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Verma modules for Iwasawa algebras
are faithful
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(Communicated by Christopher Deninger)

To Peter Schneider, on the occasion of his siztieth birthday

Abstract. We establish the faithfulness of Verma modules for rational Iwasawa algebras of
split semisimple compact L-analytic groups. We also prove the algebraic independence of
Arens—Michael envelopes over Iwasawa algebras and compute the center of affinoid enveloping
algebras of semisimple p-adic Lie algebras.

1. INTRODUCTION

1.1. Prime ideals in Iwasawa algebras. The majority of work so far related
to the study of the prime spectrum of noncommutative Iwasawa algebras has
produced negative results. By this we mean that results in this area have
tended to put constraints on the set of prime ideals for such a ring rather
than uncover prime ideals that were not known before: see for example [34],
[35], [3], [9], [7], [5]. This work continues in that tradition. However, most of
these theorems were established in characteristic p in the first instance with
eventual consequences in characteristic zero; by contrast, our methods here
have a definite characteristic zero flavor and our results do not have immediate
implications in positive characteristic.

Suppose that L is a finite extension of @, and that K is a complete dis-
cretely valued field extension of L. Let G be a compact open subgroup of the
group of L-points of a connected, simply connected, split semisimple affine al-
gebraic group scheme G defined over Op, and write K G to denote the Iwasawa
algebra of continuous K-valued distributions on G. The annihilator of every
simple K G-module that is finite dimensional over K is a prime ideal of finite
codimension in KG, and moreover every prime ideal with this property will
arise in this way. Evidence so far suggests that nonzero prime ideals in KG
that do not arise in this way are very scarce; indeed we suspect that when the
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algebraic group scheme G is simple and G has trivial center they do not exist.
We present further evidence in that direction.

1.2. The main result. A natural place to look for more prime ideals in KG
is as annihilators of simple K G-modules that are not finite dimensional over
K. By standard arguments in ring theory such ideals will always be prime
and of infinite codimension in K'G. Thus if our suspicion above is correct then
all such annihilators must be zero. We show that this is the case for a large
class of naturally arising examples. More precisely, in Subsection 5.7 below we
prove

Theorem A. Let p be an odd very good prime for G and let G be an open
subgroup of G(Qp) with trivial center. Let BT be a Borel subgroup scheme
of G and let Ky be a 1-dimensional locally L-analytic K-representation of
BT :=GNBT(O). Then the induced KG-module KG ® g p+ Ky is faithful.

We refer the reader to [8, § 6.8] for a precise definition of what it means for
a prime number p to be a very good prime for G and simply remark here that
this condition is satisfied by any p > 5 if G is not of type A. These “Verma
modules” KG® g g+ Ky are not always irreducible, but it follows from the work
of Orlik and Strauch [27, Thm. 3.5.2] that generically they are irreducible at
least when L = Q.

We note that Theorem A refutes the main result in [17] (now retracted [16]),
whose statement was already known to be false for open pro-p subgroups G of
SLy(Zy) following the work of Wei, Zhang and the first author [3], [9], using
very different methods to those found in this paper.

1.3. Two related results. We also prove some other results of independent
interest. Write D(H, K) to denote the algebra of L-locally analytic K-valued
distributions on a compact L-analytic group H in the sense of Schneider and
Teitelbaum [32]. There is a natural map from the Iwasawa algebra KH to
D(H, K) because every L-locally analytic function on H is continuous. We
may also consider the subalgebra D(H, K); consisting of those distributions
in D(H, K) that are supported at the identity in the sense of [21]. At the end
of Section 3 we prove the following result, which is essential to our proof of
Theorem A.

Theorem B. The natural map K H®x D(H, K); — D(H, K) is an injection.

We note that in the case H = Z, an immediate consequence of Theorem B
is the well-known algebraic independence of the logarithmic series log(1 + T')
over the Iwasawa algebra Ok|[[T]], so Theorem B may be viewed as a (slightly
stronger) noncommutative analogue of this algebraic independence.

In [8, § 9.3] we promised a future proof that the center of the affinoid

enveloping algebra U(g)n, i is the closure of the image of the center of U(gx)
in U(g)n,K:

o —

Theorem C. We have Z (U(/g):K) = U(B)S’J{-
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We provide a proof of Theorem C in Subsection 4.4 of this paper, which is
much simpler than that found in [2] for the case n = 0.

1.4. Future work. We believe that this work raises two interesting questions.
By an affinoid highest weight module we mean a module that can be written
in the form U(g)n,x ®@u(g) M for some highest weight U(gx)-module M. Re-
call that an ideal that arises as the annihilator of a simple module is called
primitive.

Question A. Is it the case that every primitive ideal of U(g), x with K-
rational infinitesimal central character is the annihilator of a simple affinoid
highest weight module?

Some evidence pointing towards a positive answer to Question A is provided
by Duflo’s main theorem in [14] that states that every primitive ideal of the
classical enveloping algebra U(gx) with K-rational infinitesimal central char-
acter is the annihilator of a highest weight module. In pa/rtiiular to answer

yes, it would suffice to prove that every primitive ideal of U(g),,x is controlled
by U(gxk)-

Question B. Is every affinoid highest weight module that is not finite dimen-
sional over K faithful as a KG-module?

Since Verma modules for classical enveloping algebras are generically irre-
ducible, our Theorem 5.4 below may be viewed as giving evidence towards a
positive answer to Question B. We believe that if we could give positive an-
swers to both these questions then, in the case L = Q,, we would be able to
use the faithful flatness of D(G, K) over K G due to Schneider and Teitelbaum
[33] together with our affinoid version [8, Thm. D] of Quillen’s Lemma to prove
that every nonzero prime ideal of K G is the annihilator of a finite dimensional
simple module.

