Miinster J. of Math. 18 (2025), 1-26 Miinster Journal of Mathematics
DOI 10.17879/11958513543 (© Miinster J. of Math. 2025
urn:nbn:de:hbz:6-11958534157

Universal properties of variations
of the little cubes operads

Kensuke Arakawa
(Communicated by Michael Weiss)

Abstract. Given a map B — B Top(n) of spaces, one can define a version Eg of the little
cubes operad, whose construction is due to Lurie. We show that Ep enjoys the universal
property that, for every oo-operad O, an operad map Eg — O is equivalent to a Top(n)-
equivariant map B X g Top(n) £ Top(n) — Map(En, O). This gives us an explicit diagram
exhibiting Ep as a colimit of E,, parametrized by B. It also shows that locally constant
factorization algebras satisfy descent, reproving a recent theorem of Matsuoka.

1. INTRODUCTION

The operad of little n-cubes governs homotopy coherent multiplications by
using rectilinear embeddings of cubes. They were first introduced in the works
of Boardman—Vogt [4] and May [21] to study algebraic structures of iterated
loop spaces, and since then, they have repeatedly appeared in many contexts,
from mathematical physics to embedding calculus. (See [8] for a survey.)

As contexts shifted, various modifications of little n-cubes operads emerged.
The framed little n-disks operad fD,, (see [9, 22]), in which we replace cubes
with disks and allow rotations of disks, is one such example. To unify these
variations, Markl and Wahl independently arrived at the notion of semi-direct
products of operads [19, 22]: given a topological operad O equipped with a (left)
action of a topological monoid M, the semi-direct product M x O is defined by
setting (M x O)(k) = M* x O(k), with obvious structure maps. For example,
the special orthogonal group SO(n) acts on the operad D,, of little n-cubes
by moving the centers of the small disks (with their radii fixed) by using the
action of SO(n) on R™, and the resulting operad SO(n) x D,, is nothing but
the framed little n-disks operad. If we want to be more restrictive on the class
of embeddings, we can just choose a subgroup H C SO(n) (or more generally,
a group homomorphism A — SO(n)) and form the semi-direct product H X D,,.
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2 KENSUKE ARAKAWA

In [15], Lurie introduced an oo-operadic analog of these variations, which
we now recall.

Remark 1.1. The rest of this paper relies heavily on the theory of co-cat-
egories and oo-operads. However, for the most part, one can get the idea of
this section just by replacing these gadgets with topological categories and col-
ored topological operads and by replacing various oco-categorical constructions
(limits and colimits, Kan extensions, sheaves, etc.) by the classical derived
constructions (homotopy limits and homotopy colimits, homotopy Kan exten-
sions, homotopy sheaves, etc.). Many oco-operads have ® (and sometimes IT)
in their exponents, but this is just a notational convention. Remark 1.7 might
also help to understand the main result.

Construction 1.2. Given a map B — B SO(n) of spaces, we define an oo-
operad E to be the pullback of the diagram

N(fD,)® — BSO(n)" + B

in the co-category Opy, of co-operads, where

e N(—)® denotes the operadic nerve functor, which converts a simplicial op-
erad into an oo-operad;

e B denotes the colimit of the constant diagram Comm® : B — Op., at
the commutative co-operad.! In the case where B = B SO(n), a direct
computation shows that N(SO(n) x Comm)® = B SO(n)", and the left-
hand map is induced by the map fD,, = SO(n) x D,, — SO(n) x Comm.

In fact, Lurie’s definition is more general, as he defines the co-operad E% for

any map B — BTop(n) of spaces. Instead of spelling out the details here, we

refer the readers to Section 2.1.

For example, given a homomorphism H — SO(n) of topological groups, the
oc-operad E$; is equivalent to N(H x D,,)®.

Notice that the above construction differs from the classical one in one cru-
cial respect: Lurie’s definition starts with the framed n-disks operad, instead
of the action of SO(n) on the little n-disks operads. The reason for this is that
the operadic nerve functor N(—)® is not enriched (at least not in an obvious
way), so it is difficult to construct a diagram B SO(n) — Opes encoding the
action of SO(n) on N(D,,)®.

Now the classical notion of semi-direct products of groups is a special case of
the Grothendieck construction, which in turn is a special case of colimits. This
suggests, as Lurie himself remarked informally in [15, Rem. 3.1.10], that the
oo-operad E% is the colimit of some diagram B — Op., exhibiting an action of
B on E®. This is indeed true, although formal proofs had not appeared until
quite recently (see, e.g., [11, Prop. 2.2] and [7, Rem. 2.2]).

However, for the exact same reason as we had to start with the semi-direct
product and not from the action, it seems difficult to pinpoint exactly which

I This description of BY is not immediate from Lurie’s definition, but we will see that it
is correct (Lemma 2.21).
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UNIVERSAL PROPERTIES OF VARIATIONS OF THE LITTLE CUBES OPERADS 3

diagram’s colimit E% is. Because of this, the description of Epg-algebras has
always been opaque, camouflaged with phrases like “E,,-algebras with coherent
actions of B.” In this paper, we improve this situation by constructing an
explicit diagram B — Ops, whose colimit is E%, thereby making the universal
property of E$ lucid. We will achieve this by showing that the functor E
(not just each ES) enjoys a certain universal property.

As a motivation, consider the universal case where B = B Top(n). Our task
is to find an occ-operad which is equivalent to E® and admits a Top(n)-action.
This might be difficult if we are stuck with the picture of little disks, but there
is in fact a canonical one: consider the classifying map R™ — B Top(n) of
the tangent microbundle. Since the classifying maps of tangent microbundles
are compatible with embeddings, the object R" € S)p1op(n) has a Top(n)-
action. Since the construction of EY is functorial, the co-operad Eg, inherits
a Top(n)-action. On the other hand, since R™ is contractible, the oo-operad
IE]%” is equivalent to Ef? ~E®. Thus we obtain an oco-operad equivalent to E®,
equipped with a Top(n)-action. We will confirm that this is the action we were
after.

Proposition 1.3. For any map B — BTop(n) of spaces, the co-operad ES, is
the colimit of the composite
R™ E®
B — BTOp(n) — S/B Top(n) — Opoo.

We can interpret Proposition 1.3 as describing the local universal property
of E%, in the sense that B is fixed. We will deduce this local property from
the following global universal property of EY, which is the main result of this

paper.
Theorem 1.4 (Theorem 2.20). The diagram

_®T0p(n)]E]§n

Fun(BTop(n)°P,S)

S/BTop(n)

Opso

commutes up to natural equivalence, where the left slanted arrow is the straight-
ening-unstraightening equivalence and — @rop(n) E%n 1s the left Kan extension
of the functor Eg, : BTop(n) — Ops along the Yoneda embedding.

In other words, we have that, for any right Top(n)-space X with classifying
map B — BTop(n), there is a natural equivalence of co-operads

X ®Top(n) E%}n ~ ]E%

To explain why Theorem 1.4 implies Proposition 1.3, let X be a right
Top(n)-space with classifying map B — B Top(n). By the colimit formula for
Kan extensions, we have

ES,
X @B Top(n) E%n = colim(B Top(n),x — B Top(n) R Opoo).
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The Yoneda lemma implies that the right fibration B Top(n),x — B Top(n)
classifies the right Top(n)-space X, so B is equivalent to B Top(n),x as a space
over B Top(n). Also, Theorem 1.4 says that X ®p1op(n) E%’n is equivalent
to E%. Hence IE% is the colimit of the diagram

E®,
B — BTop(n) — Opeo,
as claimed.

