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Abstract. Given a locally compact quantum group G, we study the structure of completely
bounded homomorphisms 7 : L}(G) — B(H), and the question of when they are similar to
*-homomorphisms. By analogy with the cocommutative case (representations of the Fourier
algebra A(G)), we are led to consider the associated (a priori unbounded) map 7* : Lé (G) —

B(H) given by 7*(w) = m(w!)*. We show that the corepresentation V of L™ (G) associated
to 7 is invertible if and only if both 7 and 7* are completely bounded. To prove the “if” part
of this claim we show that coefficient operators of such representations give rise to completely
bounded multipliers of the dual convolution algebra L! (@) An application of these results
is that any (co)isometric corepresentation is automatically unitary. An averaging argument
then shows that when G is amenable, 7 is similar to a *-homomorphism if and only if 7*
is completely bounded. For compact Kac algebras, and for certain cases of A(G), we show
that any completely bounded homomorphism 7 is similar to a *-homomorphism, without
further assumption on 7*. Using free product techniques, we construct new examples of
compact quantum groups G such that L!(G) admits bounded, but not completely bounded,
representations.

1. INTRODUCTION

Given a locally compact group G, a uniformly bounded representation of
G on a Hilbert space H is a weakly continuous homomorphism 7y from G
into the invertible group of the algebra B(H) of bounded operators on H, with
|70l := sup,eq [|mo(s)|] < co. The study of uniformly bounded representations
of locally compact groups has been central to the development of harmonic
analysis and to understanding the structure of operator algebras associated to
locally compact groups (see [11, 15, 30] for example).

In this paper we initiate the study of “uniformly bounded representations”
of locally compact quantum groups. To motivate the objects of study in this
paper, recall that for a locally compact group G, there is a bijective correspon-
dence between nondegenerate bounded representations 7 : L*(G) — B(H), of
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the Banach x-algebra L'(G), and uniformly bounded representations o : G —
B(H). The correspondence between 7 and mg is given in the usual way by
integration:

(m(w)eB) = /Gw(s)(wo(s)aW) ds (we LYG),a,3 € H).

Note that ||7|| = ||7o||. Further, as L*(G) = L*(G). is a maximal operator
space, 7 is automatically completely bounded with ||7|csz1 (a8 = 7]
Moreover, from the above correspondence, it is easy to see that a nondegenerate
representation 7 : LY(G) — B(H) is (similar to) a x-representation of L!(G) if
and only if 7y is (similar to) a unitary representation.

Thus, if G is a locally compact quantum group with von Neumann algebra
L*>(G) and convolution algebra L(G), we are led to consider (completely)
bounded representations 7 : L'(G) — B(H). A representation 7 : L(G) —
B(H) is called a x-representation if the restriction of 7 to the canonical dense
x-subalgebra L& (G) C LY(G) (with involution w + w¥), is a *-representation.
This is equivalent to the fact that 7T|L;(G) = 7%, where 7* : Lé(G) — B(H) is
the representation obtained from 7 via the formula 7*(w) = m(w*)*. As usual,
we say 7 is similar to a x-representation if Tw(-)T~! is a *-representation in
the above sense, for some invertible T' € B(H).

A necessary condition for a representation 7 : L*(G) — B(H) to be similar
to a x-representation is that both © and 7* extend to completely bounded maps
from L'(G) to B(H) (see Proposition 3.4). Furthermore, when m and 7* are
completely bounded, coefficients of 7 induce completely bounded multipliers
([12, 13, 22]) of L'(G), see Theorem 4.7 and Proposition 4.8. We prove this
result by making careful use of the duality theory for locally compact quantum
groups to identify, via the underlying Hilbert spaces, dense subspaces of L!(G)
and L'(G).

Furthermore, by restricting ourselves to the completely bounded case, we
can use that completely bounded representations = : LY(G) — B(H) cor-
respond to corepresentations V; € L°°(G)®B(H), that is, operators with
(A®)(Vx) = Vz13Vr 23. We show in Theorem 3.3 that when V; is invertible
in L*°(G)®B(H), then 7* is automatically completely bounded. Using our
results on completely bounded multipliers, we can prove the converse to this
result—if 7 and 7* are completely bounded, then V; is invertible (with an
appropriate modification when 7 is a degenerate homomorphism). From this
perspective, our results on completely bounded multipliers hence generalize
a classical result of de Canniere and Haagerup [15, Thm. 2.2], showing that
coefficient functions of uniformly bounded representations of a group G are
always completely bounded multipliers of the Fourier algebra A(G).

Putting all these results together, we believe that invertible corepresen-
tations, equivalently, m such that 7* is also completely bounded, should be
thought of as the correct quantum generalization of a uniformly bounded group
representation.
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An interesting corollary of these results is that a corepresentation U which
is not necessarily unitary, but is at least a partial isometry, and is either injec-
tive or surjective, must automatically be unitary. This follows since if 7 is the
associated homomorphism, then the condition on U is enough to show that 7*
is completely bounded, and then U must be invertible. An application of this
is an improvement upon a construction of Kustermans: the “induced corepre-
sentations” constructed in [25] are always unitary, without any “integrability”
condition; see Section 4.13.

Another application of our results is to the similarity problem for amenable
locally compact quantum groups. When G is amenable, Theorem 4.7 combined
with some averaging techniques with invariant means shows that a representa-
tion 7 : LY(G) — B(H) is similar to a *-representation if and only if both 7 and
7 are completely bounded maps (Theorem 5.1). This generalizes the results of
Day and Dixmier [14, 16] on the unitarizability of amenable groups, as well as
some known results for compact quantum groups. When G is a compact Kac
algebra (and for certain cases of A(G)) we are able to improve these results
and show that every completely bounded representation m : L1(G) — B(H)
is similar to a x-representation, without assumption on 7* (see Theorems 6.2,
8.1, and 8.2).

In [8], the first examples of bounded, but not completely bounded, represen-
tations of Fourier algebras were constructed. Using noncommutative Khint-
chine inequalities from free probability theory, we show that similar construc-
tions hold for certain free products of compact quantum groups; such repre-
sentations cannot, of course, be similar to *-representations. Moreover, for the
representations constructed here, we show that there are coefficient operators
which fail to induce bounded multipliers of L'(G) (Corollary 7.2). This pro-
vides further evidence that completely bounded maps are indeed the “correct”
maps to study.

The paper is organised as follows. In Section 2, we review some basic facts
about locally compact quantum groups which will be needed in this paper, fix-
ing some notation along the way. We also make some remarks on the extended
Haagerup tensor product. In Section 3 we show the correspondence between
completely bounded representations 7 on L!(G) and corepresentations V;, and
show that if 7 is similar to a x-representation, or V, is invertible, then 7* is
also completely bounded. In Section 4 we prove the converse to this result.
We first study the duality theory of locally compact quantum groups, trying
to find a quantum analogue of the function space L'(G)NA(G). We then show
that coefficients of representations m, such that both 7 and 7* are completely
bounded, induce completely bounded multipliers. This result is then applied to
prove that V. is invertible. In Section 5, we consider the similarity problem for
locally compact quantum groups, focusing on the amenable case, and refining
our results for compact Kac algebras in Section 6. In Section 7, we construct
bounded representations of L!(G) which are not completely bounded, where G
is a certain free product of compact quantum groups. Section 8 deals only with
representations of Fourier algebras, and extends some of the results obtained
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in [7]. Finally Appendix A looks at weak*-closed operators, and proves a tech-
nical result about analytic generators of o-weakly continuous, one-parameter
groups.

Finally, a quick word on notation. We use (-, -) to denote the bilinear pairing
between a Banach space and its dual, and (-]-) to denote the inner product of
a Hilbert space. We use the symbol ® for the von Neumann algebraic tensor
product; for tensor products of Hilbert spaces, or the minimal tensor products
of C*-algebras, we write simply ®. We shall use standard results from the
theory of operator spaces, following [17] for example.

2. LOCALLY COMPACT QUANTUM GROUPS

For the convenience of the reader, we give a brief overview of the theory
of locally compact quantum groups. Our main references are [27] and [28].
The first reference is a self-contained account of the C*-algebraic approach to
locally compact quantum groups, and the second reference discusses the von
Neumann algebraic approach. For other readable introductions, see [26] and
[41].

A Hopf-von Neumann algebra is a pair (M, A) where M is a von Neumann
algebra and A : M — M®M is a unital normal *-homomorphism which is
coassociative: (1t ® A)o A = (A® ) o A. Then A, induces a completely
contractive Banach algebra product on the predual M,. We shall write the
product in M, by juxtaposition, so

(z,ww') = (A(z),w ® w') (x € M,w,w’ € M,).

Recall the notion of a normal semifinite faithful weight ¢ : M — [0, o0]
(see [36, Chap. VII] for example). We let

no={reM|p's) <o}, m,=span{a’y| ey n,h,
ml = {ze M |p(x) < oo}

Then m,, is a hereditary *-subalgebra of M, n, is a left ideal, and m:g is equal
to MT Nm,. We can perform the GNS construction for ¢, which leads to a
Hilbert space H, a linear map A : n, — H with dense range, and a unital
normal *-homomorphism 7 : M — B(H) with m(x)A(y) = A(zy). In future,
we shall tend to suppress 7 in our notation. Tomita—Takesaki theory gives
us the modular conjugation J and the modular automorphism group (o¢)ier.
Recall that there is a (unbounded) positive nonsingular operator V (denoted
A in [36]) which induces (o) via oy(z) = V%2V~ for x € M and t € R.
Finally, M is in standard position on H, so in particular, for each w € M,,
there are £, n € H with w = we ,,, where (z,we ) = (|n) for &,n € H.

A von Neumann algebraic locally compact quantum group is a Hopf—von
Neumann algebra (M, A), together with faithful normal semifinite weights ¢, 1
which are left and right invariant, respectively. This means that

p(w®)A@) =@)(Lw),  ¥((@wA(y) =v)(1w),
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forwe MI,z € m:g and y € m:g. Using these weights, we can construct an
antipode S, which will in general be unbounded. Then S has a decomposition
S = R7_;/5, where R is the unitary antipode, and (7;):cr is the scaling group.
The unitary antipode R is a normal x-antiautomorphism of M, and AR =
oc(R ® R)A, where 0 : MM — M®M is the tensor swap map. As R is
normal, it drops to an isometric linear map R, : M, — M, which is anti-
multiplicative. As usual, we make the canonical choice that ¢ =¥ o R.

Associated to (M, A) is a reduced C*-algebraic quantum group (A4, A). Here
A is a C*-subalgebra of M, and A : A - M(A® A), the multiplier algebra of
A ® A. Here we identify M(A ® A) with a C*-subalgebra of M®M; indeed,
given a C*-algebra B C B(H), we can always identify the multiplier algebra
M (B) with {z € B” : zb,bx € B (b € B)}.

