On transverse triangulations

Aleksey Zinger

(Communicated by Siegfried Echterhoff)

Abstract. We show that every smooth manifold admits a smooth triangulation transverse to a given smooth map. This removes the properness assumption on the smooth map used in an essential way in Scharlemann’s construction [6].

1. Introduction

For \(l \in \mathbb{Z}^\geq 0 \), let \(\Delta^l \subset \mathbb{R}^l \) denote the standard \(l \)-simplex. If \(|K| \subset \mathbb{R}^N\) is a geometric realization of a simplicial complex \(K \) in the sense of [5, Sec. 3], for each \(l \)-simplex \(\sigma \) of \(K \) there is an injective linear map\(^1\) \(\iota_\sigma : \Delta^l \rightarrow |K| \) taking \(\Delta^l \) to \(|\sigma|\). If \(X \) is a smooth manifold, a topological embedding \(\mu : \Delta^l \rightarrow X \) is a smooth embedding if there exist an open neighborhood \(\Delta^l_\mu \) of \(\Delta^l \) in \(\mathbb{R}^l \) and a smooth embedding \(\tilde{\mu} : \Delta^l_\mu \rightarrow X \) so that \(\tilde{\mu}|_{\Delta^l} = \mu \). A triangulation of a smooth manifold \(X \) is a pair \(T = (K, \eta) \) consisting of a simplicial complex and a homeomorphism \(\eta : |K| \rightarrow X \) such that

\[
\eta \circ \iota_\sigma : \Delta^l \rightarrow X
\]

is a smooth embedding for every \(l \)-simplex \(\sigma \) in \(K \) and \(l \in \mathbb{Z}^\geq 0 \). If \(T = (K, \eta) \) is a triangulation of \(X \) and \(\psi : X \rightarrow X \) is a diffeomorphism, then \(\psi_* T = (K, \psi \circ \eta) \) is also a triangulation of \(X \).

Theorem 1.1. If \(X, Y \) are smooth manifolds and \(h : Y \rightarrow X \) is a smooth map, there exists a triangulation \((K, \eta) \) of \(X \) such that \(h \) is transverse to \(\eta|_{\text{Int} \sigma} \) for every simplex \(\sigma \in K \).

This theorem is stated in [8] as Lemma 2.3 and described as an obvious fact. As pointed out to the author by Matthias Kreck, Scharlemann [6] proves Theorem 1.1 under the assumption that the smooth map \(h \) is proper, and his argument makes use of this assumption in an essential way. For the purposes of [8], a transverse \(C^1 \)-triangulation would suffice, and the existence of a such

\(^1\)i.e. \(\iota_\sigma \) takes the vertices of \(\Delta^l \) to the vertices of \(|\sigma|\) and is linear between them, as in [8, Footnote 5]
triangulation is fairly evident from the point of view of the Sard-Smale Theorem [7, (1.3)]. On the other hand, according to Matthias Kreck, the existence of smooth transverse triangulations without the properness assumption is related to subtle issues arising from the topology of stratifolds [2]. In this note we give a detailed proof of Theorem 1.1 as stated above, using Sard’s theorem [3, Section 2].

2. Outline of the proof of Theorem 1.1

If \(K \) is a simplicial complex, we denote by \(sd\ K \) the barycentric subdivision of \(K \). For any nonnegative integer \(l \), let \(K_l \) be the \(l \)-th skeleton of \(K \), i.e. the subcomplex of \(K \) consisting of the simplices in \(K \) of dimension at most \(l \). If \(\sigma \) is a simplex in a simplicial complex \(K \) with geometric realization \(|K| \), let

\[
St(\sigma, K) = \bigcup_{\sigma' \subset \sigma} \text{Int} \sigma'
\]

be the star of \(\sigma \) in \(K \), as in [5, Sec. 62], and \(b_\sigma \in sd\ K \) the barycenter of \(\sigma \). The main step in the proof of Theorem 1.1 is the following observation.