Remark 1.5. The above computation also explains why Theorem 1.4 ought to
be true. Indeed, if f: BTop(n) — Op is a diagram whose colimit is ]E% Top(n)’
then IE% should be the colimit of the composite

B — BTop(n) 5 Ope..

The above computation then shows that the composite

®
Fun(B TOp(TL)Op, 8) ~ S/B Top(n) ]E—.> Opm

should be the left Kan extension of its restriction along the Yoneda embedding
y : BTop(n) — Fun(B Top(n)°?,S). It is not hard to see that the composite

®
B Top(n) % Fun(B Top(n)°?, 8) =~ 85 ep(m) —+ OPos

is nothing but the functor Ef, : B Top(n) — Ops. Thus we arrive at the
statement of Theorem 1.4.

Remark 1.6. The action of Top(n) on E%n admits a nice geometric picture.

Given an n-manifold M, regarded as a space over B Top(n) by the classifying

map of its tangent microbundle, the co-operad E}\ej[ can informally be described

as follows.?

(i) The colors of EY, are the embeddings R™ — M.

(ii) Given a collection t1,...,tk, ¢ : R® — M of embeddings, a multiarrow
(t1,...,tk) — ¢ consists of an embedding f : ]_[le R™ — R™ and a collection
of isotopies {¢; ~ ¢f }1<i<k-

In other words, the oo-operad E% is something like the little n-cubes operad,

but in which the little n-cubes are now embedded into the “ambient space” M.

Every embedding M — N of n-manifolds induces a map E% — E% which

embeds the little cubes into the larger ambient space N. The action of Top(n)

on E%’n arises when we take M = N = R".

Remark 1.7. Although this is just a paraphrase of Theorem 2.20, the follow-
ing reformulation of the universal property of E% is worth pointing out: for
every oc-operad O®, a map E% — O of oo-operads is equivalent to a Top(n)-
equivariant map B X gop(n) £ Top(n) — Mape,_ (E%n, 0%). More precisely,

2Recall that, despite the name, co-operads are a generalization of colored operads.
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there is a homotopy equivalence
Mapeo,, (E%, 0%)
= MapFun(B Top(n)°r,S) (B X B Top(n) E TOp(Tl), 1v[ap(9poo (E]%" ) O®))
which is natural in O% € Opo, and B € S; 5 Top(n)-
For instance, if M is an n-manifold, then a map E% — 0% is equiva-
lent to a Top(n)-equivariant map from the topological frame bundle of M

(i.e., the principal Top(n)-bundle associated with the tangent microbundle) to
Map(’)pm (E]%" 9 O®)

Related works. Algebras over the co-operad E;\ej[, where M is an n-manifold,
are called locally constant factorization algebras® on M and appear in classical
and quantum field theory [5, 6]. Theorem 1.4 has an important antecedent
from the theory of locally constant factorization algebras, as we now explain.

A basic problem with anything associated with manifolds is whether it obeys
the local-to-global principle. Matsuoka showed that locally constant factoriza-
tion algebras have this property.

Theorem 1.8 (Matsuoka [20, Thm. 1.3]). Let C® be a symmetric monoidal
oo-category and let M be an n-manifold. The assignment U > Algg,  (C) deter-
mines a sheaf of co-categories on M, where Algg, (C) denotes the co-category
of Ey-algebras in C.

Matsuoka’s theorem is a special case of Theorem 1.4. To see this, recall
that if C is a small co-category and D is an oo-category with small colimits,
then a functor F : Fun(C°P,S) — D is a left Kan extension of its restriction
along the Yoneda embedding if and only if it preserves small colimits. In par-
ticular, Theorem 1.4 implies that the functor E® : S /B Top(n) — OPoo Preserves
small colimits. Since the tangent classifier functor 7 : Open(M) — S/ Top(n)
is evidently a cosheaf,* this means that the composite

T IE?
Open(M) — S/ 1op(n) — OPco

is also a cosheaf. Matsuoka’s theorem then follows from the observation that
the functor Alg,(C) : Op%® — Caty, preserves small limits. In this sense, Theo-
rem 1.4 generalizes Matsuoka’s theorem by allowing gluing of arbitrary spaces
over B Top(n), not just manifolds.’

We should also remark that our technique is quite robust and applies equally
well to general topological operads with actions of group-like topological mo-
noids. We will work with the little n-cubes operads for concreteness, but
readers interested in a version of Theorem 1.4 for other operads should have

3More precisely, Ejs-algebras are equivalent to locally constant factorization algebras;
see [17, Thm. 5.4.5.9].

4For a formal proof, see the proof of Corollary 2.23.

5Another direction of generalization of Matsuoka’s theorem is investigated in [14], where
they consider the gluing properties of constructible factorization algebras on stratified
manifolds.
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no problem translating the arguments of this paper (see Section 2.19) to meet
their needs.

Finally, algebras over E% play a central role in the theory of topological chiral
homology [17, §5.5], alias factorization homology [1] (where they go under the
name of Diskf -algebras). We hope that this paper adds to the conceptual
understanding of E-algebras.

Outline of the paper. In Section 2, we prove Theorem 1.4, assuming a lemma
on some construction of co-operads. The lemma will then be proved in Sec-
tion 3.

Notation and conventions.

e Following [16], we use the term co-category as a synonym for Joyal’s quasi-
category [12]. Unless stated otherwise, our notation and terminology follow
Lurie’s books [16, 17].

e If A is a simplicial model category, we let A° C A denote the full simplicial
subcategory spanned by the fibrant-cofibrant objects.

e The simplicial category of simplicial sets, equipped with the Kan—Quillen
model structure, will be denoted by sSet.

e The category of marked simplicial sets will be denoted by sSet™.

e We will write Fin, for the category whose objects are the finite pointed sets
(ny = ({,1,...,n},*) and whose morphisms are the maps of pointed sets.

e We let Op4 denote the simplicial category of co-operads, defined as in [17,
Def. 2.1.4.1], and write Opy, for its homotopy coherent nerve.

e If M and N are topological manifolds (without boundaries), we will write
Emb(M, N) for the space of topological embeddings M — N, topologized
by the compact-open topology. We let Top(rn) C Emb(R™,R™) denote the
subspace of self-homeomorphisms of R".

o We will write ./\/lﬂdﬁ for the simplicial category whose objects are the topo-
logical n-manifolds (without boundary), and whose hom-simplicial sets are
given by Sing Emb(—, —). The homotopy coherent nerve of Mfld% will be
denoted by Mfld,,.

o We will write B Top(n)® C Mfldﬁ for the full simplicial subcategory spanned
by R", and let B Top(n) denote its homotopy coherent nerve. (This nota-
tion is justified by Kister-Mazur’s theorem [13, Thm. 1], which says that
the inclusion Top(n) < Emb(R™,R™) is a homotopy equivalence. We also
remark that their theorem implies that B Top(n) is a Kan complex.)

e If K is a simplicial set, we will denote the cone point of the simplicial set
K" by co.

e IfC is an co-category, we will write C= C C for the maximal sub-Kan complex
of C.

