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Abstract. We prove that an inclusion B ⊂ A of simple unital C∗-algebras with a finite-
index conditional expectation is regular if and only if there exists a finite group G that
admits a cocycle action (α, σ) on the intermediate C∗-subalgebra C generated by B and its
centralizer CA(B) such that B is outerly α-invariant and (B ⊂ A) ∼= (B ⊂ C ⋊r

(α,σ)
G).

Prior to this characterization, we prove the existence of two-sided and unitary quasi-bases
for the minimal conditional expectation of any such inclusion, and also show that such an
inclusion has integer Watatani index and depth at most 2.

1. Introduction

Of late, the study of inclusions of C∗-algebras has attracted a good deal of
attention—see, for instance, [31, 18, 19, 17, 20, 28, 29, 5] and the references
therein. Interestingly, people have focused on different perspectives of such
inclusions and the project has thrived in the recent years. In fact, certain
fundamental structure results have been achieved during the last 25 years or so.
Among those results, Kajiwara–Watatani’s (Goldman type) characterization of
index-2 inclusions of C∗-algebras as fixed-point inclusions via outer actions of
the cyclic group Z2 ([24, Thm. 5.13]), Renault’s characterization of a Cartan
pair B ⊂ A of C∗-algebras ([28, Thm. 5.9]) and Izumi’s characterization of
depth-2 inclusions of simple C∗-algebras as fixed-point inclusions via outer
actions by finite-dimensional Kac algebras ([18, Cor. 6.4]) are noteworthy and
serve as precursors to the theme of this article.

Our approach in [5] as well as here is mainly motivated by the Fourier theo-
retic aspects and certain structure results of the theory of subfactors, a theory
which was initiated by Vaughan Jones in the 1980s—see [21, 22] for a quick in-
troduction. More precisely, in [5], depending heavily on the fundamental work
[31] of Watatani, we made an attempt to develop a Fourier theory on the tower
of relative commutants (which was augmented further in [3]) and, motivated
by [2], we also introduced a notion of angle between compatible intermediate
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C∗-subalgebras of an inclusion of unital C∗-algebras with a finite-index con-
ditional expectation. In this article, we present a structure result for regular
inclusions of simple unital C∗-algebras.

Recall that an inclusion Q ⊂ M of von Neumann algebras is said to be
regular if the normalizer of Q in M, NM(Q) := {u ∈ U(M) | uQu∗ = Q},
generates M as a von Neumann-algebra. For any irreducible regular inclusion
N ⊂ M of factors, it is well-known that its Weyl group G := NM (N)/U(N)
admits an outer cocycle action (α,σ) on N and (N ⊂M)∼= (N ⊂N ⋊(α,σ) G).
Moreover, if N and M are II1-factors, then it is known, thanks to the work of
Sutherland [30], that this cocycle action can be untwisted, i.e., for any regular
irreducible inclusion N ⊂M of factors of type II1 with finite (Jones) index, its
Weyl group G admits an outer action on N and (N ⊂M) ∼= (N ⊂N ⋊G) (see
[25, 27, 16, 23]).

Analogous to the notion of regularity of an inclusion of von Neumann al-
gebras, we say that an inclusion B ⊂ A of unital C∗-algebras is regular if the
normalizer of B in A generates A as a C∗-algebra. The crux of this article
lies in proving the following, somewhat general, characterization of regular
inclusions of simple unital C∗-algebras.

Theorem 3.15. Let B ⊂ A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation from A onto B. Then the inclusion B⊂A
is regular if and only if there exists a finite group G that admits a cocycle action
(α, σ) on the intermediate C∗-subalgebra C := C∗(B ∪ CA(B)) such that
(i) B is invariant under α;
(ii) for each e 6= g ∈ G, αg is an outer automorphism of B;
(iii) (B ⊂ A) ∼= (B ⊂ C ⋊r

(α,σ) G).

As a consequence, for any irreducible regular inclusion B ⊂ A of simple
unital C∗-algebras with a finite-index conditional expectation from A onto B,
its Weyl group G := NA(B)/U(B) admits an outer cocycle action (α, σ) on B
such that (B ⊂ A) ∼= (B ⊂ B ⋊

r
(α,σ) G) (see Corollary 3.16).

The proof of Theorem 3.15 relies on first showing that the intermediate
C∗-subalgebra C generated by B and its centralizer

CA(B) := {x ∈ A | xb = bx for all b ∈ B}
is compatible in the sense of Ino–Watatani [17], i.e., there exists a (finite-
index) conditional expectation F : A → C such that (E0)↾C ◦ F = E0, where
E0 : A → B is the unique minimal conditional expectation as in Theorem 2.10
(see Lemma 3.8), and then, employing the conditional expectation F , we obtain
a natural outer cocycle action of the generalized Weyl group

W (B ⊂ A) :=
NA(B)

U(B)U(CA(B))
on the C∗-subalgebra C, which leads to the desired characterization.

The skeleton of this article emerged essentially from our ongoing attempts at
obtaining a better understanding of regular inclusions of type II1-factors (see
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[4, 6]). While analyzing regular inclusions of II1-factors, it was also established
in [6, 13] that every regular inclusion of type II1-factors N ⊂ M with finite
Jones index is always of depth at most 2. Drawing motivation from this, prior
to the characterization obtained in Theorem 3.15, we also show that a regular
inclusion B ⊂ A of simple unital C∗-algebras with a finite-index conditional
expectation from A onto B is always of depth1 at most 2 (Theorem 3.13).

Theorem 3.13 is achieved on the lines of the proof of [6, Thm. 4.3] (also
see [13, Cor. 3.2]), whose main ingredients are the following two observations,
which are also of independent interest and fundamental in nature.

If B ⊂ A is a regular inclusion of simple unital C∗-algebras with a finite-
index conditional expectation and E0 : A → B is the minimal conditional ex-
pectation as in Theorem 2.10, then
(i) E0 admits a two-sided orthonormal quasi-basis in A (Proposition 3.4);
(ii) E0 admits a unitary orthonormal quasi-basis in A (Corollary 3.12).

The proof of Proposition 3.4 borrows heavily from the methodology em-
ployed in [4], wherein, among other results, using the notion of path algebras
by Sunder (and, independently, by Ocneanu), we had provided a partial an-
swer to a question of Jones by showing that if N ⊂ M is a regular inclusion
of type II1-factors with finite Jones index, then the (unique) trace-preserving
conditional E : M → N admits a two-sided Pimsner–Popa basis in M .

The proof of the fact that every regular finite-index inclusion of II1-factors is
of depth at most 2 (demonstrated in [6, 13]) depended on the existence of a uni-
tary orthonormal basis for the unique trace-preserving conditional expectation,
which was essentially achieved by reducing the problem to a finite-dimensional
set-up and then employing some nice unitary matrices from the world of quan-
tum information theory. Here as well, a suitable adaptation of those techniques
provides a proof of Corollary 3.12, which eventually allows us to deduce that
every regular inclusion B ⊂ A of simple unital C∗-algebras with a finite-index
conditional expectation from A onto B has depth at most 2 (Theorem 3.13).