2. GENERALITIES ON COMPLETED GROUP RINGS

2.1. Module algebras and smash products. Let k be a commutative base
ring. Recall [26, Chap. 4] that if H is a Hopf algebra over k and A is a
k-algebra, then A is a left H-module algebra if there exists an action

HerA— A ra—r-a
such that
r-(ab) = (r1-a)(re-b), r-1=¢(r)l, (rs)-a=r-(s-a)and l-a=a

forallr,s € H and a,b € A. Here we use the sumless Sweedler notation. There
is a similar notion of right H-module algebra, and the two notions coincide in
the case when H is commutative.

Whenever A is a left H-module algebra, define A#H := AQy H and write a#r
for the tensor a ® r in A#H. Then A#H becomes an associative k-algebra
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called the smash product of A with H, with multiplication given by
(a#r)(b#s) = a(ry - b)#res for all a,b € A and r,s € H.

This smash product contains A and H as k-subalgebras, and A is naturally a
left A#H-module via the rule

(a#tr)-b=a(r-b) for all a,b € A and r € H.

Note that the subset of H-invariants in A, namely
A ={ac A|r-a=¢(r)aforalrecH}

is always a k-subalgebra of A. We have the following well-known
Lemma. Let H be a Hopf algebra over k and let A be a left H-module algebra.
Then
(a) A is an A#H—A -bimodule, and
(b) EndA#H A= (AH)OP.

Proof. (a) The left regular representation of A on itself commutes with the
right regular representation, so we have to check that every r € H acts on A
by a right A”-module endomorphism:

r-(ab) = (r-a)bforallr € H, a € Aandbe A",

Now 7-(ab) = (r1-a)(r2-b) = (r1-a)(e(r2)b) = ((r1e(r2)) -a)b. But rie(rg) =7
by the counit axiom in H. Therefore r - (ab) = (r - a)b as required.

(b) Let ¢ : A — A be a left A#H-module endomorphism. Since ¢ is
H-linear,

r-@(l) =@(r-1) =p(e(r)l) = €(r) - (1) for all r € H,
which shows that (1) € A7, Since ¢ is left A-linear,
w(x) =p(xl) =zp(l) forallz € A

and therefore ¢ agrees with right muliplication by (1) € A. Hence the anti-
homomorphism A — Endxpy A which sends r € A¥ to right multiplication
by r is a bijection. O

2.2. Locally constant functions. Let G be a profinite group. Recall that
a function f : G — k is locally constant if for all ¢ € G there is an open
neighborhood U of g such that f is constant on U.

Definition. Let C> = C>(G, k) denote the set of all locally constant func-
tions from G to k.

C™ becomes a unital commutative k-algebra when equipped with point-
wise multiplication of functions. Moreover it is a Hopf algebra over k, with
comultiplication A, antipode S and counit € given by the formulas

A(f)(g.h) = fgh), S(f)(9) = f(g™") and e(f) = f(1)
for all f € C>° and all g,h € G.
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2.3. G-graded algebras. We recall [4, Def. 2.5] for the convenience of the
reader.

Definition. Let G be a profinite group and let A be a k-algebra. We say that
A is G-graded if for each clopen subset U of G there exists a k-submodule Ay
of A such that

(i) A=Ay, @Ay, @ - @ Ay, f G=U; U---UU, is an open partition of
G,
(i) Ay < Ay if U C V are clopen subsets of G,
(ili) Ay - Ay C Ayy if U,V are clopen subsets of G,
(iv) 1 € Ay whenever U is an open subgroup of G.

In this situation, [4, Prop. 2.5] asserts that for a profinite group G, a k-
algebra A is G-graded if and only if A is a C*°-module algebra.

For every open subgroup U of G, let YC> denote the k-subalgebra of func-
tions f € C'°° that are constant on the left cosets gU of U in G. Then

o® = U Ucoo

U<.G

and YO is even a Hopf subalgebra of C* whenever U is normal, because it
is naturally isomorphic to the algebra of k-valued functions on the finite group
G/U in this case.

Proposition. Let G be a profinite group, let U be an open normal subgroup
of G and let A be a G-graded k-algebra. Then the algebra of Y C™-invariants
of A is precisely Ay .

Proof. The Hopf algebra U C™ is spanned by the characteristic functions §gr of
all the cosets of U in G. By the construction given in the proof of [4, Prop. 2.5],
the action of YC™ on A and the G-graded structure are related by

Agu =d4u - Aforall g e G.

Now the dy form a family of commuting idempotents in YC®, and

1, if g e U,
0,ifg¢U,

€(0gu) = bqu (1) =
so that (0,0 — €(dqr7))0 = 0 for all g € G. This implies that
Ay c A7,
On the other hand, let x € A be YC*®-invariant. Then
p= (v -p)+1=0v) p=(6v p) +el—dv)u=2dv peAy

as required. O

Corollary. The algebra of C*-invariants in A is (\y< g Av-
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2.4. Completed group rings. Let kG denote the completed group ring of G
with coefficients in k:
kG = 1{21 kE[G/U]

where the inverse limit is taken over all the open normal subgroups U of G.

Lemma. Let G be a profinite group and let S C k be a multiplicatively closed
subset consisting of non zero-divisors.

(a) kG is a G-graded k-algebra.

(b) The algebra of C*-invariants in kG is k.

(c) The central localization S™kG of kG is a G-graded S~'k-algebra.
(d) The algebra of C*®-invariants in S~ kG is S~'k.

Proof. (a) This follows from [4, Lemma 2.9].

(b) For any open normal subgroup U of G let ey : kG — k[G/U] be the
natural surjection. Let € kG \ k; then by the definition of inverse limit, we
can find some open subgroup U of G such that the ey (x) ¢ ey (k). But ey (k) =
eu(kU) so x ¢ kU. Hence ;¢ o kU =k and we may apply Corollary 2.3.

(c) By (a) we can find a family ((kG)y) (for U ranging over the clopen sub-
sets of G) of k-submodules of kG satisfying the conditions of the definition of a
G-graded k-algebra. Then the family (S™1(kG)y) gives S~1kG the structure
of a G-graded k-algebra.

