(k,A) = Hg, (k, A)aiv = Hg,(k, A) by Rubin [28, Lemma 1.3.5(i)].

If v is a good prime, we always have H}c(k,A) = H}, (k,A). Therefore,
we get Hi(K,,A) = Hg,(K,,A) for any v. We can prove Hj(K,,A*) =
HY (K,, A*) by the same method. O
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5.3. mod p~ Selmer groups. From now on, we use H} instead of Hcl;r
under the assumptions of the previous subsection. Note that H(k, T/ pY) and
H} (k,T*/pN) are orthogonal complements of each other for a local field .

For a number field K and a finite set S of primes, we define H (O, T/p™)s,0
to be the kernel of H}(OK,T/pN) — @,es H (K, T/p"). By the global
duality theorem (see Mazur and Rubin [19, Thm. 2.3.4]), we obtain the follow-
ing.

Proposition 5.4. Suppose that S, S’ are finite sets of primes of K such that
S C S. Then we have an exact sequence

0 — Hi(Og,T*/p")s10 — H}(Ok[1/S],T*/p")

— P H LT ) e ) B (K, TN HAE,, T /p)
veS’ veS\S’

— Hj(Og[1/8',T/pN)" — (H} (O, T/p")s,0)" — 0.

Corollary 5.5. Suppose further that S\ S’ consists of good primes. Then we
have an exact sequence

0— H}(OK,T*/]DN)S/70 — H}(OK[]./S],T*/]DN)
— P HE, T ") e D H(k(v),T*/pV(-1))

veS’ veS\ S
— H{(Ok[1/9',T/p")Y — (H} (O, T/p™)s0)" — 0
where k(v) is the residue field of v.
Proof. In fact, we know
HY (Ko, T /p™) [ Hy (K, T [p™) = HO (Ko / Koo, T [p™ (1))
= HO(s(0), T* /" (-1))
forve S\ S O
Taking S’ = @, we have

Corollary 5.6. Suppose that S is a finite set of good primes. We have an
exact sequence

0 — H}Og,T*/p") — H}Ok[1/S),T*/p™)
25 @ HO(5(v), T* /p" (-1)) 2 H}(Ox, T/p")"
veES
— (H}(OK,T/pN)S’Q)V — 0.

Remark 5.7. The above exact sequence can be regarded as a modification of
the localization sequence in etale cohomology (we can regard H}(O x, T/p™N)V

as HJ%(OK, T /pN)).
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5.8. The homomorphism rg. We put d = dimz, V. Let Q(T') be the field
corresponding to the kernel of p : Gq = Gal(Q/Q) — Aut(T) ~ GL4(O).
Suppose that Q. /Q is the cyclotomic Z,-extension. For simplicity, we assume
the following conditions.

(V-1) The image of pjgq_. : Gq. = Gal(Q/Quc) — Aut(T") ~ GL4(O) con-
tains SLg(O).

(V-2) There is an a € O such that a # 1, a” = 1 for some integer r > 1 and
al € Tmage(p : Gq = Gal(Q/Q) — Aut(T) ~ GL4(O)) where I is the
identity matrix.

Let W = {al € GL4(O) | a € O and a” =1 for some r € Z~(} which we re-
gard as a subgroup of Aut(T"). We denote by A the subgroup of Gal(Q(T)/Q)
which is the inverse image of W under p : Gal(Q(T)/Q) — Aut(T) =
GLg(O). The condition (V-2) means that A # 1. Since we are assuming
that O/Z, is unramified, the orders of both W and A are prime to p. We note
that (V-2) implies H%(Qoo, A) = 0, namely (I). If d > 2, (V-1) implies (I) and
(1)°.
Put f = [F, : Qp]. If d is not prime to pf — 1, (V-1) implies (V-2). In fact, if
d' is the greatest common divisor of d and pf — 1, we can take an element a € O
whose order is d’. Since al is in SLy(O), al is in the image of p by (V-1). For
example, if d = 2, (V-1) implies (V-2) because we are assuming that p is odd.

In this section, we fix a basis e1,...,eq of T as an O-module and an iso-
morphism Aut(7T) ~ GL4(O) by using the basis. We also fix a positive in-
teger N > 0. For any O/pN-module M, we identify the Pontrjagin dual
MY = Hom(M,Q/Z) = Hom(M, Z/p") with Homo (M, O/p"). Let t be the
O-homomorphism defined by t(e;) =0 (i =1,...,d — 1) and t(eq) = 1. We
regard t as an element of the Pontrjagin dual (T'/p")¥ = Homo (T, O/p™).

Put

= =
= O
S

O =

(11) o= 0] e SLd(O/pN) - Aut(T/pN)7
. . 1
0 .. 01

which is a standard unipotent Jordan block. We denote by H the subgroup
generated by o (if d = 1, we put 0 = 1 and H = 1). We put 7 = (T/p™)n
which is the H-coinvariants of 7/p~. This T is an O-module and is isomorphic
to O/pY as an O-module. By definition, ¢ can be regarded as an element in the
Pontrjagin dual 7V, and T is generated by . We note that 7 is isomorphic
to HO(H, (T/p™)V) = H°(H,T* /p™ (—1)), so t can be regarded as a generator
of HO(H,T*/pN(-1)).
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Suppose that £ is in P = P\ (Pyaq U {p}). Since £ is a good prime, Gy, =
Gal(Fy/F;) acts on T. We define
Po={lcP|L=1 (modp") and H°(Fs, T*/p" (—1)) contains
a free O/p-submodule of rank 1},

Pr={eP|l=1 (modp") and
HO(Fg, T /p" (=1)) = H' (Fy, T*/p™ (-1)) = O/p"},
and
Pi={lcP|L=1 (mod p") and G, acts on T/p" trivially}.
Clearly, P1 C Py and P} C Py. By definition, we have
PoNPr=2ifd> 1.

For any prime ¢ € Py, we fix a prime 66 of an algebraic closure Q above
¢. For any algebraic number field F', we denote the prime of F' below (g by
{p, so when we consider finite extensions Fiy/k, Fa/k such that Fy C Fy, the
primes {p,, g, satisty Cp, |{F, .

Let Q(T'/pY) be the field corresponding to the kernel of p mod p™: Gq =
Gal(Q/Q) — Aut(T/p") ~ GL4(O/p™). We put L = Q(T/p"). By the
definition of P, we have

Po={¢cP|L=1 (mod p") and p(Froby, k. ) mod p"¥ = 1}.
We define
Pro={¢cP|L=1 (mod p") and p(Froby,) mod p" = o}
where o € GL4(O/p") was defined in (11). When p(Frob,) mod p” is a
conjugate of o in GLg4(O/pY), we always take ¢1 such that p(Froby,) mod
N

pY =o.

Suppose that ¢ is in P;,. We denote by eY,...,ey the dual basis of

T*/pN(=1) = (T/p")V, corresponding to the basis ei,...,eq we took for
T/pN. By definition, ¢t = €). The action of Frob,, on (T/p™)Y =T*/pN(-1)

with respect to the basis ey, ..., ey is given by
1 ... 0
1 1
1
: o1
0 ... 1 1

Therefore, t = e}y is in H(Fy, T* /p™ (—1)) and we have H*(F,, T*/pN (—1))
(O/p™M)t.  We also get HY(F,, T*/p™(-1)) ~ (T/p™)V)/(Frob,, —1)
(O/p™). This shows that Py , C Ps.

~
~
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For any number field K of finite degree, we define P(K), Py(K), and Py (K)
by
P(K) = {¢ e P|¢splits completely in K},
Po(K) = {¢ € Py | £ splits completely in K},
P1(K) = {¢ € Py | ¢ splits completely in K}.
We define Py ,(K), Py(K) similarly. By the Chebotarev density theorem,

PL(K) is infinite. We next consider Py (K).
Let KC(,) be the set of fields defined in (10).

Lemma 5.9. Suppose that K is in K,y. The image of pjay.. * Gk,
Gal(Q/K) — Aut(T) coincides with the image of pigq. : Gqu. =
Gal(Q/Qoc) — Aut(T). In particular, the image of pi, _ contains SLq(O).

Proof. Let Q(T') be the field corresponding to the kernel of p : Gq =
Gal(Q/Q) — Aut(T) ~ GL4(O). It is enough to prove

Q(T)Qoo NKy = Qoo
for K € K. Suppose that F' is a subfield of Q(T)Qo N Ko such that
1 < [F:Q] <oo. Since F is in K,y and F' # Q, some prime in P\ Phaq is
ramified in /. Since F' is also in Q(7")Qoo, ' is unramified outside Pyaq U {p}-.
It follows that p has to be the only prime which is ramified in F'. This shows
that F' C Qo because F/Q is an abelian p-extension. Therefore, we obtain

Q(T)Qoo N Koo = Qoo U
Using the basis e1,...,eq, we consider p| o~ = Plag mod pV: Gx —
K>

Aut(T/pN) = GL4(O/pY). Put L = KQ(T/p") which corresponds to the
kernel of Plg, v By Lemma 5.9 and the Chebotarev density theorem, we can
K>

take infinitely many ¢ € P(K) such that £ = 1 mod p" and

1 ... 0
1 1 :
Pla, on (Frobe,) =0 = 1 - in Aut(T/p").
: o1
0o ... 1 1

Therefore, P1,,(K) is an infinite set. Since Pi o (K) C P1(K), we know that
P1(K) is also infinite.
For any number field K, we define Sy i to be the set of primes of K above
£, and put
(12) Hi(K)= @ H(k(v),T*/p" (1))
vESy K

where k(v) is the residue field of v € Sy x. We define ¢, x to be the element
in H2(K) whose {k-component is ¢ and the other components are 0.
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We obtain the following lemma easily.

Lemma 5.10. If ¢ is in P ,(K), HZ(K) is a free O/p"[Gal(K/Q)]-module
of rank 1 generated by t; k.

Suppose that S’ is a finite set of primes of Q. For any prime ¢ which is in
P and which is not in S, we consider a natural homomorphism

H{(Ok[1/8,T/pN) — @ Hj(K,,T/p").
vESe,K
Since the Pontrjagin dual of H}(Kv7 T/pN)is HY(K,, T*/pN)/H}(KU, T /p™)
= Hk(v),T*/pN (1)) as we saw in the proof of Corollary 5.5, taking the
dual of the above homomorphism, we have a homomorphism
(13) re: H(K) — Hp(Ok[1/5),T/p™),

which we denote by ry. For any finite subset S of P such that SNS' = &, we
define

(14) re: @HIK) — H}(Ok[1/5),T/pN)"

tes
by the direct sum of all r, with £ € S. Note that the map rg appears in the
exact sequence in Corollary 5.6.

5.11. The surjectivity of rg. In this subsection, we assume K € K(,) where
Ky was defined in (10). We will study the homomorphism r5 defined in
the previous subsection and will define ¥ which is a homomorphism from
a certain Galois group to H'(Og[1/S],T/p")V (see below). We consider
Ploy oy Gal(Q/K) — Aut(T/p") ~ GL4(O/p"), and define L to be the
field corresponding to the kernel of Pla v The Galois group Gal(L/K) can
be regarded as a subgroup of GL4(O/pY). Let W be the group defined after
(V-2). We denote by Wy the image of W in GL4(O/p") under the natural
map GL4(0) — GL4(O/p"Y), and by Ay the inverse image of Wy under
Plo v Then Wy is isomorphic to W and Ay C Gal(L/K) is isomorphic to
A which was defined after (V-2). We identify Ay with A, and regard A as a
subgroup of Gal(L/K).

Lemma 5.12. HY(Gal(L/K),T/p") = 0.

Proof. We put G = Gal(L/K). By (V-2), there is s € A such that s # 1. We
write p(s) = al with a # 1. Then a — 1 is invertible, so s — 1 is invertible
on T/pN. Hence we have (T'/p™¥)® = 0. Since the order of A is prime to p,
HY(A,T/p") = 0. Note that A is in the center of G, so a normal subgroup.
From the exact sequence

0 — HY(G/A,(T/p™)>) — HY(G,T/p") — H'(A,T/pY),

we obtain H*(G,T/p"™) = 0. O

Miinster Journal of Mathematics VoL. 7 (2014), 149-223



REFINED IWASAWA THEORY 179

Lemma 5.13. We take a basis e1, ..., eq and consider a quotient T of T/pN as
in Subsection 5.8. We denote the composition of the natural maps H (K, T /p™)
— Hl(LvT/pN) and Hl(LvT/pN) — Hl(La T) by

n: Hl(KvT/pN) — Hl(LaT)
Then n is injective.

Proof. We regard ey, ...,eq as a basis of T/p™Y. Then ey,...,eq_; are in the
kernel of T/pN — T, and the image of e4 generates 7. Suppose that x €
HY(K,T/p") satisfies n(x) = 0. Let 7 : HY(K,T/pY) — HY(L,T/p") be
the natural map. Identifying H'(L,T/p") with H'(L,O/p") ®@c T/pN, we
can write 7j(z) = Zle r;e; where x1,...,14 are elements in H'(L,O/p").
By our assumption, x4 = 0. For any 4 such that 1 < i < d — 1, there is an
element 7 € SLy(O) such that Te; = e; + eq, and Te; = ¢; for all j # i. Since
Gal(L/K) acts on 7j(z) trivially and 7 is in the image of p, m(x) = 7j(x).
This together with x4 = 0 implies that x; = 0. Therefore, () = 0. Since
HY(Gal(L/K),T/p"™) = 0 by Lemma 5.12, 7j is injective, which implies z =
0. O

Suppose that S’ is a finite set of primes of Q containing Py,q U {p}. We
write H(Og[1/5],T/pN) for H}(OK[l/S’],T/pN) = HL(Ok[1/5],T/p"N).

Lemma 5.14. Suppose that S’ is a finite set of primes of Q containing PyaqU
{p}. For any element x € HY(Ok[1/S'],T/pN)V, there exist infinitely many
¢ € PY(K) such that £ ¢ S" and r¢(te,x) = © where

re: Hy(K) — H'(Ok[1/5],T/p")Y
is the homomorphism defined in (13).

Proof. Let L“Sl? be the maximal unramified abelian extension of L outside S’.
Since

HY(Ox[1/8,T/p") — H'(OL[1/S),T) = H'(OL[1/5, Z/p™) & T

is injective by Lemma 5.13, taking the dual, we have a surjective homomor-
phism
nY : Gal(LY /L)@ TV — HY(Ok[1/S'),T/p™)V.

Therefore, by the Chebotarev density theorem, we can take infinitely many
¢ € Py(L) such that £ ¢ S’ and n" (Frob,, ®t) = .
Since £ € P{(K), we have

Hi(K)= @D /"1 = P @/

UGSLK ’UES@YK

Consider a diagram
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Te

H' Ok ([1/8",T/p")"

n' v
n

@ 'TV oL
Gal(L¥/L)® TV

’U€S@yL

where the left arrow 7’ is the natural map induced by the natural injective
homomorphism 7V — (T/p™)V, and the bottom arrow 7y 1, is characterized
by r¢.1.(t,) = Frob, ®t where ¢, is the element whose v-component is ¢ and the
other components are zero. This diagram is commutative because 7z, is also
obtained as the dual of H'(Or[1/5],T) — Does, ., Hi(Ly, T).

Therefore, it follows from (7Y ory 1) (te, ) = nV (Froby, ®t) = z and 7/ (ts, ) =
ty, i that T‘g(tg7K) =z O

Next, we consider 7, for £ € P;,. As in Subsection 5.8, we denote by
H the subgroup of Gal(L/K) generated by o. Let L’ be the subfield of L
corresponding to H, so L/L’ is a cyclic extension of degree at least p” .