There is a unitary W, the fundamental unitary, acting on H® H (the Hilbert
space tensor product) such that A(z) = W*(1 ® )W for x € M. Then W
is multiplicative, in the sense that WioWi3Was = Wos3Wis. Here, and later,
we use the standard leg number notation: Wis = W @ I, Wiz = YagWi2303
and so forth, where here ¥ : H ® H — H ® H is the swap map. The left-
regular representation of M, is the map A : w +— (w®¢)W. This is an injective
homomorphism, the norm closure of A(M,) is a C*-algebra denoted by A, and
the o-weak closure of A(M,) is a von Neumann algebra, which we denote by
M. We define a coproduct A : M — M®M by A(z) = W*(1 ® 2)W , where
W = SWZX. Then we can find invariant weights to turn (M, A) into a locally
compact quantum group—the dual quantum group to M. We then have the

Pontryagin duality theorem which states that M = M canonically. There is a
nice link between the scaling group of M, and the modular theory of the (left)
Haar weight of M, in that 7(z) = ViazV~ for z € M,t € R.

In this paper we will use the symbol G to indicate the abstract “object” to
be thought of as a locally compact quantum group. Inspired by the classical
examples of locally compact groups, we write L>®(G) for M, Cy(G) for A,
C*(G) for M(A) (the multiplier algebra of A), L*(G) for M., and L*(G) for
H. We denote the locally compact quantum group dual to G by G, and use
the notations L(G) = M, LY(G) = M., and so on. In order to distinguish
between objects attached to G from those attached to G, we decorate elements
in L>(G), LY(G) etc. with “hats”. For example, we write # € L>®(G), and
& e LYG).

Since the antipode S of G is unbounded in general, there is not a natural
way to turn L'(G) into a *-algebra. However, L!(G) always contains a dense
subalgebra which has a conjugate-linear involution. We follow [24], see also
28, Sec. 2]. Define Lj(G) to be the collection of those w € L*(G) such that
there exists w? € LY(G) with (z,w?) = (S(x)*,w) for each z € D(S). Then
L;(G) is a dense subalgebra of L'(G), and w + w? defines an involution on
L;(G). As [24, Prop. 3.1] shows, given w € L'(G), we have that w € L}(G) if
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and only if A(w)* = A\(w’) for some w’ € L1(G). Furthermore, the left regular
representation A becomes a *-homomorphism, when restricted to Ly (G).

When G is a locally compact group, we write VN (G) for L>®(G) (the von
Neumann algebra generated by the left regular representation of \¢ : G —
U(L2(@))), and write A(G) for L'(G), and call this the Fourier algebra of G.
The Fourier algebra was first studied as a Banach algebra by Eymard [19].
The left regular representation A : A(G) — Co(G), is a completely contractive
*-homomorphism, which allows us to identify A(G) with a dense *-subalgebra
of Cy(G), the identification being given by

M@t = Aat™),0) (@€ AG),t€q).
See [37] for details (note that the above identification differs from the one con-
sidered by Eymard, where ¢ is replaced by t~1 in [19]). So as to not overburden

notation, in many places (especially in Section 8) we will drop the notation A
from above, and just view A(G) as a concrete x-subalgebra of Cy(G).

2.1. The extended Haagerup tensor product. Let M and N be von Neu-
mann algebras. The extended (or weak*) Haagerup tensor product of M with
N is the collection of x € M®N such that

a::zaa@yi

with o-weak convergence, and such that ), z;x} and ),y y; converge o-
weakly in M and N respectively. The natural norm is then

||a;||eh:mf{HZ%z 1/2szryi 12 xzzxi@@yi},

and we write M ®.j, N for the resulting normed space. See [6] or [18] for further
details.

Suppose we are given (z;)ic; € M and (y;)icr € N with >, z;2 and
> Yry; converging o-weakly. Let M C B(H) and N C B(K). Then there are
bounded maps X : H - H ® £2(I) and Y : K — K ® (?(I) given by

X(¢) = Zx;“(f) 246, Y= Zyi(@ ®6 (£ L*(G)),

where (8;);er is the canonical orthonormal basis for ¢2(I). Indeed, X*X =
Siwiry and VY =Y yry;. Letting X0 K @ £2(I) — ¢2(I) @ K be the swap
map, a simple calculation shows that

(X*eo)1eL)(1eY)=> ey c M®N C B(H @ K).

This argument hence shows that ) . x; ® y; always converges o-weakly in
M®N, as long as ), ; x;x; and ), ; yiy; converge o-weakly. Finally, note
that if H = K then

> wys = XY € B(H),
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and in particular, if M = N, then ), z;y; converges o-weakly in M to X*Y.

3. COMPLETELY BOUNDED HOMOMORPHISMS AND COREPRESENTATIONS

In this section, we investigate the correspondence between corepresenta-
tions of U € L*®(G)®B(H) (which are not assumed unitary) and completely
bounded representations 7 of L!(G). We show how various naturally defined
variants of m are associated to variants of U. In particular, we show that
7 is similar to a #-representation if and only if U is similar (in the sense of
corepresentations) to a unitary. One of our variants of 7 is defined using the
unbounded *-map on Lé(G). We show that if U is invertible, then all of the
variants of 7 are completely bounded. A principle result, Theorem 4.10 below,
is that the converse to this result is also true; and hence we have a bijection
between invertible (not necessarily unitary) corepresentations and a certain
class of completely bounded representations.

We are interested in completely bounded homomorphisms 7 : L'(G) —
B(H). We have the standard identifications (see [17, Chap. 7]):

CB(L'(G),B(H)) = (LY(G)&T(H))" = L= (G)®B(H).

Here ® denotes the operator space projective tensor product, and ® the von
Neumann algebraic tensor product. We use the notation that 7 : L}(G) —
B(H) is associated with V; € L*>°(G)®B(H), the relationship is that

m(w) = (w®)Vz (w € LYG)).
We use the standard leg numbering notation, see for example [2, 39].

Lemma 3.1. Let 7 : LY(G) — B(H) be a completely bounded map, associated
to Vy € L®(G)®B(H). Then 7 is a homomorphism if and only if (A® 1)V, =
Vr13Vr 23, Similarly, m is an anti-homomorphism if and only if (A @ 1)Vx =
Vi 23V 13.

Proof. For wy,ws € LY(G),

T(wiws) = (Au(wr @ws) @ L) Ve = (w1 @w2 @ 1) (A ® 1) V),

while

T(w1)T(ws) = (w1 @ 1) Va(w2 @ )Vr = (w1 @ wa @ 1) (Vr13Vi 23),
and so 7 is a homomorphism if and only if (A ® ¢)V; = Vi 13Vz 23. The result
for anti-homomorphisms is analogous. U

The condition that (A®:)V; = Vi 13V 23 says that V; is a co-representation
of L*>*(G). Similarly, we say that V; is a co-anti-representation when (A ®
OV = Vi 23Vi 3.

Following [7], given a locally compact group G and a representation 7 :
A(G) — B(H), we define 7, 7* and 7 by

-~ * -~

T(w)=71w), 7(w)=7®)", 7(w)=7w)" =7nw)" (we A(Q)),
where w(g) = w(g™1) (viewing A(G) as a subalgebra of Cy(G)).
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For w € L'(G), define w* by (z,w*) = (z*,w) for x € L=(G). As A is a
*-homomorphism, it is easy to see that L'(G) — L!(G);w + w* is a conjugate
linear homomorphism. Recalling the definition of Lé(G) from Section 2, given
7 : LY(G) — B(H), we define

#1LUG) - BU): w e (W),
¥ ( )= B(H); w— m(wh),
7: LNG) = B(H); w m(w*)*.

These are defined by analogy with the A(G) case, and the following results
show that they are natural choices.

B(
B5(

Proposition 3.2. Let 7 : L}(G) — B(H) be a bounded map. Then 7 is
completely bounded if and only if T is completely bounded, and in this case,
V¥ = Viz. Furthermore, T extends to a completely bounded map defined on
LY(G) if and only if 7 extends to a completely bounded map defined on L*(G),
and in this case, Vi = V.

Proof. Let U € L*°(G)®B(H) and define ¢ : LY (G) — B(H) by ¢(w) =
(w®)(U). Then

¢ = (W @)(U))" = (we)(U))" = W)U
It follows immediately that m is completely bounded if and only if 7 is, and
that V} = Vz. As 7% (w*) = 7(w)*, similarly 7 extends to completely bounded
map if and only if 7* does, and V7 = Vi «. U

We wish to show that x-representations of Lé(G) do give rise to completely
bounded 7 such that also 7* is completely bounded. To do this, we need to
investigate how unitary, or more generally, invertible corepresentations interact
with the antipode.

Let us recall a characterization of the antipode using ideas very close to
the extended Haagerup tensor product. This is shown in [27, Cor. 5.34] in
the C*-algebra setting, but the same proofs work in the von Neumann case.
Let x,y € L*°(G) be such that there are families (x;), (y;) € L*°(G) with
Yo rixy < ooand ) yry; < oo, and such that

x®1—ZA i) (1 ®y;), y®1:Z(1®m¢)A(y¢).
Then z € D(S) and S(z) = y. Note that these sums converge o-weakly,

compare Section 2.1. For further details on characterizing the antipode in this
way, see [42, Prop. 5.6].

Theorem 3.3. Let V; € L>®(G)RB(H) be an invertible corepresentation, as-
sociated to a completely bounded homomorphism 7 : LY(G) — B(H). Then %
is a completely bounded anti-homomorphism, and V. ! = V.

Proof. Let a, 8 € H, let (f;) be an orthonormal basis of H, and set
=(@wn)(Va), 4= (@was) (Vi)
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As in Section 2.1, it is easy to see that ), z;2] = (1®wa)(VxV}) and >, yry; =
(t ® wg)((Vy1)* V1), with the sums converging o-weakly. Now, using that
(A®)(Vr) = Vr13Vr 23,

Z Az)(1®yi) = Z(L ®L@wr ) ((A@)(Vr))(1®y:)
= Z(L ®1@wy, 8)(Va13Ve23) (1@ (@ wa,p,) (V).

Now, for any Hilbert space K, and S,T € B(K ® H),

D (0w )8t @ wa g )(T) = (1 @ wa,p)(ST).

K3

Thus
Z A(xi)(l & yi) = (L ®L® wa,B)(Vw713Vm23Vﬂj213) = (L ® wa,B)(Vﬂ) ®1.

3

Similarly, as A is a homomorphism, (A ® ¢)(V.71) = VflgVﬂfllg, and so

Tr’

D (1@e)AW) =) (10 (@wp,s)(Va)(t @t ®wa,r,)(VeasVi i)

= (1® @ wap)(Va2sVy2sVris) = (L ®was) (V) ® 1.

Thus (¢ ® wa,3)(Vx) € D(S) and S((t ® wa,8)(Vx)) = (¢ @ wa,g) (Vi ).
Let w* € L{(G), so we have that

(@, (@) = (S(@)*,w*) = (S(x),w)  (xe€D(S)),
It follows that

(7(w)alB) = ((t @ wa,5(Va), (W)F) = (S((t @ wa,6(Vr)),w)
= (L ®wap) (Vi )w) = (Vi w @ wag).

As such w are dense in L*(G), it follows that 7 is completely bounded, with
Vi = V.71, as claimed. O

We now show that any x-homomorphism on L& (G) gives rise to a completely
bounded homomorphism 7 such that also 7* is completely bounded. We use a
result of Kustermans that any x-representation has a “generator”—that is, V;
exists and is unitary. The interaction between a unitary corepresentation and
the antipode (which, in some sense, we generalized in the previous proposition)
is of course well-known, see [49, Thm. 1.6] for example.

