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Abstract. Given any irreducible inclusion B ⊂ A of unital C∗-algebras with a finite-index
conditional expectation E : A → B, we show that the set of E-compatible intermediate
C∗-subalgebras is finite, thereby generalizing a finiteness result of Ino and Watatani [11].
A finiteness result for a certain collection of intermediate C∗-subalgebras of a non-irreducible
inclusion of simple unital C∗-algebras is also obtained, which provides a C∗-version of a finite-
ness result of Khoshkam and Mashood [18].

Apart from these finiteness results, comparisons between various notions of distance
between subalgebras of operator algebras by Kadison–Kastler, Christensen and Mashood–
Taylor are made. Further, these comparisons are used satisfactorily to provide some concrete
calculations of distance between operator algebras associated to two distinct subgroups of
a given discrete group.

1. Introduction

Watatani [25] (resp., Teruya and Watatani [23]) proved that the lattice of in-
termediate subfactors of an irreducible finite-index subfactor of type II1 (resp.,
type III) is finite. This was then generalized to the C∗-context by Ino and
Watatani [11], who proved that the set of intermediate C∗-subalgebras of an
irreducible inclusion of simple unital C∗-algebras with a finite-index conditional
expectation is finite [11, Cor. 3.9]. Further, Longo [19] obtained a bound for
the cardinality of the lattice of intermediate subfactors of any finite-index irre-
ducible inclusion of factors (of type II1 or III). More recently, a similar bound
was obtained for the cardinality of the lattice of intermediate C∗-algebras of
a finite-index irreducible inclusion of simple unital C∗-algebras by Bakshi and
the first named author in [3], which was achieved by introducing the notion of
(interior) angle between intermediate C∗-subalgebras. This bound was further
improved by Bakshi, Guin and Jana [2].
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One of the highlights of this paper is the following generalization of Ino–
Watatani’s finiteness result [11].

Corollary 4.3. Let B⊂A be an irreducible inclusion of unital C∗-algebras with
a finite-index conditional expectation E : A → B. Then the set IMS(B,A, E)
consisting of E-compatible intermediate C∗-subalgebras of B ⊂ A is finite.

Ino–Watatani’s proof of finiteness was a clever compactness argument based
on an appropriate estimate for ‖eC − eD‖ for any two (E-compatible) interme-
diate C∗-subalgebras C and D (see [11, Lem. 3.3]), and a perturbation result
established by them in [11, Thm. 3.8]. Corollary 4.3 is an immediate con-
sequence of the following more general result, whose proof is an appropriate
adaptation of the compactness argument of Ino–Watatani [11].

Theorem 4.2. Let B ⊂ A be an inclusion of unital C∗-algebras with a finite-
index conditional expectation E : A → B. If one (equivalently, any) of the
algebras CA(B), Z(B) and Z(A) is finite-dimensional, then the collection

F(B,A, E) := {C ∈ IMS(B,A, E) | CA(B) ⊆ CA(C) ∪ C}
is finite.

It is noteworthy that, in the above mentioned finiteness results (except
Theorem 4.2), irreducibility of the initial inclusion was crucial. Somehow, not
much is known about the finiteness of the lattice of intermediate subalgebras of
non-irreducible inclusions. Interestingly, very recently, while looking for such
finiteness results for the full lattice of intermediate von Neumann subalgebras
of non-irreducible inclusions, the compactness argument of Ino and Watatani
was also employed successfully by Bakshi and the first named author [3] to
prove the following.

Theorem ([3, Thm. 6.4]). Let N ⊂M be an inclusion of von Neumann alge-
bras with a faithful normal tracial state on M such that Z(N ) is finite-dimen-
sional and the trace preserving normal conditional expectation from M onto
N has finite Watatani index. If the relative commutant N ′ ∩ M equals ei-
ther Z(N ) or Z(M), then the lattice consisting of intermediate von Neumann
subalgebras of N ⊂ M is finite.

Prior to this, Khoshkam and Mashood [18, Thm. 1.3] had shown that, for
any finite-index subfactor N ⊂ M of type II1, the subcollections

L1(N ⊂ M) := {P ∈ L(N ⊂ M) | N ′ ∩M ⊂ P},
L2(N ⊂ M) := {P ∈ L(N ⊂ M) | N ′ ∩M = P ′ ∩M}

are both finite, where L(N ⊂M) denotes the lattice of intermediate subfactors
of the inclusion N ⊂ M .

Note that Theorem 4.2 is a C∗-version of [18, Thm. 1.3] for non-irreducible
inclusions of non-simple C∗-algebras. Moreover, in Section 4 itself, we also
prove another variant of a C∗-version of [18, Thm. 1.3] for non-irreducible
inclusions of simple unital C∗-algebras, which reads as follows.
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Theorem 4.9. Let B ⊂ A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation from A onto B. Then the sublattice
I1(B ⊂ A) := {C ∈ I(B ⊂ A) | CA(B) ⊆ C} is finite.

A few words regarding the techniques employed to achieve the above men-
tioned finiteness results. Theorem 4.2 is achieved by directly employing the
compactness argument of [11], wherein the main ingredients include a basic
observation from [9] (that eC ∈ A1 for any C ∈ IMS(B,A, E)), an estimate
for ‖eC − eD‖ from [11] and a perturbation result from [8]. On the other
hand, Theorem 4.9 is proved on similar lines by first showing that eC ∈ A1

for any intermediate C∗-subalgebra C ∈ I1 (Proposition 4.7), then obtaining
Ino–Watatani’s estimate for ‖eC − eD‖ (Lemma 4.8), where C and D are two
intermediate C∗-subalgebras in I1, and finally, by exploiting a perturbation
result by Dickson [8].