Corollary 5.15. The natural map H*(K,T/p") — HY(L',T) is injective.
Proof. This follows at once from Lemma 5.13. O

Suppose that S’ is a finite set as above. By Corollary 5.15, the natural map
H'(Ok[1/8",T/p") — H'(Op[1/S'),T) = H'(Op/[1/S'], Z/p™) & T

is injective. Let M be the maximal unramified abelian extension of L’ outside
S’ such that p" Gal(M/L') = 0. Recall that L/L’ is a cyclic extension of
degree at least p’V, so there is a unique intermediate field LE N) such that

[Liny + L' = pN. We know Liyy € M. Since Gal(L{y, /L) ~ Z/pN and
Gal(M/L') is a Z/p"N-module, M has a subfield M’ such that Gal(M /L") =
Gal(M/L{y)) x Gal(M/M') and Gal(M/M') = Gal(L{y,/L'). The above
injective homomorphism can be written as

H'(Ok[1/8,T/p") — H'(Gal(M/L'),Z/p") & T.
Since H'(Ok[1/5],T/pN) — Hl(OLEN) [1/8],Z/pN) ® T is also injective
by Lemma 5.13 and the kernel of H(Op/[1/S],T) — HI(OLEN) [1/5],T) is
Hl(Gal(L’(N)/L’),T), the composition

HY(Ok[1/8,T/pN) — HY(Gal(M/L"),Z/p") & T

— HY(Gal(M'/L"),Z/p") @ T
is injective. Taking the dual, we obtain a surjective homomorphism
" Gal(M'/L") @ TV — HY(Ok[1/8'),T/p")",

for which we also use the notation nV.
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Proposition 5.16. Suppose that S’ is a finite set of primes of Q containing
Praa U {p}, and that K'/K is an estension such that K' € K. For any
element x € HY(Ok[1/S"],T/pN)V, there exist infinitely many £ € Py ,(K')
such that £ ¢ S’ and r¢(te k) = © where

re: HZ(K) — HY(Ok[1/8],T/p™)Y

is the homomorphism defined in (13). In particular, we can take a suitable
finite set S C P1,5(K’) such that SNS' =& and

P Hi(K) = H' (Ok([1/5),T/pN)Y
Les

is surjective where rs was defined in (14).

Proof. The second statement follows from the first statement and the fact that
HY(Ok[1/8],T/pN)V is finite. So it suffices to prove the first statement.

Next, since HY(K',T/p™) = 0, the natural map H*(Ok[1/S"],T/p") —
HY(Og/[1/8"),T/p") is injective. So the dual of this homomorphism is sur-
jective. Therefore, we can take ' € H*(Og/[1/5],T/p" )" whose image in
HY(Ok[1/8],T/pN)V is . Using 2’ instead of z, we may assume K’ = K.

Since 1Y is surjective, we can take y € Gal(M'/L’) such that ¥ (y®t) = z.
Note that L/L" and M'/L’ are linearly disjoint. Therefore, by the Chebotarev
density theorem we can take infinitely many ¢ € P \ (P N S’) which split
completely in L’ and which satisfy Frob,,, =y in Gal(M'/L’) and Frob,,, = o
in Gal(L/L'). Then ¢ is in Py ,(K).

We know H?(K) = @D,cs, . T’ By the same argument as the proof of
Lemma 5.14, we consider a commutative diagram

Te

Hj(K) H'(Ok[1/8],T/p™)"

I n/ 77\/

D T qay e T

vESy, L

Let t;,, be the element in @vesy .
components are zero. Since (¥ ore r/)(ts,,) = n"(Froby,, ®t) =V (y®t) =
and 7' (te,,) = te,x, we have r(to i) = . 0

. TV, whose {1,-component is ¢ and the other

Remark 5.17. Let K'/K be an extension of fields in K,y As in the statement
of Proposition 5.16, we can prove in Lemma 5.14 the existence of infinitely
many ¢ € Py(K’) such that ¢ ¢ S’ and r¢(te,x) = x, by the same method as
the proof of Proposition 5.16.
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6. EULER SYSTEMS OF (GAUSS SUM TYPE

In Sections 6-9, we generalize the results in [16]. A key point is the definition
of the Euler system and the Kolyvagin system in this section and the next
section.

6.1. Control theorems. Let K be a number field of finite degree and Ko,/ K
be the cyclotomic Z,-extension. We put I' = Gal(K/K), and suppose that
S is a finite set of primes of K. We put S’ = S U Pyaq U {p}. We have a
commutative diagram of exact sequences

0 ——» HE(Ox[1/8], A) —— HY(Ox[1/5'], A) D M.

ve(S\S)k
aj JOQ lag,

r
OHH&(oKmu/SLA)FaH;onxu/S'],A)FH( D MKoo,w)
we (S'\S) Koo

where Mg, = Hl(Kv,A)/Hér(KU,A), My w0 = Hl(KOQw,A)/Hér(KOOM,
A), and (5" \ S)k., is the set of primes of K, above S\ S. If we assume
H°(K,A) = 0, ay is bijective. By definition, az is injective. Therefore, we
have

Lemma 6.2. Suppose that H*(K, A) = 0. Then for any finite set S of prime
numbers, we have an isomorphism

H, (Ok[1/5],4) = HE,(Ok. [1/5], A).

By definition, for a prime v of K, H, (K,,T/pY) is the inverse image of
HL (Ko w,A) under the natural map H'(K,,T/pY) — H'(Koow, A) for
any prime w of K, above v. Therefore, by the same argument as Lemma 6.2,
we obtain

Lemma 6.3. Suppose that H*(K, A) = 0. Then for any finite set S of prime
numbers and for any N > 0, we have an isomorphism

H,(Ok[1/8),T/p™) — HE, (O [1/8),T/p™)".

Corollary 6.4. Under the assumptions (1), (1)*, (IV-1), (IV-2), (IV-3), we
have an isomorphism

Hj(Ox[1/8), M) — H}(Ox [1/S], M)"
where M = A, A*, T/pN, T*/p" for any K € K(p) and for any N > 0.
Proof. This follows from Lemmas 6.2, 6.3 and 5.2. U

Let Q,, be the intermediate field of Qo /Q such that [Q,, : Q] = p™. We put
R, = 7Z,[Gal(Q,)/Q)]. We considered the higher Stickelberger ideal @Z(.N) in

Corollary 4.5. We define the ideal @EN)(QH) of R, /p" by the image of @EN)
under the natural map A/p" — R,,/p".
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Corollary 6.5. Under the assumptions in Subsection 2.1, we have
01" (Qu) C Fitt g, jpn (Ha: (O, T/p™)Y) C Fitty n, jpn (H}(Oq,, T/p™)Y)
for all i > 0.

Proof. By definition, we have Sel(Qo,4)Y ® Z/pY = H, (Oq..,T/p™N)V.
Therefore, Corollary 6.5 follows from Lemma 6.3 and Corollary 4.5. t

6.6. An annihilation result. Let K, be the set defined in (10). Suppose
that K is in K(,, and 0k € Ak, is the p-adic L-function. For K € K, we
define 0x € O[Gal(K/Q)] as the image of Ok . This definition of 0k is not
natural for K € K (where K was defined in Subsection 2.1), but for simplicity
we adopt this definition even for K € K.

Theorem 6.7. For any K € K, 0k annihilates HL (Ok,A)Y, namely we
have O H, (O, A)Y = 0.

Proof. We may assume K = Q(n),, for some squarefree product n of primes
in P and for some m € Zxq. Let {x € O[Gal(K/Q)] be the image of {x_ . By
Corollary 3.5 and Lemma 6.2, we get

¢ € Fitto ojcai(x/q) (He (O, A)Y).
By the proof of Lemma 3.2, i can be written as

{x =0k + Z CaVi/Q(d)m (0Q(d),. )

d|n, d#n

for some ¢4 € O[Gal(K/Q)]. By induction on [K : Q], for any subfield
F of K with F # K, we have 0pH} (Op, A)Y = 0. This implies that
vi/r(0F) annihilates HE, (Og, A)Y. Therefore, {x HY, (Ox, A)Y = 0 implies
0k HL, (O, A)Y =0. O

6.8. A preliminary lemma. Suppose that K is in K. It follows from
Lemma 2.8 that the corestriction map H}(OKM,T*/pN) — H}(OK, T /p"™)
becomes the zero map if m is sufficiently large (where K, is the intermediate
field of K /K such that [K,, : K] = p™). We take the minimal m > 0
satisfying this property, and put K[;) = K,,. We define inductively K, by
K} = (K[n—1));1) where we applied the above definition to Kj,_] instead of
K.

Let S be a finite subset of P. The following lemma is easy to prove, but is
useful.
Lemma 6.9. Let g, ¢’ be elements in H}(OK[I/S],T*/pN), Suppose that
g = Cor(g1), ¢ = Cor(gy) for some g1, ¢} € H}(OKD] [1/8],T*/pN) where
Cor : H}(OK[I][I/S],T*/pN) — H}(OK[l/S],T*/pN) is the corestriction
map. Let O : H}(OKD][I/S],T*/pN) — @es Hi (Kpy) be the natural map
in Corollary 5.6 for Kpyy. If 0(g1) = 9(g1), then we have g = g'.
Proof. In fact, g1 — ¢ is in the kernel of §. Hence it is in H}(OKU] T /™).
Therefore, g — ¢’ = Cor(g1 — g}) = 0. O
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6.10. Construction of Euler systems of Gauss sum type. Let K and
K(p) be the sets of fields as in Subsection 5.1. For any K € K(,), we consider
the sets Py (K) C Po(K) of primes, which are defined in Subsection 5.8. In
Section 6-8, for each ¢ € Py, we take t € HO(Fy,T*/p"(—1)) such that ¢
generates a free O/pY-submodule of rank 1 and fix it. We denote by ¢, j the
element in H%(K) whose {x-component is ¢ and the other components are 0.

Suppose that £ is in Po(K7y)). By Theorem 6.7, 6, annihilates H, (Og,,
A)Y, and hence H (O, T/p™)". Tt follows from Corollary 5.6 that

* 17}
H}(OKU] [1/6]7 T /pN) — H%(K[l]) — H}(OK[U ’ T/pN)v
is exact (where H7 (K(y)) was defined in (12)). Hence 0k, H}(Ox,,, T/p")" =
0 implies that there is an element g € H (O, [1/4], T*/p") such that d(g) =

Ok, te iy, - We define géK) by

9" = Corgey i (9) € HHOKIL/4, T /p™).

By Lemma 6.9, this element does not depend on the choice of g, and satisfies

09" = Oxctesc.

Suppose that K, L € K, such that K C L. Suppose also that £ € Py(Lyy)),
hence géL) is defined. Note that this implies £ € Py(K[y)), so géK) is also
defined. In this situation, it is easy to check
Lemma 6.11. Suppose that £ € Po(Lyy)). Let Corp i+ Hp(OL[1/€],T*/pN)
— H}(OK[I/K],T*/pN) be the corestriction homomorphism, and S =

R(Loo/K) be the set of primes in P which are ramified in Lo, and unramified
in K. Then we have

COI"L/K(QEL)) = < H PZ(FYObZ}(mOgéK)'
lLes
Proof. Let g’ € Hp(Op,,[1/4],T*/p") be an element such that d(g') =
Oryte,ny,, and g € H}(OKU] [1/€),T*/p") be an element such that 9(g) =
0K[1]t2,K[1]- Put ¢” = COI"L[l]/K[l](g/) c H}(OK[I][I/K],T*/Z)N). Since

-1 .
CLy /K (eLm) = (HZes PK(FI"Obe,K[l]m ))91{[1] by (3) where CLyy /Ky 18 the
restriction map of group rings, we have

a(g//) — ( H P, ( FrObZ}(m,oo )) GK[utLKm =0 (( H Py ( FrObZ%(m,oo ))g) .

Les Les

(L)

Note that Coer/L(g/) =9, -

and Coer/K(g) =g, ~ by definition. Since

Coer/K(g”) = CorL/K(g§L)), the above equation implies

COI"L/K(QEL)) = ( H PE(FYObZ}(OO ))QEK)
tes

by Lemma 6.9. g
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This lemma shows that (gy{)) forms an Euler system. But this Euler sys-
tem relation holds only for subfields K of L. Let K /K be the cyclotomic
Z,-extension, and K, the intermediate field of degree p™. We cannot define

(géK"))nzo for all n > 0 because ¢ cannot split completely in all K,,. Our

(géK)) is a finite Euler system in the terminology of Mazur and Rubin [19)].

7. KOLYVAGIN SYSTEMS OF (GAUSS SUM TYPE

7.1. Two homomorphisms 9, and ¢,. We first define two important ho-
momorphisms which play a central role in the theory of Kolyvagin systems.
We fix a primitive p"-th root of unity (,» € Q for every n > 0 such that
(Cpn) € 1i<r_n ppn = Zp(1). Recall that for any prime ¢ € Py, we fix a prime
86. We regard (,» as an element of Q,, using the prime 86. Let Q(£) be the
subfield of Q(ue) of degree p™ where ny = ord, (¢ — 1). We denote by G, the
Galois group Gal(Q(¢)/Q). We identify G, with the decomposition group Dy of
Ge at £. Since ppne is contained in Qg, we have an isomorphism Gy = Dy >~ p,ne
by Kummer theory. We denote by o, the element of G, that corresponds to

Cp"@ :
Suppose that £ € P and k = Q. We denote by

O+ H' (k, T /p") — H(Fy, T*/p™ (-1))
the homomorphism induced by H!(k,T*/pN) — H*(k, T*/pN)/H}(k, T*/pN)
~ HO(F,, T*/pN(-1)). We note that when T = Z,, 9, : H*(k,Z/p" (1)) =

k* @ Z/pN — Z/p" is the divisor map, so the above map 0y is the analog of
the divisor map. For any K € K(,), we consider the map

0 HY(K, T /pN) — @@ H'(K,,T*/p")
vESy K
— P Hk(v), T*/pV (—1)) = H}(K)
vESy K
which we also denote by 8. If £ is in Pi(K), we identify HZ(K) with

O/pN[Gal(K/Q)], using t¢ x which was defined in Subsection 6.10. Using
this identification, we regard 0, as

d;: H'(K,T*/p") — O/p"[Gal(K/Q)].

Next, we take £ € P;. Put k = Q. Since £ = 1 (mod pV), the abso-
lute Galois group Gy of k acts on p,~ trivially. The absolute Galois group
Gr, of Fy also acts on p,~ trivially. Therefore, both H(Fy, T*/p") and
HY(F,, T*/pN(-1)) (i = 0,1) are free of rank 1 over O/p". Also, both
HY(F;, T/pN) and H (F,, T/p™(—1)) (i = 0,1) are free of rank 1 over O/p".

We know that H'(k,T*/p") is a free O/p"-module of rank 2. In fact, the
localization sequence yields an exact sequence

0 — HY(F,, T*/p") — H'(k,T*/p") — H°(Fo, T*/pN (1)) — 0,
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and HY(Fy,T*/p") and H°(F,, T*/pN(—1)) are free of rank 1 over O/p".
The image of H'(F,,T*/pN) in H'(k, T*/p") coincides with H(k,T*/p").

We consider a field k(¢) which is the subfield of k(u;) = Qe(ue) of degree
p™. The extension k(¢)/k is a totally ramified extension. We identify G, with
Gal(k(¢)/k). We have

(15)  H'(k,T*/pY) = Hj(k,T*/p™) @ H'(Ge, HO(k(0), T*/p")).

In fact, H'(Ge, HO(k(¢), T*/p")) is the kernel of the natural map H'(k, T*/p")
— HY(k(¢), T*/p"), and is isomorphic to O/pY. Also, the restriction of
this natural map to H}(k,T*/pN) is injective. These facts imply the above
decomposition. Using the decomposition (15), we obtain a homomorphism

&, H' (k, T pN) — H}k, T /pN) = H'(Fy, T* /p").

Since ¢ € Py, by [28, Lemma 4.5.2] there is a unique Q,(z) € O/p[z] such
that Py(z) = (z — 1)Q¢(z) in O/pN[z]. We consider

Qe(Frob, 1)
+}

HY(F,, T*/pN) HO(F,, T*/pN)

which is induced by the multiplication by Q(Frob,'). We define (see [28,
Sec. 4.5])
(16)

, rob, *
O H (T p) 255 1 (B T p) 252

HO(Fy, T /p") — O/p"
by the composition of ¢}, Q¢(Frob,'), and t ® G~ = 1. We note that
when T = Z,, ¢ : H'(k,Z/pN (1)) = k* @ Z/pN — HO(F¢,Z/pV (1)) =
oy = Gal(k(€)/k) ® Z/p™ is the reciprocity map (the tame symbol), so the
above map ¢y is the analog of the reciprocity map. We know that the ker-
nel of ¢} : H'(k,T*/pYN) — HY(F,, T*/p") is H*(Ge, H*(k(¢), T/p")) and
Qe(Frob, ') : HY(Fy,T*/p") — HO(Fy, T*/p") is bijective [28, Cor. A.2.7].
Therefore, ¢; induces an isomorphism of O/p?-modules on H}(k, T /pN).