2. PROOF OF THEOREM 1.4

The goal of this section is to prove Theorem 1.4. We start by giving precise
definitions of the functor E® and related constructions in Section 2.1. We
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then prove some preliminary results in Section 2.13. After this, we prove the
theorem in Section 2.19, assuming a lemma that we will prove in Section 3
(Lemma 2.21). In Section 2.22, we use the theorem to give an alternative
proof of Matsuoka’s gluing theorem on locally constant factorization algebras.

2.1. Definitions. In this subsection, we recall the definitions of the functor
E®:S /B Top(n) — OPso and some related constructions.

Definition 2.2 ([17, Constr. 2.4.3.1]). We define a simplicial functor (—)! :
sSet® — OpZ as follows: Let ¢ : Fin, — Set denote the forgetful functor and
let [ ¢ denote its category of elements. We let I'* C [+ denote the full sub-
category spanned by the objects ({k), i) such that i € (k) \ {*}. We then
define (—)M : sSet — sSet /N(Fin,) as the right adjoint of the simplicial functor
X = X XN (Fin,) N(I'*). According to [17, Prop. 2.4.3.3], this simplicial functor
lifts to a simplicial functor (—)™ : sSet® — Op4..

Remark 2.3. Let C be a simplicial category. The simplicial set N(C)H
isomorphic to the homotopy coherent nerve of the simplicial category C™ whose
objects are the (possibly empty) sequences (C1,...,Ck) of objects of C, and
whose hom-simplicial sets are given by

C((Cy,...,Ch),(Dy,....00)) = ] H H CO“D

a:(k)—(l) j=1i€a™

where the coproduct ranges over the morphisms (k) — (l) in Fln*.

Remark 2.4. Using [17, Rem. B.3.9], we can check that the functor N (I'*) —
N(Fin,) is a flat inner fibration. Therefore, the functor

— XN (Fin,) V(I'™) : sSet/n(Fin,) — sSet

is left Quillen with respect to the Joyal model structures [17, Cor. B.3.15]. It
follows that every Kan fibration X — Y of Kan complexes induces a fibration
of co-operads X" — Y.

Definition 2.5 ([17, Def. 5.4.2.10]). We define a simplicial functor
E® (Sset/B Top(n)) — Opvo
as follows. Let E2 B Top(n) denote the operadic nerve of the topological operad

whose space of operations of arity & is Emb(R™ x {1,...,k},R™). The restric-

tion map
k

Emb(R" x {1,...,k},R") = [ [ Emb(R",R")

i=1
B Top(n) B Top(n)". Given a Kan fibration B —
B Top(n) of Kan complexes, we set

determines a functor E®

R _ m® in|
EB - EBTop(n) XBTOP(")H B=.

Note that E% is an oo-operad by Remark 2.4.
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8 KENSUKE ARAKAWA

Definition 2.6 ([1, §2.1]). We define the tangent classifier functor
T: Mﬂdﬁ — (sSet/B Top(n))o

to be the composite simplicial functor

yoneda

Fun® ((Mfld5)°P, sSet®)

Lestrietion, pun® (B Top(n))°P, sSet”)

Mfld4

Ne

U o
E— (Sset/B Top(n)) s
where Fun®(—, —) denotes the simplicial category of simplicial functors, and
Un, denotes the unstraightening functor [16, §2.2.1] with respect to the counit

map ¢ : €[BTop(n)] — B Top(n)2.

Remark 2.7. The name “tangent classifier” comes from the observation that
if M is an n-manifold, then 7(M) can be regarded as a model of the classifying
map of the tangent microbundle of M. (In particular, the total space of 7(M)
has the homotopy type of Sing M.) More precisely, let £ : TM — M denote the
fiber bundle with fiber R™ associated to the tangent microbundle of M, and let
7 : Fr(M) — M denote the associated Top,(n)-bundle, where Top,(n) C Top(n)
denotes the subgroup of homeomorphisms that fixes the origin. (Thus, for
each point p € M, the space T,M = £~1(p) is an open subset of {p} x M,
and Fr,(M) = 7w !(p) is the subspace Homeo(R",T,M) C Emb(R", T, M) of
homeomorphisms R™ — T, M carrying the origin to (p,p) € T,M.) We will see
in the next paragraph that the map 6 : Fr(M) — Emb(R", M) is a weak ho-
motopy equivalence. Since 7(M) is the classifying map of Sing Emb(R", M) €
Fun(B Top(n)°P, S) by definition, and since the inclusion Top,(n) < Top(n)
is a homotopy equivalence, this proves that 7(M) can be identified with the
classifying map of the tangent microbundle of M.

To see that 6 is a weak homotopy equivalence, observe that Fr(M) and
Emb(R™, M) project to M via Serre fibrations. (For Fr(M), this is clear be-
cause 7 is a fiber bundle. For Emb(R™, M), this is proved in [2, Prop. 2.7].) Tt
will therefore suffice to show that, for each p € M, the inclusion

0p : Frp(M) = Homeoo(R", T, M) — Emb(R", M) x {p}

is a weak homotopy equivalence. We can factor 6§, as

Homeoo(R", T, M) % Emb(R™, T, M) x1, 3 {(p,p)} > Emb(R", M) x 5 {p}.

The map ¢ is a homotopy equivalence by Kister—Mazur’s theorem [13, Thm. 1].
The map 1 is a weak homotopy equivalence by [2, Prop. 2.9], and we are done.

Definition 2.8. We define a simplicial functor E& : Mfld> — Op2 to be the
composite

®
M 5 (sSet) s rop(m))° — Op2.
The restriction E®|B Top(n)® will be denoted by ES, : B Top(n)2 — Op4.

Minster Journal of Mathematics VoL. 18 (2025), 1-26



UNIVERSAL PROPERTIES OF VARIATIONS OF THE LITTLE CUBES OPERADS 9

Remark 2.9. By direct computation, we can check that if M is an n-manifold,
then the object 7(M) € sSet/p Top(n) is (isomorphic to) the projection

BTop(n)/ar = B Top(n) X mad, Mfldy,nr — B Top(n).

(Readers unfamiliar with the explicit description of the unstraightening functor
should consult [3, §4].) In particular, our definition of the oo-operad EY, =
E7 \p coincides with Lurie’s definition [17, Def. 5.4.5.1].
Definition 2.10. We will write (—)! : S — Op., for the homotopy coher-
ent nerve of the simplicial functor (—) : sSet® — Op4% . We define functors
Eg : N((sSet) 5 Top(n))®) = OPso, T : Mfld,, = N((sSet;p 1op(n))°), and EZ :
MfAld,, = Opso similarly.

By slightly abusing notation, we will use the symbol E® for any functor
F :S/B1op(n) = Opoo rendering the diagram

o N(EY)
N((Sset/BTOp(n)) )

S/BTOp(n)

Opso

commutative up to natural equivalence, where the slanted arrow on the left is
the categorical equivalence of [18, Tag 01ZT].