The above mentioned finiteness results are all achieved in Section 4. Prior
to Section 4, we devote a short section (Section 2) on preliminaries and an-
other short section (Section 3) recalling and proving some basic (yet inter-
esting) observations related to the Kadison–Kastler distance. One interesting
observation being that, for any inclusion B ⊂ A of unital C∗-algebras with
a finite-index conditional expectation E : A → B, there exists an α > 0 such
that the set of unitaries

{u ∈ NA(B) | ‖u− 1‖ < α} ⊆
⋂

{NA(C) | C ∈ F(B,A, E)};

see Corollary 3.7. A slightly stronger version holds for inclusions of simple
unital C∗-algebras—see Corollary 3.9. These two observations, respectively,
are immediate consequences of the above mentioned perturbation results by
Ino–Watatani and Dickson, and a very simple minded inequality

dKK(B, uBu∗) ≤ 2d(u,NA(B) ≤ 2‖u− 1‖,
obtained in Lemma 3.5, for every unitary u in A.

Then, in Section 5, we first recall and make some basic observations related
to the different notions of distance between subalgebras of C∗-algebras and
tracial von Neumann algebras, introduced by Christensen [5, 6, 7] and Mas-
hood and Taylor [20]. The essence of this section lies in making comparisons
between them and the Kadison–Kastler distance, and a desirable (and useful)
observation made in the following proposition.

Proposition 5.7. Let M be a von Neumann algebra with a faithful normal
tracial state. Then

dMT(P,Q) = dMT(P,Q
S.O.T.) = dMT(P

S.O.T., QS.O.T.)

for any two unital ∗-subalgebras P and Q of M.

Finally, in Section 6, we make use of the comparisons made in Section 5
and provide some concrete calculations of various distances between subalge-
bras associated to distinct subgroups (via C∗-crossed products, Banach group
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algebras and group von Neumann algebras) of a given discrete group G. Inter-
estingly, in all cases, they turn out to be distance 1 apart—see Corollary 6.7,
Proposition 6.21 and Proposition 6.23.

2. Preliminaries

We briefly recall the notions of finite-index conditional expectations, Wata-
tani’s C∗-basic construction and compatible intermediate C∗-subalgebras.

2.1. Watatani’s C∗-basic construction. For any inclusion B ⊂ A of uni-
tal C∗-algebras with common unit and a faithful conditional expectation E :
A→ B, A becomes a pre-Hilbert B-module with respect to the B-valued inner
product 〈 · , · 〉B :A×A→B given by 〈x, y〉B = E(x∗y) for x, y ∈ A. We denote
by E the Hilbert B-module completion of A.

In order to distinguish the elements of the C∗-algebra A and the pre-Hilbert
B-moduleA, following [24], we consider the inclusion map η :A→A⊂E . Thus,

‖η(x)‖ := ‖E(x∗x)‖1/2 ≤ ‖x‖
for all x ∈ A. Let LB(E) denote the unital C∗-algebra consisting of adjointable
maps on E . Every member of LB(E) is a B-module map (see [24, §2.10]).
Further, there is a natural C∗-embedding λ : A → LB(E) satisfying

λ(a)η(x) = η(ax) for all a, x ∈ A.

Thus, we can identify A with its image λ(A) in LB(E). Further, there is a nat-
ural projection e1 ∈ λ(B)′ ∩ LB(E) (called the Jones projection corresponding
to E) satisfying, via the above identification, the relations

e1(η(x)) = η(E(x)) and e1xe1 = E(x)e1

for all x ∈ A. Watatani’s C∗-basic construction for the inclusion B ⊂ A with
respect to the conditional expectation E is defined as the C∗-algebra

A1 = span{xe1y | x, y ∈ A} ⊆ LB(E).
Like the “Jones” basic construction for a subfactor, Watatani’s basic construc-
tion also satisfies a natural universal property—see [24, Prop. 2.2.11].

Some standard notation. Recall that, for an inclusion B⊂A of C∗-algebras,
the centralizer of B in A is defined by

CA(B) = {x ∈ A | bx = xb for all b ∈ B},
and if B ⊂A are unital (with common unit), the normalizer of B in A is defined
by

NA(B) = {u ∈ U(A) | uBu∗ = B}.
The centralizer CA(B) is a C∗-subalgebra of A and is also denoted by B′ ∩ A
and called the relative commutant of B in A. The normalizer NA(B) is a closed
subgroup of U(A).
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2.2. Finite-index conditional expectations and index. For any inclusion
B ⊂ A of unital C∗-algebras, a conditional expectation E : A → B is said to
have finite index if there exists a finite set {λi | 1 ≤ i ≤ n} ⊂ A such that
x =

∑n
i=1 E(xλi)λ

∗
i for all x ∈ A. Such a set {λi} is called a quasi-basis for E

and the Watatani index of E is defined as IndW (E) =
∑n

i=1 λiλ
∗
i , which is a

positive invertible element in Z(A) and is independent of the quasi-basis {λi}.
Every such E is faithful and preserves the unit, i.e., 1B = E(1A) = 1A.

The set of finite-index conditional expectations from A onto B is denoted
by E0(A,B). If Z(A) = C and E0(A,B) 6= ∅, then an F ∈ E0(A,B) is said to
be minimal if

IndW (F ) = inf{IndW (E) | E ∈ E0(A,B)}.
In some nice cases, a minimal conditional expectation exists and is unique as
well.