Lemma 7.2. Let eq,...,eq be a basis of T. We take t = e}, and consider o

and ¢ € P1 , as in Subsection 5.8.

(1) LeteY,... ey bethe dual basis of (T/p™)Y, and put €] = Y ®(,n, ..., € =
ey ®Cn € T*/pN. Then H*(Fy,T*/pN) = (T* /pY)/(Frob, —1) is gener-
ated by the class of et, HO(Fy, T*/pN) is generated by €, and

Qo (Frob(_ 1)
_—

H'(Fe, T*/p") H(Fe, T* /p")

is the map which sends the class of e] to —ej.

(2) Let ¢p : H (k, T /pY) — O/p" be the map defined above. The restric-
tion of ¢, to H}(k,T*/pN) = HY(F,, T*/pN) = (T*/p")/(Froby —1) is
induced by e} — —1, e5—0,..., e — 0.
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Proof. (1) Since Froby acts on T* /p" by

1 ... 0
1 1
1 . )
1
0 1 1

we have

HY(Fy, T /p™) = (T"/p™) / (Froby —1) = (T* /p™) /{e3, ..., e3).-
Thus, H(F¢, T*/p") is a free O/p"™ -module of rank 1 generated by the class of
ef. We know Py(z) = (1 —2)% and Q,(x) = —(1 —x)%~1. Hence Qu(Frob, ') =

— Frob} %(Frob, —1)?~" and it maps e} to —e’;. This proves Proposition 7.2(1).
(2) This follows from (1). O

For a number field K and for ¢ € P;(K), we apply the above argument to
K, for v which is above £, and get a homomorphism ¢, : H'(K,,T*/p) —
HO(k(v), T*/p"). We denote by ¢, the composition

¢ H'(K,T*/p") — @ H' (K, T /p")
vl

— P H(k(v), 7" /pN) ~ O/p" [Gal(K/Q)].

vl

(17)

Here, the last isomorphism is defined by ¢, x ® (v = 1.

7.3. A lemma for the construction of Kolyvagin systems. In this sub-
section, we prove the following Lemma 7.4 which corresponds to [16, Lemma
5.5].

First of all, we fix the notation related to several homomorphisms. We
consider the homomorphism

rs: @HIK) — H}(Ok, T/pN)"
les

which was defined in (14). Enlarging S to all good primes, we define a homo-
morphism rg;

(18) ri : @HIE) — Hp(Ok,T/p").
lepP

This homomorphism r is surjective by Lemma 5.14 or Proposition 5.16 (note
that H};(Ok[1/8],T/pN)Y — H}(Og,T/p")" is surjective where S’ =
Poaa U{p}).
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Since H}(K) = @,  H (K, T*/p")/H}(K,,T*/p"), we have a natu-
ral homomorphism 1
(19) Ok« H'(K,T*/p") — @ HI(K)

LepP

which we denote by dx. For any submodule M of H'(K,T*/p"), the restric-
tion of Ok to M is also denoted by Ok . For each ¢ € Py(K'), we use the element
te,x in HZ(K) (see the beginning of Subsection 6.10). We also regard t; i as
an element of @,.p H7(K) (the element whose ¢ component is t¢,x and the
other components are zero).

By Corollary 5.6, we have an exact sequence

0 — H}(Ok,T*/p™) — H}(Ok[1/P], T*/p")

2 PHIK) - HY Ok, T/pY)" — 0.
LepP

(20)

The next lemma corresponds to [16, Lemma 5.5].

Lemma 7.4. (1) Suppose that K € K,y where Ky is defined in (10). As-
sume that Ly,...,0s are s distinct primes in P1(K), and for each i =
1,...,s, 0, € O/pN[Gal(K/Q)] is given. Suppose that £ is in Po(K) and
that K'/K is an extension such that K' € K(,). Then there are infinitely
many ¢’ € P1(K') which satisfy the following properties.

(i) ri(te k) =1k (teK)-
(ii) There is an element z € Hp(Ox[1/€0'), T*/pN) such that O (z) =
tex —to i and ¢p,(2) = 0y for eachi=1,...,s.

(2) Under the same assumption as (1), there are infinitely many ¢’ € PH(K’)
satisfying (i) and (ii).

Proof. (1) Put m = [];_, ¢;. By Proposition 5.4, we have an exact sequence

H}(Ok[1/med), T /pN) = @ H' (K, T* /p") & H} (K) & H} (K)
v|lm
L HY Ok [1/m], T/p™)".

Recall that the map ¢g, defined in (16) induces an isomorphism between
H}(K,,T*/p") and O/p" as we explained just before Lemma 7.2. Therefore,
the maps ¢k, for all v|¢; induce an isomorphism

Seojoc = (k) - D HF (KL, T /p™) = @ O/p™ ~ 0/pN[Gal(K/Q)]

UIZi Ul‘gi

where the last isomorphism is defined by taking (1,0,...,0) € @vlh o/p™
(the component of ¢; i is 1 and the other components are 0) to be a basis as
an O/p"[Gal(K/Q)]-module. Recall that ¢,, was defined as the composition
of the canonical homomorphism H*(K,T*/p") — @, ,, H' (K, T*/p") and
(¢k,). We take z; = (zk,) € D, H}(KU,T*/pN) such that ¢y, 10c(x;) = 04,
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and put = = (z;) € @,,, HY(K,,T*/p"™). Let y be the image of (x,ts )
under the map €@, HY(K,,T*/pN) & HE(K) — H}(OK[l/m],T/pN)V.
Applying Proposition 5.16, there is ¢/ € P1(K’) such that r¢ x(te k) = y.
(More precisely, there are ¢/ € P1(K’) and t, € HO(Fy, T*/p™ (—1)) such that
ro k((te)e k) =y. We write tp g for (te)e k)

Suppose that 1 is the map in the above exact sequence. We have ¢(z, t¢ x, 0)
= 9(0,0,%¢ k) = y. By the above exact sequence there is z € H}(OK[I/mM’],
T*/pN) such that p(z) = (x,tex,—te k). Since the image wg, of z in
HY(K,,T*/p") is in H}(KU,T*/pN) for v dividing m, z is in H}(OK[I/M’],
T*/pN).

The fact that the image zx, of z in H'(K,,T*/p") is in H{(K,,T*/p")
for v dividing m also implies that Ok (z) = t¢ x — te k. Therefore, we have
TK(tg’K — tg/,K) = 0, which implies (1)

By the construction of z and z;, we have ¢y, (z) = o0;, namely we get (ii).
This completes the proof of Lemma 7.4(1). We can prove (2) by the same
method using Lemma 5.14 and Remark 5.17 instead of Proposition 5.16. O

7.5. Kolyvagin derivatives. Suppose that K is in K(,). For £ € P1(K) =
{€ € Py | ¢ splits completely in K}, we denote by K (¢) the maximal p-subex-
tension of K in K (ug). We recall from Subsection 7.1 that G, = Gal(Q(¢)/Q).
If ¢ € P1(K), we have a natural isomorphism Gal(K (¢)/K) = G,.

We denote by N7 (resp. N1(K)) the set of all squarefree products of primes
in Py (resp. P1(K)). By convention 1 is in both A7 and N;(K). For any
m = {4, € Ni(K), we define K(m) to be the compositum of the fields
K(ty),...,K({;), and G, = Gg, X --- X Gy By definition, K (m) is in K
and Gal(K (m)/K) = Gn,.

Lemma 7.6. The natural homomorphism

H}(OK[I/mé],T*/pN) N H}(OK(m) [1/me), T* /pN )9
is bijective.
Proof. Let S’ be the union of P,,qU{p} and the set of prime numbers dividing
ml. By our assumption (I)*, HL(Ok[1/8'],T*/pY) — HL(Okm[1/57],
T*/pN)9m is bijective. Let v be a prime of K above Pyaq U {p} and w be a

prime of K (m) above v. Using the same method as the proof of Lemma 6.2,
in order to prove this lemma, we have only to show the injectivity of

HY (K, T*/p™) /Hf(K,,T* /p")
— H'(K (m)y, T*/p™) /H (K (m)w, T* /p").
In general, if k is a local field and k’/k is unramified, the homomorphism
H'(k, T /p™)/Hg, (k, T /pN) — HY (K, T* /p™) [ HE, (K, T* [p™)
is injective by the definition of H}, . Therefore, the above injectivity follows

from Lemma 5.2 and the fact that v is unramified in K(m)/K. O
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As usual, we use

pre—1 pre—1
Z O’zezgg Dg Z ZO’ZEZgg
1=0

N,, = Hg|mNg S Z[Qm], and D,, = Hg|ng S Z[Qm]
For K € K, m € N1(K), and £ € Po(K(m)[y)), by the standard method we
can check that Dy,gr "™ is in H}(Og(m)[1/me], T* /pN)9m. We define

K = ko) € HHOg[1/mt), T /p™)

to be the unique element whose image in Hf(OK(m)[l/mé],T*/pN) is

K(m
Dmgg()

The following lemma is a basic property of ., ¢

Proposition 7.7. Suppose that m € N1(K). We take no sufficiently large
such that Gal(K oo /Kp,) acts trivially on T* /p™ and that every prime of Ky,
dividing m is inert in Ko /Kyn,. We assume that £ € Po(K(m)p)) and £ €
Po(Knog+nN)- Then, for any prime r such that rlm, we have

Or(Km,e) = ¢r(km o).

Remark 7.8. The assumption on ¢ in Proposition 7.7 implies that ¢ €
Po(Kno+N), especially ¢ € P}. Therefore, if ¢ satisfies the conditions of the
above lemma and d > 1, £ is not in P;. In the next subsection we will construct
Km,¢ for £ € Py, and will prove the same property for these s, ¢.

Proof. The method in Rubin [28, Chap. 4] using the universal Euler systems
can be applied directly. Note that we are assuming H°(K, A*) = 0, so the
argument in [28] can be used even for “finite Euler systems”. The condition
£ € Py(Kpy+n) is needed in the argument on page 100 in Rubin [28]. O

We next study 9¢(km.¢). Suppose that K € K, and m = ¢ --- £, € N1(K).
Then there is 6,, € O/p"[Gal(K/Q)] such that D0 (m) = 6mNm mod p~.
We also remark that d,, appears as a coefficient of 0 ,,), namely 0 (,,) can
be written as

(21) GK(m) = (—I)T(Sm(a'gl — 1) e (O’gr — 1)
mod (pV, (o0, —1)%,..., (00, —1)?)

(see [15, Lemma 4.4]). When we clarify the field we are dealing with, we write

64 instead of 0m. The element 55 is determined by the above property.

The following lemma is easily checked (cp. [16, Sec. 4]).
Lemma 7.9. Assume that £ € Po(K(m)py). Then we have
8@(I€m’g) = 5m.
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7.10. Construction of a Kolyvagin system. For a squarefree positive in-
teger m, we define ¢(m) to be the number of primes which divide m. Suppose
that m € N (K [e(m)+1])- Our goal in this subsection is to define ¢ not
only for £ € Po(K(m)p;) N Po(Kny4n) (see Proposition 7.7), but also for
0 € Pi(Ke(my+1) = Pl(K[e(me)])-

Suppose that m € N1 (K) and £ € Py(K) such that £ does not divide m. We
say that a system (c,¢)qm (Where d ranges over all divisors of m) is a weak
Kolyvagin system of Gauss sum type if the following conditions are satisfied
for any d dividing m.

(0) e is in Hp(Ok([1/de],T*/p").
(1) For any prime r dividing d, we have 0, (aq,¢) = qbr(oz%j).
(2) az(ad’z) = (5,1.

When no confusion arises, we say o, ¢ is a weak Kolyvagin system of Gauss
sum type instead of saying (cg,¢)djm is so. For example, s, ¢ is a weak Koly-
vagin system of Gauss sum type when m and ¢ satisfy the conditions of Propo-
sition 7.7. Note that we are using the terminology “weak Kolyvagin system”
in a different way from Mazur and Rubin [19].

Proposition 7.11. Suppose that a,, ¢ is a weak Kolyvagin system of Gauss
sum type, and that for any prime r dividing m, a= , are weak Kolyvagin
systems of Gauss sum type. We assume that there are a prime £ € Po(K) and

be Hf(OK[l/M’],T*/p ) such that £{ ml' and O(b) =ty k — te,x where O is
the map H (O [1/00'],T*/pN) — HF(K) ® H (K) in Corollary 5.6. Put
Ay = aae —0ab =Y ¢r(b)as, € Hi(Ox[1/dt),T* /pN).
r|d

Then (afi,e)d\m is a weak Kolyvagin system of Gauss sum type.

Proof. By definition, we compute
8@/(0&&74) = 3@/ (Oéd,g/) - 5d(9@/ (b) = 0,

which shows that «aj , satisfies (0). Next, we will show (1). For r dividing d,
we have

Or(afy) = = 6r®)6r(a ) = 6r(0)os

T’" d
= ¢r (O/i g)'
We also have 9y(ag ) = —6¢0¢(b) = d¢, which is Property (2). This completes
the proof of Proposmon 7.11. O

Lemma 7.12. Suppose that m € Ni(Kpy), £ € Po(Kpy), and (ade)dim,
(Ba,e)aim are weak Kolyvagin systems of Gauss sum type over Ky such that
Or(age) = 0p(Bae) for any r dividing df for any dlm. Then (Coer/K
(@a,e))ajm and (Corg, /i (Ba,e))ajm are weak Kolyvagin systems of Gauss sum
type over K, and they coincide.
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Proof. Tt is easy to see that (CorK[l]/K(ad,Z))d\m is a weak Kolyvagin system
of Gauss sum type over K since all primes dividing m/ split completely in K.
The coincidence between these two systems follows from Lemma 6.9. g

For any m{ € N1(Kj¢(mey), we will define £, ¢ by induction on e(mf).
We consider Kic(mey and te k.., i ’H%(Ke me)]). Let

"Ke(moy - @Hﬁ (Kietmo) — Hi(Oxi ey T/0™)"
teP

be the homomorphism in (18) for K mey). For m and Ki(me), we take
no as in Proposition 7.7 and put K' = Ki(me)(m)pKnesn and S =
Praa U {p}. Since Helt(OK[g(me)] [1/5/],T/pN)\/ — H}(OK[e(mz)]aT/pN)v
is surjective, there is z € H'(Ok,..,[1/9],T/p")" whose image in
H{(OK ey T/PN)Y 38 TRy (te.K o mey)- Using Lemma 5.14 and Re-
mark 5.17 for K[¢(,,¢)], we can take ¢ € P{(K') such that TK (e (mo) (tg K| (me)]) =
T, 8O TK. (o) (te x (me)]) = T Koy (tg Kie(mo)] ) in H! (OK e(men] ,T/pN )V. Since
TK etmey) G Kiemey = 0 Kemey) = 0, by Corollary 5.6 there is an element
V' € Hi (OK (e, [1/€¢'),T*/pN) such that

/Ny — _
8K[e(m£)] (b ) = t€’7K[e(me)] tz)K[e(mﬁ)]'

Put b = Corg,,.,,/x (V). We define ry, ¢ € H}(OK[I/mé],T*/pN) by
(22) Km0 = Km/ — Omb — Z (b?“(b)’%%,r

r|m

Note that xm .. is already defined by induction on €(mf). When we need to
clarify the field over which y, ¢ is defined, we denote it by /Q(K)
Proposition 7.13. Suppose that ml € Ni(Ki(me))). Then the element ki, ¢
defined above does not depend on the choice of £/ (hence it does not depend on
the choice of b') and is a weak Kolyvagin system of Gauss sum type over K.

Proof. We prove this proposition by induction on €(m). We work over K
and put by, = Corg ., /K, (V') and
(23)
(K1) (Kpy) ) *
(Kot ) = b g — [1] Z¢r € H'(Kjy, T /p™).

rlm

Here, we used a map o "« HY(Kpy, T*/p™) — O/p"[Gal(K[;)/Q)] which
is the map ¢, for Kj3). Note that )

m.er was defined and proved to be a weak
Kolyvagin system by Proposition 7.7 and Lemma 7.9, and that Kl(m’ ) has
been already proved to be a weak Kolyvagin system and to be 1ndependent of

the choice of the auxiliary prime by induction on €(m) because (K1))(e(m) =

(K

Kic(me))- Therefore, by Proposition 7.11 (,, )) is a weak Kolyvagin system

over K[ 1
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For r dividing m, we define (/i(ﬂK’[E”))’ similarly as (23) using ¢’. Then

(k (f b Dy = Hg[é]) by definition, and it is independent of the choice of ¢ by

induction on e(m). Therefore,

K K K K K K
O (7)) = o (sl §Y) = o (s 5“)

does not depend on the choice of ¢/. Since 8§K[”)( (k fffz )) = 6m 7, we know

that 8;([1]((/{7(71%”))’) does not depend on the choice of ¢'. Therefore, fip, ¢ =

(K

Corgyy/ K((nfff]))’) is a weak Kolyvagin system over K and independent of
the choice of ¢/ by Lemma 7.12. O

Proposition 7.14. We assume either (1) or (2).