Proposition 3.4. Let 7 : L&(G) — B(H) be a homomorphism which is similar
to a x-homomorphism. Then ™ and 7* extend by continuity to completely
bounded homomorphisms L'(G) — B(H), and 7 and T extend by continuity to
completely bounded anti-homomorphisms L*(G) — B(H).
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Proof. We first show this in the case when 7 is a *-homomorphism. Then
m(w?) = 7(w)* for each w € Lé(G), and so 7* = w. As 7 is a x-homomorphism,
it is necessarily contractive (see [35, Chap. I, Prop. 5.2] for example) and so
extends by continuity to a homomorphism defined on all of L}(G).

To show that 7 extends to a completely bounded homomorphism, we use a
nontrivial result of Kustermans. Suppose for the moment that 7 : Lé G) —
B(H) is nondegenerate. By [24, Cor. 4.3], there exists a unitary U € L*°(G)®
B(H) (actually, U € M(Cy(G) ® Bo(H)) C L*(G)®B(H)) such that w(w) =
(w®)U for each w € Lé(G). It follows immediately that 7 does indeed extend
to a completely bounded homomorphism from L'(G), and that thus actually
U = V.. As U is unitary, so invertible, the previous propositions shows that
7* is also completely bounded.

If 7 is degenerate, then as m is a *-homomorphism, we can orthogonally
decompose H as Hy ® Ha, where 7 restricts to Hy, and 7(w) = 0 for each
Ee Hyywe L&(G). Let m; be the restriction of 7 to Hq; som : LY(G) — B(H;)
is a completely bounded homomorphism. It follows immediately that the same
must be true of m and of 7*.

If 7 is only similar to a *-representation, then there exists an invertible
T € B(H) such that 6 : Lé (G) = B(H), w — T~ '7(w)T is a -homomorphism.
Then 6 extends to a completely bounded homomorphism, and hence so also
does m = TO(-)T~. The same result holds for 7*, as

™ (w) = T(Wwh)* = (T7H*0* ()T (we Lé(G))

Having established that m and n* extend to completely bounded maps
LY(G) — B(H), it follows from Proposition 3.2 that also # and 7 extend
to completely bounded maps L!(G) — B(H) which are easily seen to be anti-
homomorphisms. O

4. INVERTIBLE COREPRESENTATIONS

In the previous section, we provided a necessary condition for 7 : L'(G) —
B(H) to be similar to a *-representation, namely, that both = and #* are
completely bounded. Furthermore, if 7 is associated to a corepresentation V.,
and V. is invertible, then 7* is completely bounded. In this section, we use
the duality theory of locally compact quantum groups to show the converse:
if 7 and 7* are completely bounded, then V; is invertible (together with an
appropriate interpretation of this when 7 is a degenerate homomorphism).

4.1. Identification of “function” spaces. In [7], an important component
of the argument was to use the space L'(G) N A(G), identified as a function
space on G. For a quantum group, we would like to be able to talk about
the space L'(G) N L*(G); to make sense of this, we shall embed dense sub-
spaces of L(G) and L'(G) into L2(G), making use of the fact that we always
identify L2(G) with L2(G). This section is slightly technical—the key result is
Proposition 4.4 below, which is used in the following section.
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We first introduce the nonstandard, but instructive notation
LYG)NL*(G) = {w € LY(G) | 3¢ € L*(G), (z*,w) = ({|A(z)) (x € ny)}.

This space is denoted by Z in [28, Sec. 1.1] and [27, Notation 8.4]. Then ¢ is
the weight with GNS construction (L?*(G),t, A) where A(L*(G)N L?*(G)) forms
a o-strong™ core for A, and we have that

(%, w) = (A()\(w))‘A(x)) (z € ny,w € L (G) N L*(G)).
Then [27, Result 8.6] shows that L'(G) N L?(G) is a left ideal in L'(G) and
A(A(wwl)) = )\(w)]\(/\(wl)) (w e LYG),w; € LY(G) N L*(G)).

This formula is of course immediate from the fact that A is a GNS map, but this
reasoning is circular(!) if one is following [27, Sec. 8]. Further, [27, Result 8.6]
can easily be adapted (or just perform the obvious calculation) to show that
LY (G)N L3(G) is a left L>°(G) module, and

A(A(xwl)) = x]\(/\(wl)) (z € L™(G),w; € LY(G) N L3 (G)).

Continuing to follow [27, Sec. 8], we find that there is a norm continuous,
one-parameter group (p)er of isometries on L!(G), such that p; is an algebra
homomorphism for each ¢, and with 6;(A(w)) = A(p¢(w)) for w € L (G) (where
(6¢) is the modular automorphism group associated to the dual left Haar
weight ¢). As observed before [28, Prop. 2.8|, each p; maps L&(G) into itself,

and py(w) = py(w)* for w € L;(G). Finally, for w € LY(G) N L?(G), also
pu(w) € L{(G) N IA(G) and A(Mpu(w))) = V*A(W)).

Lemma 4.2. The collection of w € L(G) N L3(G) with w € D(p;), pi(w) €
L;(G), and pi(w)t € LYG) N L*(G) is dense in L*(G). Furthermore, the
resulting collection of vectors A(A(w)) is dense in L*(G).

Proof. We use a “smearing argument”, compare (for example) [26, Prop. 5.21].
Letw € Ly(G)N(L*(G)NL*(G)). Suchw are dense in L (G) by [28, Lemma 2.5].
For n € N and z € C define

w(n, z) /exp 2(t 4 2)H) pe(w) dt.
f
Then w(n,0) is analytic for p and p,(w(n,0)) = w(n, z). As p is norm contin-

uous, it follows that w(n,0) — w in norm as n — co.
For x € D(S), using that p;(w)* = p;(w?),

(S(x)",w(n, 2)) \/_/exp n2(t + 2)%)(S(x)*, pe(w)) dt

\/_/exp 2t + 2)2)(, pe(@h) dt = (o, @) (m,3)).
Hence w(n, z) € L{(G) and w(n, )t = (wh)(n, 2).
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For z € n,,

(2" (wh)(n, 2) \/_/exp 20t + 2)2) (2", pu(wh)) dt
- = / exp(—n2(t + 2)) (A (o)) A@)) dt = (¢]A()),

where
- / exp(—n(t + 2)2) VA (w?)) dt.
In particular, (wn)(n, z) € LYG) N L*(G).
It follows that {w(n,0) : n € N,w € L{(G) N L*(G)} is dense in LY(G),
analytic for p, satisfies that p.(w(n,0)) € L&(G) for all z, and satisfies that

p=(w(n,0))* € LY(G)NL3(G). Furthermore, a similar calculation to that above
yields that

AO\(w(n,0) \/_/exp _n22)"A(Aw)) di.

This converges to A(A(w)) in norm, as n — oco. In particular, as w varies, the
collection of vectors A(A(w(n,0))) is dense in L?(G). O

For the following, let T be the Tomita map, which is the closure of [\(n¢ N
ny) — L2(G),A(x) — A(z*). For further details, see [36, Chap. 1] (where
this map is denoted by S, a notation which we avoid, as it clashes with the
antipode).

Proposition 4.3. Let X = {w € L'(G) N L*(G) | A(A\(w)) € D(T*)}. Then
X s dense in L'(G), and A(\(X)) is dense in L*(G). For x € D(S)* and
w € X, we have that zw € X, and T*A(A(zw)) = S(x*)T*A(A(w)).
Proof. Letw € LY(G)NL?(G) be given by Lemma 4.2. As A(p:(w)) = 6:(A(w)),
an analytic continuation argument shows that A(w) € D(6;) with 6;(A(w)) =
A(pi(w)). As also p;(w) € L&(G) and p;(w)* € LY(G) N L?(G), we have that
A @)h) = AR (@)") = TAApi())) = TA(:(A@)))
=TV 'A(\w)) = T*"A(A\(w)).

As such w are dense in L!(G), it follows that X is dense. As the collection of
vectors A(\(w)) is dense in L?(G), it also follows that A(\(X)) is dense.

Now, D(S)* = D(7;/2). For x € L>°(G) and t € R, 74 is implemented as
7(x) = V2V~ Thus, that © € D(;5) means that V~1/22V!/2 extends to
a bounded operator, namely 7;/5(z). Thus also JV12V1/2 ] C S(x*). As
T* = JV~1/2 = V2] we conclude that 7*z1™* C S(z*). Thus, for z € S(z)*
and w € X,

S(@)T*ANw)) = T*2T*T* A\ w)) = T*2A\N(w)) = T*A(A(aw)),

as required. Here we used that 7* = (7)™, see [36, Lemma 1.5, Chap. 1]. O
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Let us make one final definition:
Li(G)NL}(G) = {w € L'(G) N L*(G) | w € L{(G) and w* € L'(G) N L*(G)}.
Then (28, Prop. 2.6] shows that L} (G)NLZ(G) is dense in L'(G), and A()\(Lé (G)
NL;(G))) is dense in L*(G).
Proposition 4.4. Let w; € L&(G) N Lg(G), and let wy € X be as in the
previous proposition. Let x € L>®(G), set £ = A(A(w 1)) and 1 = T*A(\(w2)),
and set & = Que . Then @ € LY(G) N L3(G) and AN(@)) = A ((zwr)ws)).
When we take © =1, as wy,ws vary, such & are dense in Ll(@).
Proof. Let & € ns. As M(zw1) € ng and ng is a left ideal, both A(zw1)*% € ng
and Z*A(zw1) € ng, so that 2" A(zw1) € ny N0y, Thus A(@*Maw:)) € D(T)
and TA(2* N(xw:)) = A\ (zw)*2). Thus
(@, @) = (@ w€ln) = (#" A (Aw1)| T AN (w2)))

= (#" A\ (aw1))|T* AN (w2))) = (A (w2))|TA(F*A(zwr)))

= (AA(w2))[A(A(zw1)* x)) = 4(* Mawr ) A\ (w2) )

= (AA((aw1)w2))|A(@)).
As # € ny was arbitrary, this shows that & € L'(G) N L2(G) with A(A(Q)) =
A(A((zw1)w2)) as claimed. As above, the collection of allowed ¢ is dense in
L?(G), and by Proposition 4.3, the collection of allowed 7 is also dense in

L?(G). Hence certainly the collection of thus constructed @ will be dense in

(G
e O

™~

4.5. Coefficients of representations. Let 7 : L'(G) — B(H) be a com-
pletely bounded (anti-)homomorphism with associated co(-anti-)representation
Ve. Given «, 8 € H, a coefficient of  is the operator

(1) wp = (L®@wap)Ve € L7(G).
Equivalently, 77 5 is determined by the dual pairing

( a@,w>:(7rwoc|ﬁ) (w e LY(G)).

Note that the latter definition of T ; makes sense even if 7 is bounded, but
not necessarily completely bounded—a situation we will address in Section 7.

In this subsection and the next one, we study the analytic structure of
coefficients of completely bounded representations 7 : L'(G) — B(H). We
show that if 7* is also completely bounded, then coefficients of 7 give rise to
completely bounded multipliers of L*(G), a tool which will allow us to prove
the main theorems of this section (Theorems 4.10 and 4.12) below.