Remark 2.3. Let B ⊂ A be an inclusion of unital C∗-algebras with

E0(A,B) 6= ∅ and Z(A) = C = Z(B).
(i) There exists a unique minimal conditional expectation (denoted usually

by) E0 : B → A (see [24, Thm. 2.12.3]).
(ii) The index of such an inclusion is defined as (see [24, Def. 2.12.4])

[A : B]0 = IndW (E0) = min{IndW (E) | E ∈ E0(A,B)}.
2.3.1. Compatible intermediate C∗-subalgebras. For any inclusion B⊂A of uni-
tal C∗-algebras (with common unit), let I(B ⊂ A) denote the collection of in-
termediate C∗-subalgebras of the inclusion B ⊂ A and let E(A,B) denote the
set of conditional expectations from A onto B. Further, for any E ∈ E(A,B),
following [11] (also see [3, 9]), let

IMS(B,A, E) := {C ∈ I(B ⊂ A) | there exists an F ∈ E(A, C)

such that E↾C ◦ F = E}.
If E has finite index, then for any C ∈ IMS(B,A, E), a compatible conditional
expectation from A onto C is unique and has finite index (see [11, p. 471]).

2.3.2. Dual conditional expectation and iterated tower of basic constructions.

Remark 2.4. Let B ⊂ A be an inclusion of unital C∗-algebras and let E :
A → B be a finite-index conditional expectation. Let A1 denote the C∗- basic
construction of B ⊂ A with respect to the conditional expectation E and let e1
denote the corresponding Jones projection. The following facts are noteworthy
and shall be needed ahead.
(i)

∑
i λie1λ

∗
i = 1 for any quasi-basis {λi} of E.

(ii) A1 = span{xe1y | x, y ∈ A} = C∗(A, e1) = LB(A) (see [24, Prop. 1.3.3]).

(iii) There exists a unique finite-index conditional expectation Ẽ : A1 → A
satisfying Ẽ(xe1y) = (IndW (E))−1xy for all x,y ∈A (see [24, Prop. 1.6.1]).

(Ẽ is called the dual conditional expectation of E and is often denoted
by E1.)
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(iv) By iteration, one obtains a tower of unital C∗-algebras (see [13, §3.1], [15,
Prop. 3.18] and [3, §2.3])

A−1 := B ⊂ A0 := A ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ · · ·
with finite-index conditional expectations Ek :Ak →Ak−1 and Jones pro-
jections ek ∈ Ak, k ≥ 1, with Ak = C∗(Ak−1, ek) for all k ≥ 1. Also, Ek+1

is the dual of Ek for all k ≥ 0, with E0 := E.
(v) If IndW (E) ∈ B, then IndW (Ẽ) = IndW (E). Moreover, if A and B are

both simple and E is minimal, then A1 is simple and Ẽ is minimal ([24,
Cor. 2.2.14, Prop. 2.3.4] and [15, Cor. 3.4]).

(vi) (Pushdown Lemma.) For each x1 ∈ A1, there exists a unique x0 ∈ A
such that x1e1 = x0e1 and x0 is given by x0 = IndW (E)Ẽ(x1e1) (see [13,
Lem. 3.7]).

In [3, Prop. 3.2], it was shown (using the so-called “Fourier transforms”)
that if B ⊂ A is an inclusion of simple unital C∗-algebras with E0(A,B) 6= ∅,
then B′ ∩ Ak

∼= A′ ∩ Ak+1 (as vector spaces) for all k ≥ 0. In particular, if
B ⊂ A is irreducible, then so is A ⊂ A1. It turns out that the last inference is
true for more general inclusions and will be needed ahead.

Lemma 2.5. Let B ⊂ A be an inclusion of unital C∗-algebras with a finite-
index conditional expectation E : A → B. Then
(i) Ek(A′

k−2 ∩Ak) = A′
k−2 ∩ Ak−1 for every k ≥ 1, and

(ii) if, in addition, the inclusion B ⊂ A is irreducible, then the inclusions
Ak−1 ⊂ Ak, k ≥ 1, are all irreducible.

Proof. It is enough to prove for k = 1.
(i) Clearly, for each x1 ∈ B′ ∩ A1, Ẽ(x1)b = Ẽ(x1b) = Ẽ(bx1) = bẼ(x1) for

all b ∈ B. Hence, Ẽ(B′ ∩A1)⊆ B′ ∩A. For the reverse inclusion, note that, for

each a ∈ B′ ∩ A, x1 := IndW (E)ae1 ∈ B′ ∩ A1 and Ẽ(x1) = a by Remark 2.4.

Hence, B′ ∩ A ⊆ Ẽ(B′ ∩ A1).
(ii) Now, suppose that B ⊂ A is irreducible and that x1 ∈ A′ ∩ A1. Let

{λi | 1 ≤ i ≤ n} ⊂ A be a quasi basis for E. Then x0 := IndW (E)Ẽ(x1e1) ∈ A
and x1e1 = x0e1 by Remark 2.4 (vi). Further, for every b ∈ B, we have

x0b = IndW (E)Ẽ(x1e1)b = IndW (E)Ẽ(x1e1b)

= IndW (E)Ẽ(bx1e1) = bIndW (E)Ẽ(x1e1) = bx0.

Hence, x0 ∈ B′ ∩ A = C so that x0 = β1 for some β ∈ C, which then shows
that

x1 = x1

n∑

i=1

λie1λ
∗
i =

n∑

i=1

λix1e1λ
∗
i = β

n∑

i=1

λie1λ
∗
i = β1,

where the first equality holds because of Remark 2.4 (i). This implies that
A′ ∩ A1 = C1, and we are done. �

See [24, 11] for more on Watatani index, C∗-basic construction and com-
patible intermediate C∗-subalgebras.
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3. Kadison–Kastler distance

For any normed space X , as is standard, its closed unit ball will be denoted
by B1(X), and for any subset K of X and an element x ∈ X , the distance
between x and K is defined as

d(x,K) = inf{‖x− y‖ | y ∈ K}.
Definition 3.1 ([14]). The Kadison–Kastler distance between any two sub-
algebras C and D of a normed algebra A (which we denote by dKK(C,D)) is
defined as the Hausdorff distance between the closed unit balls of C and D,
i.e.,

dKK(C,D) = max
{

sup
x∈B1(C)

d(x,B1(D)), sup
z∈B1(D)

d(z,B1(C))
}
.