(1) Put K' = Ke(mey(m)p1 Kno 1~ as above and assume that m € N1(Kie(me))),
and that £, ¢’ € Py(K').

(2) We assume that mll' € N1(Kemeer)))-

We also assume that Tx, .., (t0 K mey) = TEemey E K emey )» and that b €

H}(OK ey [1/00],T% [pN) is an element such that Ok, ..., (V') = tu x

L0, K ey - Put b= COI"K[ (m0)] /K(b)

Then we have

le(mo)]

Rm, ¢t = Km0/ — 5mb - Zd)r(b)lﬁl_

rlm
as weak Kolyvagin systems over K.

Proof. First of all, we claim that /im e , mi[z], are weak Kolyvagin systems over

Ky if either (1) or (2) is satisfied. In fact, if (1) is satisfied, the claim follows
from Proposition 7.7 and Lemma 7.9, and if (2) is satisfied, it follows from
Proposition 7.13 and K{(mee)) = (K[1))[e(me)- Using this claim, we prove the

[1]

conclusion of Proposition 7.14. We know that /ii , is defined over K[y and

is a weak Kolyvagin system over Ky by Proposmlc’)n 7.13 because K¢(me) =
(K1) fe(my)- We put

K[l] I K[l] , K
("mx) = B — " [1] - Z¢r m

r|m

where bf,) = Corg,,,, /i, (V). By Proposition 7.11, (’eri[,lﬁ])/ is a weak Koly-
vagin system over K[;j. By induction on €(m), we have

07 (o)) = 0 (s 8)') = o () = 0 )

for all r dividing m. Therefore, we have Ok, ((niﬂ”))/) = GKM( ffé”)).
This implies that

K K
CorKu]/K ((“m[}])l) = CorKu]/K ( fnél]))
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as weak Kolyvagin systems over K by Lemma 7.12. Computing both sides, we
obtain K ¢ — 6mb — Zﬂm ¢T(b)n%7r = Km,¢- |

Suppose that m € N7 (K). In [16], if m has a factorization m = ¢; - - - £,. such
that 0,11 € Pi(K(ly---4;)) forall i = 1,...,7 — 1, we called m well-ordered.
In this paper, we call m admissible if m satisfies the above condition because
the word “well-ordered” might perhaps be misunderstood. Note that we do
not impose the condition ¢; < --- < £, in the above definition, and that m is
admissible if there is one factorization as above.

The next Proposition can be regarded as a special case of Theorem A4 in
Mazur and Rubin [19].

Proposition 7.15. Suppose that m is admissible. We assume one of the
following conditions:

(i) £ satisfies the conditions of Proposition 7.7 (namely, we have ¢ €
PO(K(m)[l]Kn0+N));
(i) ml € Nl(K[e(mz)])-
Then, for each r|m, we have ¢r(Km.e) = 0.

Proof. (i) This can be proved by the same method as [16, Prop. 6.3]. The
property we used there was, for any ¢|m

Q/(Q)F =ViaT,
where Vi (resp. V3) is the kernel of the map QZ/(QZ)”N — Z/pY in-
duced by the normalized additive valuation of Q (resp. Q) /(Q/ )pN —
Gal(Qe(1e)/Qe¢) ® Z/p" induced by the reciprocity map of local class field
theory). Instead of the above decomposition, we have the decomposition
HY(Qe, T*/p™) = H}(Qu, T*/p™) @ H'(Ge, H(Qu(0), T* /™))
in (15), so the same proof works.

(ii) Using Lemma 7.4, we can take ¢’ and b’ in the definition of K, ¢ (see (22)
before Proposition 7.13) such that ¢, “™* (b') = 0 for all r dividing m. Then
by Proposition 7.13 we have k¢ = Km0 — 0mb where b = CorK[E(M)]/K(b’).
Using Proposition 7.15(i), we obtain

Or(Km,e) = Or(Kmyer) = Omr(b) =0—0=0.
|

The next proposition can be proved by the same method as [16, Prop. 6.5].

Proposition 7.16. Assume that ml € Ni(K{(mep4+1)) and ml is admissi-
ble. Then we have ¢¢(Kkm) = —Ome. (Note that we are not assuming ¢ €

P1(K(m)).)

Proof. We use the same method as [16, Prop. 6.5]. We take ng such that
Gal(K4/K,,) acts trivially on T*/p" and that every prime of K,, dividing
ml is inert in Koo/ Ky,. We put K’ = Kic(me)41](ml) ) Kny+n and take ¢/
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in P4{(K'). By Lemma 7.4, we can take another prime ¢/ € P{(K') and
z' e H}(OK[ ][1/m€€’],T*/pN) such that

e(me)+1
n _
aK[e(mI{)+l] (Z ) = tf”,K[e(meHl] - tf’,K[e(meHl]v

(bf[e(m““] (') = 1, and ¢p "+ (2') = 0 for all r which divides m, where for

each r dividing m/t,

K e(m *
Gr O HE(K (a1, T /™) — O/pN [Gal(Ke(mey411/ Q)]

is the map ¢, for Ki(me+1). By Proposition 7.14(1), putting z =

!
CorK[E(me)H]/K(z ), we have

Kme,er = Kmeer — Omez — Z (br(Z)IimTe’r

r|me
= Km0 — Ome2 — Km0

Since we have ¢¢(Kmee) = ¢e(Kkmeer) = 0 by Proposition 7.15, taking ¢, of
both sides of the above equation, we obtain

0= —5m£¢£(z) - (bé(’fm,f)-

Therefore, we get the conclusion of Proposition 7.16 since ¢¢(z) = 1. O

8. PRESENTATIONS OF SELMER GROUPS

8.1. Freeness of some cohomology groups. Let Q. /Q be the cyclotomic
Z,-extension, and A = O[[Gal(Qw/Q)]]. We now have H;(Oq,,A) =
H} . (Oq..,A) by Lemma 5.2 under our assumptions. We put

X =Sel(Quo, A)Y = HE,(Oq., . A)Y = Hf (Oq... A)".

By Proposition 2.10, X has no nontrivial finite A-submodule, namely (II-2)
holds. We also have H}, (Oq.,,A*) = H}(Oq.,, A*) by Lemma 5.2. Put

X* = H}(OQN,A*)V.

By our assumption (II-1) and Greenberg [6, Thm. 2], X* is a finitely generated
torsion A-module. Proposition 2.10 also implies that X* has no nontrivial
finite A-submodule, namely (II-2)* holds. Therefore, if A is the A-invariant
of X, both X and X* are free O-modules of rank A (Greenberg [6, Thm. 2])
because we assumed that the u-invariant of X is zero.

Suppose that z1,...,x, are generators of X as a A-module. We consider a
surjective homomorphism g : A* — X such that e; — x; where (e;)1<i<q s
the standard basis of A% Since X has no finite torsion A-submodule, X is of
projective dimension at most 1 (see for example, Wingberg [36, Prop. 2.1]),s0
the kernel of g : A* — X is a free A-module of rank a. We fix some iso-
morphism Ker(g) ~ A%, and actually treat it as an equality. Then we have an
exact sequence

(24) 0— A" LA 25 x 0
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where we denoted by f the A-homomorphism Ker(g) = A* — A°%. Since X
is a free O-module, the above exact sequence yields an exact sequence

(25) 0 — (A/p™)* — (Ap™)* — X/pY — 0

for any positive integer N. By our assumption (I), H}(OQOO,T/pN) coin-
cides with the kernel of the multiplication by p¥ on H}(Oq.,, A). Therefore,
H}(Oq.,,T/p")" coincides with X/p". Note that this group is finite.

Let K, be the n-th layer of Q»/Q, I, = Gal(Qw/K,) and R, =
O[Gal(K,/Q)]. We take n sufficiently large such that H}(Ok,,T/p")
H}(Ok.,,T/p") and H}(Ok,,T*/p") = H}(Ox., T*/p"). We have

(X/pM)r, = X/pY = H}(Ok, . T/p™)".

Therefore, the above exact sequence yields an exact sequence

0 — (X/p™)™ — (Ro/p™)* L5 (Ro /™) L5 H} (O, T/pN)Y — 0

where f,, g, are induced by f, g.
For n’ > n, consider the commutative diagram of exact sequences
(26)

9n
0 — (X/p™)' — (Rn/p")" (Rn/p™)* ——> H}(Ox,,, T/p")" — 0

.

n In’
0 — (X/p™)' —> (Ru p™)* —— (R /p")* ——> H}(Ox,,, T/p™)" 0.

f’Vl

The leftmost vertical arrow is induced by the norm map of Gal(K, /Kp).
Therefore, we can take n’ sufficiently large such that (X/p™)r'» — (X/pN)F'»
is the zero map. In the following, we fix such n and n'.

For each prime ¢ € P;(K,), we take t € H°(F,, T*/p™(—1)), which gener-
ates a free O/p"-module of rank 1, and define ¢, € HZ(K,) as in Subsec-
tion 6.10. We consider the homomorphism

re: My (Kn) — Hj(Og,,, T/p™)"
which was defined in (13). Since H'(Ox ,[1/(Poaa U {p})],T/p")" —
H}(OKTL/,T/pN )V is surjective, by Proposition 5.16, there exist infinitely
many ¢; € Pi(Ky) such that 7y, (t, k,,) = @; mod (p",I'n) € H}(OKn,,
T/pN)V. We define
(27) Qi ={ti € Pr(Ky) | re,(te, x,,) = xi mod (pV,T'y)} and Q = U Qi-

1<i<a

By definition, the sets @; are pairwise disjoint. Recall that ’Hfi (K,) is a
free R, /p-module of rank 1 generated by te, i, for any £; € Q; (see
Lemma 5.10). Let S be a finite subset of @ such that S N Q; is not empty for
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any i. We define an R,,;-homomorphism

o @H%(Kn’) — (Rn’/pN)a
tes
by tek , — €; if £ € Q; where (€;)1<i<q is the standard basis of (R, /p™)®. By
our assumption, « is surjective. Consider the commutative diagram of exact
sequences

H}(Ox,,[1/8),T*/p") —> ZG%H%(KW) — HNOk,,,T/p")Y —> 0
€

o’ «@ id

0 — Image fo (R /pN)* —> H}(OKn,aT/pN)v —0

where the upper horizontal sequence is the exact sequence in Corollary 5.6, ¢d
is the identity map, and o’ is induced by «. By this commutative diagram, for
x € H}(OKH, [1/8],T%/pN), there is y € (R, /p™)® such that o/ (z) = fu (y).
Let y' € (R,/p")® be the natural projection of 3 in (R, /p™¥)?®. Since the
leftmost map is the zero map in the commutative diagram (26), y’' does not
depend on the choice of y. We define a homomorphism

B H(Ox,, [1/8], T /p") — (Ra/p")"

by '(z) =y

Since a is surjective, o : H}(Ox,,[1/S],T*/p") — Image f,+ is also sur-
jective. Therefore, we know that 8" : H(Ok,,[1/S],T*/p") — (Rn/p™)" is
also surjective from the definition.

Proposition 8.2.

(i) The above B’ induces a surjective homomorphism
B:Hy(Ok,[1/S].T*/p™) — (Ra/p")"
such that 3’ = 3 o Cor where
Cor: H}(Ok,,[1/5],T*/p") — H}(Ok, [1/S],T*/p")
18 the corestriction homomorphism.
(i) H}(OKn [1/8],T*/pN) is a free R, /p" -module of rank #1S.
Proof. Consider the exact sequence
(28) 0— Hj(Ox,,. T"/p™) — H}(Ox,, [1/S].T"/p™) — D H; (Kw)
lesS
— H{(Ok,,, T/p")Y — 0,

which is obtained from Corollary 5.6. Put Ker,, = Ker(@,cg Hi(Kn) —
H}(Ok,,,T/p")") and G = Gal(K,//Ky). Since Hj(K,) is a free Ry, /p"-
module, we have HZ(K, )% = NgH2(K,). The fact that Ng is zero on
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H}(Ok,,, T/pN)¥ = X/p" implies that (Ker,/)? = @, H7(Kn). There-
fore, putting s = #5, we get #(Ker,, )¢ = #(R,,/p™)*.

Let A be the A-invariant of X. As we mentioned above, both X and X*
are free O-modules of rank A, so we know X/pV ~ X*/pV ~ (O/pN)*.
Since n, n’ are taken such that H}(OKOO,T*/pN) = H}(OKTL,,T*/pN) =
H}(OKn,T*/pN), we have H}(OKn, T /pN)E = H}(OKH,T*/pN). By Corol-
lary 6.4, we also have

H}(Ok,,[1/8],T*/p™)% = H}(Ok, [1/8],T* /p™).
Therefore, using the exact sequence
0 — Hj(Ok,,,T*/p") — H{(Ok,,[1/5],T*/p") — Ker, — 0

and the same exact sequence for n, we have an exact sequence

0 — Ker,, — (Ker,)) — H{(Ok,,, T*/p")a
— H{(Oxk,, [1/S1,T* [pM)a — ...
Since #(Ker, )¢ = #(R,,/p™)*, from the exact sequence
0 — Ker, — P H;(K,) — H}(Ok,, T/p") — 0,
tes

we know that
# Image((Ker,/ )¢ — H}(OKn, T /p™) )
= #H}(Ok,,T/pN)" = #(0/p")*.

But #H}(Ok,,,T*/p")c = #H}(Ok,,,T*/p"N) = #X*/p" = #(0/p")*, so
(Ker,, )¢ — H}(OKn,,T*/pN)G is surjective and

H}(Ok,, [1/5],T*/pN)e — (Kern)a
is bijective.

We identify @, ¢ H7 (Kn/) with (R, /p™)*, then we can take a surjective A-
homomorphism f’ : A* — X such that f mod (p",Ty) is @,c g H7 (Kn/) —
H}(OKn/,T/pN )V. Since X contains no nontrivial finite A-submodule, the
projective dimension of X as a A-module is at most 1, so the kernel of f’ :
A®* — X is a free A-module of rank s. Namely, we have an exact sequence

0— A — A Lo x — 0, which yields an exact sequence

(R /™) — @ H}(Kw) — H}(Ok,, . T/p™)Y — 0.
les

Therefore, we have a surjective homomorphism (R, /p")® — Ker,,
which implies that Ker,, is generated by s elements. Since
H}(Ok,,[1/S],T*/pN)e — (Kery)c is bijective, Hf(Of,,[1/8],T*/p") is
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also generated by s elements as an R, /p"-module. From the exact sequence
(28) and #H}(OKTL/ ’ T*/pN) = #H}(OKan/pN)v = #(O/pN)Av we know

#H} (O, [1/S], T"/p™) = # @D HF (Kur) = #(Ry /pV)*.
lLes

This implies that H}c (Ok,,[1/5],T*/p"N) is a free R, /p"N-module of rank s.

In particular, it is a free O/p™ [G]-module, so we have H (G, H}(Ok,,[1/5],
T*/pN)) = 0 for any i > 1. Since we have H}(OKH,[l/S],T*/pN)G =
H}(OKn [1/8],T*/pN) by Corollary 6.4, the corestriction map induces an iso-
morphism

Hi(Ok,,[1/S,T*/p™) = Hi(Ok,[1/8],T*/p").

Since H}(Ok,,[1/5],T*/p") is a free Ry, /pN-module of rank s, the above iso-
morphism implies Proposition 8.2(ii). Since § factors through H}(OKn, [1/5],
T*/p™)g, the above isomorphism also implies Proposition 8.2 (). O

Let @ be as in (27). Enlarging S C @ and taking the direct limit, we obtain
a surjective homomorphism

81 Hp(Ok,[1/QLT*/p") — (Ra/p"™)"
for which we again use the same letter 5. For any j such that 1 < j < a, we

define f; : Hi(Ox,[1/Q], T*/p") — R, /p" to be the composition of § and
the j-th projection.