Along the way, analogous to [4, Thm. 3.12], we also prove that the Watatani
index of a regular inclusion B ⊂ A of simple unital C∗-algebras is the integer
|W (B ⊂ A)| dim(CB(A)) (see Theorem 3.10).

2. Preliminaries

2.1. Watatani index and C
∗-basic construction.

2.1.1. Watatani index. Consider an inclusion B ⊆A of unital C∗-algebras with
a conditional expectation E : A → B. A finite set {λi | 1 ≤ i ≤ n} ⊂ A is said
to be a right (resp., left) quasi-basis for E if

x =

n
∑

i=1

E(xλi)λ
∗
i (resp., x =

n
∑

i=1

E(xλ∗
i )λi)

1Analogous to the notion of depth for inclusions of II1-factors, the notion of depth for
inclusions of unital C∗-algebras was formalized in [20].
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for every x ∈ A. A finite collection {λi} ⊂ A is said to be a two-sided quasi-
basis for E if it is both a left and a right quasi-basis for E. For example, if
a right (or a left) quasi-basis for E is a selfadjoint set, i.e., {λ∗

i }= {λi}, then it
is a two-sided quasi-basis for E. Note that a finite set {λi | 1≤ i≤ n} is a right
quasi-basis for E if and only if {λ∗

i | 1 ≤ i ≤ n} is a left quasi-basis for E.
A conditional expectation E :A→B is said to have finite index (in the sense

of Watatani) if it admits a right (equivalently, a left) quasi-basis {λi | 1≤ i≤ n}
in A. Then the right Watatani index of E is defined as

IndrW (E) =

n
∑

i=1

λiλ
∗
i

and is independent of the right quasi-basis. Likewise, the left Watatani index of
E is defined as Indl

W (E) =
∑n

i=1 λ
∗
i λi, where {λi} is a left quasi-basis. Clearly,

IndrW (E) = IndlW (E)

and this common quantity is called the Watatani index of E and is denoted by
IndW (E). In general, IndW (E) is not a scalar but it is an invertible positive
element of Z(A).

Further, a right (resp., a left) quasi-basis {λi | 1 ≤ i ≤ n} of E is said to be
orthonormal if E(λ∗

i λi) = δi,j (resp., E(λiλ
∗
j ) = δi,j) for all 1 ≤ i, j ≤ n. And

a right (or a left) quasi-basis of E is said to be unitary if it consists of unitary
elements.

Note. Following Watatani [31], throughout this article, by a quasi-basis, we
shall simply mean a right quasi-basis, and not a two-sided quasi-basis!

Remark 2.2. (i) A finite-index conditional expectation E : A → B is faithful
and 1B = E(1A) = 1A.

(ii) If B ⊂ C ⊂ A is an inclusion of unital C∗-algebras, and E : A → C and
F : C →B are finite-index conditional expectations with right (resp., left) quasi-
bases {λi} and {µj}, respectively, then {λiµj}i,j (resp., {µjλi}j,i) is a right
(resp., a left) quasi-basis for F ◦ E (see [31, Prop. 1.7.1]).

In particular, the composition of two finite-index conditional expectations

A E−→ C and C F−→ B
is also a finite-index conditional expectation and, moreover, if IndW (F )∈Z(A),
then it follows readily that IndW (F ◦ E) = IndW (F )IndW (E).

2.2.1. Watatani’s C∗-basic construction. We now briefly recall the theory of
C∗-basic construction introduced by Watatani in [31].

Consider an inclusion B ⊂ A of unital C∗-algebras with common unit and
a faithful conditional expectation E : A → B. Then A becomes a pre-Hilbert
B-module with respect to the B-valued inner product given by

〈x, y〉B = E(x∗y), x, y ∈ A.

Let A denote the Hilbert B-module completion of A and let ι : A → A denote
the isometric inclusion map with respect to the norm ‖x‖A := ‖E(x∗x)1/2‖,
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x∈A. The space LB(A) consisting of adjointable B-linear maps on A is a unital
C∗-algebra.

For each a ∈A, consider λ(a) ∈ LB(A) given by λ(a)(ι(x)) = ι(ax) for x ∈A.
The map ι(A) ∋ ι(x) 7→ ι(E(x)) ∈ ι(A) extends to an adjointable projection on
A, and is denoted by e1 ∈ LB(A). The projection e1 is called the Jones projec-
tion for the inclusion B ⊂ A; thus e1(ι(x)) = ι(E(x)) for all x ∈ A. Moreover,
e1 ∈ λ(B)′ and it satisfies the relation e1λ(x)e1 = λ(E(x))e1 for all x ∈ A.

The Watatani C∗-basic construction for the inclusion B ⊂ A with respect
to the conditional expectation E is defined as the C∗-subalgebra

A1 = span{λ(x)e1λ(y) | x, y ∈ A} of LB(A).

Also, λ is an injective ∗-homomorphism and thus we can consider A as a C∗-
subalgebra of A1.

Remark 2.3 ([31]). With running notation and the identification mentioned
in the preceding paragraph, if E is a finite-index conditional expectation, then
the following hold.
(i) A is complete with respect to the norm ‖ · ‖A (see [5, Lem. 2.11]).
(ii) A1 = span{xe1y | x, y ∈ A} = C∗(A, e1) (see [31, Prop. 1.3.3]).

(iii) There exists a unique finite-index conditional expectation Ẽ : A1 → A
satisfying

Ẽ(xe1y) = x(IndW (E)−1)y = (IndW (E)−1xy)

for all x, y ∈ A (see [31, Prop. 1.6.1]). (Ẽ is called the dual conditional
expectation of E.)

The following characterization of a (right) quasi-basis has proved to be ex-
tremely handy in the theory of subfactors and we have slowly started to realize
that it is quite useful in the C∗-context as well. Its proof is most likely a folk-
lore. For instance, its necessity is well-known—see [31, Lem. 2.1.6] (also see [5,
Prop. 2.12])—and its sufficiency follows on the lines of the proof of ((2) ⇒ (3)
of) [1, Thm. 2.2] by applying [20, Lem. 3.7] (also see [5, Lem. 2.15]), which is
the C∗-analog of the so-called “Pushdown Lemma” by Pimsner and Popa.

Proposition 2.4. Let B ⊂ A be an inclusion of unital C∗-algebras, let E :
A → B be a finite-index conditional expectation, let A1 be the Watatani C∗-
basic construction of B ⊂ A with respect to E, and let e1 be the corresponding
Jones projection. Then a finite set {λi | 1 ≤ i ≤ n} ⊂ A is a (right) quasi-basis
for E if and only if

∑n
i=1 λie1λ

∗
i = 1.