The Kadison–Kastler distance makes sense even for two subspaces of a
normed space, but we shall work mainly with the distance between subalgebras
of a normed algebra.

We must remark that the notation dKK is not standard. We have used it for
the Kadison–Kastler distance in order to keep a distinction between it and two
other notions of distance introduced by Christensen and a distance introduced
by Mashood and Taylor, which shall be discussed in Section 5.

Notation. For a normed algebra A, let

SubA := {subalgebras of A},
C-SubA := {closed subalgebras of A},

and, if A is a C∗-algebra, then let

C∗-SubA := {C∗-subalgebras of A}.
Here are some well-known elementary observations related to the Kadison–

Kastler distance.

Remark 3.2. Let A be a normed algebra.
(i) dKK(C,D) ≤ 1 for all C,D ∈ SubA.
(ii) If A is a Banach algebra, then dKK is a metric on C-SubA.
(iii) If C,D ∈ C-SubA and C is a proper subalgebra of D, then dKK(C,D) = 1

(see [11, Lem. 2.1]).

The following elementary observation is obvious and will be used to calculate
the distance between certain C∗-subalgebras in Section 6.

Lemma 3.3. Let A be a normed algebra. Then

dKK(C,D) = dKK(C,D) = dKK(C,D) = dKK(C,D)

for all C,D ∈ SubA.

It is natural to ask whether, for a given subalgebra B of a C∗-algebra A, one
can always find a subalgebra as close as one desires. In [10, Ex. 2.2.2], it was
shown that dKK(B, uBu∗) ≤ ‖u − 1‖ for all u ∈ U(A). Thus, because of the
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following lemma, one can get a conjugate subalgebra as close as one wishes.
(Its proof follows from an elementary continuous functional calculus argument
and we leave it to the reader.)

Lemma 3.4. Let A be a unital C∗-algebra. Then, for each ǫ > 0, there exists
a unitary u in A such that 0 < ‖u− 1‖ < ǫ.

Further, for any inclusion B⊂A of unital C∗-algebras, it is also quite natural
to ask whether, for a unitary u ∈ U(A), there exists any relationship between
its distance from NA(B) and the Kadison–Kastler distance between B and its
conjugate uBu∗.

Interestingly, motivated by an inequality given by Popa–Sinclair–Smith [22,
Lem. 6.3], we obtain the following pleasing relationship without much effort,
which then has a nice consequence that if E ∈ E0(A,B), then a unitary which
normalizes B and is sufficiently close to NA(C) must belong to NA(C) for any
C ∈ F(B,A, E) (see (1))—see Proposition 3.6.

Lemma 3.5. Let A be a unital C∗-algebra and B a unital C∗-subalgebra of A.
Then

dKK(B, uBu∗) ≤ 2d(u,NA(B)) ≤ 2‖u− 1‖
for all u ∈ U(A).

Proof. Let u ∈ U(A). Clearly, d(u,NA(B)) ≤ ‖u − 1‖. Next, let v ∈ NA(B)
and w := uv∗. Then wBw∗ = (uv∗)B(uv∗)∗ = u(v∗Bv)u∗ = uBu∗. So, for any
x ∈ B1(B),

‖x− wxw∗‖ = ‖xw − wx‖ ≤ ‖xw − x‖+ ‖x− wx‖ ≤ 2‖w − 1‖.
This implies that d(x,B1(wBw∗)) ≤ 2‖w − 1‖. Hence,

sup
x∈B1(B)

d(x,B1(wBw∗)) ≤ 2‖w − 1‖.

Likewise,
sup

y∈B1(wBw∗)

d(y,B1(B)) ≤ 2‖w − 1‖.

So
dKK(B, wBw∗) ≤ 2‖w − 1‖.

Thus, dKK(B, wBw∗) ≤ 2‖u− v‖ for all v ∈ NA(B). Hence,
dKK(B, uBu∗) = dKK(B, wBw∗) ≤ 2d(u,NA(B)). �

In the reverse direction, Kadison and Kastler [14] had conjectured that suffi-
ciently close subalgebras must be conjugates of each other. This was answered
in the affirmative for various cases in a series of some fundamental papers by
Christensen, Phillips, Raeburn and others in the 1970s. Since then, there have
been several other such so-called “perturbation results”. People have also em-
ployed such perturbation results to answer other important questions. One
such result with a nice application is due to Ino and Watatani [11]. In fact,
some of the results in this article are direct applications of the perturbation
result of Ino and Watatani.
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Consider the following question, which arises naturally from Lemma 3.5.

Question. Given a unital C∗-algebra A and a C∗-subalgebra B, is every uni-
tary sufficiently close to 1 (or to NA(B)) in the normalizer of the subalgebra B?

It is easily seen—see, for instance, Example 6.18—that it has a negative
answer. However, interestingly, Lemma 3.5 along with a perturbation result
of Ino and Watatani [11, Prop. 3.6] immediately yields a somewhat positive
answer for compatible intermediate C∗-subalgebras—see Proposition 3.6 and
Corollary 3.7 below.