(d) In view of part (b), it is enough to prove that S~'kU N kG = kU for
every open normal subgroup U of G. Suppose that s~z € kG for some s € S
and x € kU. Let y =6y - (s7lz) € kU and 2 = (1 - §y) - s~ tw € (1 — 0p) - kG
so that s 12 =y + 2. Then x — sy € kU and sz € (1 — dy) - kG, so

r—sy=s2€dy-kG N (1-46y)-kG=0
and therefore s~z = y € kU as required. g

3. THE MULTIPLICATION MAP KG ®k D(G,K); — D(G, K) 1S INJECTIVE

3.1. Compact p-adic analytic groups. Now let G be a compact p-adic
analytic group and let R be a complete discrete valuation ring of characteristic
zero with a residue field k of characteristic p. Fix a uniformizer 7 € R and let
K Dbe the field of fractions of R. We define the algebra of continuous K -valued
distributions of G to be the central localization

KG:=K KRR RQG.
of the completed group ring RG. In this situation we may naturally form three
smash product algebras following Subsection 2.1:
o A = kGH#C>(G, k),
e Arp = RG#C>=(G, R), and
o Ay = KG#C>(G,K).
Then Ap naturally acts on TG for all T € {K, R, k} by Lemma 2.4.

Theorem. (a) kG is a simple Ay-module.
(b) KG is a simple Ax-module.
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Proof. (a) Since Ay, is generated by kG and C*°(G, k), an Ag-submodule of
kG is just a left ideal I of kG such that

C=(G,k)- I C1.

By [4, Def. 2.6], we see that every open subgroup U of G controls I. Hence
IX, the controller subgroup of I, is trivial. Now [4, Thm. A] is also valid for
left ideals, and in our situation this implies that the left ideal I is generated
as a left ideal by its intersection with the ground field k. Therefore I = 0 or
I =kG.

(b) Let I be a Ag-submodule of KG. Then I N RG is a Ag-submodule of
RG and ((I N RG) + 7RG)/7RG is a Ag-submodule of kG. By part (a), we
see that either (I N RG) + 7RG = RG or (I N RG) + 7RG = nRG. In the
first case, the m-adic completeness of RG implies that I N RG = RG and in
the second case, IN RG C wRG. Thus in the first case I = KG. In the second
case, since I = nl, an easy induction shows that I " RG C n" RG for alln > 0
and so I N RG = 0, therefore I = 0. O

3.2. Theorem. Let G be a compact p-adic analytic group and let KG — D
be a homomorphism of C*°(G, K)-module algebras. Let Dy denote the algebra
of C*° (@G, K)-invariants in D. Then the multiplication map

KG®g D1 — D
is injective.
Proof. Let aq,--- ,ap € KG be linearly independent over K and let elements
t1,...,tm € D1 be given such that
oty + -+ amty, =0

inside D. The Agx-module KG is simple by Theorem 3.1(b) and its endomor-
phism ring End 4, (KG) seen to be K by Lemma 2.1(b) and Lemma 2.4(d).
It follows that the o are linearly independent over End 4, (K G), and so using
the Jacobson Density Theorem we can find &1, ...,&, € Ak such that

&i(oj) =65 forall j=1,...,m

Now D is a left KG-module by left multiplication, and this action commutes
with right multiplication by D;. Consequently, D is an Ax—D;-bimodule.
Therefore

0=2¢&- ZO‘J Zfz ;) J—Z5ZJtJ—t
j=1 j=1
foralli=1,...,m. O
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3.3. Locally analytic distribution algebras. Now suppose that L is a finite
extension of @, that is contained in K and let M be a locally L-analytic
manifold. The space of K-valued L-analytic distributions D(M, K) on M is
the strong dual C*"(M, K); of the space C*"(M, K) of K-valued locally L-
analytic functions on M—see [32, § 2].

When G is a locally L-analytic group, multiplication in the group G induces
a structure of a unital associative K-algebra on D(G, K) [32, Prop. 2.3]. This
algebra is called the algebra of K-valued locally L-analytic distributions on G.

Lemma. D(G, K) is a G-graded K-algebra, whenever G is compact.

Proof. Since G is a locally L-analytic group, every clopen subset U of G is a
locally L-analytic manifold, so we may set

D(G, K)y = D(U, K).

With this definition, parts (ii) and (iv) of Definition 2.3 are clear. We may
assume that all clopen subsets featuring in the statement of parts (i) and (iii)
of the Definition are finite unions of cosets of a fixed open normal subgroup
H of G. For each g € G let 6, € D(G, K) be the Dirac distribution. It was
observed in the proof of [32, Lemma 3.1] that

D(G.K)= @ 6, +D(H, K).
geG/H

Part (i) follows immediately, and part (iii) follows since D(H, K) is a subalge-
bra of G which is stable under conjugation by each J, inside D(G, K). g

Corollary. Let G be a compact L-analytic group. Then
(a) D(G,K) is a C*-module algebra.
(b) The algebra of invariants under this action is precisely
D(G.K); = () D(H,K).
H<G
(¢) The natural map KG @k D(G,K)1 — D(G, K) is injective.
(d) Let g = K ®1, L(G). Then the natural map
KG®or U(gr) — D(G,K)

is also injective.

Proof. (a) Apply Lemma 3.3 together with [4, Prop. 2.5].

(b) Apply part (a) together with Corollary 2.3.

(¢) This follows from Theorem 3.2.