The following result by Watatani is fundamental in nature and was used
extensively in developing the Fourier theory for inclusions of simple unital
C∗-algebras in [5, 3].

Theorem 2.5 ([31, Cor. 2.2.14]). If B is a simple C∗-subalgebra of a unital
C∗-algebra A and E : A→ B is a finite-index conditional expectation, then the
C∗-basic construction A1 of B ⊂ A with respect to E is also simple.
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2.6. Markov trace and two-sided quasi-basis. Recall that, for a unital
inclusion Q ⊂ P of finite-dimensional C∗-algebras with inclusion matrix Λ,
a tracial state τ on P with (column) trace vector t̄ is said to be a Markov
trace for the inclusion Q ⊂ P with modulus β > 0 if ΛtΛt̄ = βt̄. If Q ⊂ P is
a connected unital inclusion, then there exists a unique Markov trace for the
inclusion Q ⊂ P with modulus ‖Λ‖2. For more on Markov traces, see [22, 14].

Remark 2.7. If P is a finite-dimensional C∗-algebra with dimension vector
[n1, . . . , nk], then the inclusion matrix of any unital inclusion C ⊂ P is given
by Λ = [n1, . . . , nk] ∈ M1,k(N) and the unique Markov trace for this inclusion
with modulus ‖Λ‖2 has trace vector t̄ = (n1/d, . . . , nk/d)

t, where d := ‖Λ‖2 =
dim(P ).

The first part of the following observation was essentially made in [4] and
was derived by employing the notion of path algebras associated to an inclusion
of finite-dimensional C∗-algebras (introduced independently by Ocneanu and
Sunder). We rephrase and reproduce some portion of it to suit the requirements
of this article. (We must mention that the approach of path algebras was
employed by Watatani as well to provide an example of a (selfadjoint and
hence two-sided) quasi-basis for the trace-preserving conditional expectation
from a finite-dimensional C∗-algebra onto a subalgebra—see [31, Lem. 2.4].)

Proposition 2.8 ([4]). Let P be a finite-dimensional C∗-algebra and tr a faith-
ful tracial state on P . Then there exists a two-sided orthonormal quasi-basis
for tr and

IndW (tr) =

k
∑

i=1

n2
i

tr(pi)
pi,

where {pi | 1 ≤ i ≤ k} is the set of minimal central projections of P with n2
i =

dim(piA) for all 1 ≤ i ≤ k.
Moreover, IndW (tr) is a scalar if and only if tr is the Markov trace for the

inclusion C ⊂ P with modulus dim(P ). And in that case, IndW (tr) = dim(P ).

Proof. That tr admits a two-sided orthonormal quasi-basis follows verbatim
on the lines of the proof of [4, Prop. 3.3] (see also [6, Lem. 3.11]).

Moreover, from the proof of [4, Prop. 3.3], it also follows that there exists
a system of matrix units

{e(i)(κ,β) | 1 ≤ κ, β ≤ ni, 1 ≤ i ≤ k}
for P such that

{

√

ni

tr(pi)
e
(i)
(κ,β)

∣

∣

∣
1 ≤ κ, β ≤ ni, 1 ≤ i ≤ k

}

is a two-sided orthonormal quasi-basis for tr. Hence

IndW (tr) =

k
∑

i=1

∑

{1≤κ,β≤ni}

√
ni

√

tr(pi)
e
(i)
(κ,β)

√
ni

√

tr(pi)
(e

(i)
(κ,β))

∗ =

k
∑

i=1

n2
i

tr(pi)
pi.
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Next, suppose that tr is the Markov trace for the inclusion C ⊂ P with
modulus d = dim(P ); then its trace vector is given by t̄ = (n1/d, . . . , nk/d)

t.
Thus tr(pi) = n2

i /d for all i. Hence

IndW (tr) =

k
∑

i=1

n2
i

tr(pi)
pi =

k
∑

i=1

dpi = d.

Conversely, suppose that IndW (tr) is a scalar, say, c > 0. Then

k
∑

i=1

n2
i

tr(pi)
pi = c =

k
∑

i=1

cpi,

which implies that n2
i /tr(pi) = c for all i, so that tr(pi) = n2

i /c for all i. So
s̄ := (n1/c, . . . , nk/c)

t is the trace vector of tr. Also, the inclusion matrix for
C⊂ P is given by Λ = [n1, . . . , nk] so that ‖Λ‖2 =∑k

i=1 n
2
i = dim(P ). Further,

we observe that ΛtΛs̄ = ‖Λ‖2s̄, i.e., tr is the Markov trace for the inclusion
C ⊂ P with modulus dim(P ). (Further, by its uniqueness, it follows that s̄ = t̄
and hence that c = d.) �

The preceding observation is relatable to [31, Prop. 2.4.2 and Cor. 2.4.3] as
well.

2.9. Minimal conditional expectation. Note that, for an inclusion B ⊂ A
of unital C∗-algebras, if Z(A) = C, then every finite-index conditional expec-
tation from A onto B has a scalar Watatani index. Recall from [31] that
a conditional expectation is said to be minimal if it has the smallest Watatani
index. In general, a minimal conditional expectation from A onto B need
not exist. However, when it comes to inclusions of simple unital C∗-algebras,
a minimal conditional expectation exists and is, in fact, unique.

Theorem 2.10 ([31, Thm. 2.12.3]). Let B ⊂A be an inclusion of simple unital
C∗-algebras with a finite-index conditional expectation from A onto B. Then
there exists a unique minimal conditional expectation from A onto B (which is
usually denoted by E0).

Definition 2.11 ([31]). Let B ⊂ A be as in the preceding theorem. Then the
Watatani index of the inclusion B ⊂ A is defined as [A : B]0 = IndW (E0).

Remark 2.12. For A, B and E0 as in Theorem 2.10,
(a) the C∗-basic construction A1 is also simple—see [31, Cor. 2.2.14];

(b) the dual conditional expectation Ẽ0 : A1 → A is also minimal—see [24,
Cor. 3.4];

(c) IndW (E0) = IndW (Ẽ0) (see [31, Prop. 2.3.4]).

For any inclusion B ⊂ A of algebras, recall that the centralizer of B in A
is given by CA(B) = {x ∈ A | xb = bx for all b ∈ B}, which is also called the
relative commutant of B in A and denoted by B′ ∩ A.
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Proposition 2.13. Let B ⊂ A be an inclusion of simple unital C∗-algebras
with a finite-index conditional expectation from A onto B and let E0 : A → B
denote the unique minimal conditional expectation as in Theorem 2.10. Then
the following hold.
(i) [31] For any quasi-basis {λi | 1 ≤ i ≤ n} of E0,

E0(x) =
1

[A : B]0

n
∑

i=1

λixλ
∗
i for all x ∈ CA(B),

E0(CA(B)) = C and τ0 := E0↾CA(B)
is a faithful tracial state on CA(B).