Definition 2.11. Let C® be a small simplicial category whose hom-simplicial
sets are Kan complexes, and let C = N(C?) be its homotopy coherent nerve.
By the unstraightening functor (or the unstraightening equivalence), we mean
any functor Fun(C,S) — N((sSet,¢) rendering the diagram

contra)
contra

]\Z(FHIIS (CZP, sSet)°) M N((Sset/C)gontra)

~

Fun(C°?,S)

commutative, where (sSet;c)contra denotes the contravariant model structure
[16, §2.1.4] and Un, denotes the unstraightening functor [16, §2.2.1] with re-
spect to the counit map ¢ : €[C] — C», and the left vertical arrow is the cate-
gorical equivalence of [16, Prop. 4.2.4.4].

Suppose now that C is a Kan complex. Then the contravariant model struc-
ture on sSet,c coincides with the Kaanuilwlen model structure, so there is
a categorical equivalence N((sSetc) ) — Syc (see [18, Tag 01ZT]). We
will refer to the composite

o
contra

Fun(copv S) — N((sset/C)gontra) i S/C

also as the unstraightening functor.

Miinster Journal of Mathematics VoL. 18 (2025), 1-26
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Remark 2.12. The functor 7 : Mfld,, — N ((sSet;p op(n))°) is naturally equiv-
alent to the composite

Mld,, %5 Fun(MHdP, S) 5 Fun(B Top(n)°?, 8) = N((sSet/57op(n))°)s

where y denotes the Yoneda embedding, the second functor is the restriction
along the inclusion i : B Top(n) < Mfld,,, and the last equivalence is the un-
straightening equivalence. Indeed, replacing Mfld,, by its full subcategory
spanned by the manifolds embedded in some Euclidean space, we may assume
that Mfld,, is small. The naturality of unstraightening [10, App. A] implies
that the diagram

Fun(Mfld)P, §) —=— N((sSet; a4, )

l l

Fun(BTop(n)°P,S) —=— N((sSet;pTop(n))°)

contra)
contra

commutes up to natural equivalence, where the horizontal arrows are the un-
straightening equivalences. Thus it suffices to show that 7 is naturally equiv-
alent to the composite

Mfld,, 2 Fun(MfIdP, S) = N((sSet)amid, )contra) — N((5S€t/ 5 Top(n))°)s
which follows from the definitions.

2.13. Universal colimit diagrams. Let C be an ordinary category with pull-
backs and small colimits. In ordinary category theory, we say that colimits in
C are universal if, for each morphism f: X — Y in C, the pullback functor
[*:C/y — C/x preserves small colimits. In some cases, colimits in C may not
be universal, but some particular colimit diagram in C,y is preserved by the
pullback functor f*. The goal of this subsection is to record some basic facts
on such colimit diagrams in the setting of co-categories.

Definition 2.14. Let C be an oo-category with pullbacks, let K be a simplicial
set, and let p: K* — C be a diagram. We say that p is a universal colimit
diagram if, for each cartesian natural transformation o : K> x A! — C such
that o/ K* x {1} = p, the diagram «o|K" x {0} is a colimit diagram.

Definition 2.15. Let C be an oco-category with pullbacks. Given a morphism
[: X =Y inC,welet f*:C/y — C,x denote the right adjoint of the composite

C/X % C/f —>C/y,

where the functor ¢ is any section of the trivial fibration C,; =cC /X

Remark 2.16 ([17, Lem. 6.1.3.3]). Let C be an co-category with pullbacks,
and let p: K* — C be a diagram. The following conditions are equivalent.
(i) The diagram p is a universal colimit diagram.
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(ii) For every morphism f: X — Y in C and for every diagram p’: K* — C/y
lifting p, the composite

K* p_> C/y f—) C/X
is a colimit diagram.

Definition 2.17. Let f:C — D be a functor of co-categories, and let C' C C be
a full subcategory. Suppose that D has pullbacks. We say that f is a universal
left Kan extension of f|C" if, for each object X € C, the diagram

C)x)F —»chp
is a universal colimit diagram.

Proposition 2.18. Let f :C — D be a functor of co-categories, and let C' C C
be a full subcategory. If f is a universal left Kan extension of f|C’, then for
every object X € C, the composite

fx:iCx—=ChD
is a universal left Kan extension of fX|C;X.
Proof. Tt suffices to show that, for each object p: C'— X in C,x, the functor
C}X x¢,x Crp = C' xcCe

is final. But this is a trivial fibration, being a pullback of the trivial fibration
C/p — C/C. O

2.19. Main result. We now prove the main theorem of this paper (Theo-
rem 1.4). Let us recall the statement of the theorem once again.

Theorem 2.20. The diagram

—®Top(n) ESn

Fun(BTop(n)°P,S)

S/BTop(n)

Opso

of co-categories commutes up to natural equivalences, where the left slanted
arrow is the unstraightening functor (Definition 2.11).

The proof relies on the following lemma, which we will prove in Section 3.

Lemma 2.21. Let D C S denote the full subcategory spanned by the con-
tractible Kan complexes. The functor

(—)H : S — Oposo

is a universal left Kan extension of (—)"|D.
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12 KENSUKE ARAKAWA

Proof of Theorem 2.20, assuming Lemma 2.21. By construction, the diagram
of co-categories

BTop(n)

FU.D(BTOp(TL)Op,S) T S/BTop(n) F Opoo

commutes up to natural equivalence, where y denotes the Yoneda embedding.
Therefore, it will suffice to show that the functor E® : & /B Top(n) — OPco 18
a left Kan extension of its restriction to B Top(n).

Let D C S denote the full subcategory spanned by the contractible Kan
complexes. Then the essential image of the composite

B Top(n) AN Fun(B Top(n)°?,S) = S/ B Top(n)

is equal to D, g Top(n)- Since the Yoneda embedding is fully faithful, this implies
that the functor B Top(n) — S/B Top(n) Testricts to a categorical equivalence
B Top(n) — D;p 1op(n)- Therefore, we are reduced to showing that the functor
E : S/BTop(n) = Opoo is a left Kan extension of EY D) g rop(n). Let

L EY Top(n) B Top(n)"

denote the inclusion. By Remark 2.4, the functor E¥ is naturally equivalent
to the composite

()" v u
S/B Top(n) — 7 (Opoo)/B Top(n)d — 7 (OPOO)/]E® — Opc,

B Top(n)
where U denotes the forgetful functor. According to Proposition 2.18 and
Lemma 2.21, the composite

()"
S/BTop(n) — (Opoo)/BTop(n) — Opoo

is a universal left Kan extension of D,p 1op(n), Where D C S denotes the full
subcategory spanned by the contractible Kan complexes. It follows that the
functor

("o (_)H : S/B Top(n) — (Opoo)/]E®

B Top(n)
is a left Kan extension of its restriction to D,g1op(n)- Since U preserves small
colimits, we are done. O

2.22. Matsuoka’s gluing theorem. As an application of Theorem 1.4, we
give an alternative proof of Matsuoka’s gluing theorem on locally constant
factorization algebras. We say that a functor F' : Mfld, — C of co-categories
is a cosheaf if, for each n-manifold M and each open cover U of M which is
downward-closed (i.e., if U € U, then every open set of U belongs to i), the
map colimyeyy FU — FM is an equivalence.®