Proposition 2.1. Let \(h : Y \to X \) be a smooth map between smooth manifolds. If \((K, \eta) \) is a triangulation of \(X \) and \(\sigma \) is an \(l \)-simplex in \(K \), there exists a diffeomorphism \(\psi_\sigma : X \to X \) restricting to the identity outside of \(\eta(St(b_\sigma, sd\ K)) \) so that \(\psi_\sigma \circ \eta|\text{Int} \sigma \) is transverse to \(h \).

If \(\sigma \) and \(\sigma' \) are two distinct simplices in \(K \) of the same dimension \(l \),

\[
\text{St}(b_\sigma, sd\ K) \cap \text{St}(b_{\sigma'}, sd\ K) = \emptyset.
\]

Since \(\psi_\sigma \) is the identity outside of \(\eta(St(b_\sigma, sd\ K)) \) and the collection \(\{\text{St}(b_\sigma, sd\ K)\} \) is locally finite, the composition \(\psi_l : X \to X \) of all diffeomorphisms \(\psi_\sigma : X \to X \) taken over all \(l \)-simplices \(\sigma \) in \(K \) is a well-defined diffeomorphism\(^2\) of \(X \). Since \(\psi_l \circ \eta|\sigma = \psi_\sigma \circ \eta|\sigma \) for every \(l \)-simplex \(\sigma \) in \(K \), we obtain the following conclusion from Proposition 2.1.

Corollary 2.2. Let \(h : Y \to X \) be a smooth map between smooth manifolds. If \((K, \eta) \) is a triangulation of \(X \), for every \(l = 0,1, \ldots, \dim X \), there exists a diffeomorphism \(\psi_l : X \to X \) restricting to the identity on \(\eta(|K|_{l-1}) \) so that \(\psi_l \circ \eta|\text{Int} \sigma \) is transverse to \(h \) for every \(l \)-simplex \(\sigma \) in \(K \).

This corollary implies Theorem 1.1. By [4, Chap. II], \(X \) admits a triangulation \((K, \eta_{-1}) \). By induction and Corollary 2.2, for each \(l = 0,1, \ldots, \dim X - 1 \) there exists a triangulation \((K, \eta_l) = (K, \psi_l \circ \eta_{l-1}) \) of \(X \) which is transverse to \(h \) on every open simplex in \(K \) of dimension at most \(l \).

\(^2\)The locally finite property implies that the composition of these diffeomorphisms in any order is a diffeomorphism; by (1), these diffeomorphisms commute and so the composition is independent of the order.
3. Proof of Proposition 2.1

Lemma 3.1. For every \(l \in \mathbb{Z}^+ \), there exists a smooth function \(\rho_l : \mathbb{R}^l \to \mathbb{R}^+ \) such that
\[
\rho_l^{-1}(\mathbb{R}^+) = \text{Int} \, \Delta^l.
\]

Proof. Let \(\rho : \mathbb{R} \to \mathbb{R} \) be the smooth function given by
\[
\rho(r) = \begin{cases}
 e^{-1/r}, & \text{if } r > 0, \\
 0, & \text{if } r \leq 0.
\end{cases}
\]
The smooth function \(\rho_l : \mathbb{R}^l \to \mathbb{R} \) given by
\[
\rho_l(t_1, \ldots, t_l) = \rho \left(1 - \sum_{i=1}^{l} t_i \right) \cdot \prod_{i=1}^{l} \rho(t_i)
\]
then has the desired property. \(\square \)

Lemma 3.2. Let \((K, \eta)\) be a triangulation of a smooth manifold \(X \) and \(\sigma \) an \(l \)-simplex in \(K \). If
\[
\tilde{\mu}_\sigma : \Delta^l_\sigma \times \mathbb{R}^{m-l} \to U_\sigma \subset X
\]
is a diffeomorphism onto an open neighborhood \(U_\sigma \) of \(\eta(|\sigma|) \) in \(X \) such that \(\tilde{\mu}_\sigma(t,0) = \eta(\iota_\sigma(t)) \) for all \(t \in \Delta_\sigma \), there exists \(c_\sigma \in \mathbb{R}^+ \) such that
\[
\{(t,v) \in (\text{Int} \, \Delta^l) \times \mathbb{R}^{m-l} \mid |v| \leq c_\sigma \rho_l(t)\} \subset \tilde{\mu}_\sigma^{-1}(\eta(\text{St}(b_\sigma, \text{sd} K))).
\]