(d) It was observed in [32, § 2] that U(gx) is contained in D(H, K) for every
open subgroup H of G; therefore U(gx) € D(G, K)1. Now apply part (¢). O

We remark that it follows from the work of Kohlhaase [21, Prop. 1.2.8] that
the image of U(gk) is in fact dense in D(G, K);. It is the hyper-enveloping
algebra or Arens—Michael envelope of U(gk) in the sense of Schmidt [30].
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4. AFFINOID ENVELOPING ALGEBRAS AND VERMA MODULES

4.1. The adjoint action of G(R) on U(g). Let G be a connected, simply
connected, split semisimple, affine algebraic group scheme over R with Lie
algebra g. The Lie algebra g is a G-module via the adjoint action; see [20,
I1.1.12(1), 1.7.18]. In particular, the group of R-points G(R) of G acts on
g by Lie algebra automorphisms, and therefore by functoriality on U(g) by
R-algebra automorphisms. This action preserves the natural PBW-filtration

0C FoU(g) c FiU(g) C ---

on U(g). Let ® be the root system of G relative to a fixed split maximal torus
T, and let z,, : G, — G and e, = (dz,)(1) € g be the root homomorphism
and root vector corresponding to the root o € ®, respectively.

Lemma. Letr € R, a € ®.

(a) For every G-module M, each divided power % preserves M.
(b) For allb e U(g) there exists i > 1 such that M -b=0.
(¢) xa(r) a=32_ 240l () for all a € Ulg).

m=0 m!

Proof. (a) We may view M as a G,-module by restriction via z,. Hence it is
a module over the distribution algebra Dist(G,) of the additive group G,, by
[20, 1.7.11]. It is known [20, 1.7.3, 1.7.8] that this distribution algebra has a
basis consisting of the divided powers of the generator of Lie(G,,).

(b) U(g) is a G-module so W(b) lies in U(g) by part (a). Now for all
j = 0 we have [g, F;U(g)] C Fj_1U(g), so if b € F;_1U(g) for some ¢ > 1 then
ad(req )t (b) = 0. The result follows because U(g) has no R-torsion.

(c) This follows from the definitions—see [20, 1.2.8(1), 1.7.12]. Note that

the right hand side of the equation makes sense by part (b). O

4.2. Deformations and m-adic completions. Recall [8, § 3.5] that a de-
formable R-algebra is a positively Z-filtered R-algebra A such that FyA is an
R-subalgebra of A and gr A is a flat R-module. A morphism of deformable
R-algebras is an R-linear filtered ring homomorphism. Let A be a deformable
R-algebra. Its n-th deformation is the R-subalgebra

Ay =) T"FACA.
i>0
A,, becomes a deformable R-algebra when we equip A, with the subspace

mn

filtration arising from the given filtration on A, and multiplication by 7' on
graded pieces of degree 7 extends to a natural isomorphism of graded R-algebras
grA = grA,

by [8, Lemma 3.5]. The assignment A 5 A,, is functorial in A. A := lim A/7*A
—

will denote the 7-adic completion of A. Recall almost commutative affinoid K -
algebras from [8, § 3.8]. Such an algebra B has a double associated graded ring
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Gr(B); when
B=A, =4, 0r K
for some deformable R-algebra A, [8, Cor. 3.7] tells us that Gr(B) can be
computed as follows:
Gr(B) = Gr(4, x) = gr A/mgr A.

We fix the deformation parameter n in what follows.

4.3. Semisimple affinoid enveloping algebras. The enveloping algebra
U(g) has associated graded ring grU(g) = S(g) and is therefore deformable.
For each n > 0, the semisimple affinoid enveloping algebra

o —

U(g)mK

is almost commutative affinoid, and its double associated graded ring is

Gr(U(@)nr) = S(an).
By functoriality, the adjoint action of G(R) on U(g) from Subsection 4.1 ex-
tends to each UG):K. This action preserves the double filtration on U(/g):K
and induces an action of G(R) on Gr(U@:K) = S(gk), which factors through
G(k).

Proposition. Letr ¢ R, a € ® and a € U@:K, Then the series

ad(req)™

y- e,

m2=0 ’
converges in U@K to xo(r) - a.
Proof. Without loss of generality, we may assume that a € U/(T Let D :=
ad(req ), viewed as a derivation of U(g), x and let N > 0 be given. Then
there exists b € U(g), such that @ = b mod 7VU(g),. Now %( ) = 0 for
some ¢ > 1 by Lemma 4.1(b). Since U(g),, is also a G-module, 13—; preserves

7NU(g), and therefore also 7¥U(g), by Lemma 4.1(a). Thus for all N > 0
there exists ¢ > 1 such that

Hence %(a) — 0 as i — oo inside m, and therefore the series Y °_ g,ﬂ (a)
converges to an element e (a) of U( )n, say. This defines an R-linear endo-

morphism a + eP(a) of U(g),, which agrees with the action of z,(r) on its
dense subalgebra U(g),, by Lemma 4.1(c). O

Corollary. (a) Every two-sided zdeal I of U( )n, K 15 preserved by G(R).
(b) Every central element z of U( Jn, i 1 fized by G(R).
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Proof. Since the ring R is local, the Chevalley group G(R) is generated by
elements of the form z,(r) (where r € R and o € ®) by a result of Abe [1,
Prop. 1.6]. Fix r € R and a € ®.

(a) Let a € I. Since I is a two-sided ideal, SV M(a) € [ for all

m=0 m!
N > 0. This sequence of elements converges to x,(r) - @ by the proposition, so
Zo(r) - a € I because I is closed by [22, Cor. 1.5.5].
y the proposition, we have x,(r) - z = _ +—(2) = 2z because
b) By th it h oo b

[req, 2] = 0 by assumption. O

4.4. The center of U(/g):K. The ring of invariants U(g)¢ of U(g) under
the adjoint action of G is a deformable R-algebra, and it was shown in [8,

Prop. 9.3(a)] that the completion of its n-th deformation U(g)g x 1s contained

in the center Z (U(/g):K) of U(g)n,x- We can now prove Theorem C from
the Introduction.

—

Theorem. We have Z (UG):K) = U(g)S:K.

Proof. By base-changing to the completion of the maximal unramified exten-
sion of K, we may assume that the residue field k of R is algebraically closed.