6Cosheaves on Mfld, with values in oo-categories with small colimits admit various
characterizations, such as being left Kan extended from their restriction to B Top(n), or
being (1-)excisive and exhaustive. For a proof, see [2, Thm. 5.3].
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Corollary 2.23 ([20]). The functor
ES : Mfld, — Opeo
(of Definition 2.8) is a cosheaf.
Proof. By Theorem 1.4 and [16, Thm. 5.1.5.6], the functor
E? : N((sSet/BTop(n))°®) = OPos

preserves small colimits. Therefore, it suffices to show that the tangent clas-
sifier functor 7 : Mfld,, — N((sSet;pTop(n))°) is a cosheaf. As observed in
Remark 2.12, the composite

Mild,, o N((sset/B Top(n))o) i S/B Top(n)
is naturally equivalent to the composite
Mld, 25 Fun(MAP, S) = Fun(B Top(n)°?, S) ~ 85 Top(n):

where y denotes the Yoneda embedding, the second functor is the restriction
along the inclusion ¢ : B Top(n) < Mfld,,, and the last equivalence is the un-
straightening equivalence. It will therefore suffice to show that the composite
i* oy is a cosheaf (Remark 2.12). Since colimits in functor categories can be
computed pointwise [18, Tag 02XK], it suffices to show that the composite

Mfld,, —— Fun(MfldSP, S) SRAEN Fun(B Top(n)°?,S) =% S
is a cosheaf. In other words, we are reduced to showing that the functor
Sing Emb(R", —) : Mfld, = S

is a cosheaf.
Let M be an n-manifold and let &/ be an open cover of M which is downward-
closed. We wish to show that the map

colimye v () Sing Emb(R™, U) — Sing Emb(R", M)

is an equivalence. According to [2, Prop. 2.19], for each U € U, the evaluation
at the origin determines a pullback square

Sing Emb(R"™,U) —— Sing Emb(R"™, M)

! |

Singll ——— Sing M

in S. Since colimits in S are universal [16, Lem. 6.1.3.14], we are reduced to
showing that the map

colimye n () Sing U — Sing M

is an equivalence. This follows from [17, Thm. A.3.1]. O
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14 KENSUKE ARAKAWA

3. PROOF OF LEMMA 2.21

The goal of this section is to prove Lemma 2.21, which asserts that the
functor (—)! : & — Op is a universal left Kan extension of its restriction to
the full subcategory of contractible Kan complexes.

Warning 3.1. (Casual readers may safely ignore this warning.) There are

two conflicting conventions of the homotopy coherent nerve functor.

(i) The homotopy coherent nerve functor Ny, defined as in [16].

(ii) The homotopy coherent nerve functor Ny, defined as follows: if C is a sim-
plicial category, we set Ni1(C) = N1(C®), where C¢ denotes the simplicial
category obtained from C by replacing each hom-simplicial sets by its op-
posites. (This is the convention adopted in [18].)

As we remarked in Section 1, this paper generally follows [16, 17] in its termi-

nology and notation. This means that, so far, we have adopted convention (i).

However, in [3], which we will frequently refer to below, the author used con-

vention (ii) (as it seemed more natural to do so’). Because of this, we will

henceforth switch to convention (ii). Thus, from now on, the co-categories
such as S, Caty,, Ops will be defined by applying the functor Nyr to the sim-
plicial categories sSet®, (sSet*)°, and Op% . Note that this is allowed as far as

Lemma 2.21 is concerned, for the validity of the lemma does not depend on

the choice of the convention.

3.2. Recollections. In this subsection, we review some results on categorical
patterns [17, App. B] that are proved in [3].

Definition 3.3 ([17, Def. B.0.19]). Let S be a simplicial set. A categorical
pattern P = (Mg, T,{pa}aca) on S consists of a set Mg of edges of S containing
all degenerate edges, a set T of 2-simplices of S containing all degenerate 2-sim-
plices, and a set {p, : KI — S}aca of diagrams of S such that p, carries all
edges and 2-simplices of K into Mg and T, respectively.

In the case where T contains all 2-simplices of S, we will omit 7" from the
notation and write P = (Mg, {pataca). (All categorical patterns we consider
in this paper are of this form.) If further S is an co-category and Mg contains
all equivalences of S, we say that P is a commutative categorical pattern [3,
Def. 2.14].

Definition 3.4 ([17, Def. B.0.19], [3, Rem. 2.5]). Let B = (Mg, {pa}aca) be

a categorical pattern on a simplicial set S. A map p: X — S of simplicial sets

is said to be B-fibered if it satisfies the following conditions.

(i) The map p is an inner fibration.

(ii) For every edge s — s’ in Mg and every vertex z € X lying over s, there is
a p-cocartesian edge x — 2’ lying over Mg.

(iii) Each p, lifts to a map p,, : K — X which carries all edges to p-cocartesian
edges. Moreover, any such lift is a p-limit diagram.

“A rule of thumb is that, when we want to consider straightening-unstraightening of
cartesian fibrations, we should use N, while when we consider that of cocartesian fibrations,
we should use Nip.
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If p satisfies these conditions, we will write X} for the marked simplicial set
obtained from X by marking the p-cocartesian morphisms whose images in S
belong to Mg.

The totality of B-fibered objects can be organized into an co-category, be-
cause of the following theorem.

Theorem 3.5 ([17, Thm. B.0.20]). Let B = (Mg, {pataca) be a categorical
pattern on a simplicial set S. There is a combinatorial simplicial model struc-
ture on sSet;r(S M)’ denoted by sSet;rm, whose cofibrations are the monomor-

phisms and whose fibrant objects are the objects of the form Xy, where X — S
1s *P-fibered.

Definition 3.6. Let B = (Mg, {pa}aca) be a categorical pattern on a simpli-
cial set S. We write P Fib for the homotopy coherent nerve of the full simplicial
subcategory of sSetj‘q3 spanned by the fibrant-cofibrant objects.

Example 3.7. For each n >0, let p, : ({1,...,n})? — N(Fin,) denote the
functor which classifies the n inert morphisms (n) — (1). (When n = 0, the
diagram p,, classifies the object (0) € N(Fin,).) A functor & — N(Fin,) is
fibered over the categorical pattern Op = ({inert maps}, {pn }n>0) if and only
if it is an oco-operad. By definition, we have DpFib = Opo.

Just like the ordinary straightening-unstraightening, functors with values in
SPFib can equivalently be specified by a fibrational structure, which we now
review.

Definition 3.8 ([3, Def. 3.1]). Let B = (Mp, {pataca) be a commutative
categorical pattern on an oco-category D, and let S be a simplicial set. A J3-
bundle (over S) is a commutative diagram

X —Fr 4 85xD

N

of simplicial sets which satisfies the following conditions.
(a) The map g : X — S is a cocartesian fibration.
(b) The map p lifts to a fibration of fibrant objects of sSet;rS with respect to

the cocartesian model structure.
(¢) For each vertex v € S, the map X, = X xg {v} — D is P-fibered.
(d) For each edge f:v — v in S, the induced functor fi : X, — X,/ is a mor-

phism of B-fibered objects.

We will often say that the map p (or X) is a PB-bundle over S. Given
a P-bundle p: X — 5 x D, we will write X, for the marked simplicial set
obtained from X by marking the p-cocartesian edges whose images in D belong
to Mp. This does not conflict with the notation in Definition 3.4, because of
the following reason. Let S x 3 denote the categorical pattern on .S x D given
by
S x ‘13 = (Sl X MD7 {{U} X pa}UGSQ,aEA)'
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16 KENSUKE ARAKAWA

We can show that the fibrant-cofibrant objects of sSet+SX are precisely the
objects of the form (X, My) — S* x (D, Mp), where X is a B-bundle and My
is the set of p-cocartesian edges whose images in D belong to Mp (see [3,
Prop. 3.5)).