Proof. It is sufficient to show\(^3\) that there exists \(c_\sigma > 0 \) such that
\[
\{(t,v) \in (\text{Int} \, \Delta^l) \times \mathbb{R}^{m-l} \mid |v| \leq c_\sigma \rho_l(t)\} \subset \tilde{\mu}^{-1}_\sigma(\eta(\text{St}(\sigma, K))).
\]
We assume that \(0 < l < m \). Suppose \((t_p, v_p) \in (\text{Int} \, \Delta^l) \times (\mathbb{R}^{m-l} - 0)\) is a sequence such that
\[
(t_p, v_p) \notin \tilde{\mu}_\sigma^{-1}(\eta(\text{St}(\sigma, K))), \quad |v_p| \leq \frac{1}{p} \rho_l(t_p).
\]
Since \(\eta(\text{St}(\sigma, K)) \) is an open neighborhood of \(\eta(\text{Int} \, \sigma) \) in \(X \), by shrinking \(v_p \) and passing to a subsequence we can assume that
\[
(t_p, v_p) \in \tilde{\mu}_\sigma^{-1}(\eta(|\tau'|)) \subset \tilde{\mu}_\sigma^{-1}(\eta(|\tau|))
\]
for an \(m \)-simplex \(\tau \) in \(K \) and a face \(\tau' \) of \(\tau \) so that \(\sigma \not\supset \tau', \tau' \not\subset \sigma, \text{ and } \sigma \subset \tau \).

Let \(\iota_\tau : \Delta^m \to |K| \) be an injective linear map taking \(\Delta^m \) to \(|\tau| \) so that
\[
\iota_\tau^{-1}(|\sigma|) = \Delta^m \cap \mathbb{R}^l \times 0 \subset \mathbb{R}^l \times \mathbb{R}^{m-l},
\]
\[
\iota_\tau^{-1}(|\tau'|) = \Delta^m \cap 0 \times \mathbb{R}^{m-1} \subset \mathbb{R}^l \times \mathbb{R}^{m-1}.
\]
Choose a smooth embedding \(\mu_\tau : \Delta^m_\tau \to X \) from an open neighborhood of \(\Delta^m \) in \(\mathbb{R}^m \) such that \(\mu_\tau|\Delta^m = \eta \circ \iota_\tau \). Let \(\phi \) be the first component of the diffeomorphism
\[
\mu_\tau^{-1} \circ \tilde{\mu}_\sigma : \tilde{\mu}_\sigma^{-1}(\mu_\tau(\Delta^m_\tau)) \to \mu_\tau^{-1}(\tilde{\mu}_\sigma(\Delta^l_\sigma \times \mathbb{R}^{m-l})) \subset \mathbb{R}^l \times \mathbb{R}^{m-1}.
\]

\(^3\)If \(K' \) is the subdivision of \(K \) obtained by adding the vertices \(b_\sigma', \) with \(\sigma' \supseteq \sigma \), then \(\text{St}(b_\sigma, \text{sd} K) = \text{St}(\sigma, K') \).

By (3), the second assumption in (4), the continuity of $d\phi$, and the compactness of Δ^l,
\begin{equation}
|\phi(t_p,0)| = |\phi(t_p,0) - \phi(t_p,v_p)| \leq C|v_p| \quad \forall \ p,
\end{equation}
for some $C > 0$. On the other hand, by the first assumption in (4), the vanishing of ρ_i on $\text{Bd} \Delta^l$, the continuity of $d\rho_i$, and the compactness of Δ^l,
\begin{equation}
|\rho_i(t_p)| \leq C|\phi(t_p,0)| \quad \forall \ p,
\end{equation}
for some $C > 0$. The second assumption in (2), (5), and (6) give a contradiction for $p > C^2$. □