Let z € Z (U/(—l\%) Then z is fixed by the action of G(R) by Corollary 4.3(b),

so the symbol grz of the image z of z in gr, U(/g):K is fixed by the induced

action of G(R) on Gr(U(/g):K) = S(gx), which is just the adjoint action of
G(k) on S(gk). Since the group Gy is reduced and k is algebraically closed, it
follows from [20, Rem. 1.2.8] that grz € S(gx)S*. Therefore

Gr(U(9)€ ) € Gr(Z(U(g)n ) C Slar)*.

It was shown in the proof of [8, Thm. 6.10] that the identification of Gr

(U(/g):K) with S(gr) maps Gr(U(g)sK) onto S(gx)G*. Therefore the two
inclusions displayed above are equalities and the result follows. O

4.5. Affinoid Verma modules. Let T C B be a split maximal torus in G
contained in a Borel subgroup B. We will view the unipotent radical N of B
as being generated by the negative roots of the adjoint action of T on G, and
let NT be the unipotent radical of the opposite Borel BT containing T. Let
t,b,n, n™ and b be the corresponding Lie algebras, so that we have the root
space decomposition

g=n®tdnt.
Let A : 7™t — R be an R-linear character. View \ as a character of 7"b™

by pulling back along the surjection 7"b* —» 7"t with kernel #™"n™, and let
K, be the corresponding one-dimensional module over the affinoid enveloping

algebra U (b*), k.
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16 KONSTANTIN ARDAKOV AND SIMON WADSLEY

Definition. The affinoid Verma module with highest weight A is

A —
1% U( )nK® (b+)n,K K.

We will compute the annihilator of this affinoid Verma module in UG):K.

To do this, we will first need to understand its characteristic variety Ch(ﬁ).
Recall from [8, Def. 3.3] that this is an algebraic subset of the prime spectrum

of the polynomial algebra Gr(U(g)n,x) = S(gk)-
Lemma. Ch(V*) (6)+.
Proof. There is a natural double filtration on V> such that
Gr(V>) = S(gk) @561 b
The support of this graded module inside Spec S(gi) is (b)) by definition. [

4.6. The annihilator of an affinoid Verma module. It is well known
that the center Z(gx) of U(grk) acts on the classical Verma module V :=
Ugk) Ruer) K by a character x» : Z(gx) — K; see [12, Prop. 7.4.4]. Since

V* is dense in VA the action Z(gk) on VA also factors through x .
In [8, § 9.8] we deﬁned the nilpotent cone in g* to be the set of zeros N* of
G -invariant polynomials in S(gr) = O(g}) with no constant term:

N = V(S(g)$).
After the next preliminary result, we will be able to compute the annihilator
of V* and thereby prove a precise affinoid analogue of [12, Thm. 8.4.3].

Lemma. Suppose that k is algebmically closed, and p is very good for G. Then

(a) the ideal Gr(ker y - U( Jn,i) equals S(gk) -S(gk)-
(b) This ideal is prime.
(c) If G := G(k) then G- (b})* is Zariski dense in N'*.

Proof. Part (a) follows from [8, Thm. 6.10], and part (b) follows from the proof
of [11, Prop. 3.4.1]. In the proof of [11, Prop. 3.4.1] it was also shown that
under our hypotheses, the natural action map G x? (bz)J' — N* induces an
isomorphism O(N*) — O(G x® (b])1), and is therefore dominant. Part (c)
follows. U

Theorem. If p is very good for G, then the annihilator of VA inside U@:K
is generated by ker x .

Proof. Let I, be the annihilator of V* inside U, U( Jn,x and let Jy =
ker x» -Uy,. Then Jy C I by the remarks made at the start of this subsection.
By base-changing to the completion of the maximal unramified extension of K,
we may assume that the residue field &k of R is algebraically closed. This allows
us to identify the characteristic varieties of finitely generated U,,-modules with
their corresponding sets of k-points.
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Since Jy C Iy, the characteristic variety Ch(U,,/I,) is contained inside
Ch (U, /Jy), which equals N™* by part (a) of the lemma.

The two-sided ideal Iy is G(R)-stable by Corollary 4.3(a), so Ch(U,/I))
is stable under the adjoint action of G := G(k) on gj. Also I, annihilates
VA, so Ch(U,/I,) contains Ch(V*) which is equal to (b) )+ by Lemma 4.5.
Therefore Ch(Uy,/I,) contains G - (b; ) which is Zariski dense in N* by part
(c) of the lemma. Since Ch(U,/I) is closed, we deduce that Ch(l,/I)) =
N* = Ch(U,/J,). Hence

Gr(Jy) C Cr(Iy) € /Gr(Iy) = /Gr(Jy) = Gr(Jy)
because Gr(Jy) is prime by part (b) of the lemma. The result follows. O

4.7. The action of U(t),, k on affinoid Verma modules. In Section 5 we
will need the following elementary result about the analytic density of certain
infinite discrete subsets in affinoid polydiscs.

Lemma. Let Ay, As, ..., Ay be infinite subsets of R and suppose that an ele-
ment f in the Tate algebra K{(x1,...,xs) vanishes on Ay X Ay x ---x Ay. Then
f=0.
Proof. Proceed by induction on £. The case when £ = 0 is vacuous so we may
assume that £ > 1. Foreveryy € Aglet gy(x1,...,2¢-1) := f(x1,...,2e-1,y) €
K(z1,...,x¢-1). Then g, vanishes on A; x As X --- x Ay_1 so by induction,
gy = 0 for all y € A;. Therefore x, — y divides f for all y € A,.