9. MAIN THEOREM A

9.1. An extra assumption about non self-duality. In this section, we
make an extra assumption (C) below. In Section 9 we take and fix a basis
€1,...,eq of T as in Subsection 5.8. Let w : Gq = Gal(Q/Q) — Z) be the
Teichmiiller character, and p : Gq — Aut(T") >~ GL4(O) the representation
attached to T

(C) There are s € Gq and a € O such that a” = 1 for some integer r > 1,

p(s) = al, and a? # w(s).

We use the same notation as in Subsections 5.8 and 5.11. For K € K(;,), L/ K

is the Galois extension such that [ induces an injective homomorphism

from Gal(L/K) to GL4(O/pY). Let A be the subgroup of Gal(L/K) as in
Subsection 5.8, and H the subgroup of Gal(L/K) defined in Subsection 5.8.
We define 7 by T = (T/p")g as in Subsection 5.8. We denote by 7 the O-
submodule of T/pY generated by e;. Both 7’ and T are isomorphic to O/p™
as O-modules. If p|cK,pN(S) = al, it follows from the definition of A that s
acts on both 77 and T by s(z) = az.

In the following, we assume Qy_1 C K. Then L(p,~) = L(u,). Let L2 be
the subfield of L such that Gal(L/L?) = A. Put A’ = Gal(L(u,)/L?). Then
A’ acts on (T7)* = (T')V(1) where (1) is the Tate twist. Note that A’ is of
order prime to p. Consider the following condition.
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(C) T is not isomorphic to (77)* = (77)¥(1) as a A’-module.

We define a character x : A’ — A — O* by x(s) = a where p(s) = al for
s € A. We denote by x* the action of A’ on (77)* = (T")V(1). So x* = x " lw
where w is the action of A’ on p,. The condition (C)’ is equivalent to x # x*.

Therefore, it is easy to check that the condition (C)’ (for each N) is equivalent
to the condition (C).

If d = 1, then L/Q is an abelian extension, and x, x*, w are Dirichlet
characters. Since w is odd, there is no y such that y? = w, so the condition
(C)" always holds true in the case d = 1.

On the other hand, if F is an elliptic curve over Q and T is the Tate module
of E, we know that (T/p™N)* = (T//p™)V (1) is canonically isomorphic to T/p™
as a Ggq-module by the Weil pairing. We also note that p, C L, so A’ = A.
By this isomorphism, (77)* = (7")¥(1) corresponds to T, so T and (7')* are
isomorphic as A-modules. This means that (C)" never holds, and neither does
(©).

Let L’ be the subfield of L such that Gal(L/L’) = H. In Subsection 5.11,
for a finite set S’ containing Pyaq U {p} we defined a surjective homomorphism

" Gal(M'/L") @ TV — HY(Ok[1/8"),T/p™)".

Let x : A — O be the character corresponding to the action on 7. For
any Z,[A]-module 2, we denote by 2X the x-component of 2, namely AX =
2 ®z,1a] O(x) where O(x) is the Zpy[A]-module such that O(x) = O as an
O-module and A acts on O(x) via x. Since A is commutative with H,
H x A is a subgroup of Gal(L/K). Let L” be the subfield of L such that
Gal(L/L") = H x A and Gal(L'/L") = A. Since the above map n" factors
through HY (O [1/5],T/p™N)" on which A acts trivially, " induces

(29) nY : Gal(M'/L Y @0 TV — HY(Ok[1/5],T/p™)Y,

which we also denote by 1.

We also apply the above argument to H'(Og[1/S'],T*/p™). Let 90 be
the maximal unramified abelian extension of L'(p,) outside S’ such that
pN Gal(9/L' (1)) = 0. As in Subsection 5.11, we can see that there
is a subfield M C M such that Gal(M/L'(k,)) = Gal(M'/L'(up)) x
Gal(L'(N) (up)/L'(1p)). Let x* be the character corresponding to the action
of A’ on (T')*. By the same method as above, we have a surjective homomor-
phism

(30) ()" : GalW'/L'(1p))X @0 T'(~1) — H'(Ok[1/8',T*/p")".
Note that since [L'(pp) : L] is prime to p, we have Gal(9'/L'(u,))* =
Gal(M'/L')x.

Let P1,» be the set of primes defined in Subsection 5.8. For any ¢ € Py o,

we take ¢t = e} as in Subsection 5.8. For ¢ € Py ,(K), we define t, x € Hi(K)
using this ¢ in this section. Suppose that ¢ € Py ,(L'(up)) and £ ¢ S’. We
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consider ¢y : HY(K, T*/p") — O/pN[Gal(K/Q)], which we defined in (17)
by using ¢, x. Note that there is a canonical isomorphism

(31) Homogai(x/q) (2, 0/pN[Gal(K/Q))) =5 Homo (A, 0/p™)

for any O/p"[Gal(K/Q)]-module 2 (that is, a map f € Homocai(x/q) (%,
O/pN[Gal(K/Q)]) such that f(z) = > ocGal(i/q) fo(x)o corresponds to z —
fi(x)). We denote by
b HY(K, T /p") — O/p"

the corresponding homomorphism to ¢, by the above isomorphism. Explicitly,
¢, is the composition of HY(K,T*/p) — HY(Ky,,T*/p") with Or,,.
HY(Ky,.,T*/pN) — O/p", which was defined in (16).

We denote by CSN(*U a generator of Z/p™(—1) = Hom(p,~, Z/p"), which
is defined by (,~ — 1. We regard e; ® ch(*” as a generator of 7/(—1).

Lemma 9.2. We denote by Frob, € Gal(9'/L'(u,)) the Frobenius substitu-
tion of Lr ) in Gal(M'/L'(pp)). Then (n*)Y (Frob, ®e; ® (?1571)) coincides
with (—1) times the restriction of ¢, to H (Ox[1/S], T*/pN).

Proof. Letey,..., ey be the dual basis of (T'//p™)V, and e} = ey ®(,n, ..., €} =
ey @ (v € T*/pY, which were defined in Lemma 7.2. Note that (77)* is
generated by e} as an O/pY-module.

By definition, (7*)V (Frob, ®e; ® (?1571)) is the composition
H'(Ox[1/8], T o)
— H' (O [/, T /p") — H' (5(C1r,)), T /0")
= HY(5(C1(0,): T'") = Homeon (G (7))

L0t (up))?
s (T 2 0/pN

where the first three arrows are natural maps, a is defined by f +—

f(FrobgL,(#p)), and b is induced by e} — 1. By Lemma 7.2 (2), the

above composition coincides with (—1) times the restriction of ¢, to
HY(Ok[1/8],T*/p™).
O

We will prove a modified version of Lemma 7.4, which is an analog of Rubin
[26, Thm. 3.1].

Proposition 9.3. Let K, K', K" be fields in K,y (K, was defined in (10))
such that K C K' C K". Suppose that {1,...,0s are s distinct primes in
P1(K’). Suppose that we are given { € Py(K'), a; € O/pN[Gal(K'/Q)] for
eachi=1,...,s, and an O/p" [Gal(K/Q)]-homomorphism

AW — 0/pN[Gal(K/Q)]
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where W is an O /pN [Gal(K/Q)]-submodule of H}(O[1/S],T*/pN) for some
finite set S of primes. Then there are infinitely many £ € P1 ,(K") which
satisfy the following properties.
(i) i (ter k) = TK/(tZ,K’)-
(i) There is an element z € H}(OK/[I/M’],T*/pN) such that Ok (z) =
te k' —toxr and ¢Z/(z) =o; foreachi=1,...,s.
(iii) ¢ is not in S and the restriction of

¢p  H'(K,T*/p") — O/p" [Gal(K/Q)]
to W is A.

Proof. First of all, we may assume K’ = K. In fact, suppose that this
proposition holds in the case K’ = K. In the general case, let vg/ /k :
O/pN[Gal(K/Q)] — O/pN[Gal(K’/Q)] be the norm (corestriction) map, and
ik Hp(Ok[1/8],T*/pN) — H}(Ox:[1/S],T*/p") the natural injective
homomorphism. We consider v/ /x o X : W — O/p"[Gal(K’/Q)] and apply
this proposition. Then there are infinitely many ¢’ € Py ,(K") (¢’ € S) such
that the restriction of qbﬁf/ to g k(W) is vgr /i o X Since £/ splits completely
in K', it is easy to check that gbgf, OliKi/Kk = VK//K © (;55,(. Therefore, the
restriction of ¢§ to W is A, so the general case follows.

In the following, we assume K’ = K. We apply the argument and the
notation before Proposition 9.3. Suppose that AM(z) = >, cqai(x/q) 2 (7)o
We define A : W — O/p"™ by z — a1(z). We put S’ = S U Ppaa U {p} and
consider a surjective homomorphism H'(Og[1/S],T*/pN)Y — WV. We
take an element \ € HY(Ok[1/8],T*/pN)Y whose restriction to W is .

Let 9(x) (resp. 9M'(x*)) be the subfield of 9 such that
Gal(M'(x) /L (1p)) = Gal(M'/L'(up))*  (resp. Gal(M'(x*)/L'(1p)) =
Gal(9' /L' (up))X ). By our assumption (C), we have

M (x) N (™) = L' (p)-

We use the same notation as in the proof of Lemma 7.4. Let y €
H}c (Ok[1/m], T/p™)Y be the element constructed from o; and t; k in the proof
of Lemma 7.4. We consider the surjective homomorphisms 1", (n*)¥ in (29),
(30). By the Chebotarev density theorem, we can take ¢/ € Py ,(K") such that
the Frobenius Frobg/w“p) (x) € Gal(M'(x)/ L' (up)) satisfies nV(Frobg/L,W) (x)®

t) = y and that the Frobenius Frobg/w )(X*) € Gal(O (x*)/L'(1p)) satisties
Hp
(n*)V(FrObzle( >(X*) Re® ng(—l)) . By Lemma 9.2, this implies that
Hp

the restriction of ¢, to W coincides with X. It follows from the isomorphism
(31) that the restriction of ¢y to W coincides with A. Properties (i) and (ii)
were proved in Lemma 7.4.

O
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9.4. The elements ,, ¢. Asin [16, Sec. 7], we will introduce a system z, ¢
of elements in H}(Ok, [1/Q], T*/p"), which plays the most important role for
the proof of Theorem A. The element x,, is defined in (32), and the key
property of z,, ¢ is Lemma 9.5.

We use the same notation as in Section 8. In particular, K, is the n-th
layer of Qoo /Q. For each j such that 1 < j < a, we take a prime ¢; € Q; such
that ¢; € P1((Kn')jat1))- By definition, r¢, (ts, k) = x; mod (pV,Ty). We
put £ =1II7_,¢;.

Let A € M,(A) be the matrix corresponding to the A-homomorphism f in
(24). We take A such that det A = 0x_. We consider the square matrix A4;
which is the matrix obtained from A by eliminating the c¢;-th row, ..., the
¢;-th row and the dp-th column, ..., the d;-th column. Our goal is to prove
det A; € ©;. We may assume that det A; # 0 for any j such that 0 < j <4
(see [16, Sec. 10.2]). In the case i = 1, we put m; = 1 and ¢ = £.,. Suppose
i > 2. Recall that 3; is the composition of the map 8 with the j-th projection,
defined at the end of Section 8. For any j such that 2 < j < 4, we define
a prime r; by induction on j. Suppose that ro,...,r;—1 were defined. Put
mj_1 =1y---7j—1. We consider

Ba,_, : Hi(Ok,[1/8m;_1],T* /p") — Ry /p".
Applying Lemma 9.3, by induction on j, we can take a prime r; €
’Pl,g((Kn/)[a+1] (Smj_l)) such that
(9.2-) 7; € Qc; and rj # L,
(9.2-10) thereis b, € H}(Ok,,[1/rjlc,],T*/p") such that 9(b;. ) = t,; k,, —
toe, K, Or. (b}.;) = 0 holds for any s such that 2 < s < j, and

(9.2-I0) Ba; , () = v, (x) for all x € H}(Ok, [1/Lm;1], T /pN).
Thus, we have taken r; and b’rj for all j such that 2 < j <. (Note that r; is
not defined.) We put m; = rg---r; for all j such that 2 < j <i.

We define b, = Corg ,/k, (b)) € Hj(Ok,[1/Q], T*/p") for any j such
that 2 < j < 4. Let m be a divisor of m;. We define

aq = Hd)r(br) S Rn/pN
r|d
for any divisor d of m (we define aq = 1), and define
(32) Tme =Y aakm o € Hi(Ox, [1/ml),T"/p")
d|m
for a prime £ dividing £ where the sum is taken over all divisors d of m including
1. We note that for any divisor m of m;, mf is admissible in the sense of
Section 7 by our construction of r;. So we can apply Propositions 7.15, 7.16
t0 Km,¢. For m =1, we define x; ¢ = k1¢. The following lemma gives the key
property of 2, ¢.
Lemma 9.5. Let ¢ be a prime dividing £.
(1) For a prime r which divides m;, we have Op(Tm, ) = ¢T(x¥7£),
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(2) For a prime r which divides m;, we have ¢ (Tm, ) = ¢r(br)pr(xms 4).
(3) Let j be any integer such that 2 < j < i, and B4, , be the map defined
above. Then we have

ﬁdj—1(xmi,£) = 0.
(4) Let
a: @ HZ(K,) — (R /p™)®
Z’IQ/I’I’Li
be the map defined in Section 8. The composition of a with the j-th pro-
jection induces
aj: P HL(K.) — Ra/p",
l’\ﬂml
which we denote by o;. Then we have
05 (O ,,)) = 0
for any j such that j # c1,...,c;.
Proof. Properties (1) and (2) can be proved by the same method as [16,
Prop. 7.1]. Property (1) follows from Proposition 7.13, and Property (2) follows
from Proposition 7.15 by direct computations (see the proof of [16, Prop. 7.1]).
Next, we will prove (4). Since Zpm, ¢, is in Hj(Ok,, [1/leyra -~ 1], T* /pV),
we obtain (4) from the definition of x,,, ¢, using above Property (9.2-I).
We will prove (3). Let j be an integer such that 2 < j <4, and let b} be
as above. By the definition of o and (9.2-I), we have a(d(b;,)) = a(t; K, —
te., s, ) = 0. This implies that 3(b,;) = 0 by the definition of 3. Put

T = Tm; 0 — (¢Tj (x%,é)bﬁ‘ i d)?’i (m%,e)bn)
J K
It follows from B(by,) = -+ = B(br;) = 0 that
ﬁdj—1(xmi,£) = ﬁdj—l(x)'
By Lemma 9.5(1), for any r = rj,...,7;, we have 0.(v) = ¢r(vmi o) —

¢r(zmi o) = 0. This shows that x is in H}(Og,[1/mj1L],T*/p") because
m;/(r;---7:;) = mj_1. Hence, applying above Property (9.2-III), we obtain

ﬁdj—l (33) = (ij (33)
By above Property (9.2-1I), we have ¢, (by,,,) = - = ¢r; (br,) = 0. Therefore,
we obtain

6r,(2) = O, (s — Oy (e )
= 0, (Bm) = O, (@21 ), (B,
=0.
Here, we used Lemma 9.5(2) to get the last equality. Thus, we have obtained
Ba; 1 (Tm; ¢) = ¢r,(x) = 0, which completes the proof of Lemma 9.5. O
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9.6. Proof of Theorem A. We put { = {;,. We regard x = f(z,; ) €
(R, /p™M)* and y = a(9(Tm, ) € (Rn/p™)?® as column vectors. Recall that
A = O[[Gal(Qx/Q)]]- Let 7, be a generator of I';, = Gal(Qw/Qn). Since
R, /p™ = A/(y, — 1,pY), we have

Ax =y (mod (v, — 1,p™)).
When i = 1, since z1 ¢ = gf“, the c;-th component of y is 0k, , and the
other components are zero, namely we have y = 0k, e., and
(33) Ax = (det Ae,, (mod (v, —1,p"))

because det A = 0 =0k, (mod (v, — 1)).

Suppose that i > 2. Let x’ € (R,,/p™)*~**! be the vector obtained from x
by eliminating the di-th component, ..., and the d;_;-th component, and y’ €
(Rg /pN)*~"*1 the vector obtained from y by eliminating the ¢;-th component,
..., and the ¢;_1-th component. It follows from Lemma 9.5(3) that the d;-th
component of x is zero in R,,/p" for all j such that 1 < j <4 — 1. Therefore,
we have

Aioix' =y’ (mod (v, — 1,pV)).
The ¢;-th component of y is ¢y, (m%J) = ¢p,(Tm;_, ¢) by Lemma 9.5(1).
Hence, if the ¢}-th component of y’ is the ¢;-th component of y, by Lemma 9.5
(4) we have
yl = d)ri (mmi_l,é)ec; (mOd (7n - lapN))
where e, denotes the ¢j-th standard basis vector of (R, /p™)*~ 1.