(ii) Let C := C∗(B ∪ CA(B)). Then the conditional expectation E0↾C : C → B
admits a two-sided orthonormal quasi-basis contained in CA(B).

Proof. (i) Let {λi | 1 ≤ i ≤ n} be a quasi-basis for E0. Since E0 is minimal, it
follows from [31, Prop. 1.2.9 and Thm. 2.12.3] that
(a) E0(x) = (1/[A : B]0)

∑n
i=1 λixλ

∗
i for all x ∈ CA(B) (in particular, this ex-

pression is independent of the quasi-basis {λi});
(b) E0(CA(B)) = Z(B) = C;
(c) τ0 := E0↾CA(B)

: CA(B) → C is a faithful tracial state.

(ii) Let {µj} be a two-sided orthonormal quasi-basis for τ0 in CA(B) as in
Proposition 2.8. We assert that {µj} is a two-sided quasi-basis for E0↾C as
well. Note that, for any z ∈ CA(B) and b ∈ B, {µj} being a right quasi-basis
for τ0, we have

zb =
∑

j

τ0(zµj)µ
∗
jb =

∑

j

E0(zµj)µ
∗
jb =

∑

j

E0(zbµj)µ
∗
j ,

and {µj} being a left quasi-basis for τ0, we have

zb =
∑

j

τ0(zµ
∗
j )µjb =

∑

j

E0(zµ
∗
j )µjb =

∑

j

E0(zbµ
∗
j)µj .

Since C = span{zb | z ∈ CA(B), b ∈ B}, it follows that
∑

j

E0(wµj)µ
∗
j = w =

∑

j

(wµ∗
j )µj for all w ∈ C.

Hence {µj} is a two-sided orthonormal quasi-basis for E0↾C . �

Watatani had realized in [31] itself that the minimal conditional expectation
is characterized by the tracial property on the centralizer algebra CA(B). This
observation allowed us in [5] to obtain a sequence of consistent tracial states
on the tower of finite-dimensional C∗-algebras

C ∼= Z(B) ⊆ CA(B) ⊆ CA1(B) ⊆ · · · ⊆ CAk
(B) ⊆ · · ·

which then paved way for a Fourier theory on this tower of centralizer algebras;
see [5, 3].
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2.14. Compatible intermediate C
∗-subalgebras. As in [17] (also see [5,

15]), for an inclusion B⊂A of unital C∗-algebras with a finite-index conditional
expectation E : B → A, let IMS(B,A, E) denote the set of intermediate C∗-
subalgebras C of B ⊂ A with a compatible conditional expectation F : A → C
satisfying the compatibility condition E = E↾C ◦ F .

We shall need the following well-known elementary observations.

Remark 2.15. With notation as in the preceding paragraph, let A1 denote
the Watatani C∗-basic construction of B ⊂ A with respect to E and let e1
denote the corresponding Jones projection.
(i) If C ∈ IMS(B,A, E) with respect to two compatible conditional expecta-

tions F and F ′, then F = F ′. (See [17, p. 3].)
(ii) If C ∈ IMS(B,A,E) with respect to the compatible conditional expectation

F : A → C, then F has finite index. (See [15, Rem. 2.4].)
(iii) Let C ∈ IMS(B,A, E) with respect to the compatible conditional expecta-

tion F :A→C, let C1 denote the Watatani C∗-basic construction of C ⊂A
with respect to F (with Jones projection eC), and let {λi} be a quasi-basis
for E↾C . Then C1 ⊂ A1 and

∑

i λ
∗
i e1λi = eC . (See [15, Prop. 2.7].)

2.16. Reduced twisted crossed product. Recall that a discrete twisted C∗-
dynamical system is a quadruple (A,G, α, σ) consisting of a unital C∗-algebra
A, a discrete group G, a map α : G → Aut(A) and a map σ : G ×G → U(A)
satisfying the following identities:

αg ◦ αh = σ(g, h)αghσ(g, h)
∗,

σ(g, h)σ(gh, k) = αg(σ(h, k))σ(g, hk),

σ(g, e) = σ(e, g) = 1

for all g, h, k ∈G. Such a σ is called a normalized U(A)-valued 2-cocycle on G,
and an α as above is called a twisted action of G on A with respect to the
cocycle σ.

Note that if σ is the trivial map, i.e., σ(g, h) = 1 for all g, h ∈ G, then α is
a homomorphism and (A, G, α) is a usual C∗-dynamical system.

We shall work with the following working definition of the reduced twisted
crossed product: for a (discrete) twisted C∗-dynamical system (A, G, α, σ),
there exist a representation A ⊂ B(H) and an injective map u : G→ U(B(H))
such that uguh = σ(g, h)ugh, αg(a) = ugau

∗
g for all g, h ∈ G and a ∈ A, and the

reduced twisted crossed product A ⋊r
(α,σ) G (also denoted by C∗

r (A, G, α, σ))
can be identified with C∗(A ∪ u(G)) ⊂ B(H). For more on reduced twisted
crossed product, we refer the reader to [7, 8].

Remark 2.17. With notation as in the preceding paragraph, the following
aspects of the reduced twisted crossed product will be relevant for this article.
(i) {∑finite xgug | xg ∈ A} is a unital ∗-subalgebra of A⋊r

(α,σ) G as

xugyuh = xαg(y)uguh = xαg(y)σ(g, h)ugh

for all x, y ∈ A, g, h ∈ G, and thus {∑finite xgug | xg ∈ A} is dense in
A⋊r

(α,σ) G.
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(ii) (ug)
∗ = ug−1σ(g, g−1)∗ = σ(g, g−1)∗ug−1 for all g ∈ G (see [7, p. 5]).

(iii) There exists a faithful conditional expectation E : A ⋊r
(α,σ) G → A such

that E(ug) = 0 for all e 6= g ∈ G (see [7, p. 7]).
(iv) The canonical conditional expectation is G-equivariant, i.e., E(ugxu

∗
g) =

αg(E(x)) for all x ∈ A and g ∈ G (see [7, p. 8]).
(v) If G is finite, then the unital ∗-subalgebra {∑finite xgug | xg ∈ A} is closed

and hence

A⋊
r
(α,σ) G =

{

∑

g∈G

xgug | xg ∈ A
}

.

Moreover, {ug | g ∈ G} is a quasi-basis for E because if

x =
∑

g

xgug ∈ A⋊
r
(α,σ) G,

then E(xu∗
g) = xg for all g ∈ G, so that

x =
∑

g

E(xu∗
g)ug

for all x ∈ A⋊r
(α,σ) G. In particular, IndW (E) = |G|.

(vi) When A is simple and (α,σ) is outer, then there is a Galois correspondence
between subgroups of G and intermediate C∗-subalgebras of A ⋊r

(α,σ) G
(see [8, Thm. 5.2]).