Notation. Given an inclusion B ⊂ A of unital C∗-algebras with a finite-index
conditional expectation E : A → B, let
(1) F(B,A, E) := {C ∈ IMS(B,A, E) | CA(B) ⊆ CA(C) ∪ C}.
Note that F(B,A, E) = IMS(B,A, E) if CA(B) ⊆ B.
Proposition 3.6. Let B⊂A be an inclusion of unital C∗-algebras with a finite-
index conditional expectation E : A → B. Then there exists a constant α > 0
such that {u ∈ NA(B) | d(u,NA(C)) < α} ⊆ NA(C) for every C ∈ F(B,A, E).

In particular, if CA(B) ⊆ B, then {u ∈ NA(B) | d(u,NA(C)) < α} ⊆ NA(C)
for every C ∈ IMS(B,A, E).

Proof. Let N be the number of elements (which is not unique) in a quasi-basis
for E and let

α =
0.5

(10N)4
.

First, note that, for any C ∈ IMS(B, A, E), with respect to the compatible
finite-index conditional expectation F : A→ C, and any u ∈ U(A), there exists
a faithful conditional expectation Fu :A→ uCu∗ given by Fu =Adu ◦F ◦Adu∗ .

Now, let C ∈ F(B,A,E) and u ∈ NA(B) with d(u,NA(B)) < α. Then

B ⊆ uCu∗ ⊆ A and dKK(C, uCu∗) <
1

(10N)4
,

by Lemma 3.5. Thus, by [11, Prop. 3.6], there exists a v ∈ U(B′ ∩A) such that
vCv∗ = uCu∗. Since B′ ∩ A ⊆ (C′ ∩ A) ∪ C, it follows that vCv∗ = C. Hence,
u ∈ NA(C), and we are done. �

Corollary 3.7. Let A, B, E and α be as in Proposition 3.6. Then

{u ∈ NA(B) | ‖u− 1‖ < α} ⊆
⋂

{NA(C) | C ∈ F(B,A, E)}.
In particular, if CA(B) ⊆ B, then

{u ∈ NA(B) | ‖u− 1‖ < α} ⊆
⋂

{NA(C) | C ∈ IMS(B,A, E)}.

As an application of a perturbation result by Dickson [8] and a funda-
mental result regarding finiteness of the index of a conditional expectation
by Izumi [12], we have a slightly more general variant of Proposition 3.6 for
inclusions of simple unital C∗-algebras.
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Notation. For any inclusion B ⊂A of unital C∗-algebras (with common unit),
let

I0(B ⊂ A) := {C ∈ I(B ⊂ A) | CA(B) ⊆ CA(C) ∪ C}.
Clearly, F(B,A, E) ⊆ I0(B ⊂ A) for every E ∈ E0(A, B), and if CA(B) ⊆ B,
then I0(B ⊂ A) = I(B ⊂ A).

Proposition 3.8. Let B ⊂A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation E : A→ B. Then, for any 0 < γ < 10−6,
{u ∈ NA(B) | d(u,NA(C)) < γ

2} ⊆ NA(C) for every C ∈ I0(B ⊂ A).
In particular, if CA(B) ⊆ B, then {u ∈ NA(B) | d(u,NA(C)) < γ

2 } ⊆ NA(C)
for every C ∈ I(B ⊂ A).

Proof. First, note that, for any C ∈ I(B ⊂ A), by [12, Prop. 6.1], there exists
a conditional expectation F : A → C of finite index. Hence, it is faithful.

Now, let C ∈ I0(B ⊂A), 0< γ < 10−6 and u ∈NA(B) with d(u,NA(C))< γ
2 .

Then B ⊆ uCu∗ ⊆ A and dKK(C, uCu∗) < γ < 10−6 by Lemma 3.5. Note that,
as E is of finite Watatani index, it satisfies the Pimsner–Popa inequality; in
particular, so does the restriction E↾uCu∗ : uCu∗ → B. Since B is simple, it
follows from [12, Cor. 3.4] that E↾uCu∗ also has a finite quasi-basis. Thus,
by [8, Thm. 3.7], there exists a v ∈ U(B′ ∩ A) such that vCv∗ = uCu∗. Since
B′ ∩A ⊆ (C′ ∩A) ∪ C, it follows that vCv∗ = C. Hence, u ∈ NA(C), and we are
done. �

Corollary 3.9. Let A, B and E be as in Proposition 3.8. Then, for any
0 < γ < 10−6,

{
u ∈ NA(B)

∣∣∣ ‖u− 1‖ <
γ

2

}
⊆

⋂
{NA(C) | C ∈ I0(B ⊂ A)}.

In particular, if CA(B) ⊆ B, then
{
u ∈ NA(B)

∣∣∣ ‖u− 1‖ <
γ

2

}
⊆

⋂
{NA(C) | C ∈ I(B ⊂ A)}.

For any group G, let SubG denote the collection of subgroups of G. Then
G admits a canonical action on SubG via conjugation, i.e.,

G× SubG ∋ (g,H) 7→ gHg−1 ∈ SubG.

Corollary 3.10. Let A, B, E and α be as in Proposition 3.6 and let G :=
NA(B). Then, with respect to the natural conjugation action of G on SubG,
the following hold.
(i) The open ball

{u ∈ NA(B) | ‖u− 1‖ < α}
⊆

⋂{
StabG

(
NA(B) ∩ NA(C)

) ∣∣ C ∈ F(B,A, E)
}
,

and in particular, if CA(B) ⊆ B, then
{u ∈ NA(B) | ‖u− 1‖ < α}

⊆
⋂{

StabG
(
NA(B) ∩ NA(C)

) ∣∣ C ∈ IMS(B,A, E)
}
.
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(ii) In addition, if A and B are both simple, then for any 0 < γ < 10−6, the
open ball

{
u ∈ NA(B)

∣∣∣ ‖u− 1‖ <
γ

2

}

⊆
⋂{

StabG
(
NA(B) ∩ NA(C)

) ∣∣ C ∈ I0(B ⊂ A)
}
,

and in particular, if CA(B) ⊆ B, then
{
u ∈ NA(B)

∣∣∣ ‖u− 1‖ <
γ

2

}

⊆
⋂{

StabG
(
NA(B) ∩ NA(C)

) ∣∣ C ∈ I(B ⊂ A)
}
.