Lemma 3.3. Let $h : Y \rightarrow X$ be a smooth map between smooth manifolds, (K, η) a triangulation of X, σ an l-simplex in K, and
\[\tilde{\mu}_\sigma : \Delta^l_\sigma \times \mathbb{R}^{m-l} \rightarrow U_\sigma \subset X \]
a diffeomorphism onto an open neighborhood U_σ of $\eta(|\sigma|)$ in X such that $\tilde{\mu}_\sigma(t,0) = \eta(t_\sigma(t))$ for all $t \in \Delta^l_\sigma$. For every $\epsilon > 0$, there exists $s_\sigma \in C^\infty(\text{Int} \, \Delta^l_\sigma; \mathbb{R}^{m-l})$ so that the map
\begin{equation}
\tilde{\mu}_\sigma \circ (\text{id}, s_\sigma) : \text{Int} \, \Delta^l \rightarrow X
\end{equation}
is transverse to h,
\begin{equation}
|s_\sigma(t)| < \epsilon^2 \rho(t) \quad \forall \ t \in \text{Int} \, \Delta^l,
\end{equation}
\begin{equation}
\lim_{t \rightarrow \text{Bd} \, \Delta^l} \rho(t)^{-i} |\nabla^j s_\sigma(t)| = 0 \quad \forall \ i, j \in \mathbb{Z}^{\geq 0},
\end{equation}
where $\nabla^j s_\sigma$ is the multilinear functional determined by the j-th derivatives of s_σ.

Proof. The smooth map
\[\phi : \text{Int} \, \Delta^l \times \mathbb{R}^{m-l} \rightarrow X, \quad \phi(t,v) = \tilde{\mu}_\sigma(t, e^{-1/\rho(t)}v), \]
is a diffeomorphism onto an open neighborhood U'_σ of $\eta(\text{Int} \, \sigma)$ in X. The smooth map (7) with $s_\sigma = e^{-1/\rho(t)}v$ is transverse to h if and only if $v \in \mathbb{R}^{m-l}$ is a regular value of the smooth map
\[\pi_2 \circ \phi^{-1} \circ h : h^{-1}(U'_\sigma) \rightarrow \mathbb{R}^{m-l}, \]
where $\pi_2 : \text{Int} \, \Delta^l \times \mathbb{R}^{m-l} \rightarrow \mathbb{R}^{m-l}$ is the projection onto the second component. By Sard’s Theorem, the set of such regular values is dense in \mathbb{R}^{m-l}. Thus, the map (7) with $s_\sigma = e^{-1/\rho(t)}v$ is transverse to h for some $v \in \mathbb{R}^{m-l}$ with $|v| < \epsilon^2$. The second statement in (8) follows from $\rho|_{\text{Bd} \, \Delta^l} = 0$. □

Corollary 3.4. Let $h : Y \rightarrow X$ be a smooth map between smooth manifolds, (K, η) a triangulation of X, σ an l-simplex in K, and
\[\tilde{\mu}_\sigma : \Delta^l_\sigma \times \mathbb{R}^{m-l} \rightarrow U_\sigma \subset X \]
a diffeomorphism onto an open neighborhood U_σ of $\eta(|\sigma|)$ in X such that $\tilde{\mu}_\sigma(t,0) = \eta(t_\sigma(t))$ for all $t \in \Delta_\sigma$. For every $\epsilon > 0$, there exists a diffeomorphism ψ'_σ of $\Delta^l_\sigma \times \mathbb{R}^{m-l}$ restricting to the identity outside of

$$\{(t,v) \in (\text{Int}\Delta^l) \times \mathbb{R}^{m-l} : |v| \leq \epsilon \rho_l(t)\}$$

so that the map $\tilde{\mu}_\sigma \circ \psi'_\sigma|_{\text{Int}\Delta^l \times 0}$ is transverse to h.