We will write 3Bund(S) for the homotopy coherent nerve of the full simpli-
cial subcategory of Sset;erqs’ spanned by the fibrant—cofibrant objects.

The following is the main result of [3].

Theorem 3.9 ([3, Cor. 5.10]). Let B be a commutative categorical pattern,
and let S be a small simplicial set. There is a categorical equivalence

BBund(S) ~ Fun(S, PFib)
which lifts the ordinary straightening-unstraightening equivalence.

Remark 3.10. Let CCP denote the category whose objects are the pairs
(D,*B), where D is an oco-category and P is a commutative categorical pat-
tern on D, and whose morphisms (D, ) — (D’,*R’) are functors D — D’ that
carry each edge and diagram in 8 into those of 3. Then the assignments
(S, (D, %)) — PBund(S) and (S, (D,P)) — Fun(S,PFib) determine a functor
N (sSet? x CCP°P) — C/a\too, and the equivalence of Theorem 3.9 can be pro-
moted to a natural equivalence of these functors. This follows from the proof
of [3, Cor. 5.10] (and arguing as in the proof of the naturality of the ordinary
straightening-unstraightening [10, App. A]).

In the situation of Theorem 3.9, we say that a P-bundle p: X — S x D is
classified by a functor f: S — PBFib if the equivalence of Theorem 3.9 carries p
to an object equivalent to f. The naturality property discussed in the previous
paragraph implies that classifying maps are compatible with pullback in the
following two senses.

e If S — S is a map of simplicial sets, then the PB-bundle X xg S" — S’ x D
is classified by the composite

S S L pFib.
e IR is a commutative categorical pattern on an co-category D’ and D' — D

is a functor which carries each edge and each diagram of 3’ into those of 93,
then the p-bundle X xp D’ — S x D’ is classified by the composite

S L pFib - W Fib.
Example 3.11 ([3, Prop. 5.12]). Let P = (Mp, {pata) be a commutative
categorical pattern on an oo-category D, let C be an ordinary category, and

let F:C— sSetj}B be a functor which carries every object to a fibrant object.
Then the nerve of F' classifies the B-bundle

/CFW/C(S(D)%JN(C) x D,

where F|, denotes the composite

f
C—— sSetjip Torget, sSet,
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Jo F, denotes the relative nerve of F, (see [16, §3.2.5]), and 6(D) : C — sSet
denotes the constant functor at D.

As in ordinary straightening-unstraightening, we can use Theorem 3.9 to
give a criterion for a diagram in BFib to be a colimit diagram. The criterion
relies on the following preliminary construction.

Definition 3.12 ([3, Def. 6.7]). Let P = (Mp, {pa}aca) be a commutative
categorical pattern on an oo-category D, let K be a simplicial set, and let p’ :
X' — K" x D be a B-bundle over K. Set X = X’ x g» K. Regarding X" and
X asB-bundles over K* and K, respectively, we define objects X é € sSet}LKD <
and X, € sSeterXm as in Definition 3.8. A map Rf : X; — X/ x(gv)s {o0}? of
sSet;ﬁp is called a refraction map if there is a morphism H : (AY)? x X, — Xy
in sSet;rK»Xm satisfying the following conditions.

(i) The diagram

{0} x X X!
[ — |

(AN x X, T (AY)f x (K)* x D ——= (K”)* x D

is commutative, where h: A! x K — K is the map determined by the inclu-
sion K x {0} = K® and the projection K x {1} — {oo} and D = (D, Mp).
(ii) The restriction H|{1}* x X} is equal to Rf.
Note that refraction maps exist and are unique up to homotopy in the model
category sSet}"m.

Here is the colimit criterion.

Proposition 3.13 ([3, Prop. 6.8]). Let R be a commutative categorical pattern
on an oo-category D, let K be a small simplicial set, let f: K¥ — PFib be
a diagram which classifies a B-bundle X' — K* x D. Set X = X' xio K.
The following conditions are equivalent.
(i) The diagram f is a colimit diagram.
(ii) The refraction map Xy — X X gey: {00} is a P-equivalence.

We conclude this section with a remark comparing bundles of co-operads
with Lurie’s families of co-operads.

Remark 3.14. For the categorical pattern Op for co-operads (Example 3.7),
the notion of Op-bundles is closely related to that of families of oco-operads
[17, Def. 2.3.2.10]. More precisely, if C is an co-category, then every Op-bundle
over C is a family of co-operads. This is immediate from the definitions and
[16, Cor. 4.3.1.15].

We can also prove this by using model categories. To see this, it will be
convenient to introduce some notation. Given a marked simplicial set S =
(S, Mg) and a commutative categorical pattern P = (Mp, {pataca) on an
oo-category D, let S x P denote the pair

(Mg x Mp,{{v} x pa : {v} x K = S X D}yes,, aca)-
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Unwinding the definitions, the fibrant objects of sSet}"ch op ATe precisely the
C-families of co-operads whose inert morphisms are marked. Since the pullback
functor
+ _ + +
sSetcyop = S5€t oy 0, — SS€t oy o,

is right Quillen [17, Prop. B.2.9], every Op-bundle over C is a C-family of
oo-operads.

Note that the above argument shows that if C is a Kan complex (so that
ch = C*), then C-families of oo-operads and bundles of co-operads over C are
exactly the same things.

3.15. Universal weak equivalences. Recall that our goal of this section is
to show that a certain diagram in Op is a universal colimit diagram. For
this, we will need a version of Proposition 3.13 for universal colimit diagrams
(Proposition 3.18), which is the subject of this subsection.

To state the main result of this subsection, we need a model-categorical no-
tion associated with universal colimit diagrams, called universal weak equiva-
lences.

Definition 3.16. Let A be a model category. A morphism A — B of A is
called a universal weak equivalence if, for each fibration X — B in A, the map
A xp X — X is a weak equivalence.

If 7B is a categorical pattern, we will refer to universal weak equivalences of
sSetj’m as universal B -equivalences.

Example 3.17. Let A be a model category.

(i) Every weak equivalence of fibrant objects of A is a universal weak equiv-
alence. This follows from [16, Lem. A.2.4.3].

(ii) Let A% B % C be morphisms of A. Suppose that f is a universal weak
equivalence. Then ¢ is a universal weak equivalence if and only if gf is
a universal weak equivalence.

(iii) Suppose that A is a simplicial model category in which every object is
cofibrant. We say that a morphism i : A — B is a right deformation retract
if there is a retraction 7 : B — A of i and a map h: A' ® B — B such that
h|{0} ® B =idp and h|{1} ® B = ir. Every right deformation retract of
A is a universal weak equivalence. This follows from [3, Prop. 6.15].

(iv) Suppose that A is a simplicial model category in which every object is cofi-
brant. Part (iii) (and its dual) implies that, for each A € A and i € {0,1},
the map {i} ® A — Al ® A is a universal weak equivalence. Hence, by
part (ii), universal weak equivalences of A are stable under left homotopy.