2.18. Some generalities.

2.18.1. Outer automorphisms and free automorphisms. Recall that an auto-
morphism θ of a unital C∗-algebra A is said to be free if, for a given y ∈ A,
yx = θ(x)y for every x ∈ A if and only if y = 0.

It is easily seen that a free automorphism is outer (i.e., not inner) and it
is well-known that an automorphism of a II1-factor is free if and only if it is
outer. Analogous to this, it can be deduced easily from [10] that the same
equivalence holds for any automorphism of a unital C∗-algebra with trivial
center. We derive it here for the sake of convenience.

Lemma 2.19 ([10]). Let θ be an automorphism of a unital C∗-algebra A with
Z(A) ∼= C. Then θ is outer if and only if it is free.

Proof. We just need to show the necessity. So let θ be outer.
Suppose that there exists an a ∈ A such that ax = θ(x)a for all x ∈ A.

Then, by [10, Thm. 1], aa∗ = a∗a ∈ Z(A) ∼= C; thus aa∗ = a∗a = ‖a‖2. So if
a 6= 0, then u := ‖a‖−1a is a unitary in A and θ(x) = uxu∗ for all x ∈ A, which
contradicts the outerness of θ. Hence a = 0, i.e., θ is free. �

2.19.1. Regular inclusions. Recall that, for an inclusion B ⊂ A of unital C∗-
algebras with common identity, the normalizer of B in A is the group of uni-
taries given by NA(B) = {u ∈ U(A) | uBu∗ = B}, and we say that the inclusion
B ⊂ A is regular if NA(B) generates the C∗-algebra A.
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Remark 2.20. It must be mentioned here that Kumjian and Renault use
a different definition for the normalizer, namely, the set

{x ∈ A | xB ⊂ B, Bx ⊂ B}.
And Renault [28] calls an inclusion B ⊂ A regular if {x ∈ A | xB ⊂ B, Bx⊂ B}
generates A as a C∗-algebra. It has been kindly pointed out to us by Renault
(in a private communication) that both definitions are equivalent when B ⊂ A
is an inclusion of W ∗-algebras and B is a MASA in A. It will be interesting
to know whether the two notions of regularity are equivalent for a general
inclusion of unital C∗-algebras.

Example 2.21. Consider a reduced twisted crossed product A⋊r
(α,σ) G as in

Remark 2.17. Since ugxu
∗
g = αg(x) for all x ∈ A, g ∈ G, it follows that

{ug | g ∈ G} ⊂ N(A⋊
r
(α,σ)G)(A)

and hence that A ⊂ A⋊r
(α,σ) G is a regular inclusion.

Theorem 2.22 ([7, Thm. 3.2] and [8, Thm. 5.1]). With notation as in Re-
mark 2.17, if A is simple and αg is outer for every e 6= g ∈ G, then A⋊

r
(α,σ) G

is simple and the inclusion A ⊂ A⋊r
(α,σ) G is irreducible.

As a consequence of the main result of this article, we shall see in Corol-
lary 3.16 that every irreducible regular inclusion of simple unital C∗-algebras
with a finite-index conditional expectation arises only in this fashion.

As mentioned in the introduction, the essence of this article lies in The-
orem 3.15, wherein we establish that every finite-index regular inclusion of
simple unital C∗-algebras can be realized as a cocycle crossed product via an
outer action of a finite group.

2.22.1. Finite-depth C∗-inclusions. The notion of depth is well established in
the theory of subfactors (see [26]). Recently, its analog in the theory of C∗-
algebras has been developed and studied in good detail in [20]. We shall only
need the definition.

Consider an inclusion B ⊂ A of unital C∗-algebras with a finite-index con-
ditional expectation E : A → B. Then consider the Watatani C∗-basic con-
struction B ⊂A⊂A1 with respect to the conditional expectation E. We know
that the dual conditional expectation E1 : A1 → A also has finite index (Re-
mark 2.3). Thus one can iterate the C∗-basic construction to obtain a tower
of unital C∗-algebras

B ⊂ A ⊂ A1 ⊂ · · · ⊂ Ak ⊂ · · · ,
where, for each k ≥ 0, Ak+1 =C∗(Ak ∪ {ek+1}) denotes the C∗-basic construc-
tion of the inclusion Ak−1 ⊂ Ak with respect to the finite-index conditional
expectation Ek : Ak → Ak−1, with A0 := A and A−1 := B.

The inclusion B ⊂ A is said to have finite depth if

(B′ ∩ Ak) = (B′ ∩ Ak−1)ek(B′ ∩Ak−1)
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for some k ≥ 1. The least such k is called the depth of B ⊂ A. We shall show
in Theorem 3.13 that every regular inclusion of simple unital C∗-algebras with
a finite-index conditional expectation has depth at most 2. We refer the reader
to [20] for more on finite-depth inclusions of C∗-algebras.

3. Structure of regular inclusions of simple C∗-algebras

3.1. Generalized Weyl group of an inclusion of C∗-algebras. Note that
if B ⊂ A is an inclusion of unital C∗-algebras with common unit, then U(B)
and U(CA(B)) are both normal subgroups of NA(B) and hence U(B)U(CA(B))
(= U(CA(B))U(B)) is also a normal subgroup of NA(B).

Analogous to the notions of the Weyl group and the generalized Weyl group
of an inclusion of von Neumann algebras (see [4, Def. 2.11]), we make the
following definitions.

Definition 3.2. Let B ⊂A be an inclusion of unital C∗-algebras with common
unit. Then
(i) the Weyl group of the inclusion B ⊂ A is defined as the quotient group

NA(B)/U(B) and will be denoted by W0(B ⊂ A);
(ii) the generalizedWeyl group of the inclusion B⊂A is defined as the quotient

group NA(B)/(U(B)U(CA(B))) and will be denoted by W (B ⊂ A).

Clearly, there exists a canonical surjective homomorphism from the Weyl
group onto the generalized Weyl group. And if B ⊂ A is an irreducible inclu-
sion, i.e., B′ ∩ A = C, then W (B ⊂ A) = W0(B ⊂ A). In this article, we shall
focus only on the generalized Weyl group.

The following elementary observation will be used ahead.

Lemma 3.3. Let B ⊂ A be an inclusion of unital C∗-algebras and let w be a
unitary in NA(B) \ U(B)U(CA(B)). Then Adw is an outer automorphism of B.

Moreover, if Z(B) ∼= C, then Adw is a free automorphism of B and, for
any conditional expectation E : A → B, E(w) = 0. In particular, for any two
elements u, v ∈ NA(B), E(vu∗) = 0 = E(v∗u) if [u] 6= [v] in W (B ⊂ A).