Let Adj(A;—1) be the matrix of cofactors (namely, the (s,t) entry of
Adj(A;_1) is (=1)*Ttdet P;s where Pjs is the matrix obtained by eliminat-
ing the t-th row and the s-th column of A;_1). Multiplying both sides of
Ai1x' = ¢, (¥, 0)ec by Adj(Ai—1) on the left, we get

(det Ai_l)X/ = AdJ (Ai_l)qbri (xmi_l,g)ecg.
Suppose that the d-th component of x’ is the d;-th component of x. Then the
above congruence implies
(34)
(det A;1)Ba, (@m,,0) = (1) (det Ai)r, (@m, 1 ,0) (mod (3 — 1,p™)).

We continue this procedure and take r; 1 satisfying the above properties.
Especially, by Property (9.2-IIT), we have

ﬁdi (xmi,f) = ¢T’i+1 (mmi,f)'
Therefore, (34) becomes
(35) (det Ai—l)¢"‘i+1 (xmi,f) = :l:(det Al)(bh (mmi—l,f) (mOd (7m - lva))'

Here, we wrote + because we do not care about the sign.
In the case ¢ = 1, multiplying (33) by Adj(A) and looking at the d;-th
component, we obtain

(36)  (det A)y, (2my,e) = (=1) ¥ (det Ay )(det A) (mod (ym — 1,pY))
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by the same method as above.
We take N such that N — oo as n — oo. We can prove that the limit of
Gripr (Tm, ) exists in A, and

(37) lim ¢, (Tm, ) =Fdet A; € A

n—oo

by the same method as [16, Sec. 10]. In fact, for i« = 1 we obtain
lim ¢, (Tm, ) = Edet A1 € A

n—oo

from (36). For general i > 1, using induction on ¢ we conclude (37) from (35).
Therefore, in order to prove Theorem A, it is enough to show

(38) hm ¢Ti+1 (xmi7£) € @i'

n—
Let @§NK)n be the image of @EN) in R, /p". We have 1i<1_n ®§NK)n = @EN). Hence,

in order to prove (38), it suffices to show

(39) ¢m+1 (’k&myz) € 6£7NK)H

for all divisors m of m;.
We will prove (39). Applying Proposition 9.3, we can take ¢/ € Q., such
that

(i) £" € Pro((Kn)at1)(£mi)),
Qi) ¢ # 0=t
(iii) thereisd’ € H}(O( Ky s /0 s ], T /p™) such that (V') = to i
—t0,(K, ) asry» o (') = 0 holds for any s such that 2 < s < i, and
(iv) ¢ripy = b on Hy(Ox, [1/L€my], T /p").
Using the above (iv), we have
¢Ti+1 (Hm,f) = (bf’ (Hm,f)'

Put b = Cor(Kn/)[a+1]/Kn (b/). Since mel' € Nl((Kn)[a—',-l ) - Nl(( ) le( mgg/)])
we have K, ¢ = Km,er — Omb by Proposition 7.14(2). Since m/ is admissible and
ml € N1((K,) a+1]) C N1((Kn)je(me)+1]), using Proposition 7.16, we compute

¢T1‘+1 (’im,f) = Qbé/(’im,f) = d)E/(K:m,E/ - 5mb)
= _5mE’ - 5m¢2’ (b)
Therefore, we get ¢, (km,) € GEfVK)n because both é,,¢ and §,, belong to
@fNK)n This completes the proof of (39) and that of Theorem A.

[a+1]

10. MAIN THEOREM B

10.1. An exact sequence and self-duality. In the previous section, we
proved Theorem A where a key role was played by the elements x,, ¢. In this
section, we study an elliptic curve case for simplicity, where x,, ¢ plays a key
role instead of x,, (. Namely, we need not modify the elements x,, ¢, and can
use them directly.
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Let E be an elliptic curve over Q. We denote by T' = T,(E) = 1i<r_n E[p"]

the Tate module, and define V =T ®z, Q, and A =T ®z, Q,/Z, = E[p>].
For simplicity we fix a basis of T. We take a basis ej,es of T/pN such that
(e1,e2)weil = (pv Where (e1,e2)weil is the Weil pairing of e1, ex € T/pN =
E[p"] and (,~ is the primitive p™-th root of unity we fixed. By the Weil
pairing, T is self-dual, namely 7™ is isomorphic to T'. We defined e}, e} €
T*/p" in Lemma 7.2. By our identification of T'//p™¥ with T*/p"™ by the Weil
pairing, we know that e] corresponds to —ey and e3 corresponds to e;.

We use the same notation as Section 8. We fix NV > 0 and take sufficiently
large n and n’ as in Section 8. We define K, to be the n-th layer of Q. /Q,
I, = Gal(Qu/K,) and R, = Z,[Gal(K,,/Q)]. We take generators z1,. .., 2,
of X as in Section 8. We take a to be minimal, namely we suppose that X
is generated by exactly a elements. We assume a > 0. We consider P, as
in Subsection 5.8, then HO(Fy, T/p™(—1)) = t(Z/p") where t = ey for any
¢ € Pi,,. (We may take a basis depending on each ¢ € P; for the argument
below, so we need not fix our basis e1, ez, but for simplicity we fix it.) For
each i such that 1 < i < a, we define

(40) Qi ={li € Pro(Kpw) | re,(te, x,,) =z mod (p™,T)}.
We take ¢; € Q; for each 4, and put S = {¢1,...,4,}.

By Proposition 8.2(ii), H} (O, [1/5], T/p") is a free R, /p"-module of rank
a. By Corollary 5.6 we have an exact sequence

(41) 0 — H}Ox,,T/p") — H}Ox,[1/S],T/p") 2+ P H: (K
Les
— Hj(Ok,,,T/p")” — 0.
For a prime v above /;, we consider a map ¢4 = H'(Kp.,T/p") —

H'(k(v),T/p") which was defined in Subsection 7.1 where x(v) is the residue
field of v, which is Fy, in our case. We put

Hip(Ka)= @ H'(x(v), T/p").
vESe Ky,
We define
Oy : H} Ok, [1/S],T/p™) — EPHi ;(K
tes
as the direct sum of the compositions of the natural maps
H} Ok, [1/5], T/pN) — Hl(Kn,vv T/pN)
and ¢
Let ef, e5 € T*/pN be as above. We regard e} as an element of
H(k(v), T/pN) = H(k(v),T*/pY) as in Lemma 7.2. We denote by K,
the element of Hj 7(K;) whose (k,-component is e] and the other compo-
nents are 0. Note that ’H}’f(Kn) is a free R, /p"-module of rank 1, generated
by t}f’Kn.
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Lemma 10.2. &g gives an isomorphism of R, -modules.

Proof. Let m = (p,v — 1) be the maximal ideal of R, /p" where v is a
generator of Gal(K,/Q). For an R,/p"-module M, we define M[m] to
be {x € M | mz = 0}. Since X is generated by exactly a elements,
H}(OKn,T/pN )¥/m is an F,-vector space of dimension a by Nakayama’s
lemma. Therefore, H }(O i, T/p™Y)[m] is also an Fj,-vector space of dimension
a. Since H}(OKn [1/8],T/p") is a free R,,/p"-module of rank a by Proposi-
tion 8.2(1) and R,,/p" is a Gorenstein ring, H}(Ok,, [1/S],T/p")[m] is also an
F-vector space of dimension a. It follows that the injective homomorphism

(42) H(Ox,,T/p")[m] — H(Ox, [1/5],T/p")[m]
is bijective.
Since @, Hi (Ky) — H}(OKn ,T/pN)V is surjective, taking the dual, we
know that the natural map
Hj(Ox,, T/p™)[m] — €D Hi p (K)[m]
tes

is injective. Since both groups have order p®, this is bijective. Therefore, it
follows from the bijectivity of (42) that

s : H} (O, [1/5),T/p™)[m] — @ H; ;(K0)[m]
Les
which is induced by ®s is bijective. Since both H}(Of,[1/S],T/p") and
Dics ’Hé’ 7 (Ky,) are free R,/ p™-modules of rank a and R,, is Gorenstein, this
implies that ®s : H(Ox,[1/S],T/p") — @ s Hy ;(Ky) is bijective. This
completes the proof of Lemma 10.2. O

We put
My =P H, ;(Kn), Ho = P HFE).
lLes les

We denote by ¥ : H; — Ha the composition of <I>§1 and the natural map
Ok = H}(Ok,[1/S],T/p") — Ha2. Then we have an exact sequence

(43) 0 — H}(Ox,,T/p™) — Hi > Hy — H}(Ox, . T/p™)" — 0

from the exact sequence (41). Note that both H; and Ho are free R, /p™-
modules of rank a.

By definition H; and Hs are dual each other by the canonical pairing U :
H1 x Ho — Z/p" which is induced by the local Tate pairing. We extend this
pairing to

Ug, : H1 x Ho — Ry, /p"
by £ Ur, ¥y = Y ,eq, ((0x) Uy)o~! where G,, = Gal(K,,/Q). Then this is a
perfect pairing of R,,-modules. Let ¢ : R, — R,, be the ring homomorphism
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induced by v + v~ where 7 is a generator of Gal(K,/Q). Then by the
definition of Ug, , we have

(44) a(x Ug, y) = (axz) Ur, y = 2 Ug, (t(a)y)

for any a € R,, x € H1, and y € Ho.

As in Subsection 5.8, let ¢, i, € H7(K,) be the element whose ¢, -compo-

®(71).

nent is t = ey and the other components are 0. Note that ey = e; ® oy

P
We regard t i, as an element of Ha. Then {ts k, }ecs is a basis of R, /p-
module Ho. We defined &} ;€ Hé)f(Kn) above. We regard t; ;. as an
element of #;, namely it is the element whose ¢k, -component is ej and the
other components are 0. For any ¢ € S and a prime v of K, above ¢, we
have H' (k(v),T/p™) = (T/p™)a,,, where G,y is the absolute Galois group
of k(v), so we know that H'(k(v),T/p") = (T/p")/(Froby, —1) is generated
by ez. Note that e} = —ey by this identification. We know that {tan}geS
is a basis of R, /p"-module H;, moreover {tZKn}ges is the dual basis of the
pairing Up,, in the sense that tZ,Kn URrnte; i, = 1if £; = £; and = 0 otherwise
(where we used (—e2, €1)weil = (p~).
We consider an a X a matrix

M = (my;) € Ma(Rn/pN)
which corresponds to ¥ with respect to the basis {ts, x, }i=1,.,. and
{tzj71<n}j:1,---,a- Namely, ‘I’(tZJ{n) = >¢  mijte, k,. We define M* by
M* = («(myi)).

Lemma 10.3. We have M* = —M. Namely, M is skew-Hermitian.

Proof. For any i, j such that 1 <4,5 < a, we have

a
tZ,Kn URn \Il(tz]‘,Kn) = tzi,Kn URn (Z mk]tekaKn)
k=1

=1y, k, Ur, (mijte, k)
= t(mij)
by (44).
On the other hand, the Pontrjagin dual of the exact sequence (43) is also
the exact sequence (43). Therefore, the diagram

Hi x  Hs Z/pN

v fo b=
J N

HZ X Hl Z/p

is commutative. This implies that xUgr, ¥U(y) = ¥(x)Ug, y for any z, y € H;.
Hence

7.k, YR, Y7, k,) = Y, k,) Ur. t7, K,
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a
(Z mm‘tzk,Kn) UR,, 17, x,

k=1

*
= mjite; K, UR, U, K,
- _mJZth,Kn URn téj;Kn - mJZ'

Combining the above two equations, we get t(m;;) = —my;. This completes
the proof of Lemma 10.3. O

Remark 10.4. By the exact sequence (43), we know that M is a relation
matrix of the Selmer group H}(OKR,T/pN)V. Taking the projective limit
with respect to N and n, we obtain from each M a relation matrix A of the
Selmer group X = H}(Oq.., E[p>])Y. Then A satisfies A* = —A, namely A
is skew-Hermitian. Such a matrix is called an organizing matrix by Mazur and
Rubin [20].

We can choose a suitable unit u € A* such that 0g = ufq.. satisfies
1(fg..) = elg_ where € is the root number of E. The usual main conjecture
asserts that char(X) = (det A)A = g A = 0q_ A as ideals of A. Put AT =
{z € A | u(xz) = £x}. Then we have decomposition A = AT & A~. We regard
the equality

(det A)A = Oy A

as an equality of A*-modules. Then it gives a refined version of the main
conjecture. In fact, the above equality of AT-modules implies ¢(det . A) =
det(—A) = (—1)*det A. Since we took a to be minimal, we have a =
rank Sel(Q, E[p™])" mod 2. Therefore, the above equality implies

€ — (_1)rank Sel(Q,E[p”o])V’
which is nothing but the parity conjecture for a Selmer group, which was proved
in our case by Nekovar [23].

10.5. A suitable relation matrix of a Selmer group. In this subsection we
begin with the following standard fact on quadratic forms and skew-symmetric
forms.

Lemma 10.6.

(1) Let M € M.(Z/p") be a symmetric matriz. Then there is an invertible
matriz P € GL,.(Z/p") such that 'PM P is a diagonal matriz where 'P is
the transpose of P.

(2) Let M € Mas(Z/pY) be a skew-symmetric matriz. Then there is an in-
vertible matriz P € GLas(Z/pN) such that

M, 0
Mo
‘PMP =
0 M,
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0 Q5

where M; = (_ai 0

) for some o; € Z/p" .

Proof. We define a function ord, : Z/p™ — {0,1,..., N — 1,00} as follows.
For a € Z/p" such that a # 0, if p’ divides a and p'*! does not, we define
ordy(a) = i. For a = 0, we define ord,(0) = oco.

(1) Let V = (Z/p™)" and f : V x V — Z/p" be the corresponding
symmetric form to the matrix M. We take z € V such that ord,(f(z,z)) is
minimal. Then we can take V' such that V = () ® V' and f(z,y) = 0 for all
y € V'. By induction on the rank of V', we get the conclusion.

(2) Let V = (Z/p™)* and f : V x V — Z/p" be the corresponding skew-
symmetric form to M. We take z, y € V such that ord,(f(x,y)) is minimal.
Then we can take V’ such that V = (z,y) ® V' and f(z,z) = f(y,z) = 0 for
all z € V', By induction on the rank, we get the conclusion. O

Let Sel(Q, E[p]) be the Selmer group with respect to E[p>], and consider
the Pontrjagin dual Sel(Q, E[p>])Y and its torsion part (Sel(Q, E[p>])" )tors-
We take N € Z~ such that N > ord,(#(Sel(Q, E[p*°])" )tors)-

Let M € My(R,/p") be the matrix defined before Lemma 10.3. Put t =
v — 1. We identify R, /p" with Z/pN[t]/(wn(t)) where w,(t) = (1 + )" — 1.
Since M is skew-Hermitian by Lemma 10.3, M mod t € M,(Z/p") is a skew-
symmetric matrix. By Corollary 6.4 we have

(H}(OKnaT/pN)v)Gal(Kn/Q) = H}(Za T/pN)v = Sel(QaT/pN)v

This shows that M mod t is a relation matrix of Sel(Q,T/p™¥)V. By changing
the basis suitably (namely changing M to ‘PM P for some invertible P), we
can take M to be

(45) M= <Oo +tMy tMB>

tMc tMp

where Cj is a matrix whose entries are in Z/p" such that ord,(det Cp) =
ord, (#(Sel(Q, E[p>])Y )tors), and M4, Mp, Mc, Mp are matrices whose en-
tries are in R, /pY. Since M is skew-Hermitian, Cj is a skew-symmetric ma-
trix. We write Mp = Cy +tM}, with Cy € M,(Z/p") and M}, € M, (R, /pY).
Then, since M is skew-Hermitian, C; is a symmetric matrix. Applying Lemma
10.6, by choosing a suitable basis, we can take

0 (5] 0
ﬁl 0 —1 0
B2
(46) C, = . and Cy =
0 ﬁr 0 Qs
0 —as 0
where ai,...,as, Bi,...,B, € Z/p" for some s, r € Z>g. Note that

ord,(det Cp) < oo because we took N > ordp(#(Sel(Q,E[p_oo])v)tors). We
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take a basis of X such that
ordp(aq) < -+ <ordp(as) < 0.