4. Some finiteness results

This section is devoted to some more applications of certain perturbation
results from [11, 8] to generalize some finiteness results by Ino–Watatani [11]
and Khoshkam–Mashood [18].

4.1. Finiteness of certain compatible intermediate C∗-subalgebras.

Theorem 4.2. Let B ⊂ A be an inclusion of unital C∗-algebras with a finite-
index conditional expectation E : A → B. If one (equivalently, any) of the al-
gebras CA(B),Z(B),Z(A) is finite-dimensional, then the collection F(B,A, E)
(as in (1)) is finite.

Proof. First, note that, since there exists a finite-index conditional expectation
from A onto B, it follows from [24, Prop. 2.7.3] that the C∗-subalgebras CA(B),
Z(B) and Z(A) are either all finite-dimensional or none of them is finite-dimen-
sional.

Consider Watatani’s C∗-basic construction A1 := C∗(A, e1) of the inclusion
B ⊂ A with respect to the conditional expectation E and Jones projection e1.
In view of the preceding paragraph and the given hypothesis, Z(B) is finite-
dimensional, so by [24, Prop. 2.7.3] again, the relative commutant B′ ∩ A1 is
finite-dimensional. Therefore, the set

P := {p ∈ B′ ∩ A1 | p is a projection}
is a compact Hausdorff space with respect to the operator norm.

Further, note that if C ∈ IMS(B,A, E) with respect to the compatible con-
ditional expectation F : A → C, then F has finite index and C1 ⊆ A1 (see [9,
Prop. 2.7 (2)], so the corresponding Jones projection eC belongs to

C′ ∩ C1 ⊆ B′ ∩ A1,

where C1 denotes the C∗-basic construction of the inclusion C ⊂A with respect
to the finite-index conditional expectation F and Jones projection eC .

Fix a 0 < γ < 10−6 and let

ε =
γ

2‖IndW (E)‖ .
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By the compactness of P , there exists a finite cover of P consisting of open
balls of radius ε. So it suffices to show that each such ε-ball contains only
finitely many Jones projections corresponding to the members of F(B,A, E).

Note that, for any two C,D ∈ IMS(B,A, E), their corresponding Jones pro-
jections eC and eD are in B′ ∩ A1 and satisfy

dKK(C,D) ≤ ‖IndW (E)‖‖eC − eD‖,
by [11, Lem. 3.3]. In particular, if eC and eD are in one of the ε-open balls,
then dKK(C,D) ≤ γ

2 < γ. Thus, by [8, Thm. 3.7], there exists a unitary u in

B′ ∩ A such that C = uDu∗ (and ‖u− 1‖ ≤ 16
√
110γ

1

2 + 880γ).
Let C,D ∈ F(B,A, E) and let they be in one ε-ball as above. As u ∈ B′ ∩A

and B′ ∩ A ⊆ CA(D) ∪ D, it follows that C = uDu∗ = D. Thus, each ε-open
ball of the cover contains at most one Jones projection for some member of
F(B,A, E), as was desired. �

We can immediately deduce the following generalization of [11, Cor. 3.9].
(The second part follows from Lemma 2.5.)

Corollary 4.3. Let B ⊂ A be an irreducible inclusion of unital C∗-algebras
with a finite-index conditional expectation E : A → B. Then IMS(B,A, E) is
finite. In particular, IMS(Ak,Ak+1, Ek+1) is finite for every k ≥ 0.

For any unital inclusion of von Neumann algebras N ⊂ M, let L(N ⊂ M)
denote the lattice of intermediate von Neumann subalgebras. For any such
inclusion, if there exists a faithful normal tracial state tr on M and the unique
tr-preserving conditional expectation EN : M→ N has finite Watatani index,
then it was shown in [3] that if Z(N ) is finite-dimensional and the relative
commutant N ′ ∩M equals either Z(N ) or Z(M), then L(N ⊂ M) is finite.
Analogous to [18, Thm. 1.3] and Theorem 4.2, we now have the following.

Proposition 4.4. Let N ⊂ M be a unital inclusion of finite von Neumann
algebras with a (fixed) faithful normal tracial state tr on M such that the
unique tr-preserving conditional expectation EN :M→N has finite Watatani
index. If one (equivalently, any) of the algebras CM(N ), Z(N ) and Z(M) is
finite-dimensional, then the subcollection

L0(N ⊂ M) := {P ∈ L(N ⊂ M) : N ′ ∩M ⊆ P ∪ (P ′ ∩M)}
is finite.

Proof. Clearly, L(N ⊂ M) ⊆ IMS(N ,M, EN ). The rest follows from Theo-
rem 4.2. �

Note that Proposition 4.4 also generalizes Watatani’s finiteness result [25,
Thm. 2.2] to a non-irreducible setting.

4.5. Finiteness results for non-irreducible inclusions of simple C∗-
algebras. In general, if B ⊂A are simple unital C∗-algebras and the inclusion
is not irreducible, then the lattice I(B ⊂ A) need not be finite. For instance,
consider the following easy example.