Proof. Choose $\beta \in C^\infty(\mathbb{R}; [0,1])$ so that

$$\beta(r) = \begin{cases} 1, & \text{if } r \leq \frac{1}{2}; \\ 0, & \text{if } r \geq 1. \end{cases}$$

Let $C_\beta = \sup_{r \in \mathbb{R}} |\beta'(r)|$. With s_σ as provided by Lemma 3.3, define

$$\psi'_\sigma : \Delta^l_\sigma \times \mathbb{R}^{m-l} \rightarrow \Delta^l_\sigma \times \mathbb{R}^{m-l} \quad \text{by}$$

$$\psi'_\sigma(t,v) = \begin{cases} (t, v + \beta \left(\frac{|v|}{\epsilon \rho_l(t)}\right) s_\sigma(t)), & \text{if } t \in \text{Int} \Delta^l, \\ (t, v), & \text{if } t \notin \text{Int} \Delta^l. \end{cases}$$

The restriction of this map to $(\text{Int}\Delta^l) \times \mathbb{R}^{m-l}$ is smooth and its Jacobian is

$$(9) \quad \mathcal{J}\psi'_\sigma|_{(t,v)} = \begin{pmatrix} \mathbb{I}_t & 0 \\ (\mathcal{J}\psi'_\sigma|_{(t,v)})_{2,1} \mathbb{I}_{m-l} + \beta' \left(\frac{|v|}{\epsilon \rho_l(t)}\right) s_\sigma(t) v' \rho_l(t) \end{pmatrix},$$

where

$$(\mathcal{J}\psi'_\sigma|_{(t,v)})_{2,1} = \beta \left(\frac{|v|}{\epsilon \rho_l(t)}\right) \nabla s_\sigma(t) - \beta' \left(\frac{|v|}{\epsilon \rho_l(t)}\right) \frac{|v|}{\epsilon \rho_l(t)} \nabla \rho_l.$$

By the first property in (8), this matrix is non-singular if $\epsilon < 1/C_\beta$. If W is any linear subspace of \mathbb{R}^{m-l} containing $s_\sigma(t)$,

$$\psi'_\sigma(t \times W) \subset t \times W, \quad \psi'_\sigma(t,v) = (t,v) \quad \forall \ v \in W \text{ such that } |v| \geq \epsilon \rho_l(t).$$

Thus, ψ'_σ is a bijection on $t \times W$, a diffeomorphism on $(\text{Int}\Delta^l) \times \mathbb{R}^{m-l}$, and a bijection on $\Delta^l_\sigma \times \mathbb{R}^{m-l}$.

Since $\beta(r) = 0$ for $r \geq 1$, $\psi'_\sigma(t,v) = (t,v)$ unless $t \in \text{Int} \Delta^l$ and $|v| < \epsilon \rho_l(t)$. It remains to show that ψ'_σ is smooth along

$$\{(t,v) \in (\text{Int}\Delta^l) \times \mathbb{R}^{m-l} : |v| \leq \epsilon \rho_l(t)\} - (\text{Int}\Delta^l) \times \mathbb{R}^{m-l} = (\text{Bd} \Delta^l) \times 0.$$

Since $|s_\sigma(t)| \rightarrow 0$ as $t \rightarrow \text{Bd} \Delta^l$ by the first property in (8), ψ'_σ is continuous at all $(t,0) \in (\text{Bd} \Delta^l) \times 0$. By the first property in (8), ψ'_σ is also differentiable at all $(t,0) \in (\text{Bd} \Delta^l) \times 0$, with the Jacobian equal to \mathbb{I}_m. By (9) and the compactness of Δ^l,

$$|\mathcal{J}\psi'_\sigma|_{(t,v)} - \mathbb{I}_m| \leq C \left(\nabla |s_\sigma(t)| + \rho(t)^{-1} |s_\sigma(t)|\right) \quad \forall \ (t,v) \in (\text{Int}\Delta^l) \times \mathbb{R}^{m-l}$$

for some $C > 0$. So $\mathcal{J}\psi'_\sigma$ is continuous at $(t,0)$ by the second statement in (8), as well as differentiable, with the differential of $\mathcal{J}\psi'_\sigma$ at $(t,0)$ equal
to 0. For \(i \geq 2 \), the \(i \)-th derivatives of the second component of \(\psi'_{\sigma} \) at \((t,v) \in (\text{Int} \, \Delta^l) \times \mathbb{R}^{m-l}\) are linear combinations of the terms