Note that changing the basis corresponds in our case to changing the generators
z1,...,T, of X to appropriate generators which are linear combinations of
L1y.e..,Tq-

We now have isomorphisms

S

(47) Sel(Q, E[p™))" =~ P (Zp/p")®* & Z"
k=1
and
(48) Sel(Q, T/p")Y ~ EP(Z/p")®* & (Z/p")*"
k=1

where v, = ord, (o).

10.7. Higher Stickelberger ideals. Recall that we defined in Subsection 4.3
the higher Stickelberger ideal @EN) C A/p" (now we are taking T = T,(E)).
We define the ideal @Z(.N)(Kn) of R,/p"™ to be the image of @f.N) under
the canonical homomorphism A/pY — R,,/p". We also define 0;(K,) by
0;(K,) = <li_rrjlv@EN)(Kn) C Ry, in particular,

0,(Q) = lim 6;"(Q) € Z,.

We denote by N(V) the set of squarefree products of primes £ € P such
that £ =1 (mod pV). For m € N), we consider Q(m)s € K and Og(m).. €
AQ(m).. (see Subsection 3.1 for the definition of Q(m)). Suppose that m =
[17, 4. We put S; = og, — 1 and identify Aq(y). with A[S1,...,Sg]/I where
I is the ideal generated by all (1+ ;)P —1. Let 5(2=) ¢ A/pN be (—1)<tm)
times the coefficient of T[{_; S; in Oq(m).. (cp. (21)). Then by definition,
5,(71Q°°) e @EN). For a subfield K,, of Q.,, we denote by 5,(7{(") the image of
5,(71Q°°) in R, /p". We know

(49) oI e 010 (Ky)

e(m
by definition. Note that if m € N (K,), 57(7{{") coincides with the element
defined in (21).

We denote by @gN’é)(Q) the ideal of Z/p"™ generated by {5,(,?) | e(m) <
and m € NN}, By Corollary 6.5, we have

(50) 0N (K,) C Fitt; g, /o~ (H}Ox,, T/p™)V).
Therefore, for n = 0, we have
(51) oM(Q) c ©N(Q) C Fitt; g/, (Sel(Q, T/p™)Y).
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We put
Fitt; z, (Sel(Q, E[p™])Y) = p"'Z,

where n; € Z>o U {oo} (we define p>* = 0). By the description (47) of
Sel(Q, E[p™>])Y, we have n; = oo for i such that 0 <i <r —1, and

s—1

nr+2i:2g v for i=0,...,s—1,
k=1

and n; = 0 for all 4 > a. By the above inclusion, we have

0"(Q) = Fitt; z, (Sel(Q. T/pV)") = 0

for all ¢ such that 0 < i < r — 1. Therefore, in order to prove Theorem B, it is
enough to prove

s—1

(52) 03 (Q) = p= (Z/p™) where e; =231,

k=1
for all t = 0,...,s and for all sufficiently large N. In fact, if we prove (52),
then by (51) we get

(53) @gi)(Q) = @g%i(Q) = Fitt, 424,z (Sel(Q, T/p"™)")
forallt=0,...,s.

We assume the main conjecture for (F,p) and the nondegeneracy of the p-
adic height pairing. Let fg_ € A be the p-adic L-function. Then by Schneider
[29, Thm. 5], fq.. can be written as 0q_ = not” + 7't" ™! where 19 € Z,,
no # 0, and ' € A (see (54)).

In order to prove Theorem B, we may take N and n sufficiently large.
From now on, we take N such that N > 2ord,(n), and take n such that
wn(t) € pVZ,[[t] + t**Z,[[t]], namely such that there is a natural surjective
homomorphism R,, — Z,[[t]/(pY,t2?). As we will see in (54), the condi-
tion on N implies that N > ord,(det Cy), which we assumed in the previous
subsection.

Let H(Z,T) be the Selmer group of T' = T,,(E) over Q. Taking the dual of
the natural injective homomorphism H}(Z,T) ® Qp/Z, — H}(Z, E[p™]), we
consider a surjective homomorphism X — H}(Z, E[p>®]) — (H}(Z,T) ®
Qy/Z,)" — Homg, (H{(Z,T),Z,) where H(Z,T) is the quotient of
H}(Z7 T') by the subgroup of Z,-torsion elements. Let x1, ..., z, be the genera-
tors of X we took. We denote by z; q the image of z; in Homg, (H (Z,T)', Zy).
Then x2511,Q,. .., %2s1r,q is a basis of the Z,-module Homz, (H}(Z, T),Zy).
We denote by (z;,q)Y the dual basis of H}(Z,T)'. In Schneider [30, p.335],
the p-adic height pairing is defined by using the homomorphism

H}{(Z,E[p™]) — H}(Ok...Ep™))" — H}(Ok.., E[p™))r — H}(Z,T)"
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where I' = Gal(K+/Q) = Gal(Qo/Q). Let C; be the matrix in (45). Then Cy
corresponds to the matrix of the p-adic height pairing, which means the follow-
ing. We write C = (¢i;). Using the relation matrix M of H}(Ok.., E[p"]),
we compute the map (H}(Ox, Ep>))")" — (H}(Ok.,, E[p™])")r, then
we know that the p-adic height pairing of (2251:,q)" and (z2s4+5,q)" mod p¥
coincides with ¢;;. In particular, det C; coincides with the p-adic regulator
mod pV. Therefore, Theorem 2’ in Schneider [30] implies that

(54) ord,(no) = ord,(det Cp det C1).

Since we took N > 2ord, (1) > ord,(no), we have det C; # 0 in Z/p™ by (54),
so B; # 0 in Z/p" for all i such that 1 <i <.

Note that N also satisfies N > ord,(Cy) = 2>";_, v The following theo-
rem implies (52), so implies Theorem B. Therefore, the rest of our task is to
prove

Theorem 10.8. For any i such that 0 < i < s, there is m € Nl(Kn) such
that e(m) = r + 2i and

ord, (6¥) =2 " vy
k=1

10.9. Kolyvagin systems of Gauss sum type. Recall that we took N such
that N > 2ord,(no), and took n such that w,(t) € pNZ,[[t] + t?*Z,[[t]]. We
take generators xi,...,x, of X such that the matrices M, Cy, C; have the
forms as in (45) and (46). For an integer 4 such that 0 < ¢ < a — 1, by
induction on ¢ we take £,_; € Q,—; such that

lgafi S 7)1 ((Kn’)[a-‘rl] (ml))

where we define mg = 1 and m; = £, - £a—;+1 for i > 0 (note that we are
using a different notation from Section 9), and n’ is an integer which was used
when we defined Q; in (40). We put m, = ¢1 ---£,. For any positive integer
m{ which divides m,, m{ is admissible by this construction.

By Propositions 7.13, 7.15, 7.16 we obtain the following Proposition.

Proposition 10.10. Assume that mf divides mg = £1 - -+ £,. Then the element
Km, € H}(OKH[I/S],T/pN) constructed in Section 7 satisfies the following
properties;

(0) Kim,e € Hi (O, [1/ml),T/pY),

(1) Or(Km,e) = ¢T(/€%74) for any prime divisor v of m,

(2) 82(“111,2) - 5m7

(8) &r(Km,e) =0 for any prime diwisor r of m,

(4) Ge(Km,e) = —Ome.

For any i such that 1 < ¢ < r, we denote by M; the matrix which is obtained

from M by eliminating the a-th row, ..., the (a — i + 1)-th row and the a-th
column, ..., the (¢ — i+ 1)-th column. By (45) and (46) we have
(55) det M; = (det Cp)By - -+ Br—it™™" (mod £"~F1).
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For each 1 < i < a, recall that m; = £,---f4_;+1, and that mg = 1. We

prove the following proposition at first. We consider 6,,, = (57(75") € R,/pN.
When i = 0, §; means 0, which is the image of 0q__ in R, /p".

Proposition 10.11. For 0 <1i <r, we have
Oy = A, 77 (mod 7741
for some d,, € Z/pN such that

ordy(dm,) = ord,((det Co)B1 - - - Br—i)-

In particular, we have ordp(&(ﬁ)) = ordp(det Cy).

Proof. We prove this proposition by induction on 4. If ¢ = 0, this is nothing but
(54). Next, suppose r > 0, and assume the above property for ¢ and proceed to
i+1. We identify H; (resp. Ho) with (R, /p™)® using the basis (7. K, )i=1,a
(vesp. (te; Kk, )i=1,....a), and write elements of H; (resp. Hz) as column vectors.
We consider

R; = '%mi,fafi'
Put x; = ®g(k;) and y; = 9(k;). By definition we have Mx; = y;. It follows
from Proposition 10.10(3) that the j-th component of x; is zero for all j such
that @ — i +1 < j < a. Therefore, if we denote by x}, y; the vectors obtained
by eliminating the a-th component, ..., the (a —i+ 1)-th component from x;,
yi, respectively, we have

M;x; = y;.

By Proposition 10.10(0), ; is in H}(OKn[l/mHl],T/pN), so all j-th compo-
nents of y’ are zero except j = a — . Also, by Proposition 10.10(2), we know
that the (a — ¢)-th component of y’ is 0,,,. Namely, y; = 0,,,€,—; where e,_;
is the vector whose (a — 4)-th component is 1 and whose other components are
zero. Let Adj(M;) be the matrix of cofactors as in Subsection 9.6. We have

(det MZ‘)X; = Adj(Mi)(Smiea,i.

By Proposition 10.10(4) and Lemma 7.2(2), the (a — #)-th component of x is
Omita_; = Om,,,- Therefore, looking at the (a — )-th component of the above
equation, we have

(56) (det Mi)dmiﬂ = (det Mi+1)5mi-

We put R = Z,[[t]/(p",t**). By our choice of n, we have a surjective homo-
morphism R, — R, and we can regard (56) as an equation in R.

We claim that the image of §,,, , in R is in t"~~'R. By the description
(45) and (46), we have

FittiJrLR(H}(OKn,T/pN)V & R) C friiil'R,.

Therefore, by (50) we have @Eivf(Kn) ®R C t""'R. Since we know &y, ,
is in @gfl) (Kn) by (49), the above implies that the image of d,,,,, in R is in

trfiflth
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For any element f(t) € R such that f(t) = ct mod t¢+! with ¢ # 0in Z/p"
and d < 2r, we define v(f(t)) = ordy(c) and d(f(t)) = d. We regard det M;,
det Miq1, Om;, Om,,, as elements in R. By (55) we know d(det M;) = r—1i, and
by the hypothesis of induction we have d(d,,,) = r —i. Also, the hypothesis of
induction implies that v(det M;) = v(0m,;) < N/2. Therefore, by (56) we get

d((det M;)opm,,,) = d((det Mi11)dpm,) =2(r —i) — 1 < 2r

and v((det M;)0pm,,,) = v(det M;y1) + v(det M;) < N. Since we saw that
t" =1 divides d,,, 41 above, the above equality implies that
d(5mi+1) = d(det Mi+1) =r—3—1
and
U(5mi+1) = v(det M1‘+1) = ordp((det 00)61 c 'ﬁr—i—l)-
This shows that Proposition 10.11 holds for ¢ + 1. Thus, we obtain Proposi-
tion 10.11. Concerning the statement on 57(79!), the image of §,,,, in Z/p" is 5,(,8)

by definition. When ¢ = 7, it is also d,, , so we have ord (5(Q)) = ordy,(dpm,.) =
ord,(det Cp). O

We next proceed to prove Theorem 10.8. More explicitly, we prove the
following, which certainly implies Theorem 10.8.

Theorem 10.12. For any i € Z such that 0 g 1 < s, we have

ord,(65Y,, ) =2 Z Vk.

mr+2z

Proof. We prove this theorem also by induction on i. If ¢ = 0, this follows
from Proposition 10.11. We assume the above property for . We use a
slightly different notation. We put m’ = m,, 11 = £y, ] = {2, ro = I3,
rh =Ly, ...,rs =los_1, T = log = L4, (note that a = 2s + ).
We first consider m,yo; = m/rvrs -1, _; 175 iy1 and
Rr42i = Km7~+21',7‘;_1

Put Xp42i — (I’S(/fr+2i) and Yr+2i = 8(I€T+21'). We have MXT+21' = Yr+2i
by definition. The (2s — 2¢ — 1)-th component of X,y9; 1S —¢r,_, (Kr12:) by
Lemma 7.2(2). We denote by ¢,. . (ky12,)Q the image of ¢,, . (kr12:) in
Z/p"N. The (2s — 2i)-th component of y,;2; iS 6, ,, by Proposition 10.10(2).

Considering (45), (46), and looking at the (2s— 2i)-th component of Mx,19; =
Yr+2i, We have

(57) a57i¢rsf'i(/€7‘+2i)(Q) = 5§nQr)+2i~
This together with the hypothesis of induction implies that
Ordp(¢rsfi(/€r+2i)(Q)) = ord (5( ) ) — ordy(as—;)

My424
(58) s—i—1

=2<kz_lyk> — Vi =2< ; uk) + Vi,

Miinster Journal of Mathematics VoL. 7 (2014), 149-223



REFINED IWASAWA THEORY 217

Next we consider m,49;7s—; and

/i/r+2i = “mwzirs%,r;_i'
Put z,42; = ®s(K] o;) and Wy yo; = O(K., ;). As above, we have Mz, 5 =
Wyy2;. By Proposition 10.10(1), the (25 — 2¢i — 1)-th component of w,.4g; is
Gro s (Kmy nirt ) = ¢r,_;(Kri2i). By Proposition 10.10(4) and Lemma 7.2(2),
the (2s — 2i)-th component of z,2; iS dpm, yir._ i/, = Om,p4,- Considering
(45), (46), and looking at the (2s — 2¢ — 1)-th component of Mz, 19, = W42,
we have

(59) 0(Q) = fro_, (Kry2:)' Q.

Qs—i0m, o1y

Therefore, we have

(60) ord, (51(73)+z<¢+1)) = ordy(¢r, , (Kry20)'Y) — ordy ()
= Ordp(ﬁbrs_i (’ir+2i)(Q)) — Vs—i-

Combining (58) and (60), we get

s—i—1
ordp(d,(n%lm“)) = 2( Z I/k>.
k=1
Namely, Theorem 10.12 holds for ¢ + 1. This completes the proof of Theo-
rem 10.12 and that of Theorem B. O

10.13. Hypotheses of Theorem B. In this subsection, we give some re-
marks on the assumptions of Theorem B. In Theorem B we assumed the
nondegeneracy of the p-adic height pairing and the main conjecture, but these
assumptions can be replaced by the following conditions on the elements &,,.

We assume as in Theorem B that E is an elliptic curve defined over Q, p

is a good ordinary (odd) prime, p does not divide Tam(E), the action of Gq
on T, (FE) is surjective, the pu-invariant of (E, Qs/Q) is zero, and #E(F,) £ 0
(mod p). We do not assume the main conjecture nor the nondegeneracy of the
p-adic height pairing in this subsection. We assume that Sel(Q, E[p*])" has
the structure as in (47) and take a matrix M as in (45) and (46). In particular,
we suppose 1 = rankgz, Sel(Q, E[p>])Y, 2s = dimp, ((Sel(Q, E[p™])")tors @
F,), and a = r + 2s. We put ' = ord¢(fq. ). We take N such that N >
2ord,(no) as in Subsection 10.9, and take n such that w,(t) € pNZ,[[t] +
7 Z,[[]).

Proposition 10.14. We assume the following two conditions.

(i) There are lo_; € Qq—i (0 < i < a —1) satisfying the conditions in the
beginning of Subsection 10.9 such that 5,(7%) is a unit where m, is the
product of all ¢; as in the beginning of Subsection 10.9.

(ii) For any i such that 0 < i <1, there is a prime £}, _; € Qa—iNP1((Kn )2])
such that "'~ divides Opr . but " does not (where 7' = ordy(6q..))-

Then the same conclusion as Theorem B holds.
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Proof. Suppose that r > 0. For any 4 such that 0 < i < r, we denote by N;
the matrix which is obtained from M by eliminating the (a — ¢)-th row and
the (a —i)-th column. By the same method as (56), using g, = we have

(det M)(ng,i = (det N;)0q,

We use the notation d(*) from the proof of Proposition 10.11. Then d(fq,, ) = 7’
and by the condition (ii) we know d(d,, ) = 7'—1. The above equation implies
that d(det M/ det N;) = d(B,—it) = 1, so B,—; # 0. Therefore, we obtain the
nondegeneracy of the p-adic height pairing.