Münster Journal of Mathematics Vol. 17 (2024), 241–272



On various notions of distance between subalgebras 253

Example 4.6. Let A = M2(C), B = CI2, ∆ = {diag(λ, µ) | λ, µ ∈ C}, let
E : A → B denote the canonical (tracial) conditional expectation given by

E([aij ]) =
(a11 + a22)

2
I2, [aij ] ∈ A,

and let F : A → ∆ denote another canonical conditional expectation given by
F ([aij ]) = diag(a11, a22), [aij ] ∈ A.

Note that u∆u∗ ∈ IMS(B,A, E) for all u ∈ U(2) (by [9, Lem. 2.8]). Also,
the set {u∆u∗ | u ∈ U(2) \ NA(∆)} is infinite because the set of left cosets of
NA(∆) in U(2) is infinite. Hence, IMS(B,A, E) and, therefore, I(B ⊂ A) are
infinite sets.

Here is an indirect way of seeing why U(2)/NA(∆) is infinite. Suppose, on
the contrary, that {[u] := uNA(∆) | u ∈ U(2)} is finite. Then, for any element
w ∈ uNA(∆), w = uv for some v ∈ NA(∆), so

α(∆, w∆w∗) = α(∆, uv∆(uv)∗) = α(∆, u∆u∗),

where α is the interior angle (see [9]). This implies α(∆,w∆w∗) = α(∆, u∆u∗)
for every w ∈ [u]. Hence, the set

{α(∆, u∆u∗) | u ∈ U(2)} =

{
α(∆, u∆u∗)

∣∣∣∣ [u] ∈
U(2)

NA(∆)

}

is finite. This contradicts the fact that {α(∆, u∆u∗) | u ∈ U(2)} = [0, π
2 ] (see

[9, Cor. 4.6]). Thus, the set of left cosets of NA(∆) in U(2) must be infinite.

However, for a non-irreducible inclusion B ⊂ A of simple unital C∗-algebras
with a finite-index conditional expectation, we shall show in this section that
the sublattice consisting of intermediate C∗-subalgebras of B⊂A which contain
the centralizer algebra CA(B) is finite.

The following useful observation (whose first part comes from [12] and the
second part is comparable with [9, Prop. 2.7 (1), (2)]) will be needed ahead.

Proposition 4.7. Let B ⊂A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation E : A→ B. Then, for any C ∈ I(B ⊂ A),
there exists a finite-index conditional expectation F : A → C and, moreover, if
CA(B) ⊆ C, then LC(A) ⊆ LB(A), where LC(A) is defined with respect to F .

In particular, C1 ⊂ A1, where A1 (resp., C1) denotes the C∗-basic construc-
tion of the inclusion B ⊂ A (resp., C ⊂ A) with respect to E (resp., F ).

Proof. Let C ∈ I(B ⊂ A). Then, by [12, Prop. 6.1], there exists a conditional
expectation F :A→ C of finite index. Next, suppose that CA(B) = B′ ∩A⊆ C.

Note that, as E is of finite Watatani index, it satisfies the Pimsner–Popa
inequality [24]; in particular, so does the restriction E↾C : C → B. Since B is
simple, it then follows from [12, Cor. 3.4] that E↾C also has a finite quasi-basis.
Thus, G := E↾C ◦ F is of finite Watatani index by [24, Prop. 1.7.1]. Since E
and G are two finite-index conditional expectations from A onto B, by [24,
Prop. 2.10.9], there exists a q ∈ B′ ∩A such that E(x) =G(q∗xq) for all x ∈ A.
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Then, for any T ∈ LC(A), we observe that

〈T (x), y〉B = E(T (x)∗y) = G(q∗T (x)∗yq) = E↾C (F ((T (x)q)∗yq))

= E↾C (〈T (x)q, yq〉C) = E↾C(〈xq, T ∗(yq)〉C)
= E↾C

(
F (q∗x∗T ∗(yq))

)
= E↾C

(
F (q∗x∗T ∗(y)q)

)

= G(q∗x∗T ∗(y)q) = E(x∗T ∗(y)) = 〈x, T ∗(y)〉B
for all x, y ∈ A. Hence, T ∈ LB(A). �

Notation. For any inclusion B ⊂ A of unital C∗-algebras, let

I1(B ⊂ A) := {C ∈ I(B ⊂ A) | CA(B) ⊆ C}.
Clearly, I1 a sublattice of I(B ⊂ A), I1(B ⊂ A) ⊆ I0(B ⊂ A) and I1(B ⊂ A) =
I(B ⊂ A) if CA(B) ⊆ B.

We shall need the following adaptation of [11, Lem. 3.3].

Lemma 4.8. Let B ⊂ A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation E : A → B. Then

dKK(C,D) ≤ IndW (E)‖eC − eD‖
for all C,D ∈ I1(B ⊂ A).

Proof. We shall simply write I1 for the set I1(B ⊂A). Since E has finite index,
it satisfies the Pimsner–Popa inequality (by [24, Prop. 2.6.2]), i.e., E(x∗x) ≥
(IndW (E))−1x∗x for all x ∈ A, and since IndW (E) ≥ 1 (by [24, Lem. 2.3.1]),
it follows that

E(x∗x) ≥ (IndW (E))−2x∗x

for all x ∈A. In particular, ‖η(x)‖ ≥ (IndW (E))−1‖x‖ for all x ∈A. Moreover,
‖η(a)‖ ≤ ‖a‖ ≤ 1 for every a ∈ B1(C).