Proposition 4.6. Suppose that both w and ™ extend to completely bounded
maps LY(G) — B(H). For every o, 3 € H, we have that Tgﬂ € D(S) with
S(Tr ) =TF,-
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Proof. Let w € L& (G), so that

(TF a0 ?) = (v(w)B]0) = (w(w)"a]B) = (= (@)alB) = (T3 .).

Comparing this with the definition of §, we might hope that 77 , € D(S)
with S(TF )" = Tg,}. This is indeed true, but a little care is needed, see
Proposition A.1 in the appendix. As Sox0S = %, we also see that Tg}} € D(S)
with S (Tgﬂ)* =T% ,. as claimed. O

Given a coefficient T;7 5, arguing as in Section 2.1 and as in the proof of
Theorem 3.3, we see that

A(TF 5) = (1 @1 ®wa,p)(Vr13Va23) = Z(L @wy, 5)(Vr) ® (L ® wa, ;) (Vi)
- Z T7 5 @1,

the sum converging o-weakly. This observation, combined with the previous
proposition, shows that the hypotheses of the next theorem are not so out-
landish; compare with the proof of Theorem 4.10 below.

Theorem 4.7. Let G be a locally compact quantum group, let x € L*°(G), and
suppose that oA(z) =Y. b; ® a; € L®(G) ®ep, L=(G). Suppose furthermore
that each b; € D(S)*, and Y, S(b})*S(b}) < co. Then, for &,n € L*(G),

2\ (G ) = 3( Z@aiasw:)n)a

the sum converging absolutely in Ll((@).

Proof. Let wi,ws € LY(G) be given by Proposition 4.4. Let &€ = A(A(wy)),n =
T*A(Mw2)); recall that such choices are both dense in L?(G). Then ¢, €
LY(G) N L*(G) and A(A(@e ) = AN (wiwa)).

For each i, let & = a;(§) and n; = S(b)(n). Then

ZII&IIQ Z aja;, wee) < HZ& a;

€.

Similarly,

Z||m||2 < HZS (b7)°S

It follows that 3, &, ,, converges absolutely in L'(G).
By Proposition 4.3, n;, = T*A(A(biwz)), and also & = a;A(Mw1)). By
Proposition 4.4,

AN @esm)) = A ((aiw1) (biws))).

Miinster Journal of Mathematics VoL. 6 (2013), 445-482



COMPLETELY BOUNDED REPRESENTATIONS 459

Thus, for y € ny,
> (MA@ [A0) = 3 (AA((aiwn) (b)) [Aw)
= Z@/*v (aiw1)(biw2)) = Z<A(Z/*)(a¢ ® b;), w1 ® wa)
= (A(y"z),w1 @ ws) = (¥*, x(wiw2))
= (A( ( wlwg }A )
Thus,

A(xj\(djgm)) = zA(Mwiws)) = A (z(wiws)) ZA A (Weymi))

which completes the proof, as A injects, and such &, 7 are dense. O

We remark that we could weaken the hypothesis that cA(z) € L*(G) ®en
L>(G) to just requiring that A(z) = >, a; ® b;, the sum converging o-weakly
in L*(G)®L>*(G), and with >, aja; < oo and ), S(b;)*S(b}) < oo

We can interpret this result in terms of left multipliers or centralizers on

LY(G). We shall follow [13] (see also [22], but be aware of differing language).
A left multiplier of LY(G) is a linear map L : LY(G) — LY(G) with L(é1d&s) =
L(&n)ws for each wy, @y € Ll(G). If additionally L is completely bounded,
then an equivalent condition is that the adjoint L* : L(G) — L>=(G) satisfies
AL* = (L* @ )A.

Given data as in the above theorem, we may define a o-weakly continuous
linear map L* : L>(G) — B(L%(G)) by

(2) L*(#) =) _ S(b;)¢a; (3 € L™(G)).
Then clearly the preadjoint L : B(L?*(G)). — L'(G) satisfies S\(ng,n) =
xj\(djgm) for all £, € L*(G). Thus L factors through the quotient map

B(L23(G)), — L(G) and induces a map on L*(G), still denoted by L. Hence
we can regard L* as a map on L*°(G). We record the following for use later.

Proposition 4.8. With notation as above, L* € CB(L>(G)),
1/2
AR DOIGIEITH I DS

and (L* @ )(W) = (1@ z)W.

1/2

)

Proof. The norm estimate is a standard calculation from the definition of L*
given by (2). The last assertion follows from [13, Prop 2.4]; indeed, this is just
a calculation using the definition of A and that zA(@e ) = A(Lde.)- O

We remark that it follows from [13] that z € C®(G) (compare with Theo-
rem 4.12 below) and that x € D(S).
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4.9. When we get an invertible corepresentation. We will work in a
little generality, and deal with possibly degenerate homomorphisms. Given a
homomorphism 7 : A — B(H) of a Banach algebra A on a Hilbert space H,
the essential space of m is H., the closed linear span of {m(a)¢:a € A, € H}.

The following shows that if 7 and n* are completely bounded, then V is
an invertible operator (suitably interpreted in the degenerate case), and thus
we have a converse to Theorem 3.3.

Theorem 4.10. Let 7 : L*(G) — B(H) be a completely bounded representation
such that ™ extends to a completely bounded representation. Letting H. be
the essential space of m, we have that ViV, = V.Vi is a (not necessarily
orthogonal) projection of L*>(G) ® H onto L*(G) ® H,. Furthermore, both Vi,
and Vi have ranges equal to L? (G)®H,. Hence V; and Vi restrict to operators
on L*(G) ® H,, and are mutual inverses in B(L*(G) ® H.,).

Proof. Fix o, € H. By Proposition 3.2, we know that Vz = V* and thus

T} 5= (T§,)*. As in the discussion before Theorem 4.7,

GA(TE ) = AT ) =Y (T5) @ (TF ) ZTf,ﬁ@

As 7* is completely bounded, by Proposition 4.6,
(TF. )" =T5 4, € D(S) with S((T}, 4)*) = S(T5,1,) = (T}, 5)" = T5 1.,

where the last equality uses Proposition 3.2. Moreover,

ZS (TF.5)7) S((TF, 5)7)
_Zwa fm :Z(L@)wfuﬁ)(vﬂ'*)((L®w,3,f1)(v7r*))*

%

= Z (@ wy, ) (Ve )t @ wy, 5) (Vi) = (L @ wg) (Va- Vi),

and similarly Y (77 f,) T 5, = (L@ wa)(Vz V). We can hence apply Theo-
rem 4.7 and Proposition 4.8 to conclude that if we define

(3) L* : L®(G) = B(L*(G)); & ZT;TB@T; for

then L* € CB(L®(G)), and (L* ® )(W) = (1@ T ;)W. As W = oW *o, this
shows that (¢ @ L*)(W*)W = T”B ® 1. That is,

T, @1=Y (10TF )W AT )W = Z ©TF 5)ATS )-

i
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So, let wy,ws € LY(G), and consider
Z« @ TF )AL p,) w1 @wa) = D (T4 w1 (w217, )

= Z 7 (wi (w27 5))al fi) = Z (7 (w2 T )7 (wr)al f;)

- Z Tfl, 7 wl)a fi y W > <(L ® wﬁ'(wl)a,ﬁ)(vﬂ'* Vﬁ')ﬂw2>'

However, we know that this is equal to <Tg{~T s ®Lw ® wa). So we conclude
that

(0 ® Waguyas) (Ve Vi) = (T3 .0}l = (7))L (w € L'(G), 0. € H).

Iietting ffe be the essential space of 7, we conclude that V.« Vz = 1 on Lz(G) ®
H,C L*(G)® H.
As Lé (G) is dense in L*(G), we see that the essential space for 7* also equals

H,. Letting (e;) be an orthonormal basis for L2(G), a simple calculation shows
that

e (E®y) = Zeﬂ}iﬂr wee)) €LXG) @ He (£ € L*(G),y € H).

So Vi~ has range contained in L?(G) ® H,. It follows that Vy-V; is actually
a (not necessarily orthogonal) projection from L?*(G) ® H onto L*(G) ® H,.
Furthermore, the range of Vy. must actually be L*(G) ® H.,.

Now set ¢ = 7, s0 ¢ is also a completely bounded homomorphism L'(G) —
B(H). Thus the same argument now applied to ¢ shows that ViV = VZ Vi =
V,: Vi is a (not necessarily orthogonal) projection from L?(G)® H onto L?(G)®
H, where H. is the essential space of d;, which agrees with the essential space
for ¢* = m. We also conclude that the range of Vg« = V; is L*(G) ® H,.

Following [28, Sec. 4], the opposite quantum group to G is G°P, where
L>(G°P) = L*°(G) and A°® = gA. That is, we reverse the multiplication
in LY(G) to get L*(G°P). Then R°® = R and 7,* = 7_; for each t. Thus
S°P = R"prf}z/z = Rrjp = S =x0Sox Forxz e D(SP) = D(S)*, and
w € L& (G°P),

(@, whP) = (S°P(2)",w) = (S(z*),w) = (S(z*)",w").

It follows that w* € L}(G), as for each y € D(S), setting x = y* € D(S)*, we
see that

(Sy)* w*) = (S(z"),w) = (z,08P) = (y, (WPP)").
So (w*)f = (wh°P)*, and reversing this argument shows that Lé(G) = L;(GOP)*.
Thus, if we set ¢ = 7 : L*(G°P) — B(H) then ¢ is a completely bounded rep-
resentation, and ¢Z = 7, so that the essential space of ¢ is H.. Forw € Lr} (Ge°P),
we have that w* € L&(G), and ¢*(w) = P(wh°P)* = 7(((w*)*)*)* = 7((w*)?) =
7(w). Hence, as 7 is completely bounded, also ¢* is completely bounded; and
so ¢* = i and similarly ¢ = 7*. Applying the previous argument to ¢, we
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conclude that V- V¢3 = ViV, is a (not necessarily orthogonal) projection onto
L?*(G) @ H.. We also see that the range of Vy+ = Vi is L?*(G) ® H..

Finally, we also have that VoV; = ViV« is a (not necessarily orthogonal)
projection onto L(G) ® H,. It follows that

ker (VaVi) = Im(VE V2 ): = Tm(Ve- Vi )= = (L2(G) ® H.) ™,

and analogously, also ker(VizVy) = Im(ViVie)t = (L*(G) ® H.)*-. So we
conclude that ker(V;V;) = ker(Vz V). So V. Vi and V;V, are projections with
the same range and kernel, and hence are equal. O

The above theorem says that if both 7 and #* are completely bounded
and nondegenerate, then V. is an invertible corepresentation of L*°(G), and,
informally,

(S@0)(Ve) =Vl

This is well-known in, for example, the theory of algebraic compact quantum
groups (compare with [39, Prop. 3.1.7(iii)]). It is interesting that our arguments
seem to require a lot of structure—for example, by using the duality theory
for locally compact quantum groups.

From Proposition 4.8 and the proof of Theorem 4.10, we obtain the follow-
ing corollary, showing that the coefficients T; s considered in Theorem 4.10

naturally induce completely bounded multipliers on Ll(@).