Here is the main result of this subsection.
Proposition 3.18. Let B be a commutative categorical pattern on an oco-cat-
egory D, let K be a small simplicial set, and let f: K — BFib be a diagram
which classifies a PB-bundle X' — K* x D. Set Xy = X x gyt K* and (X/); =
Xy X (k)8 {oo}t. The following conditions are equivalent.
(i) The diagram f is a universal colimit diagram.
(i) The refraction map Xy — (X1)y is a universal B-equivalence of sSet}tﬁ.
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Remark 3.19. In the situation of Proposition 3.18, if some refraction map is
a universal PB-equivalence, so is any other map (by point (iv) of Example 3.17).
This justifies the usage of the definite article (“the”) in condition (ii).

The proof of Proposition 3.18 relies on a few preliminaries.

Definition 3.20. Let K be a weakly contractible simplicial set, and let C be
an oo-category. We say that a diagram f : K — C is essentially constant if f
carries each morphism to an equivalence in C.

Remark 3.21. Let K be a weakly contractible simplicial set, and let C be an
oo-category. Then

(i) the diagonal functor § : C — Fun(K,C) is fully faithful;

(ii) the essential image of § consists of the essentially constant diagrams.

For part (i), we may assume that C has colimits of shape K (by embedding C
into a larger oo-category if necessary). In this case, § is a fully faithful right
adjoint by [16, Cor. 4.4.4.10]. Part (ii) follows from the observation that every
diagram K — C~ is equivalent to a constant diagram, because K is weakly
contractible.

Lemma 3.22. Let C be an oco-category with pullbacks, let K be a simplicial
set, and let p: K* — C be a diagram. The following conditions are equivalent.
(i) The diagram p is a universal colimit diagram.

(ii) For every pullback diagram

I\

I\

in Fun(K>,C), if ¢ and q' are essentially constant, then the diagram p’ is
a colimit diagram.
(iii) There exists a morphism « : p — q in Fun(K>,C) satisfying the following
conditions.
(a) The map o : p(00) — q(00) is an equivalence.
(b) The diagram q is essentially constant.
(c) For every pullback diagram
p
Ja

o
¢ —4q

|

/

in Fun(K"®,C), if ¢' is essentially constant, then p’ is a colimit diagram.

Proof. We first prove that (i) = (ii). Suppose that condition (i) is satisfied. In
the situation of (ii), iterated applications of the pasting law of pullbacks [16,
Lem. 4.4.2.1] shows that the natural transformation p’ — p is cartesian. Hence
p’ is a colimit diagram, proving (i) = (ii).
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Next, we prove (ii) = (i). Suppose that condition (ii) is satisfied. Let
a:p’ — p be a cartesian natural transformation of diagrams K> — C. We
wish to show that p’ is a colimit diagram. Pulling back « along the natural
transformation K> x Al — K® from the identity map to the constant map at
the cone point, we obtain a cartesian square

p—

p
5(p'(00)) —— 8(p(o0))
in Fun(K*®,C), where ¢ : C — Fun(K",C) denotes the diagonal functor. Con-
dition (ii) then tells us that p’ is a colimit diagram. Hence (ii) = (i).
Finally, we prove (ii) < (iii). It is clear that (ii) = (iii). For the converse,

it suffices to show that, for every morphism S : p — r in Fun(K",C) such that
7 is essentially constant, there is a diagram A? — Fun(K",C) whose boundary

is depicted as

Q4>T

According to [16, Prop. 4.3.2.17], for any pair of diagrams f,g: K* — C such
that g is essentially constant, the map

HOmFun(K‘>7C)(f7 g) - HOInc(f(OO), g(OO))

is a homotopy equivalence. Therefore, it suffices to show that there is a diagram
A? — C of the form

p(0)

q(c0) 7(c0),

which is clear because a, is an equivalence. O

Lemma 3.23. Let B be a commutative categorical pattern on an oo-category D,
let K be a small simplicial set, and let X' — K” x D be a B-bundle over K”.
There is a map r : X{ — (X1,)y rendering the diagram

(X — (XL

(1) [ e

-
-

XD

commutative. Moreover, such an r is unique up to homotopy, and the restric-
tion r| Xy is a refraction map for p.
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Proof. For the existence of the map r, it suffices to show that the inclusion
(X’ )y C X{ induces a trivial fibration

0: MapsSet?rKDXm(Xh/’ (Kb)ﬁ X (X(;o)h) i MapsSet?rm((Xéo)h? (X(;o)h)

of Kan complexes. The map 6 is a Kan fibration (because sSet;rK,>Xq3 is a sim-
plicial model category and the inclusion (X[,); C Xj is its cofibration), so it
suffices to show that 6 is a homotopy equivalence. Using Theorem 3.9, we are
reduced to showing that, for every pair of diagrams f, g : K — BFib with ¢
essentially constant, the map

Hompyn (ke g 7ib) (f; 9) — Homsypzip (f(00), g(c0))

is a homotopy equivalence, which is the content of [16, Prop. 4.3.2.17].

To complete the proof, we must show that there is some filler of diagram (1)
that restricts to a refraction map of p. For this, let A’ : Al x K> — K> denote
the natural transformation from the identity map to the constant map at the
base point. Since sSet;rKqu3 is a simplicial model category, the left vertical
arrow of the diagram

({0} x X{) Tpoye (xr ), (A)F x (XLo)s) —= X

1\ ) -~ " 1\4 >\ o T >\ o T
(A1) xXh—>ipr, (AY)? x (K™) xDm(K) x D

is a trivial cofibration. (Here the top arrow is the amalgamation of the identity
map of X/ and the projection (A')* x (X1, ); — (XZ,);.) Then there is a dashed
filler H' as indicated in the diagram. The restriction r = H'|{1}* x (X)) is
a filler of (1) which restricts to a refraction map, and the proof is complete. [

We now arrive at the proof of Proposition 3.18.

Proof of Proposition 5.18. Choose a retraction r: X{ — (X[ ); as in Lem-
ma 3.23. Given a fibration 7 : Z — (X ); of sSet;ﬁp, form pullback squares
as in the diagram

Yo —— Xy

L

X
| Ir
Zy —— (X
The map (Y,); — Zj is an isomorphism, and under this isomorphism, we can
identify (|Y; with the refraction map of Y] (by Lemma 3.23). Therefore, by
Proposition 3.13, we can rephrase condition (ii) as follows.
(it") For every fibration Z, — (X)) in sSetj@n, the ‘p—bundle Zy X x1 X over
K" is classified by a colimit diagram K> — R Fib.
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Since K" is weakly contractible, the diagonal functor PFib — Fun(K",PFib)
is fully faithful, with essential image consisting of essentially constant func-
tors (Remark 3.21). It follows from Theorem 3.9 that the functor K* x — :
PFib — PBund(K") is also fully faithful. Combining this observation with
(16, Prop. 4.2.4.1], we can further rephrase (ii’) as follows:

(ii”) For every pullback diagram

A —— X

| |

B —— (K")F x (XL.);

in PBund(K”) (where the right-hand map is induced by ), if B is classi-
fied by an essentially constant diagram K" — BFib, then A is a colimit

diagram.
Lemma 3.22 and Theorem 3.9 now show that (ii”) is equivalent to (i), and the
proof is complete. O

3.24. Universal weak equivalence of sSet+Dp. Let K be a Kan complex.
As we saw in Remark 3.14, if £ — K x N(Fin,) is a K-bundle of oco-operads,
then it is a K-family of co-operads (in particular, a generalized oco-operad [17,
Prop. 2.3.2.11]) and the marked edges of &, are precisely the inert morphisms.
This, together with the universal colimit criterion we established in Section 3.15
(Proposition 3.18), motivates the following question: Let A® — B® be a mor-
phism of generalized co-operads, where B® is an oo-operad. Let A®:4 B®:f
denote the marked simplicial sets obtained from A%, B® by marking the inert
maps. When is the map A®f — B®# a universal weak equivalence of sSet""D ?