Proof. We have wBw∗ = B. Let ϕ = Adw and suppose, on contrary, that
ϕ is not an outer automorphism of B. Then there exists a v ∈ U(B) such
that wxw∗ = vxv∗ for all x ∈ B. This implies that v∗w ∈ U(CA(B)), so that
w ∈ U(B)U(CA(B)), which is a contradiction. Thus Adw must be an outer
automorphism of B.

If Z(B) ∼= C, then by Lemma 2.19, it follows that ϕ is free as well. Further,
let E : A → B be a conditional expectation. Since ϕ(x)w = wx for all x ∈ B,
it follows that

ϕ(x)E(w) = E(w)x for all x ∈ B.
So, by freeness of ϕ, we must have E(w) = 0. �

A priori, it is not clear whether the generalized Weyl group of an inclusion
B ⊂ A is finite or not. However, if B has trivial center and there exists a finite-
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index conditional expectation from A onto B, we can show that W (A ⊂ B) is
finite and provide a bound for its cardinality.

Proposition 3.4. Suppose that B ⊂ A is an inclusion of unital C∗-algebras
with Z(B)∼=C. If there exists a finite-index conditional expectation E :A→B,
then W (B ⊂ A) is finite and |W (B ⊂ A)| ≤ dim(B′ ∩A1), where A1 is the C∗-
basic construction of B ⊂ A with respect to the conditional expectation E.

Proof. Let G :=W (B ⊂ A) and let {ug | g ∈ G} denote a set of coset represen-
tatives of G in NA(B). Also, let e1 denote the Jones projection corresponding
to E.

We first assert that {uge1u
∗
g | g ∈ G} is a collection of mutually orthogonal

projections in the algebra B′ ∩ A1.
Note that, for each g ∈ G, since e1 ∈ B′ and u∗

gBug = B, we have

(uge1u
∗
g)x = uge1(u

∗
gxug)u

∗
g = ug(u

∗
gxug)e1u

∗
g = x(uge1u

∗
g)

for all x ∈ B. Hence uge1u
∗
g ∈ B′ ∩ A1 for all g ∈ G. Further, by Lemma 3.3,

we observe that

(uge1u
∗
g)(uhe1u

∗
h) = ugE(u∗

guh)e1u
∗
h = δg,huge1u

∗
g

for all g, h ∈ G. This proves our assertion (for which we did not require E to
have finite index).

Next, let Ẽ : A1 → A denote the dual conditional expectation of E. Then
Ẽ and (hence) Ẽ ◦ E : A1 → B are finite-index conditional expectations—see
Remark 2.2. Thus it follows from [31, Prop. 2.7.3] (also see [5, Prop. 2.16])
that B′ ∩ A1 is finite-dimensional. Hence we have that G must be finite and
|G| ≤ dim(B′ ∩ A1). �

3.5. Two-sided and unitary bases for regular inclusions. The following
is an obvious adaptation of [4, Lem. 3.5]. We skip the proof.

Lemma 3.6 ([4]). Let B ⊂ A be an inclusion of simple unital C∗-algebras
with a finite-index conditional expectation E : A → B and let C denote the
intermediate C∗-subalgebra generated by B and its centralizer CA(B). If θ is
an automorphism of C whose restriction to B is an outer automorphism of B,
then θ is a free automorphism of C.
Corollary 3.7. Let the notation be as in Lemma 3.6. Then

NA(B) ⊆ NA(CA(B)) ∩ NA(C)
and, for each w ∈ NA(B) \ U(B)U(CA(B)), wCw∗ = C, Adw is a free automor-
phism of C and E(w) = 0.

In particular, for any two elements u, v ∈ NA(B), E(vu∗) = 0 = E(v∗u) if
[u] 6= [v] in the generalized Weyl group W (B ⊂ A).

Proof. That NA(B) ⊆ NA(CA(B)) ∩NA(C) follows on the lines of the proof of
[4, Lem. 3.2]. Further, it readily follows that wCw∗ = C. Then, because of the
preceding lemma, the rest follows on the lines of Lemma 3.3. �
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Lemma 3.8. Let the notation be as in Lemma 3.6 and denote by E0 :A→B the
minimal conditional expectation as in Theorem 2.10. Then C ∈ IMS(B,A,E0).

Proof. Since A and B are simple and E0 : A → B has finite index, it follows
from [18, Prop. 6.1] that there exists a (finite-index) conditional expectation
F : A → C. We assert that F is compatible with respect to E0.

Note that (E0)↾C : C → B has finite index, by Proposition 2.13. Thus, in
view of [31, Lem. 2.12.2], it is enough to show that the restrictions of E0 and
(E0)↾C ◦ F to CA(B) are the same. Clearly, CA(B) = B′ ∩ C because C contains
CA(B), and for any z ∈ B′ ∩ C, we have

((E0)↾C ◦ F )(z) = (E0)↾C(z) = E0(z).

Hence F is a compatible conditional expectation and C ∈ IMS(B,A, E0). �

We shall now focus only on regular inclusions of simple unital C∗-algebras.
Thus, from here on, B ⊂ A denotes a fixed regular inclusion of simple unital
C∗-algebras with a finite-index conditional expectation from A onto B.

Let E0 : A → B denote the (unique) minimal conditional expectation as in
Theorem 2.10 and let G denote the generalized Weyl group of the inclusion
B ⊂ A with a fixed set of left coset representatives {ug | g ∈G} in NA(B), with
ue = 1. Further, let C := C∗(B ∪ (CA(B))), let F : A → C be the compatible
conditional expectation as in Lemma 3.8 and let A1 denote the Watatani C∗-
basic construction of B⊂A with respect to the minimal conditional expectation
E0 (and Jones projection e1 ∈ A1).

Proposition 3.9. The set {ug | g ∈ G} is a two-sided orthonormal quasi-basis
for F . In particular, IndW (F ) = |G|.
Proof. We first assert that

∑

g∈G ugC = A.

Let L :=
∑

g∈G ugC. Note that, for any two g, h in G, (ugC)(uhC) = ukC
for some k ∈ G. Also, for any g ∈ G, we have (ugC)∗ = Cu∗

g = u∗
gugCu∗

g = u∗
gC

because ug ∈ NA(B) ⊆ NA(C) (by Corollary 3.7), so that (ugC)∗ = ukC for
some k ∈ G. Hence L is a unital ∗-subalgebra of A. Further, since B ⊂ A is
regular, it follows that L is dense in A (because NA(B) = ∪g∈GugC). So it just
remains to show that L is closed.

Let a∈L. Then ∑

g∈G ugc
(n)
g → a for some sequence {∑g ugc

(n)
g } ⊂L. Thus

F
(

u∗
h

∑

g∈G

ugc
(n)
g

)

→ F (u∗
ha)

for all h∈G. Note that, by Corollary 3.7, we have F (u∗
sut) = δs,t for all s, t∈G,

so

F
(

u∗
h

∑

g∈G

ugc
(n)
g

)

=
∑

g

F (u∗
hug)c

(n)
g = c

(n)
h

for all h ∈ G, n ∈ N. Thus
∑

g ugc
(n)
g → ∑

g ugF (u∗
ga) ∈ L, so a ∈ L and L is

closed. This proves our assertion.