Corollary 4.11. Let 7 : LY(G) — B(H) be a completely bounded representa-
tion such that ™ extends to a completely bounded representation. Then for any
«a,B € H, the coefficient T, 5 represents a completely bounded left multiplier
L: LYG) — L'(G), determined by

MLa) =TI M) (@€ LYG)).

(e

Moreover, || L[y < [[l|eoll*[|eollce]| | B1]-

Proof. The fact that L is a completely bounded left multiplier was already
observed in the proof of Theorem 4.10. Moreover, from Proposition 4.8 and
the proof of Theorem 4.10, we deduce that

IZlleo = lIL7[leb < 11(e ® wg) (Ve Vi 2 1 (0 @ wa) (VE V)12
< lmllepllm™[leo /|| 81 0

When G is a locally compact group, the above result is classical and is due
to de Canniere and Haagerup [15, Thm. 2.2]. (See also [7, Thm. 3] for when
G is the dual of a locally compact group.)

Let G be a locally compact group, 7 : L'(G) — B(H) a bounded represen-
tation, and mp : G — B(H) the uniformly bounded representation associated
to m. The correspondence 7 <+ my given in Section 1 implies that each coeffi-
cient operator T} 5 € L>°(G) is actually (a.e.) equal to the continuous function

©np € C*(G), s — (mo(s)alB).
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Let Byo(H) be the compact operators on H, so that M (By(H)) = B(H). We
hence get the strict topology on B(H), where a bounded net (T,,) is strictly-null
if and only if the nets (Tpx) and (zT,) are norm-null, for each x € By(H).
One consequence of the above correspondence is that the corepresentation V. €
L>(G)®B(H) is actually a member of C%, (G, B(H)), the space of bounded
continuous maps G — B(H), where B(H) is given the strict topology. Indeed,
V,: corresponds to the map G — B(H); s — mo(s).

When G is a locally compact quantum group, the natural replacement
for C%,.(G,B(H)) is the multiplier algebra M(CO( ) ® Bo(H)). This fol-
lows, as M(Co(G) ® Bo(H)) is isomorphic to C%,.(G,B(H)). Indeed, given
F € C% (G,B(H)) and f € Co(G,Bo(H)) = CO(G) ® Bo(H), clearly the
pointwise products F'f, fF are members of Co(G,Byo(H)), and so F' is a mul-
tiplier, and a partition of unity argument shows that every multiplier arises in
this way.

The following gives a summary of the results of this section. The argument
about multiplier algebras should be compared with [49, Sec. 4], which in turn
is inspired by [2, p. 441].

Theorem 4.12. Let G be a locally compact quantum group, and let 7 :
LY(G) — B(H) be a nondegenerate, completely bounded representation. Then
the following are equivalent:

(1) # extends to a completely bounded map L' (G) — B(H);
(2) Vi is invertible.

In this case, V1 = Vi, and V, € M(Cy(G) ® Bo(H)).

Proof. The equivalences have been established by Theorem 3.3 and Theo-
rem 4.10. Suppose now that V,~! exists. Recall that the coproduct on L>(G)
is implemented by the fundamental unitary by A(z) = W*(1 ® )W for
z € L*°(G). Furthermore, W € M(CO(G) ® Bo(L*(G))). Then Vpi3 =
(A ® )V, )VW_23 = WiyVieasWiaVo o 23 which is a member of M(CO( ) ®
By(L*(G)) ® Bo(H)). Thus V, € M(Co( ) ® Bo(H)) as claimed. O

4.13. Application to (co)isometric corepresentations. A corepresenta-
tion U € L>*(G)®B(H) is a coisometric corepresentation if U is a coisometry,
namely UU* = 1. As A is a *-homomorphism, we see that U* is a co-anti-
representation.

Proposition 4.14. Let U € L>*°(G)®B(H) be a coisometric corepresentation,
associated to 7 : L*(G) — B(H). Then 7 is a completely bounded representa-
tion, with Vz = U*.

Proof. This follows almost exactly as the proof of Theorem 3.3. Let o, 8 € H,
let (f;) be an orthonormal basis of H, and set

= (@wnp)U), yi=(®war)U")
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Then as before, we see that

Z A(zi)(1®yi) = (1 @ L @ wa,p)(U13U23U33) = (t ® wa,3)(U) @ 1,

and similarly

D (1®)Ay:) = (1 ® 1 ® wap)(UasUs3Uss) = (1 @ wa ) (U™) ® 1.
Hence (t®wq,p)(U) € D(S) with S((t®wa,g)(U)) = (t®@wa,g)(U*). As before,
it now follows that 7 is completely bounded with Vz = U*. g

The following is now immediate from Theorem 4.10.

Corollary 4.15. Let U € L>®(G)®B(H) be a coisometric corepresentation.
Then U s unitary.

Corollary 4.16. Let U € L>®(G)®B(H) be an isometric corepresentation.
Then U s unitary.

Proof. As in the proof of Theorem 4.10, following [28, Sec. 4], the opposite
quantum group to G is G°P, where L>*°(G°P) = L>°(G) and A°P = cA. It
follows that corepresentations of G are co-anti-representations of G°P, and vice
versa. The proof follows from the observation that U* is thus a coisometric
corepresentation of G°P. O

An application of this result is to the theory of induced corepresentations
in the sense of Kustermans, [25]. In this paper, a theory is developed allowing
one to “induce” a corepresentation from a “smaller” quantum group to a larger
one. However, in general the resulting corepresentation is only a coisometry,
and not unitary (see [25, Notation 5.3]), and under a further “integrability”
condition, and with an elaborate argument, it is shown that this corepresen-
tation is unitary, [25, Prop. 7.5]. Our result shows that a further condition is
not necessarily, and the induced corepresentation is always unitary.

5. THE SIMILARLY PROBLEM

We recall from [4, Def. 3.2] (for example) that G is amenable if there
is a state m on L*°(G) such that (m,(t ® w)A(x)) = (m,z)(l,w) for = €
L>(G),w € LY(G). Using the unitary antipode, we see that we could have
equivalently used the obvious “left” variant of this definition instead. We call
m a right invariant state.

Based on the results of the previous section, we are now a position to state
the “similarity problem” for locally compact quantum groups: Suppose G has
the property that every completely bounded homomorphism 7 : L'(G) —
B(H), with 7* also extending to a completely bounded homomorphism, is
similar to a *-homomorphism. Then is G necessarily amenable? By Theo-
rem 4.12, this is equivalent to asking if having all invertible corepresentations
being similar to unitary corepresentations forces G to be amenable? When
G is commutative, this reduces to the standard conjecture that a unitarizable
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locally compact group G is amenable. When G is cocommutative, [7] proves
this conjecture in the affirmative—there is of course the stronger conjecture
that actually, no condition on 7* is needed, and we provide more evidence for
this in Section 8 below.

In the following, we shall show how to use an invariant state to “average” an
invertible corepresentation to a unitary corepresentation. This is well-known
in the compact quantum group case (see, for example, [47, Thm. 5.2]). The
noncompact case is similar, but we provide the details, as we are unaware of a
good reference.

Theorem 5.1. Let G be an amenable locally compact quantum group, and
let m: LY(G) — B(H) be a nondegenerate homomorphism. The following are
equivalent:

(1) m is similar to a x-homomorphism;
(2) both w and 7 extend to completely bounded (anti-)homomorphisms L*(G) —
B(H).

Proof. That (1) implies (2) is Proposition 3.4.
Now suppose that (2) holds, and that 7 is nondegenerate, so by Theo-
rem 4.10, V is invertible. Let m € L*°(G)* be a right invariant state. Set

T=(m®:)(V:V:) e B(H).

This means (by definition) that (T, w) = (m, (t ® w)(VFVy)) for w € B(H)..
As V; is invertible, so is the positive operator V*V,, and so, for some € > 0,
we have that V*V,; > el. It follows that for any w € B(H)},

(T,w) = (m, (L @w)(ViVz)) 2 (m, (L @w)(el)) = e{w, 1).
Hence T' > €1, and so we may define
V=01TY)V,1eT %) e L™(G)BB(H).
Then, as A is a unital *-homomorphism,
AR)V)=(1010TY)Vyei3Veas(1® 1@ T Y?)
—(11TY)V, 131010 T V)11 TV, (1010 T ?)
= Vi3Vas.

So V is a corepresentation, say inducing a homomorphism ¢ : L*(G) — B(H).
For w € LY(G), we have that ¢(w) = (w®)(V) = T'/?7(w)T~/2, and so ¢ is
similar to 7.

We next show that V is unitary. For w; € L*(G) and wy € B(H)., we may
define ¢ € B(H). by

(R,) = (V;(1®@ R)Vr,w1 @wa) (R € B(H)).
Then we see that
(L@ ) (Vi Va) = (L @wi @ wa)(Vy 93V 13V 13Vir 23)
= (1 ®@w @w2)((A®)(ViVr)).
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Thus

(T, ) = (m, L@ Y)(Vi Vi) = (m, (1 @ w1 @ w2) ((A © 0)(V Vi)
= (m, (t ® w1)A((t @ w2)(V V7))
=(m, L @uw2)(Vy;Ve(l,w1) = (1T, w1 @ wa).

As wy,wy were arbitrary, we conclude that V(1 ® T)Vy = 1® T. Thus
VYV =0T VWV AeTY)1eTV)\V,(1eT™Y?)
=T H1eT)(1eT ?) =1,

as required.
Arguing as in Theorem 3.3, it is now easy to see that ¢ is a x*-homomorphism,
because V is unitary. a

We can also deal with the case of degenerate representations of L!(G). The
proof of [7, Prop. 6] actually shows the following:

Lemma 5.2. Let A be a *-algebra, and let m1 : A — B(H) be a homomor-
phism. Let w. : A — B(H,.) be the subrepresentation given by restricting to the
essential space H,. Suppose there is a (not necessarily orthogonal) projection
Q from H to H. such that m(a)Q = w(a) for all a € A. Then m is similar to
x-representation if and only if m. is similar to a x-representation.

Theorem 5.3. Let G be an amenable locally compact quantum group, and let
7 : LY(G) — B(H) be a homomorphism. The following are equivalent:

(1) m is similar to a x-representation;
(2) ™ and 7 extend to a completely bounded representation, respectively anti-
representation, LY(G) — B(H).

Proof. That (1) implies (2) is again Proposition 3.4. If (2) holds, then The-
orem 4.10 shows that V, restricts to an invertible operator on L?*(G) ® H,;
that is, V;_ is invertible. So Theorem 5.1 shows that m. is similar to a *-
representation. By Lemma 5.2 it suffices to construct a projection @ : H — H,
with 7(w)Q = 7(w) for w € LY(G).

By Theorem 4.10, P = V, V; is a projection of L*(G) ® H onto L*(G) ® H,.
The proof actually shows that ker P = ker V,Vz = (L*(G) ® H.)* = L?(G) ®
HY. Thus L*(G)® H.NL*(G)® HE = {0}, and so H,NH}- = {0}. Similarly,
L?(G)® He + L*(G) ® H: = L*(G) ® H, and so H, + H} = H. It follows
that there is a projection Q of H onto H, with ker Q@ = HZ.

Now, a € H} if and only if

0= (alf(w)B) = (alr(w")*B) = (r(w)alf)  (we L'(G),B € H).