A more general question has been posed by Lurie in [17, §2.3.3] for (non-
universal) weak equivalences of sSet+Dp. While this was not explicitly stated
by him, we will see that his answer in fact accommodates universal weak
equivalences of sSet;rDIJ (Proposition 3.27).

We start by recalling the following theorem, which is a special case of [17,
Thm. 2.3.3.23].

Theorem 3.25. Let f: A® — B® be a morphism of generalized co-operads,

where B® is an oco-operad. Suppose that f satisfies the following conditions.

(i) The functor A — B is a categorical equivalence.

(i) For each object B € B®, the inclusion (A%/)’ C A%/ is initial, where
(A%/)' - A%/ denotes the full subcategory spanned by the objects (A, a :
B — f(A)) such that « is inert.

Then the map A®f — B®Y is a weak equivalence of sSet;er.

Condition (ii) of Theorem 3.25 admits the following reformulation, which
follows from the argument of [17, 2.3.3.11].

Proposition 3.26. Let f: A® — B® be a map of generalized co-operads. The
following conditions are equivalent.
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(i) For each object B € B®, the inclusion (A%/)' C A%/ is initial, where
(.A%/)’ is defined as in Theorem 3.25.

(i) For each object A € A®, the homotopy fibers (in the Joyal model structure)
of the functor

(AZ.0)/a = (BEy) /54

are weakly contractible.®

Combining Theorem 3.25 and Proposition 3.26, we obtain the following
criterion for universal weak equivalences in sSet;er.

Proposition 3.27. Let f: A — B® be a morphism of generalized oco-operads,
where B® is an oo-operad. Suppose that the functor A — B is a categorical
equivalence and that, for each object A € A®, the homotopy fibers (in the Joyal
model structure) of the functor

(AZ.0)/a = (BEy) 74

are weakly contractible. Then the map f : A®8 — B®H8 is a universal weak
equivalence of sSet;er.

Proof. Let D® — B® be a fibration of co-operads and set C® = A® xzge D®.
We must show that the map ¢ : C®# — D®! is a weak equivalence of sSet;er.
By Theorem 3.25 and Proposition 3.26, it suffices to show that, for each object
C € C®, the functor

0:(C2)c — (D) jg(c)

has weakly contractible homotopy fibers. If A € A® denotes the image of C,
then the map 6 is a pullback of the functor (As.) /a4 — (Bi),/f(4)- Since the
U

act
latter has weakly contractible homotopy fibers, we are done.

3.28. Proof of Lemma 2.21. In this subsection, we will prove Lemma 2.21,
the main result of this section, by using results in Sections 3.15 and 3.24.
We begin with a lemma.

Lemma 3.29. Let K be a Kan complez, and let f : O® — KY be a morphism

of generalized co-operads. Suppose that f satisfies the following conditions.

(i) The co-category O is a Kan complezx, and the map O — K is a homotopy
equivalence of Kan complexes.

(i) The functor O® — N(Fin,) is conservative.

(iii) For each n > 0 and each object X € O%ﬂ’ the map

((Oge) /)™ = (N (Fins)ace) /()=

is a homotopy equivalence.
Then f is a universal weak equivalence of sSet;er.

8Here (.A® )/A denotes the slice of Agt with respect to A, not the fiber product

act

® ®
‘Aact ><A® 'A/A
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Proof. According to Proposition 3.27, it will suffice to show that, for each
object X € 0%, the functor

(0%0)/x = (Kate) /£0x)
has weakly contractible homotopy fibers. By condition (ii), this functor is
conservative. Therefore, it suffices to show that the map

(0%0),x)7 = (KXo p0)~

is a homotopy equivalence of Kan complexes. Condition (iii) now shows that
this is equivalent to the condition that the map

1 (Bae) 17))™ = (N (Finw)ace) s ny)~
be a homotopy equivalence, where (n) € Fin. denotes the image of X. Since
7w is a Kan fibration, it suffices to show that its fibers are contractible. But
the fibers of 7 are products of simplicial sets of the form K/, where v is some
vertex of K. In particular, the fibers of 7 are contractible. The proof is now
complete. O

Proof of Lemma 2.21. Set K' = D/ and let (9? — (K™)* x N(Fin.); be an
Op-bundle classified by the composite

NI
K" =(D/k)” — S o, OPpoo-

Let x : Oh® X (K)t (K¢ — Oh® X (K {oo}! denote the refraction map. By

Proposition 3.18, it will suffice to show that the map x is a universal weak

equivalence of sSet}"Dp. According to Lemma 3.29, it will suffice to prove the

following.

(i) The simplicial set O x (x> K’ is a Kan complex, and the refraction map
X restricts to a homotopy equivalence

a:0 X(Km)> K’ i) O X(K"™) {OO}

of Kan complexes.
(ii) The functor O® x g K’ — N(Fin,) is conservative.
(iii) For each n > 0 and each object X € O%W the map

v ((O® X K K/)/X): — ((N(Fln*))/<n>):
is a trivial fibration.
We begin with (i). By the definition of bundles, the functor O — K™ is
a cocartesian fibration. Moreover, the fibers of the map O — K are Kan
complexes (Remark 3.10), so it is a left fibration. Since K’ is a Kan complex,
it follows that O x g» K’ is a Kan complex. By Remark 3.10, we can identify
« with the refraction map of the K’”-bundle classified by the composite

(-)" =)

K" =(D/k)” S Opso (

where (—) 1y denotes the functor which assigns to each co-operad O the fiber
(9%> = 0% X N(Fin,) {(1)}. But the composite (=) 1y o (—)" : § — Caty is just
the inclusion, so we are reduced to showing that the inclusion & — Caty, is

Cateo,

Minster Journal of Mathematics VoL. 18 (2025), 1-26



UNIVERSAL PROPERTIES OF VARIATIONS OF THE LITTLE CUBES OPERADS 25

a left Kan extension of its restriction to D. This is clear, because the functor
S — Cat is a left adjoint and the identity functor of § is a left Kan extension
of its restriction to D (see [16, Lem. 5.1.5.3]).

Next, we prove (ii). Since the K'-bundle O% x g» K’ is equivalent to the
terminal K’-bundle K’ x N(Fin,) (because the constant diagram at N (Fin,)
is a terminal object of Fun(K’, Ops)), it suffices to show that the functor
K’ x N(Fin,) — N(Fin,) is conservative, which is obvious.

Finally, we prove (iii). As in (ii), it will suffice to show that, for each object
(v, (n)) € K’ x N(Fin,), the map

(K" x N(Fin)) jw.ny)~ = Ky x (N(Fina) )™ = (N (FinL) yny)™

is a trivial fibration. This is clear, since K }v is a contractible Kan complex.
The proof is now complete. O
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