Münster Journal of Mathematics Vol. 18 (2025), 181–200



Regular inclusions of simple unital C∗-algebras 195

Now, every x ∈ A can be written as x =
∑

g ugcg, cg ∈ C. Thus

F (u∗
hx) =

∑

g

F (u∗
hug)cg = ch

for all h ∈ G, so that

x =
∑

g

ugF (u∗
gx)

for all x ∈ A. Also, by Corollary 3.7 again, we have F (u∗
guh) = δg,h for all

g, h ∈ G. Hence {ug | g ∈ G} is an orthonormal right quasi-basis for F .
Again, since {ug} ⊆ NA(B) ⊆ NA(C), we have ugC = Cug for all g ∈ G. So

∑

g Cug = A. And as above, it is easily seen that x =
∑

g F (xu∗
g)ug for all

x ∈ A. Hence {ug} is an orthonormal left quasi-basis for F as well.
Thus {ug | g ∈ G} is a two-sided orthonormal quasi-basis for F consisting

of unitaries in NA(B). Finally, we have IndW (F ) =
∑

g∈G ugu
∗
g = |G|. �

Theorem 3.10. With running notation, the following hold:
(i) E0 : A → B admits a two-sided orthonormal quasi-basis;
(ii) τ0 := (E0)↾CA(B)

: CA(B) → C is the (unique) Markov trace for the (con-
nected) inclusion C ⊆ CA(B) with modulus dim(CA(B));

(iii) [A : B]0 = |W (B ⊂ A)| dim(CA(B)).
In particular, [A : B]0 is an integer, |W (B ⊂ A)| ≤ [A : B]0 and if, in addition,
B ⊂ A is irreducible, then [A : B]0 = |W0(B ⊂ A)|.
Proof. (i) From Proposition 3.9, {ug | g ∈G} is a two-sided orthonormal quasi-
basis for F contained in NA(B). And from Proposition 2.13, there exists a two-
sided orthonormal quasi-basis for E0↾C contained in CA(B), say, {λi | 1≤ i≤ n}.
We assert that {ugλi | g ∈G, 1≤ i≤ n} is a two-sided orthonormal quasi-basis
for E0.

Since E0 = E0↾C ◦F , it follows easily that {ugλi | 1≤ i≤ n, g ∈G} is a right
orthonormal quasi-basis for E0 (see Remark 2.2). So we just need to show
that it is a left orthonormal quasi-basis as well, equivalently, {λ∗

i u
∗
g} is a right

orthonormal quasi-basis for E0. Clearly,

E0((λ
∗
i u

∗
g)

∗λ∗
ju

∗
h) = E0(ugF (λiλ

∗
j )u

∗
h) = δi,jδg,h.

So, in view of Proposition 2.4, it suffices to show that
∑

g,i λ
∗
i u

∗
ge1ugλi = 1.

For each g ∈ G, it readily follows that {ugλiu
∗
g | i} is also a two-sided quasi-

basis for E0↾C (see [4, Lem. 3.8]). Let eC denote the Jones projection for the
inclusion C ⊂ A with respect to the finite-index conditional expectation F .
Then eC ∈ A1 and

∑

i(ugλiu
∗
g)

∗e1λi(ugλiu
∗
g) = eC (by Remark 2.15). Thus

∑

g,i

λ∗
i u

∗
ge1ugλi =

∑

g,i

u∗
g(ugλiu

∗
g)

∗e1(ugλiu
∗
g)ug =

∑

g

u∗
geCug = 1,

where the last equality follows from Proposition 2.4. This proves (i).
(ii) and (iii) Since E0 = E0↾C ◦ F , it follows that

IndW (E0) = IndW (F )IndW (E0↾C)
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(see Remark 2.2). Hence, from Proposition 3.9 and Proposition 2.8, we obtain

|G| dim(CA(B)) = [A : B]0 =
∑

g, iλ∗
i u

∗
gugλi = IndW (τ0).

In particular, τ0 has scalar Watatani index. Thus, in view of Proposition 2.8,
it follows that τ0 is the Markov trace for the inclusion C⊆ CA(B) with modulus
dim(CA(B)). �

Corollary 3.11. Let B be a simple unital C∗-algebra and suppose a finite
group K admits a U(B)-valued outer cocycle action (α, σ) on B. Then the
Weyl group of the inclusion B ⊂ B ⋊r

(α,σ) K is isomorphic to K.

Proof. We write B ⋊K for the reduced twisted crossed product B ⋊r
(α,σ) K.

Note that, by the universality of the reduced twisted crossed product, we
can assume that there exists a Hilbert space H such that B ⊆ B(H) and there
is a map w : K → U(B(H)) such that ws /∈ B (for s 6= e),

wswt = σ(s, t)wst, we = 1, (ws)
∗ = σ(s−1, s)∗ws−1 , αs(x) = wsxw

∗
s

for all s, t ∈ K and x ∈ B, and B ⋊K = C∗(B, w(K)) ⊂ B(H).
Since the (twisted) action is outer, B ⋊K is simple and B′ ∩ (B ⋊K) = C,

i.e., B ⊂ B ⋊K is irreducible (see Theorem 2.22). Also, B ⊂ B ⋊K is regular
(see Example 2.21), so |W0(B ⊂ B ⋊K)| = [B ⋊K : B]0, by Theorem 3.10.

Further, since B ⊂ B ⋊K is irreducible, the canonical conditional expecta-
tion E : B ⋊K → B (as in Remark 2.17 (iii)) is unique (by [31, Cor. 1.4.3])
and hence minimal, which then implies that [B ⋊K : B]0 = IndW (E) = |K|,
by Remark 2.17 (v). Thus |W0(B ⊂ B ⋊K)| = |K|.

Finally, {ws | s ∈ K} ⊂ NB⋊K(B) and the map

K ∋ s 7→ [ws] ∈ W0(B ⊂ B ⋊K)

is an injective group homomorphism. Hence W0(B ⊂ B ⋊K) ∼= K. �

It will be interesting to answer the following natural question.

Question. Suppose a (countable) discrete group G admits a cocycle action
(α,σ) on a unital C∗-algebra B. Is the generalized Weyl group of the inclusion
B ⊂ B ⋊r

(α,σ) G isomorphic to G?

The first part of the following observation now follows from [13], which
is based on a beautiful application of the so-called “circulant matrices” from
quantum information theory.

Corollary 3.12. With running notation, the following hold.
(i) There exists a unitary orthonormal quasi-basis for τ0.
(ii) The conditional expectation E0 admits a unitary orthonormal quasi-basis.