It follows that for w € LY(G), a € ker @, we have that m(w)a = 0 = 7(w)Qa.
Clearly m(w)®@ = 7(w) on H,, and thus it follows that 7(w)Q = m(w) on H, as
required. O
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6. SPECIAL CASES

In this section, we take an approach which is closer in spirit to [7]. A
cost is that we shall have to assume that G is coamenable. Recall that G is
coamenable if Ll(G) has a bounded approximate identity. This is equivalent to
a large number of other conditions, see [4, Thm. 3.1]. In particular, the proof
of this reference shows that L*(G) has a contractive approximate identity in
this case. It is conjectured that the coamenability of G is equivalent to G
being amenable, but except when G is discrete (see [40]) it is only known that
G coamenable implies that G is amenable. A benefit to the approach of this
section is that in special cases (as for G being a SIN group in [7]) we can
show that if 7 : L(G) — B(H) is completely bounded, then 7 is similar to a
*-homomorphism, without assumption about 7.

Theorem 6.1. Let G be a locally compact quantum group such that G s
coamenable. Let © : LY(G) — B(H) be a completely bounded homomorphism,
such that 7 extends a completely bounded map L'(G) — B(H). Then m is
stmilar to a x-homomorphism.

Proof. Let o, € H and &, € L*(G). From Corollary 4.11, Tg}aj\(djgm) €
MLY(G)). Moreover, an application of Theorem 4.7 to Tg’a shows that

« WEW Z)‘ walﬁ S( b*)n

where, if (f;) is an orthonormal basis for H,

a; = Tg,fia S(br) = S((T;:7a)*) = Tzir,fi'

T oA

In particular,

> leaesonl < (3 ||ais||2)” [$> ||s<b:>n||2)” 2
< | S azad | 52500 el

< ||§||||77||||a||||6||||vﬁ||||vﬁ” = €Il el T BIHI ol 7l cb-

Let (&) be a contractive approximate identity for L*(G). It follows that
for each k, there exists @}, € L'(G) with

(T2 )" A@n) = TEaAG@) =A@ with  [64] < ol
As M(L'(G)) is o-weakly dense in L°°(G), it follows that for w € L*(G),
(T7 5 w) = (T75)" w") = Hm((T7 )" A(@x), ")
— lm(A(@). ") = Im{Aw)", ).

The final equality follows by a simple calculation, see [12, Lemma 8.10]. Thus
((m(w)alB) = KTz, 5 )| < el BlllIllen 17| coll A(w)]]-

Miinster Journal of Mathematics VoL. 6 (2013), 445-482



468 MICHAEL BRANNAN, MATTHEW DAWS, AND EBRAHIM SAMEI

As M(L'(G)) is dense in Co(G), by continuity, there is a homomorphism ¢ :
Co(G) — B(H) with

ol < llImlleplFlleos ¢ oA =

As G is coamenable, it follows that G is amenable (see [4, Thm. 3.2]) and
that hence Cy(G) is a nuclear C*-algebra (see [4, Thm. 3.3]). The similarly
problem has an affirmative answer for nuclear C*-algebras (see [9, Thm. 4.1])
S0 ¢ is similar to a x-homomorphism. As ) is a x-homomorphism on Lé(G), it
follows that 7 (restricted to L§(G)) is also similar to a *-homomorphism.

The above reference to [9] needed that ¢ (that is, ) is nondegenerate. But
as Co(G) has a bounded approximate identity, we can simply follow [7, Prop. 6]
to deal with the case when 7 is degenerate. 0

The above proof is interesting because in special cases, it allows us to remove
the hypothesis that 7 is completely bounded (or even bounded on all of L' (G)).
This idea was used for SIN groups in [7], the key point being that if G is SIN,
then the Plancherel weight on VN (G) can be approximated by tracial states
in A(G). Tt seems unlikely that many genuinely “quantum” groups will have
this property, and so we shall restrict attention to the compact case, where we
have many nontrivial examples.

Recall that a locally compact quantum group G is compact if Co(G) is
unital. Here, the existence of Haar weights follows from simple axioms, see
[48]. We shall be interested in the case when the Haar state is tracial—by [48,
Thm. 2.5] this is equivalent to G being a compact Kac algebra. See [3, 46, 45]
for some genuinely “quantum” examples of compact Kac algebras.

Theorem 6.2. Let G be a compact Kac algebra, and let 7 : L*(G) — B(H) be
completely bounded homomorphism. Then m is similar to a x-homomorphism.

Proof. As the dual G is discrete, L*(G) is unital. Indeed, if A : L®(G) —
L*(G) is the GNS map, then it is not hard to show that the state Wy is

the unit of L'(G). Following the proof of Theorem 6.1, we wish to show that
T§ JM@aa)) = A(@) for some & whose norm is controlled. As S = R in this
case, we really have to show that

S |Rasw] = X o(RUT ) RUTE0))
=Y o((17.)TF.0) <oc.

where ¢ is the (normal, tracial) Haar state on L>°(G), which satisfies po R = ¢.
However, as ¢ is a trace, this sum is

S o (Thal0F.0)7) = X o (12,77 ,)

= (L@ wa) (V7 V2)) < [ImlZ el

Then we can just continue as in the proof of Theorem 6.1. g
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The above proof could be adapted to a general Kac algebra provided that
we can find a bounded approximate identity (&, ., ) for L'(G) such that, for
each k, we have that w,, is tracial (by scaling 1, and &, we can suppose
that ||ng]] = 1 for each k, but we also need at least that supy [|k] < 00).
In particular, we can only apply this to G if G is a SIN group, by using the
proof of [38, Prop. 3.2] (and so we have reproved [7, Thm. 20]). However, this
argument will not extend to other classes of groups.

For a general compact quantum group, we can consider the Hopf x-algebra
A C Cp(G) formed from the matrix coefficients of irreducible representations.
On this algebra, we have reasonably explicit formulae for the antipode S and
the Haar weight ¢ (see [39, Sec. 3.2] for example). A little calculation shows
that if, in reasonable generality, we have something like

Z p(S07)"S(b])) = Z o(bib;),

then already ¢ is a trace. So to extend the above result to general compact
quantum groups (if it is true at alll) probably needs a new idea.

7. THE IMPORTANCE OF COMPLETE BOUNDEDNESS

Up to this point, we have restricted our attention to completely bounded
representations 7 : L(G) — B(H), and derived some interesting structural
results for such representations. A natural question which arises is: what can
be said about bounded representations m which are not completely bounded,
if such representations even exist? In [8] Choi and the 3rd named author
answered the existence part of this question by constructing a bounded, but
not completely bounded, representation © : A(G) — B(H), for any group
G which contains Fy as a closed subgroup. In particular, for G = Fq, every
completely bounded representation of A(G) is similar to a #-representation ([7,
Thm. 20], see also Theorem 6.2 above) but there are bounded representations
of A(G) not similar to *-representations.

In this section, we will consider free products of compact quantum groups,
and Khintchine inequalities for reduced free products, to construct examples
of noncommutative /noncocommutative compact quantum groups G such that
L'(G) admits bounded representations 7 : L'(G) — B(H) which are not sim-
ilar to x-representations. To be precise, we will show the following.

Theorem 7.1. Let G be a nontrivial compact quantum group, and let G =
x;eNG; be the compact quantum group free product of countably many copies of
G (or let G = T*G). Then there exists a bounded representation 7 : L*(G) —
B(H) which is not completely bounded. In particular, m is not similar to a
x-representation.

For completely bounded representations 7 : LY(G) — B(H) (with 7* also
completely bounded), a key result in the preceding sections was Corollary
4.11, which showed that each coefficient operator T’?”B € L*(G) (a,p € H)

[e3%

induces a completely bounded multiplier of the dual convolution algebra L' (G)
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The following corollary shows that for noncompletely bounded representations,
there is no hope of generalizing Corollary 4.11.

Corollary 7.2. Let G and w : L*(G) — B(H) be as in the statement and proof
of Theorem 7.1. Then there exist vectors a, B € H with the property that the
map \@) — T’TB)\( @) (@ € LY(G)) does not induce a bounded left multiplier

of L*(G).

Proof of Corollary 7.2. We use an argument similar to the proof of [15, Thm.
2.3]. Suppose, to get a contradiction, that each coefficient T, 5 induces a

multiplier of L!(G), as in Corollary 4.11. Then for each «, 3 € H, as L*(G) is

unital, there exists a unique @Z,B € LY(G) such that T7~T = AT t.5)- Define
a sesquilinear map Q : H x H — Ll(@) by setting Q(«, ) = waB We
claim that @ is separately continuous. To see this, fix g € H and suppose
limn_,ooja — ap| = 0 and lim, 0 Qay,,8) = @ € Ll(@). Then for any
w € LYG),
AN@),w) = nh_)n;g(A(Q(an,ﬁ)),w> = n11_>H;O<Tam,va> = nh_}ngo (w(w)an|ﬁ)
= (7~T(LLJ)O(|B) = < oTLF,va> = <)\(Q(0¢,B)),w)

Therefore A(@) = MQ(w, B8)), giving @ = Q(w, 8), and the closed graph the-
orem implies that ) is continuous in the first variable. The same argument
applies to the second variable, proving the claim.

Since any separately continuous sesquilinear map is bounded (see for ex-
ample [33, Thm. 2.17]), there is a constant D > 0 such that ||@ZB||L

D|a|]|8]] for all o, 8 € H. As a consequence, we have
|(F(w)adB)| = [(A@5 ), )] = [(AW")", &7 )]
< ||@Z7,@||||)\(w Il < DllalllBIIA)] (w e LHG)),

= <
HG) —

~

showing that 7 extends to the bounded anti-representation o : Co(G) — B(H)

determined by o o A = 7. Since G is compact, CO(@) is nuclear, and it follows

that o is automatically completely bounded. But then |||/ = ||7||ee = ||o ©
AMlev < |lolles < 00, contradicting the fact that 7 is not completely bounded.
O

7.3. Reduced free products. Before proceeding with the proof of Theorem
7.1, let us recall the construction of the reduced free product of a collection of
C*-algebras equipped with distinguished states. For further details see [1], [44]
or the introduction to [31]. Let I be an index set, and for each 7 € I let A; be
a C*-algebra (assumed unital), and let ¢; be a state on A; with faithful GNS
construction (m;, H;,&;). Let Dy be the collection of all “words” in I, that is,
tuples (i1,--- ,i,) with i; # ;41 for each j; we allow the empty word @. Set
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HY = & C H;, and let H be the Hilbert space direct sum of H?l R Q® H?n
as (i;) varies through Dy; we interpret the space for @ € D as being a copy
of C. Thus H is some sort of generalized Fock space construction. Let Q € H
be the vector 1 € C.

For each ¢ € I there is an obvious isomorphism

He=(CoH)o (D {H ©- 0 H), | (i) € Drir #i})
= Hio (@{H, @ @ HY | (iy) € Diit #1i}).

Let U; be the unitary implementing this isomorphism, and define 7; : A; —
B(H);a— U} (m(a) ® 1)U;, a faithful #-representation of 4; on H. A descrip-
tion of U; is given in [1], but let us just note that if a; € A; with ¢;(a;) = 0,
then ﬁi(ai)ﬂ = ai& S H?