Now K({(x1,...,%s) is a noetherian unique factorization domain by [15,
Thm. 3.2.1], and as y ranges over Ay, the z; — y form a collection of infinitely
many distinct irreducible elements of K(x1,...,z). Therefore f = 0. g

Now consider the action of Uﬁ),\L,K on the affinoid Verma module V> from

Subsection 4.5. Let vy € V* be a highest weight vector, let oy, - ,am €
t}, be the positive roots corresponding to the adjoint action of t on n™ and
choose a generator f; € n for the —q;-root R-submodule of n. Write 8 .=
fflfégz <o fBm € U(n) for any 8 € N™. It is easy to see that

h-fPuy = (A — Zﬁjaj)(h)fﬁz»\ for all h € t.
j=1

Thus f%v) spans a one-dimensional U(t)g-submodule of U(ng) - vy C ‘//\)‘,

so Kffvy is actually a U(t),, x-module where tx acts via the character A —
Z?;l Bja; € t5. In particular, we see that U(ng) - vy is a locally finite

U(/’c)n\,K—module.
Proposition. The action of U(/’c)n\,K on U(ng) - vy is faithful.

Proof. Let aq, ..., ap be the simple roots, let hy,...,hy € t be the correspond-
ing coroots and let wy, ..., wp € t} be the corresponding system of fundamental
weights, so that w;(h;) = d;; for all 4,5 = 1,...,£. By [18, § 13.1], we may
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18 KONSTANTIN ARDAKOV AND SIMON WADSLEY

use the Cartan matrix C' = ((a;, @j)) associated to the root system of gx to
express the simple roots in terms of the fundamental weights:

¢
o = ZC’jkwk forall j=1,...,¢.
k=1

Let C* denote the adjugate matrix of C' and let d := det C’; then
¢
dw; = ZC{‘jaj foralli=1,..., 71
j=1

All entries of C* are known to be nonnegative integers; see either [18, § 13.2,
Table 1] or [23]. Therefore for each u € N¥,

4 14 Y4
S it~ 3 () o
i=1 j=1 \i=1

is a linear combination of aq, ..., ay with nonnegative integer coefficients. We
now observe that for any 1 € N, tx acts on the vector

4
¢ il
Cp = H fJZFlN Toy € U(nk) - ua

j=1
via the character
¢ ¢ ¢
S PO DRSS o
i i=1

Because our group G is simply connected, the coroots h; span t over R and

therefore we may identify the affinoid enveloping algebra UF)T,K with the
Tate algebra K(n™hq,...,n"hs). Consider the isomorphism K(x1,...,zs)
= U(t)n,x which sends z; to A(n"h;) — 7n"h;. Viewing U(ng) - vy as a
K(z1,...,z¢)-module via this isomorphism and remembering that w;(h;) =
d;5, we can calculate that

zj-e, =dn"pje, forall j =1,...,0 and p € N
Therefore for every f € K(x1,...,z,) and u € N? we have
fren=fldn™p,....doe"ue)e,.
We may now apply the lemma with each A; being the infinite subset dn™N of

R to deduce that if f € K(z1,...,x,) kills every e, then f = 0. The result
follows. O
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4.8. The Cartan involution. Recall [20, § I1.1.4] that for each element w of
the Weyl group W of G we can find a representative w € G(R) of w € W
which normalizes T(R). By [20, § I11.1.4(4)], these elements permute the root
subgroups of G according to the action of W on the root system ®. If wg € W
is the longest element, then it follows that

wo - bT =b and wy-b=0b6"

in the adjoint action of G(R) on g.

—~

L s
Proposition. wy AnnU(bﬂnYK(V )—AnnU(b)mK(V ).

—

Proof. By Theorem 4.6, I := AnnU(/g)\K (V) is generated by ker x, which is

fixed by the adjoint action of G(R) on U@K. Therefore wg - I = 1, so
([ﬁ—)mK(VA) = wo 'IﬂwO'U(b+)7L,K = IDU(b)n,K = AnnU(/b)?K (VA)

as required. O

wo -AnnU

5. FAITHFULNESS OF AFFINOID VERMA MODULES OVER [WASAWA
ALGEBRAS

5.1. L-uniform groups. Throughout Section 5 we will assume that p is an
odd prime, and that L is a finite extension of @, contained in K; we have the
corresponding chain of inclusions of discrete valuation rings:

7,C O, CR.

Following Orlik and Strauch [27, Rem. 2.2.5(ii)], we say that a uniform pro-p
group G is L-uniform if G is locally L-analytic, and the Lie algebra L¢ is
an Op-submodule of the L-Lie algebra £(G). The (modified) isomorphism of
categories G +— %LG between uniform pro-p groups and finite rank torsion-
free Z,-Lie algebras from [13, Thm. 9.10] induces a one-to-one correspondence
between L-uniform groups and torsion-free Op-Lie algebras of finite rank.

Let G be an L-uniform group. In Subsections 5.1, 5.2 and 5.3 we will suspend
the notation from Section 4 and temporarily use the letter g to denote the R-
Lie algebra associated with G, defined as follows:

1
g:= R®(9L —Lg.
p

This extends [8, Def. 10.2] to arbitrary finite extensions L of Q,. Recall that
the algebra D(G, K) of K-valued locally L-analytic distributions from Subsec-
tion 3.3 is a Frechet—Stein algebra by [33, Thm. 5.1}, and therefore we have at
our disposal the K-Banach space completions D, (G, K) for each real number
1/p < r < 1. The abbreviation

U(g)r == U(g)o,x

will also be used throughout Section 5.
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5.2. The distribution algebra D, ,,(G, K). We begin by recording the fol-
lowing extension of [2, Thm. 5.1.4] and [31, Prop. 6.10] to arbitrary ! complete
discrete valuation fields K of mixed characteristic and arbitrary L-uniform
groups in the language of locally analytic distribution algebras.