\[
\beta^{(i_1)} \left(\frac{|v|}{\epsilon \rho_l(t)} \right) \cdot \left(\frac{|v|}{\epsilon \rho_l(t)} \right)^{i_1} \cdot \prod_{k=1}^{k=j_l} \left(\frac{\nabla^p \rho_l}{\rho_l(t)} \right) \cdot \frac{v_j}{|v|^{2j_2}} \cdot \nabla^{i_2} s_{\sigma}(t),
\]

where \(i_1, i_2, j_1, j_2 \in \mathbb{Z}^+ \) and \(p_1, \ldots, p_{j_1} \in \mathbb{Z}^+ \) are such that

\[
i_1 + (p_1 + p_2 + \ldots + p_{j_1} - j_1) + i_2 = i, \quad j_1 + j_2 \leq i,
\]

and \(v_j \) is a \(j_2 \)-fold product of components of \(v \). Such a term is nonzero only if \(\epsilon \rho_l(t)/2 < |v| < \epsilon \rho_l(t) \) or \(i_1 = 0 \) and \(|v| < \epsilon \rho_l(t) \). Thus, the \(i \)-th derivatives of \(\psi'_{\sigma} \) at \((t,v) \in (\text{Int} \, \Delta^l) \times \mathbb{R}^{m-l}\) are bounded by

\[
C_i \sum_{i_1 + i_2 \leq i} \rho_l(t)^{-i_1} |\nabla^{i_2} s_{\sigma}(t)|
\]

for some constant \(C_i > 0 \). By the second statement in (8), the last expression approaches 0 as \(t \to \text{Bd} \, \Delta^l \) and does so faster than \(\rho_l \). It follows that \(\psi'_{\sigma} \) is smooth at all \((t,0) \in (\text{Bd} \, \Delta^l) \times 0\). \(\square \)

Proof of Proposition 2.1. Let \(\Delta^l_{\sigma} \) be a contractible open neighborhood of \(\Delta^l \) in \(\mathbb{R}^l \) and \(\mu_{\sigma} : \Delta^l_{\sigma} \to X \) a smooth embedding so that \(\mu_{\sigma}|_{\Delta^l} = \eta \circ t_{\sigma} \). By the Tubular Neighborhood Theorem [1, (12.11)], there exist an open neighborhood \(U_{\sigma} \) of \(\mu_{\sigma}(\Delta^l_{\sigma}) \) in \(X \) and a diffeomorphism

\[
\tilde{\mu}_{\sigma} : \Delta^l_{\sigma} \times \mathbb{R}^{m-l} \to U_{\sigma} \quad \text{such that} \quad \tilde{\mu}_{\sigma}(t,0) = \mu_{\sigma}(t) \quad \forall \, t \in \Delta^l_{\sigma}.
\]

Let \(c_{\sigma} > 0 \) be as in Lemma 3.2 and \(\psi'_{\sigma} \) as in Corollary 3.4 with \(\epsilon = c_{\sigma} \). The diffeomorphism

\[
\psi_{\sigma} = \tilde{\mu}_{\sigma} \circ \psi'_{\sigma} \circ \tilde{\mu}_{\sigma}^{-1} : U_{\sigma} \to U_{\sigma}
\]

is then the identity on \(U_{\sigma} - \text{St}(b_{\sigma}, \text{sd} \, K) \). Since \(\psi_{\sigma} \) is also the identity outside of a compact subset of \(U_{\sigma} \), it extends by identity to a diffeomorphism on all of \(X \). \(\square \)

Acknowledgments

The author would like to thank M. Kreck for detailed comments and suggestions on [8] and earlier versions of this note, as well as D. McDuff and J. Milnor for related discussions.

References

4Since \(\Delta^l_{\sigma} \) is contractible, the normal bundle to the embedding \(\mu_{\sigma} \) is trivial.

Received January 23, 2012; accepted February 28, 2012

Aleksey Zinger
Department of Mathematics, SUNY,
Stony Brook, NY 11794-3651, USA
E-mail: azinger@math.sunysb.edu
URL: http://www.math.sunysb.edu/~azinger