Let A be the algebraic free product of the (4;), amalgamated over units.
Then 7 = *;¢7; is a faithful x-representation of A on B(H). By definition, the
reduced free product *;c4A4; is the closure of w(A). The vector state induced
by Q is the free product of the states, denoted *;c ;. Notice that (m, H,Q) is
the GNS construction for x;c;p;. Denote by A the full free product, which is
the completion of A under the norm given by considering all x-representations
of A; on a common Hilbert space.

If each A; were a von Neumann algebra, with normal states ¢;, then the
(reduced) von Neumann algebraic free product is simply the weak operator
closure of *;c7A; in B(H).

In [45] Wang studied free products of compact quantum groups (see also [39,
Sec. 6.3]). If for each ¢ we have a compact quantum group G;, then we form
G = *,c1G; as follows. Let Cy(G) be the reduced free product of (Co(G;), ¢i),
where ; is the Haar state. For each ¢ let ¢; : Co(G;) — A be the inclusion,
and let A; be the coproduct on Co(G;). Set p; = (1; ®1)A; : Co(G;) = AR A.
By the universal property of A, there is a *-homomorphism A : A - A® A
such that A¢; = p; for each 4. It is easy to see that A is coassociative, and by
using the corepresentation theory of compact quantum groups, one can verify
the density conditions to show that (A, A) is a compact quantum group.

Then [45, Thm. 3.8] shows that the Haar state on (A4, A) is just the free
product of the Haar states on each Cy(G;). It follows that the reduced version
of A is just Cy(G), and thus A drops to a coproduct on Cy(G).

We require the following noncommutative Khintchine inequality describing
the operator space structure of the linear span of a family of centered freely
independent operators. See [21, Prop. 7.4] or the introduction to [31]. In fact,
we shall only use the k = 1 case, which is attributed to Voiculescu [43].

Theorem 7.4. Let I be an index set, and for each i € I, let A; be a von
Neumann algebra with faithful normal state ;. Let (A, @) = (xicrdi, *ic1p:)
be their von Neumann algebraic free product. Then for any x; € A; with
vi(z;) = 0, and any finitely supported family {a;}icr € Mr(C) (k € N), we
have
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1/2
’Mk((C)7

e { o © il ey || S atoseitaran)
i€l

] }
a;ja;p;i(x;x; ‘
iel M (©)

SHZ%‘@%‘

el

M (C)®A

)

’1/2

M (C)
H Z ( ) 1/2 }
a;a; oi(z;x; ‘ .

iel M (©)

Now let G be a nontrivial compact quantum group, set G; = G for each
1 € N, and let G= *;eNG; be the free product. (We will show how to modify the
following arguments to address the case of G = T*G in Remark 7.9.) Fix once
and for all a nontrivial irreducible unitary representation U € L*°(G) ® M4(C)
and for each i € N, let U' € L=(G) ® My(C) be the irreducible unitary
representation of G induced by the inclusion L*(G;) < L>=(G). Note that the
U?s are pairwise inequivalent representations. Finally, let L = {(+ ® p)U" :
p € My(C)*} be the coefficient space of U’ and let X be the weak*-closed
linear span of all the L{°’s.

< 3max { max[|a; ® il ar ()0 45 H ; a; aipi (27 wi)

Lemma 7.5. There is a constant C' > 0 such that
||xQHL2(@) < ||ZUHL00((;,) < C”xQHLz(@) (z € X).

Proof. The lower bound is immediate. To get the upper bound, fix x € X
and write x as an L2-convergent series z = ZieN x; € X where each z; is a
member of L. As U is nontrivial, the Haar state annihilates all coefficients
of U, and so we can apply the k = 1 version of Theorem 7.4 to see that

i} 1/2 L\ 1/2
el @y < 3 { sl (o) s (S eeiasat)) )
ieN €N

1/2
— smax { s ez, o8l (X Ioi6ilie,)

ieN
Since the spaces L7° are all finite dimensional and isometrically isomorphic,
there exist constants C7, Cs > 0 such that

lzillLee < CillziillL2ey and  ||27&ille2c,) < CallziillLa@e) (@ €N).
The lemma now follows by taking C' = 3max{C1, Cs}. O

Lemma 7.6. The pre-annihilator - X is a closed two-sided ideal in L'(G).
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Proof. By linearity, it is enough to show that if w € *X and z = (1 ® p)U?

for some i € N and p € My(C)*, then (z,ww’) = 0 = (z,w'w) for v’ € L(G).
However,

(2, 00') = (A@),w 8 W) = (UlyUks w0’ @ p) = (U0 (& @ 0)(U7)p) = 0,
i

as p = (W @) (UYp € Myg(C)* and (+ ® p')(U?) € X. Similarly, (z,w'w)
0.

Ol

Consider now the space £2(N, M), which is a Banach algebra under point-
wise operations.

Proposition 7.7. The map
¢: LYG) — (N, My); wws ((w)(UY)

is well-defined, bounded, and is an algebra homomorphism. Furthermore, ¢
drops to give a isomorphism between L'(G)/*X and (?(N, My).

Proof. The dual space of (2(N, M) is 2(N,M}). Let p = (p;) € (*(N, M),
and let z; = (L®p;)(U") € L°. Forn € N, let x = Y 1 | x; € X. Observe that

Q=" 2, Q= " x;& as @i(x;) = 0 for each i. As the ;&; are pairwise
orthogonal in the Fock space H, it follows that

n n n
22 =" llaaill® < Y llaal® < Y loill® < ol
i=1 i=1 i=1

Letting C' be the constant from Lemma 7.5, we see that

’zn:@i,(w@L)(Ui»‘ — ’i(mi,w‘ = |(z,w)|

< lwlllizll < Cllwlllz2]] < Cllw(lo]l-
As n and p were arbitrary, it follows that ¢ is well-defined, and ||¢| < C.

For each i, as U’ is a corepresentation, the map L'(G) — My(C);w ~
(w® ¢)(U?) is a homomorphism. It follows that ¢ is also a homomorphism.
Notice that ¢(w) = 0 if and only if (w ® ¢)(U?) = 0 for each i, if and only if
w € 1L for each i, if and only if w € L X. So ¢ drops to give an injective
map L'(G)/+ X — (2(N, My).

Notice that ¢* : £2(N, M%) — (1 X)+ = X is the map (p;) — X2, (c@p:) (U).
As U is irreducible, the map M — L>*(G), p — (¢ ® p)(U) is injective, and
so also the map M; — L*(G), p — A((t ® p)(U)) is injective. Thus there is a
constant C” such that ||p|| < C'||(t ® p)(U)&|| for all p € Mj,i € N. Then, for
(pi) € 2(N, M),

1a)lP < €= DN p) (U&= €

ieN

S e el

I

2
<c”? = C"||6* ((p1))

PAETHICE
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Thus ¢* is bounded below, which implies that ¢ is a surjection, and so the
proof is complete. O

7.8. Proof of the main theorem. The final part of the construction is to
find a bounded-below homomorphism 6 : ¢*(N, M) — B(H) for a suitable
Hilbert space H. Given §,n € H, denote by ¢, the rank-one operator H —
H;~v — (y[n)€. Recall from [8, Sec. 3.1] that if we denote by (d;) the canonical
orthonormal basis of £2(Ny) or ¢2(N), and define 6y : £2(N) — B(£3(Ng)) by
00(d;) = 6s,,6,+6,, then 6y extends by linearity and continuity to a bounded
below algebra homomorphism.

Set H = C? ® (*(Np), and regard ¢2(N, M) as My ® ¢*(N). Now define
0 = (t®0p) : £2(N, My) — Ma@B(¢£*(Ny)) = B(H), an algebra homomorphism.
As My is finite-dimensional, clearly 6 is bounded, and bounded below. We can
now prove the main result of this section.

Proof of Theorem 7.1. Form X as above, and the algebra isomorphism ¢ :

LY(G)/*X — 2(N, My). Let q : LY(G) — LY(G)/* X be the quotient map.
Let m = 0 o ¢ o q, so that 7 is a bounded representation of L!(G).
Towards a contradiction, suppose that 7 is completely bounded, and hence

associated to a corepresentation V; € L>°(G)®B(H). Set
U=> U'®0,s € L®(G)BMEB((*(No)) = L=(G)BB(H),
ieN
where the sum converges o-weakly (think of U as being a block diagonal matrix,

with diagonal entries U?, which are all unitary). For w € L'(G), £ € C% and
k € Ng, we have that

T(W)(€ ® k) = dro(w @ )(U)(E) @ i + dpi(w @ ) (U*)(€) @ b
Consequently,
(w® ) (Ve = U)(E @) =7(w)(€ @ k) — (w @) (U")(€) @ bk
= 0ro(w®)(U) () ® ;.

If we now set

2 = (L@ wsy6,) (Ve — U) € L=(G)B M,
then ), x¥x; converges o-weakly to (¢ ® ws,.s,) (Ve —U)*(Vx —U)). However,

for w € LY(G) and ¢ € C4, also
Z(w ® 1) (i) (§) ®0; = Z(w @) (Ve —U)(E® &) = Z(w © ) (U)(€) @ 6.

[ 7 7

It follows that 2; = U*® for all i, and hence each z; is unitary, which contradicts
>, xfx; converging. We conclude that 7 is not completely bounded, and hence
cannot be similar to a x-representation. g

Let us make a remark about 7*. As each U’ is a unitary corepresentation,
we have that (w! ® ¢)(U") = (w ® ¢)(U")* for each w € L{(G). Thus if we give
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(2(N, M) the pointwise  operation, it follows that ¢ o ¢ : L' (G) — £2(N, My)
is a *-homomorphism. Thus

(W) = 7w = 0(d(e(w))" (e Li(G)).

It follows that 7* extends to a bounded homomorphism on L(G). It is easy to
compute explicitly what 6(a*)* is, for each a € ¢?(N, My), and then adapting
the argument in the previous proof will show that 7* is also not completely
bounded.

Remark 7.9. We now briefly address the case where G = T G in Theorem
7.1. Let z denote the canonical Haar unitary generator of L*°(T), and let
U € L*(G) ® Mq(C) be our fixed nontrivial irreducible unitary representation
of G. For each i € N, consider the tensor product unitary representation of G
given by Vi = 2 KU K 2~ € L®(G) ® My(C) (where 2 is viewed as a one-
dimensional representation of T). It follows from [45] that the representations
{V*}.en are pairwise inequivalent and irreducible. Our claim is that the above
proof for G= *;enG; goes through unchanged with the family {U};cn replaced
by {Vi}iel\h _

To see this, observe that the only facts that we used about G and {U'};en
are: (1) each representation U is d-dimensional, (2) the elements of the coeffi-
cient spaces L$° associated to U’ are centered with respect to the Haar state,
and (3) the von Neumann algebras A; generated by L2° are pairwise freely
independent in (L>(G), ¢). For the family {V?};en, conditions (1) and (2) are
automatically satisfied. To see that condition (3) is also satisfied, note that if
Ao € L®(G) — L>(G) denotes the von Neumann algebra generated by the
coefficient space of U, then A; = 2! Agz~* for each i € N. Using this fact,
condition (3) is easily seen to be a simple consequence of the definition of free
independence (see [29, Def. 5.3], for example) and the fact that z is *-free from

Ag.
8. FOR THE FOURIER ALGEBRA

In this section, we collect some further special cases for the Fourier algebra.
These add further weight to the conjecture that every completely bounded
representation m : A(G) — B(H) is similar to a x-representation. The main
results of this section are as follows.