Lemma. Let g be the R-Lie algebra associated with the L-uniform group G.
Then there is a natural isomorphism of K-Banach algebras

Dy /(G K) = U(g)k-

Proof. Suppose first that L = Q,. Let |-| : K — R be the norm which
induces the topology on K, normalized by |p| = 1/p. Let g1,...,94 be a
minimal topological generating set for G, let b; = g; — 1 € K[G] and write
|a| = a1+ +ay for each a € N%. Tt follows from [33, § 4] that the distribution
algebra D, /,(G, K) consists of all formal power series A = ) i Aab® in
by,...,bq such that

M1/ == sup |da|(1/p)'"
aeNd

is finite. As a consequence of Cohen’s Structure Theorem for complete local
domains [24, Cor. 28.P.2], we can find an unramified field extension K’ of Q,
inside K such that K/K' is finite. Let R’ be the ring of integers of K’ and let

g =R ®z, %Lg. Then we have a commutative diagram

—

K Qg Dl/p(G,K/) — Kor U(g)x

|

—

Dy)p(G K) ————=Ulg)x

where the vertical maps are induced by multiplication inside D(G, K) and
U(g)x and the horizontal maps are induced by the inclusion of G into the

o —

groups of units of U(g’)kx+ and U(g)x, respectively.

Because K’ is unramified over @Q,, it follows from [8, Thm. 10.4] that the
top arrow is an isomorphism. The arrow on the right is a bijection by [8,
Lemma 3.9(c)], and arrow on the left can be seen to be a bijection from the
explicit description of elements in D, ,(G, K) as power series in the by,...,bq
satisfying the particular convergence condition stated above. The result follows
in the case where L = Q,,.

Returning to the general case, let Gy be the uniform pro-p group G viewed
as a locally Qp-analytic group, and let gy := %R ®z, Lg. Then there are
natural surjections of algebras U(go) — U(g) and Dy (G, K) — D1 /,(Go, K),
and it follows from [29, Lemma 5.1] that

Dl/p(GaK) = U(g) ®U(gg) Dl/p(GOaK)'

1Schneider and Teitelbaum assume that K is contained in Cp in several places in their
paper, but the proofs of the results that we need from [33] in fact do not rely on that
assumption.
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Therefore by the first part of this proof we obtain

—

Dy (G, K) = U(g) ®u(go) Ulgo) -
The algebra on the right hand side is isomorphic to m{ by [10, § 3.2.3(iii)]
because U(go) is noetherian. O

5.3. A general faithfulness result. Let G be an L-uniform group with as-
sociated R-Lie algebra g. The following result will be our main engine for
establishing the faithfulness of modules over the Iwasawa algebra KG.

Theorem. Let N and H be L-uniform subgroups of G with associated R-
Lie algebras n and b such that g = n® h. Let V be a U(g)x-module and

suppose that there is v € V' such that v is a free generator of V as a U(n) k-
module by restriction and U(ng)v is a faithful, locally finite RH-module again
by restriction. Then V is a faithful KG-module.

Proof. Let r and d be the ranks of n and g as R-modules, respectively. Choose
an R-basis {x1,...,z4} for g such that {z1,...,z,} is an R-basis for n.

Let I = [L : Qp]; then G, N and H have dimensions dl, 7l and (d—r)l respec-
tively when viewed as uniform pro-p groups. We may choose a minimal topo-
logical generating set {g1, ..., ga} for G such that gi,..., g, and grit1,. .., ga
topologically generate N and H, respectively. Write b; = g; — 1 € KG for each
i1=1,...,1ld.

Suppose that ¢ € Annga (V). It suffices to prove that ¢ = 0. We may write
C =2 aena Aab® with A, € R. Collecting terms together we can then rewrite
this as ( = ) cyr (o for some (, € RH.

Now given w € U(ng)v, RHw C U(ng)v is finitely generated over R by
assumption. Thus there is a natural number ¢ such that we can write

Goow= Y o
BENT

for some pf € K with pg = 0 for |3 > ¢ and all a. Furthermore, we may
assume that p3 is uniformly bounded in o and 3. Thus

0:C-w:Zb°‘Ca-w: Z ug‘bo‘xﬁ-v.

a€eNrl aeNrl BeNT
But > ugbo‘mﬁ € U(n)g and ANz (v) = 0 by assumption, so in

a€eNrl BeENT
fact

Z ugbo‘xB =0.
aeNrt, BeNT
The multiplication map KN ®k U(ng) — D(N, K) is injective by Corol-
lary 3.3(d). Since D(N, K) contained in D;,(INV, K) which is isomorphic to

—

U(n)x by Lemma 5.2, the multiplication map KN @k U(ng) — U(n)x is also
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injective, and so

Y bt e =0,

BENT aeN"t
Therefore °, oy pGb* = 0 € KN for each § because the z” are linearly
independent over K. It follows that pz =0 for each pair «, 3, and hence
Co - w = 0 for each a. As this last equality is independent of the choice of
w € U(ng)v, we deduce that {, € Anngy(U(n)v) = 0 for each o and hence

C = ZQEN” baCO( =0. O

5.4. Congruence kernels. We now assume that the L-uniform group G and
the R-algebraic group G from Subsection 4.1 satisfy the following conditions:

e G is simply connected,
e the Lie algebra g of G and the Lie algebra Lg of G satisfy p"g =
%R ®p,, La for some integer n > 0,
e p is a very good prime for G in the sense of [8, § 6.8].
For example, for every integer n > 0, G could be the congruence kernel

G = ker(G((’)L) — G(OL/pn—HOL)).

As in Subsection 4.5, we let t,b,n and b+ denote the Lie algebras of T, B,
N and BT of G respectively and note that because these groups are defined
over O we can find L-uniform subgroups T, B, N and B whose respective
associated R-Lie algebras are p™t, p™b, p"n and p"b™.

Theorem. The affinoid Verma module VX s faithful as a KG-module for
every R-linear character \ : p™t — R.