Proof. (i) Let (n1, . . . , nk) be the dimension vector of CA(B), so

CA(B) ∼=
k

⊕

i=1

Mni
(C).
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By Theorem 3.10, τ0 is the Markov trace for the inclusion C⊆CA(B) with mod-
ulus d=dim(CA(B)). So the trace vector of τ0 is given by t̄= (n1/d, . . . ,nk/d)

t.

Note that CA(B) is unitally ∗-isomorphic to P :=
⊕k

i=1(Ini
⊗Mni

(C)) and
P is a unital C∗-subalgebra ofMd(C). Further, if τ denotes the (unique) tracial
state on Md, then the trace vector of τ↾P is given by (n1/d, . . . , nk/d)

t. Thus
τ↾P corresponds to τ0 via the ∗-isomorphism between P and CA(B). By [13,
Thm. 2.2], there exists a unitary orthonormal quasi-basis for τ↾P . Hence there
exists a unitary orthonormal quasi-basis for τ0.

(ii) Let {wi | 1≤ i≤ n} ⊂ CA(B) be a unitary orthonormal quasi-basis for τ0.
Then it follows on the lines of Proposition 2.13 (ii) that {wi} is a unitary
orthonormal quasi-basis for E0↾C as well. From Proposition 3.9, we know
that {ug | g ∈ G} is a unitary orthonormal quasi-basis for F : A → C. Hence
{ugwi | g ∈ G, 1 ≤ i ≤ n} is a unitary orthonormal quasi-basis for E0. �

With all requirements at our disposal, imitating the proof of [6, Thm. 4.3],
we obtain the following.

Theorem 3.13. Let B ⊂ A be a regular inclusion of simple unital C∗-algebras
with a finite-index conditional expectation from A onto B. Then the inclusion
B ⊂ A has finite depth and the depth is at most 2.

3.14. Characterization of regular inclusions of simple C
∗-algebras.

We are now all set to prove the main result of this article.

Theorem 3.15. Let B ⊂ A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation from A onto B. Then the inclusion B ⊂A
is regular if and only if there exists a finite group G that admits a cocycle action
(α, σ) on the intermediate C∗-subalgebra C := C∗(B ∪ CA(B)) such that
(i) B is invariant under α;
(ii) for each e 6= g ∈ G, αg is an outer automorphism of B;
(iii) (B ⊂ A) ∼= (B ⊂ C ⋊

r
(α,σ) G).

Proof. Suppose that a finite group G admits a cocycle action (α, σ) on C as
in the statement. We can consider a representation C ⊆ B(H) such that α is
implemented by a map w : G → Aut(B(H)), i.e., αg = Ad(wg) for all g ∈ G.
So C ⋊r

(α,σ) G = C∗(C ∪w(G)). The regularity of B ⊂ C ⋊r
(α,σ) G is clear as

{wg | g ∈ G} ∪ U(C) ⊆ NC⋊r
(α,σ)G(B).

Conversely, suppose that the inclusion B ⊂ A is regular. Consider its gen-
eralized Weyl group G. Then G is finite by Proposition 3.4. We assert that G
admits a desired cocycle action on C.

Let {ug | g= [ug]∈G} denote a fixed set of (left) coset representatives of G in
NA(B). Since ugCu∗

g = C (see Corollary 3.7), αg := Adug
is an automorphism

of C for every g ∈ G. Moreover, from Corollary 3.7 again, it follows that
αg : C → C is (free and hence) outer for every g 6= e. We assert that the map
α :G→Aut(C), g 7→ αg is in fact a cocycle action with respect to a U(C)-valued
cocycle σ, which we describe now.
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Note that [uguh] = [ugh] for all g, h ∈ G. So there exists a function

σ : G×G → U(B)U(CA(B)) ⊂ U(C)
satisfying uguh = σ(g, h)ugh for all g, h ∈ G. We assert that (α, σ) is a cocycle
action of G on C. First, observe that

αgαh(x) = αg(uhxu
∗
h) = uguhxu

∗
hu

∗
g

= Ad(µ(g, h))ughxu
∗
gh = Ad(µ(g, h))αgh(x)

for all g, h ∈ G, x ∈ C. Thus αgαh = Ad(σ(g, h))αgh for all g, h ∈ G.
Now applying the relation uguh = σ(g, h)ugh twice, we see that

(uguh)uk = σ(g, h)σ(gh, k)u(gh)k,

and on the other hand,

ug(uhuk) = ug(σ(h, k)uhk) = Ad(ug)(σ(h, k))σ(g, hk)ug(hk)

for all g, h, k ∈ G. Thus

σ(g, h)σ(gh, k) = αg(σ(h, k))σ(g, hk)

for all g, h, k ∈ G. And clearly, σ(g, 1) = σ(1, g) = 1. This proves our assertion
that (α, σ) is a cocycle action of G on C.

Further, note that ugBu∗
g = B for all g ∈ G and Adug

: B → B for each
e 6= g ∈ G is outer by Lemma 3.3.

Finally, we show there exists a ∗-isomorphism ϕ fromA onto C⋊r
(α,σ) G such

that ϕ|C = idC . Let x ∈ A. By Proposition 3.9, we see that x =
∑

g F (xu∗
g)ug.

Define ϕ :A→C ⋊r
(α,σ) G by ϕ(x) =

∑

g E(xg−1)g, where E : C ⋊r
(α,σ) G→C is

the canonical finite-index conditional expectation (as in Remark 2.17). Clearly,
ϕ|C = idC and it is easy to check that ϕ is a unital ∗-homomorphism. Since
the inclusion B ⊂ A is regular, ϕ is surjective as well. We omit the necessary
details. Since A is simple, ϕ is injective and we are done. �

Corollary 3.16. Let B ⊂ A be a regular irreducible inclusion of simple unital
C∗-algebras with a finite-index conditional expectation from A onto B. Then its
Weyl group G admits an outer cocycle action (α, σ) on B such that (B ⊂ A) ∼=
(B ⊂ B ⋊r

(α,σ) G).

Remark 3.17. Two results from subfactor theory which are very relevant to
the preceding theorem need to be mentioned here.
(i) Choda [12, Thm. 4], based on one of her earlier techniques in [11, Thm. 7],

had proved that, for any factor M with separable predual, for every irre-
ducible regular subfactor N ⊂ M with a faithful conditional expectation
from M onto N , there exists a countable discrete group G which admits
an outer cocycle action (σ, ω) on N such that M ∼= N ⋊(σ,ω) G.

(ii) Later, employing the same technique of Choda [11, Thm. 7], Cameron [9,
Thm. 4.6] showed that, given any regular inclusion N ⊂ M of II1-factors,
there exists a countable discrete group G which admits a cocycle action
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(σ,ω) on Q, the von Neumann algebra generated by N and N ′ ∩M , such
that M ∼= Q ⋊(σ,ω) G. However, Cameron does not mention whether the
action is outer or not.
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