Theorem 8.1. Let G be an amenable locally compact group, and let 7 :
A(G) — B(H) be a completely contractive representation. Then m is a *-
representation.

Theorem 8.2. Let G be an amenable locally compact group which contains
an open SIN subgroup K C G. Then every completely bounded representation
m: A(G) — B(H) is similar to a x-representation.

The proofs of the above results rely on the fact that when G is an amenable
locally compact group, A(G) is always a 1-operator amenable completely con-
tractive Banach algebra, see [32].
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Definition 8.3. Let A be completely contractive Banach algebra, and denote
by m : ARA — A the multiplication map. A net {d,} in A®A is called a
bounded approximate diagonal for A if {d,} is bounded and for every a € A,

a-dy—ds-a—0 and am(d,) — 0,
where A®A has the usual A-bimodule structure,
a-b®c)=ab®c, (b®c)-a=bRca (a,b,c € A).
An element M € (A®A)** is called a virtual diagonal provided that
a-M=M-a, am™(M)=a (a € A).

Ruan proved in [32] that the a has a bounded approximate diagonal in A®A
if and only if it has a virtual diagonal in (A®A)** (and, in turn, these are
equivalent to A being operator amenable).

Now let L > 0. A is called L-operator amenable if it has a virtual diagonal
M € (A®A)*™ such that |M|| < L. The operator amenability constant of
A is N := inf{L : A is L-operator amenable}. By Alaoglu’s theorem, the
operator amenability constant is attained, that is, A has a N-virtual diagonal
in (A®A)**. Since any virtual diagonal has norm at least 1, the operator
amenability constant is at least 1.

Proof of Theorem 8.1: Since G is amenable, A(G) has a contractive approxi-
mate identity. Hence it follows from [7, Rem. 7] (see also Lemma 5.2) that =
is a *-representation if and only if 7. is a *-representation, where 7, = 7|g, is
the essential part of m. So, without loss of generality, we can assume that 7 is
nondegenerate.

Put A = 7(A(G)). Since A(G) is 1-operator amenable and 7 is a complete
contraction, it follows that A is also 1-operator amenable. It follows from [5,
Thm. 7.4.18(ii)] that A is a (commutative) C*-algebra. (Note that the proof of
[5, Thm. 7.4.18(ii)] is for unital operator algebras but it can be easily modified
to apply to our case as well). We now follow the proof of [7, Cor. 9]. Indeed,
the adjoint operation on a commutative C*-algebra (in particular, on A) is a
complete isometry. Recall that 7* is defined by

™) = (@*  (ue AG)).

Now, the map u — @ is an anti-linear complete isometry, and thus ||7*||. =
||7|lco- Hence by [7, Thm. 8], there is an invertible operator T' € B(H) and a
s-homomorphism o : Cy(G) — B(H) such that

7(u) =T lo(u)T (u e A(@)).
Moreover, T can be chosen so that
L<ITINTHE < iz (12, < 1.

So |IT|IIT7Y|| = 1, and so, by replacing T with T/||T||, we can assume that
|T| = ||T~!|| = 1 which means that T is unitary. Hence

7() =T 'o(\T = T*c(:)T
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is a *-homomorphism, as claimed. (]

We now turn to the proof of Theorem 8.2. For a locally compact group G
and an open subgroup K of G, let G = |J, ;7K denote the decomposition of
G to distinct left cosets of K (i.e. K NyK = & if x # y). For every element
u € A(G) and = € I, write

Uy = UXzK
where Y. i is the characteristic function of the coset K. Since K is open, each
Xz k& 18 a norm-one idempotent in the Fourier-Stieltjes algebra B(G) = C*(G)*
[19, Prop. 2.31]. Since A(G) is a closed ideal in B(G), we conclude that
u, € A(G). We let
A(zK) = A(G)xzk-
Since K is open, the canonical embedding of the Fourier algebra A(K) into
A(G) (that is, extending functions by zero outside of K) is completely iso-
metric, allowing us to identify A(K) with its image A(eK) unambiguously. In
what follows, we shall consider the translation operators L, : A(K) — A(zK)
defined by
(Low)(y) = u(zly),  (ue A(K)).
Since left translation on A(G) is completely isometric, L, : A(K) — A(zK)
is always a completely isometric algebra isomorphism. Finally, for any homo-
morphism 7 : A(G) — B(H), let m, (x € I) denote the restriction of 7 to the
ideal A(zK).

Proof of Theorem 8.2: Since G is amenable, A(G) has a contractive approxi-
mate identity, and we may again assume that 7 is nondegenerate.

As above, we have that G = (J,;2K. For every x € I, the mapping
7y 0 Ly © A(K) — B(H) defines a completely bounded homomorphism of
A(K) on H, and so by [7, Thm. 20], 7, o L, extends continuously to a bounded
representation o, : Co(K) — B(H) with

loa ]| < ll712,.

Let {fa}aea C A(K) be a contractive approximate identity for Cy(K). For
every u € A(G), we have

hglax(fa)ﬂ'(u) = liénax(fa(quuz)) =0z(Lp—1uy) = 7(ug).

This, together with the fact that 7 is nondegenerate, implies that E,, the limit
of the net {o,(f)} in the strong operator topology of B(H), exists. Moreover,
for every z € I, E, is an idempotent and for every x # y,

(4) E.E, =0.

Now let A = n(A(G)) C B(H) . Since A is the closure of the range of a
completely bounded homomorphism of the operator amenable Banach algebra
A(G), it is itself operator amenable. Hence, by combining [5, Prop. 7.4.12(ii)]
and [20, Cor. 4.8], it follows that

—s.o0.t.

A=A
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where 4" refers to the closure of A in the strong operator topology of B(H ).
In particular, A” is commutative and for every = € I,

E,e A"

Therefore, again by combining [5, Prop. 7.4.12(ii)] and [20, Lemma 4.4], there is
an invertible operator T € B(H) such that T~ E, T is an orthogonal projection
for all x € I. Let

P, =T'E,T and p,(-)=T 'o.()T (xz€l).

For every z,y € I with = # y, it follows from (4) that P, P, = 0. This implies
that, for every u,v € Cy(K),

(5) 02 (1) py(0) = pu (W) P Pypy (v) = 0,
and
(6) Pz (w)py(v)* = ps (u)PIP;py(v)* =0.

Now let u € A(G). For every z,y € I with x # y, it follows from (5) that
(T7(ua)T ™) (T (uy) T = pu(Ly-1us) py(Ly-1uy) = 0.
Similarly (6) implies that
(T7(uz)T ™) (Tr(uy)T™Y)" = 0.

Hence {(T 7 (u.)T)* (T~ 1(uz)T)}zer is a family of pairwise orthogonal pos-
itive operators on H, and therefore

1T ()T ~H* = |(Tr(w) T~ (Ta(w)T )|
= | Sy ()|

xel
= sup (T ()T~ (T (ue )T )| < ||T||2||T—1||2s1£ 17 (uz) |12

ITIPNT = el lullZ-

Thus T'w(-)T~! extends continuously to a bounded homomorphism of Cy(G)
into B(H), and hence, so does w. The result now follows. O

One class of amenable locally compact groups having open SIN subgroups
are the amenable, totally disconnected groups. In particular, if we assume
further that they are noncompact, then they give us examples of non-SIN
groups satisfying the assumption of Theorem 8.2. These groups, for instance,
include Fell groups (see [34, Sec. 2] for more details).

APPENDIX A. DUALITY FOR CLOSED OPERATORS
In this appendix, we will prove the following result.

Proposition A.1. Let G be a locally compact quantum group, and let x,y €
L>(G) be such that (x,w*) = (y,w) for all w € L&(G). Then x € D(S) with
S(x)* =y.
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Firstly, note that as S = R7_;/5, we have that w € L&(G) if and only if
there is w’ € L1(G) with

(x, ') = (1_i 0 (x),w") (x € D(1_;/2))-
Indeed, if this holds, then for € D(S), we have that
(z,w' o R) = (1_;/2(R(x)),w") = (S(2)*,w),

so w! = w’ o R. The converse follows similarly.
Set D = L{(G)* = {w* | w € L{(G)} and for w € D let ' = (Wt Tt
follows that the proposition above is equivalent to the following.

Proposition A.2. Let G be a locally compact quantum group, and let x,y €
L>(G) be such that (x,w") = (y,w) for all w € D. Then x € D(1_;/3) with

Y= Tfi/2(33)'

Perhaps the “standard” proof of the proposition would be to “smear” x and
y by the one-parameter group (7;); compare [26, Prop. 4.22] or the proof of
[27, Prop. 5.26], for example. Instead, we wish to indicate how to prove the
result by using closed operators.

Given a topological vector space E and a subspace D(T') C E, a linear
map T : D(T) — E is closed and densely defined if D(T') is dense in E, and
the graph G(T') = {(z,T(x)) | © € D(T)} is closed in E x E. Define also
G'(T)={(T(z),z) | x € E}, which is closed if and only if G(T) is. Let E be a
Banach space—we shall consider the case when E has the norm topology, and
when E* has the weak*-topology.

Let T : D(T) — E be a linear map. Set D(T*) = {p € E* | I\ €
E*, (N z) = {(u,T(x)) (x € D(T))}, and with a slight abuse of notation, set
G(T™) to be the collection of such (i, \). Notice that:

o G'(—T*) = G(T)*, and so G(T*) is weak*-closed;

e D(T) is dense if and only if ()\,0) € G(T)* = X = 0, which is
equivalent to G(T*) being the graph of an operator (that is, the choice
of A\ being unique);

e G(T) = *+(G(T)*) = LG/ (=T*) and so D(T*) is weak*-dense, because
G(T) is the graph of an operator.

It follows that T is a closed, densely defined operator, for the weak*-topology.
We can similarly reverse the argument, and start with 7™, and define a closed,
densely defined operator T by setting D(T) = {x € E | Jy € E, {(u,y) =
(T*(n),z) (we D(T*))} and T'(z) = y. Furthermore, these two constructions
are mutual inverses, so if we start with 7%, form 7', and then form the adjoint
of T', we recover T*. We are not aware of an entirely satisfactory reference for
this construction, but see [23, Sec. 5.5, Chap. III].

Proof of Proposition A.2. We apply the preceding discussion to 7_; /» acting on
L>(G). As 7_;/5 is the analytic generator of the o-weakly continuous group
(1¢), it follows from [10] that 7_;/, is o-weakly closed and densely defined.
Let 7, _;/2 be the pre-adjoint, which from the above is hence a (norm) closed,
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densely defined operator on L*(G). It follows that D = D(7, _;/») and that

/

W' = 7, _is2(w) for w € D. The hypothesis of the proposition now simply
states that € D((7.,—i/2)") and y = (7. _i/2)*(x). The claim now follows
from the fact that (7, _;/2)* = 7;/2. O

We remark that, for example, this argument gives a very easy proof that
Lr} (G) is dense in L*(G), without the need for a “smearing” argument (compare
with the discussion before Proposition 3.1 in [24]).
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