Proof. Since p™n is a complement to p"b* in p"g, VX is a free UWK—
module of rank 1 generated by the highest weight vector v € V*. The dense
submodule U(ng) - v of V is locally finite as a bj.-module; this implies that

it is also a locally finite RBT-submodule of V*. In particular, it is a locally
finite RT-module. o

Since RT is a subring of U(p™t)k, Proposition 4.7 implies that the action
of RT on U(ng) - v is faithful. Since p"b = p™n @ p"t, V* is faithful as a
RB-module by Theorem 5.3. .

Proposition 4.8 now implies that V* is also faithful as a RBT-module, so
its submodule U(ng) - v is also faithful over RB*. Since p"g = p"n ¢ p"bT,

invoking Theorem 5.3 again gives that ‘73‘ is faithful as a KG-module, as
required. U

5.5. Verma modules for congruence kernels. For each locally L-analytic
character § : BT — 1+pR, the contragredient of the natural 1-dimensional rep-
resentation given by @ induces a continuous 1-dimensional D(B™", K)-module
Ky via [32, Cor. 3.4]. We may view Ky as a KBT-module by restriction re-
covering the original 1-dimensional representation. That is b - x = 6(b)x for
b€ Bt and z € K.
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By instead restricting along the inclusion U(b}.) — D(B*, K) we may view
Ky as a representation A of the K-Lie algebra b}. We can compute that for
b€ Bt logh € p"t1bt acts by logf(b) € pR. Thus A may be viewed as an
R-linear character p"b*™ — R.

Conversely, each R-linear map X : p"b+t — R induces a locally L-analytic
homomorphism @ : BT — 1+ pR via the rule

b+ exp(A(logb)) for all b € BY.

Definition. Let § : BT — 14 pR be a locally L-analytic group homomor-
phism. The Verma module for the Iwasawa algebra K'G with highest weight 6
is

M? = KG Rrp+ Ko

where Kj is the one-dimensional K BT-module K with BT-action given by 6.
Lemma. Let A : p"b+t — R be the R-linear character of p"b™* corresponding
to a locally L-analytic group homomorphism 6 : BY — 1+ pR. Then the

KG-submodule of VX generated by the highest weight vector vy is naturally
isomorphic to MP.

Proof. By construction, B* acts on vy € VA via 6. Sending the highest weight
vector mg € MY to vy therefore induces a K G-module homomorphism M o

VA, which fits into the following commutative diagram:

—

KN —=U(p'n)x

I

M — 17}
Here the vertical arrows are bijections that send x € KN to xmg and y €
UWK to yuy, respectively. The top arrow is the natural inclusion of K N
into U(;ﬂl\n)K, so M? — VX is injective. The result follows. t

Corollary. M? is a faithful KG-module.

Proof. The commutative diagram in the proof of the lemma shows that the
image of MY is dense in V*. Now if an element of KG kills M, then it must

annihilate all of V* by continuity, and is therefore zero by Theorem 5.4. O

5.6. Finite normal subgroups. Before we can give a proof of Theorem A, we
will need to understand better the finite normal subgroups of open subgroups

of G(Oy).

Proposition. Let G be an open subgroup of G(Or) and let F be a finite
normal subgroup of G. Then F is central in G(Op,).

Proof. Choose a torsion-free open subgroup N of G which is normal in G(Oyp,),
for example a congruence kernel of G(Or). Then [N, F] < NNF =1 because
N and F are both normal in G and because N is torsion-free, so F' centralizes
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N. Because Oy, is local, G(OL) is generated as an abstract group by the
elements of the form z,(r) from Section 4 for @« € ® and r € Op by [1,
Prop. 1.6], so it will be sufficient to show that F' commutes with each zq (7).
Fixge F,a € ® and r € Oy, let x := z,(r) and note that g commutes
with z' where ¢ is the index of N in G(Op). Choose a faithful algebraic
representation p : G(L) — GL,,(L) for some m > 1, let u; = p(z) and
uy = p(grg~'). Then wu; and uy are unipotent by [19, Thm. 15.4(c)] and
ul = ub because g commutes with zf. Now log and exp give well-defined
bijections between unipotent matrices in G'L,,(L) and nilpotent matrices in

My (L), so

1 1
U1 = exp (E log(u’i)) = exp (; log(ué)) = Us.
Therefore z = gxg~"' because p is faithful. O

5.7. Proof of Theorem A. By continuity, we can find an open subgroup H
of BT which is mapped into 1 + pR by . Choose n large enough so that
G contains an open normal L-uniform subgroup G, with associated R-Lie
algebra p"g and such that H contains an open L-uniform subgroup B;" with
associated R-Lie algebra p™b™. Let 6, be the restriction of § to B,J{ . Then
since B = Bt NG,

MG" = KG, ®KBI Kgn - KG®K3+ K.
Writing I := Anng ¢ (KG ®kp+ Kp) and applying Corollary 5.5 gives
INKG, C Anngg, M =0.

Let F be a finite normal subgroup of G. Then F is central in G(Op,) by Propo-
sition 5.6, so F' is also central in G. But G has trivial center by assumption so
F is trivial. Therefore KG is a prime ring by [6, Thm. A].

Next, KG is a crossed product of KG,, with the finite group G/G,,. By [25,
Thm. 2.1.15], S := KG,, \ {0} is an Ore set in the noetherian domain KG,,.
It is stable under conjugation by G, so by [28, Lemma 37.7] it is also an Ore
set in the larger ring K'G and there is a crossed product decomposition

STIKG = (ST'KG,) * (G/G.,).

Here S~'KG,, is the quotient division ring of fractions of KG,,; thus S™'KG
is an Artinian ring because the group G/G,, is finite. Every regular element in
KG stays regular in KG,, and therefore becomes invertible in S™'KG by [25,
Prop. 3.1.1]; hence S~'K G is the classical Artinian ring of quotients of KG.
Since I N KG,, = 0, the intersection I NS is empty and therefore the two-
sided ideal S~1I of S™'K @ is proper. Now K@ is prime, so S™' K is a prime
Artinian ring and is therefore simple. Therefore S™'I =0 and I = 0. g
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