For i such that 0 < i < a = r 4+ 2s, we define d,,, as in Subsection 10.9.
For any element x € R, /pY = Z/p"[Gal(Q,/Q)], we denote by (@) ¢ Z/pV

the image of x by the natural map R, /p"¥ — Z/p" defined by v+ 1. We

consider 57(73)+2i for ¢ such that 0 < i < s. By the same method as the proof of

Theorem 10.12 (see (57) and (59)), we have

@ _ 5@

aS*i(stfi (KTJr%) My 2i and as*i(S?(’nQTi_g(i_H) = ¢Ts—i(/€’r+2i)(Q)

which implies that
2 Q —5Q
O‘s—i57(nr)+2(i+1) - 51("%1-21’

for any ¢ such that 0 < ¢ < s. Therefore, using ordp(d,(ﬁ)) = 0 which is the
condition (i), we get

(61) ord, (65¥) =2 " ord,(a;) = ord,((Sel(Q, E[p™])" )tors)-
i=1

Using the notation from the previous subsections, we obtain d(d,,.) = 0 and
V(6m,) = 2305, ord,(a;) = ordy((det M,.)(Q)) = v(det M,). Next, suppose
r > 0. For any ¢ such that 0 < ¢ < r, we claim that d(0,,_,) = ¢ and
V(0m,_,) = v(det M,._;). We prove this claim by induction on i. If i = 0, we
have just seen them. Suppose i > 0. We have

(det Mr_i)57nr—i+1 = (det MT—’L+1)57nr—i

by the same method as (56). Since we showed that 3; # 0 for all j such that
1 < j <r, we have d(det M,._;) = i and d(det M,_;+1) = ¢ — 1. Therefore, if
we suppose that our claim holds for ¢ — 1, then our claim holds for i. Thus we
have proved our claim.

Note that ,,, = fq, and My = M. Therefore, we obtain d(fq,) = r and
v(fq,, ) = v(det M). This means that ' = r and

(62) ord,((q, /) Y) = ord,((det M/t")( D).

This was the property from the main conjecture, which we needed for the proof
of Theorem B. Hence we get the conclusion. O
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10.15. Modular elements and examples. Let f(z) = 3 a,e?™* be the
modular form corresponding to E. We consider modular symbols [£] =

271 f;/m f(2)dz and modular elements

0Qun) = wTaGQ[GaI(Q(um)/Q)]

QO

of Mazur and Tate [21] where 7,(¢) = ¢? for ¢ € pi, and Qf, = fE(R) wg is

the Néron period. Let K be a real abelian field of conductor m. We define
to be the image of éq(#m) in Q[Gal(K/Q)]. For a positive integer n, let Q(n)
be the maximal p-subextension of Q in Q(u,) as in Subsection 3.1. Suppose
that m is a squarefree positive integer whose prime divisors ¢ satisfy £ € P and
¢ =1 (mod p). We consider Q(mp™) for n > 1. Since we assumed the Galois
representation on E[p] is surjective, we know éQ(,,npn) € Z,[Gal(Q(mp™)/Q)]
(see [35]). We put Rx = Z,[Gal(K/Q)]. For any integers d, m such that
dlm, we denote by vq(m)/q(4) the norm (corestriction) map Rqa) — Rqm)
defined by o — > 7 where for o € Gal(Q(d)/Q), 7 runs over elements of
Gal(Q(m)/Q) such that the restriction of 7 to Q(d) is 0. Let o € Z) be the

unit root of 22 — apz + p = 0 and put

Iamp) = " (0Qumpr) = & VQumpm) /Q(mp1) (Ba(mp1)))
as usual. Then {Jq(mp»)} is a projective system and we obtain an element
JQ(m)e. € AQ(m).- Let Oq(m).. be the p-adic L-function as in Subsection 2.1
(ITI). The family {¥q(m). }m and the family {fq(n). }m differ only in the
Euler factors. We can construct Og(m)., from dq). by Lemma 3.2. Let
I(Q(m)oo) be the ideal of Aq(m).. generated by vqm)../qQ(a).. (Aq(a)..) for all
divisors d of m such that d # m. We have

(63) VQ(m)e = U0Q(m).. mod I(Q(m)so)

for some unit u € AQ(m)m by Lemma 3.2. Let €Q(m)e/Q AQ(m)OO — RQ(m)
be the natural restriction map. Then we know

—1
T ™\ 5
cQ(m)o /Q(UQ(m) ) = (1 - —p) (1 - p—)9Q<m>

« «

(see [21, p.717, equ.(1)]). Since we assumed a, # 1 (mod p), we have o # 1
(mod p). Therefore,

(64) 0Q(m) = v¢Q(m)/Q(0Q(m)..) mod 1(Q(m))

for some unit v € Rqn) where I(Q(m)) is the ideal generated by
VQ(m)oo/Q(d)oo(RQ(d)) for all divisors d of m such that d 75 m.

Let K be the set of fields defined in Subsection 2.1. As in Subsection 4.3, for
an element © € Rq(m), the ideal I; ;(z) of Z/p" is defined. Then (64) implies
thatothe ideal ©M)(Q) c Z/p" is generated by Uqimyex. I 5(Oq(m)) for all
s > 0.
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Let N) be the set of squarefree numbers defined in Subsection 10.7. For
m=1T1[L,¢¢€ NO) | we regard 0q(m) as an element of Z,[S1, ..., 5,]/I where

I is the ideal generated by all (1 + Si)pnli — 1 by the identification of Rq(m,)
with Z,[S1,...,5¢]/I. We denote by 5\ the coefficient of [T, S; in éq(m)

mod p". Explicitly, taking a primitive root & mod ¢ which corresponds to the
generator oy of Gy = Gal(Q(¢)/Q) we fixed, we can write

o 5@= > D (TTioge, @) moa " € 2"
E

a=1

14
(a,m)=1 Im

where logg, (a) € Z is the integer such that 0 < logg, (a) < {—2 and 520%2((1) =

a (mod ?).
Then we know by (64) that @gN’é)(Q) is generated by the elements 5\,

0N (Q) = ({69 | e(m) < i and m e NN,

In this way, we can compute @EN’(;)(Q) and @EN)(Q) from the modular ele-
ments éQ(m)-

Next, we prove (2) in Section 1. Let € be the root number of E, and m a
squarefree product of primes in P. Suppose that éq(m) = Zi1+m+ir:i Giq.. i,
Sil ...Si mod (p¢, degree i + 1) for some ¢ € Z~o. Then, by the functional
equation (1.6.2) in Mazur and Tate [21], we have

6(—1)i Z CLil___”Sil R S:,T
i1+ tie=1
= Z ail___lvTSfl .. .S};* mod (p°, I, degree ¢ + 1).
i1+ A=t

Therefore, if ¢ # (—1)° and i; + -+ + i, = i, we have a;, ; = 0 (mod
p¢). This implies that for all j € Z>o, ©2;(Q) = O2;41(Q) if e = 1, and
©2;+1(Q) = 02;42(Q) if e = —1.
Examples. Let £ = X(11)@ be the quadratic twist of Xo(11) by d. We first
take d = —2315. We know L(E,1)/Q}, = 81. The minimal Weierstrass model
of B is y? +y = 2% — 2% — 55378658 + 287323286343. We take p = 3. Then 3
is a good ordinary prime which is not anomalous, 3 does not divide Tam(FE),
the action of Gq on T5(E) is surjective, and the p-invariant of (E, Qso/Q)
is zero. By the main conjecture, the 3-component III(E/Q)[3°] of the Tate
Shafarevich group is finite, and we know #II1(E/Q)[3>°] = 81. But the main
conjecture does not tell whether II1(E/Q)[3%] ~ (Z/3Z)%* or (Z/9Z)%2.
Let ¢ be a good reduction prime such that £ = 1 (mod p"), and con-
sider éQ(g) = > >0 age)(w - 1) € Z,]Gal(Q(¢)/Q)]. By the definition of

Ii71(éQ(g)) and what we explained above, we know that al? € @EN)(Q) for

i

Miinster Journal of Mathematics VoL. 7 (2014), 149-223



REFINED IWASAWA THEORY 221
i=01,...,p—2, and that a{” € " "(Q) for i =p—1,...,p* — 2. There-
fore, by Corollary 6.5, we have

al") € Fitt; /v (Sel(Q, E[p"])) for i = 0,1,...,p—2
and
agz) € Fitti7z/pN71(Sel(Q, EpN71))) fori=p—1,...,p% - 2.
Explicitly, we can compute a = 5 (Q (see (65)),

logg, (a)(logg, (@) — 1)

1p a)
Re([7])
oF 2

a=1

.. ete.
We go back to E = X(11)(=2315) Take £ = 163 (so N = 4). We take
o¢ which corresponds to a primitive root 2 of (Z/163)*. Then we com-

pute al'® = 74925 and o' = 4621766 which is prime to 3. Therefore,

Fitte z, (ILI(E/Q)[3°°]) = Z3, which implies that [II(E/Q)[3>] ~ (Z/9Z)%2.
For d = —2435, —2627, —2963, we also have L(F,1)/Qf, = 81. Take p = 3.

Then for each d above, we compute a( (- = 54569/2, aélg) = 5275/2, aélg) =
2753/2, respectively, which are all prime to 3. Therefore, we also get

HI(E/Q)[3*] ~ (2/92)%*
for these d. The structure of Selmer groups for more examples is studied in

7).

REFERENCES

[1] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, in The
Grothendieck Festschrift, Vol. I, 333-400, Progr. Math., 86, Birkhauser, Boston,
Boston, MA. MR1086888 (92g:11063)

[2] J. Coates and B. Perrin-Riou, On p-adic L-functions attached to motives over Q, in

Algebraic number theory, 23-54, Adv. Stud. Pure Math., 17, Academic Press, Boston,

MA, 1989. MR1097608 (92j:11060a)

J. Coates, R. Sujatha and J.-P. Wintenberger, On the Euler-Poincaré characteristics of

finite dimensional p-adic Galois representations, Publ. Math. Inst. Hautes Etudes Sci.

No. 93 (2001), 107-143. MR1863736 (2003d:11078)

[4] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, Cam-

bridge, 1992. MR1201151 (93m:11053)

M. Flach, Selmer groups for the symmetric square of an elliptic curve, PhD thesis, St.

John’s College (1990).

R. Greenberg, Iwasawa theory for p-adic representations, in Algebraic number theory,

97-137, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989. MR1097613

(92¢:11116)

[7] R. Greenberg, Iwasawa theory for elliptic curves, in Arithmetic theory of elliptic curves

(Cetraro, 1997), 51-144, Lecture Notes in Math., 1716, Springer, Berlin. MR1754686

(2002a:11056)

R. Greenberg, Iwasawa theory, projective modules, and modular representations, Mem.

Amer. Math. Soc. 211 (2011), no. 992. MR2807791

C. Greither, Computing Fitting ideals of Iwasawa modules, Math. Z. 246 (2004), no. 4,

733-767. MR2045837 (2004k:11170)

3

5

6

8

[9

Minster Journal of Mathematics VoL. 7 (2014), 149-223



222

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

18]
[19]

[20]

MASATO KURIHARA

Y. Hachimori and K. Matsuno, An analogue of Kida’s formula for the Selmer groups of
elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581-601. MR1689359 (2000c:11086)
K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque
No. 295 (2004), ix, 117-290. MR2104361 (2006b:11051)

V. A. Kolyvagin, Euler systems, in The Grothendieck Festschrift, Vol. II, 435—483,
Progr. Math., 87, Birkh&duser, Boston, Boston, MA, 1990. MR1106906 (92g:11109)

Y. Kubo and Y. Taguchi, A generalization of a theorem of Imai and its applications to
Iwasawa theory, Math. Z. 275 (2013), no. 3-4, 1181-1195. MR3127053

M. Kurihara, Iwasawa theory and Fitting ideals, J. Reine Angew. Math. 561 (2003),
39-86. MR1998607 (2004h:11087)

M. Kurihara, On the structure of ideal class groups of CM-fields, Doc. Math. 2003,
Extra Vol., 539-563 (electronic). MR2046607 (2005a:11174)

M. Kurihara, Refined Iwasawa theory and Kolyvagin systems of Gauss sum type, Proc.
Lond. Math. Soc. (3) 104 (2012), no. 4, 728-769. MR2908781

M. Kurihara, The structure of Selmer groups for elliptic curves and modular symbols.
To appear in Iwasawa theory 2012, edited by T. Bouganis and O. Venjakob (2014).
http://www.math.keio.ac.jp/~kurihara/

K. Matsuno, An analogue of Kida’s formula for the p-adic L-functions of modular elliptic
curves, J. Number Theory 84 (2000), no. 1, 80-92. MR1782263 (2001g:11085)

B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004),
no. 799. MR2031496 (2005b:11179)

B. Mazur and K. Rubin, Organizing the arithmetic of elliptic curves, Adv. Math. 198
(2005), no. 2, 504-546. MR2183387 (2006h:11059)

B. Mazur and J. Tate, Refined conjectures of the “Birch and Swinnerton-Dyer type”,
Duke Math. J. 54 (1987), no. 2, 711-750. MR0899413 (88k:11039)

J. Nekovaf, On the parity of ranks of Selmer groups. II, C. R. Acad. Sci. Paris Sér. 1
Math. 332 (2001), no. 2, 99-104. MR1813764 (2002e:11060)

J. Nekovér, Selmer complexes, Astérisque No. 310 (2006). MR2333680 (2009¢:11176)
D. G. Northcott, Finite free resolutions, Cambridge Univ. Press, Cambridge, 1976.
MRO0460383 (57 #377)

C. D. Popescu, On the Coates-Sinnott conjecture, Math. Nachr. 282 (2009), no. 10,
1370-1390. MR2571700 (2011¢:19010)

K. Rubin, The main conjecture, Appendix to S. Lang, Cyclotomic fields I and II.
Combined second edition. Texts in Mathematics, 121. Springer-Verlag, New York, 1990.
MR1029028 (91c:11001)

K. Rubin, Kolyvagin’s system of Gauss sums, in Arithmetic algebraic geometry (Tezel,
1989), 309-324, Progr. Math., 89, Birkhduser, Boston, Boston, MA. MR1085265
(92a:11121)

K. Rubin, Fuler systems, Annals of Mathematics Studies, 147, Princeton Univ. Press,
Princeton, NJ, 2000. MR1749177 (2001g:11170)

P. Schneider, Iwasawa L-functions of varieties over algebraic number fields. A first ap-
proach, Invent. Math. 71 (1983), no. 2, 251-293. MR0689645 (85d:11063)

P. Schneider, p-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329-374.
MRO0778132 (86j:11063)

P. Schneider, Motivic Iwasawa theory, in Algebraic number theory, 421-456, Adv. Stud.
Pure Math., 17, Academic Press, Boston, MA, 1989. MR1097626 (92g:11064)

J.-P. Serre, Corps locauz, deuxiéme édition, Publications de I’Université de Nancago,
No. VIII. Hermann, Paris, 1968. MR0354618 (50 #7096)

J.-P. Serre, Cohomologie Galoisienne, Cours au College de France, Paris, 1962-1963.
Avec des textes inédits de J. Tate et de Jean-Louis Verdier. Quatriéme édition. Lecture
Notes in Mathematics, Vol. 5. Springer-Verlag, Berlin-New York, 1973. MR0404227 (53
#8030)

Miinster Journal of Mathematics VoL. 7 (2014), 149-223



REFINED IWASAWA THEORY 223

[34] C. Skinner and E. Urban, The Iwasawa main conjecture for GL2, Invent. Math. 195
(2014), no. 1, 1-277.

[35] G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, In-
vent. Math. 98 (1989), no. 1, 75-106. MR1010156 (90m:11089)

[36] K. Wingberg, Duality theorems for I'-extensions of algebraic number fields, Compositio
Math. 55 (1985), no. 3, 333-381. MR0799821 (87e:11125)

Received April 21, 2013; accepted July 22, 2013

Masato Kurihara

Department of Mathematics, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
E-mail: kurihara@math.keio.ac.jp

Miinster Journal of Mathematics VoL. 7 (2014), 149-223