Since B ⊂ A are both simple, it follows from Proposition 4.7 that LC(A) ∪
LD(A) ⊆ LB(A) for any two C,D ∈ I1. Thus, eC, eD ∈ LB(A), and

‖eC − eD‖ ≥ ‖η(EC(a)− ED(a))‖
‖η(a)‖ ≥ ‖η(a− ED(a))‖

≥ 1

IndW (E)
‖a− ED(a)‖

for all a ∈ B1(C) \ {0}. Therefore, for each a ∈ B1(C), there exists an element
b := ED(a) ∈ B1(D) such that ‖a− b‖ ≤ IndW (E)‖eC − eD‖. By a symmetric
argument, we deduce that dKK(C,D) ≤ IndW (E)‖eC − eD‖. �

The following finiteness result is an adaptation (as well as a mild generaliza-
tion) of [11, Cor. 3.9] (also see [18, Thm. 1.3]). Its proof is an imitation of that
of Theorem 4.2. However, we provide all steps for the sake of completeness.

Theorem 4.9. Let B ⊂ A be an inclusion of simple unital C∗-algebras with
a finite-index conditional expectation E :A→B. Then the sublattice I1(B ⊂A)
is finite.
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Proof. Consider Watatani’s C∗-basic construction A1 := C∗(A, e1) of the in-
clusion B ⊂ A with respect to the finite-index conditional expectation E and
Jones projection e1. Let Ẽ : A1 → A be the finite-index dual conditional ex-
pectation of E. Then Ẽ ◦E :A1 →B is also a conditional expectation of finite
index. Since A is simple, it follows from [24, Prop. 2.7.3] that the relative
commutant B′ ∩ A1 is finite-dimensional. Therefore, the set

P := {p ∈ B′ ∩ A1 | p is a projection}
is a compact Hausdorff space with respect to the operator norm.

Since A is simple, IndW (E) is a positive scalar. Fix a 0 < γ < 10−6 and let

ε =
γ

2IndW (E)
.

By the compactness of P , there exists a finite cover of P consisting of open
balls of radius ǫ. Now, it suffices to show that each such ǫ-ball contains only
finitely many Jones projections corresponding to members of I1.

Note that, for any two C,D ∈ I1, their corresponding Jones projections eC
and eD are in B′ ∩ LB(A) = B′ ∩ A1 by Proposition 4.7, and by Lemma 4.8,
they also satisfy the inequality

dKK(C,D) ≤ IndW (E)‖eC − eD‖.
So if eC and eD are in one of the ε-open balls, then dKK(C,D) ≤ γ

2 < γ. Thus,
by [8, Thm. 3.7], there exists a unitary u in B′ ∩ A such that D = uCu∗ (and

‖u − 1A‖ ≤ 16
√
110γ

1

2 + 880γ). Since B′ ∩ A = CA(B) ⊆ C, this implies that
u ∈ C. Hence, D = uCu∗ = C. This shows that each ε-open ball of the cover
contains at most one Jones projection for some intermediate C∗-subalgebra
in I1, and we are done. �

Since countably decomposable type III factors are simple, we obtain the
following generalization of [23, Thm. 2.5] (and a partial generalization of [18,
Thm. 1.3]).

Corollary 4.10. Let N ⊂M be an inclusion of countably decomposable type III
factors with a finite-index conditional expectation. Then the set L1(N ⊂M) :=
{Q ∈ L(N ⊂ M) | N ′ ∩M ⊆ Q} is finite.

4.11. Cardinality of IMS(B,A, E). Longo [19] showed that the cardinality
of the lattice of intermediate subfactors of any finite-index irreducible inclusion
N ⊂M of factors (of type II1 or III) is bounded by ([M : N ]2)[M :N ]2 . More re-
cently, a similar bound was obtained for the lattice of intermediate C∗-algebras
of a finite-index inclusion of simple unital C∗-algebras by Bakshi and the first
named author in [3], which was achieved by introducing the notion of (interior)
angle between two intermediate C∗-subalgebras. Further, Bakshi, Guin and
Jana [2] improved the bound by proving that the cardinality of the lattice of
intermediate C∗-subalgebras of an irreducible inclusion B ⊂ A of simple unital
C∗-algebras with finite index is bounded by 9[A:B]0 .
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In this subsection, for any irreducible inclusion B ⊂ A of unital C∗-algebras
with a finite index conditional expectation E : A → B, through some elemen-
tary group action technique, we provide an expression for the cardinality of
IMS(B,A, E) in terms of the indices of the unitary normalizers of its members
in NA(B); see Proposition 4.13. On face, the expression looks a bit dry, but it
might prove useful while performing some concrete calculations.

In [9, Lem. 2.8 (2)], it was shown that, for any inclusion B ⊂ A of unital
C∗-algebras with a tracial finite-index conditional expectation E : A → B,
uCu∗ ∈ IMS(B,A,E) for every C ∈ IMS(B,A,E) and u ∈ NA(B). We now have
its following (more obvious) variant (which does not require E to be tracial),
which gives an abundance of compatible intermediate C∗-algebras and will
also allow us to get an expression for the cardinality of IMS(B,A,E) when the
inclusion B ⊂ A is irreducible.

Lemma 4.12. Let B ⊂ A be an inclusion of unital C∗-algebras with a finite-
index conditional expectation E : A → B such that CA(B) ⊆ B. Suppose that
C ∈ IMS(B,A,E) with respect to the compatible finite-index conditional expecta-
tion F :A→ C. Then, for every u ∈ NA(B), uCu∗ ∈ IMS(B,A,E) with respect
to the conditional expectation Fu : A → uCu∗ given by Fu = Adu ◦ F ◦Adu∗ .

Proof. As CA(B) ⊆ B and E0(A,B) 6= ∅, it follows from [24, Cor. 1.4.3] that E
is the unique conditional from A onto B. Also, from [9, Lem. 2.8 (1)], we know
that Fu is of finite index. So E↾uCu∗ ◦ Fu is again a finite-index conditional ex-
pectation from A onto B. Thus, by uniqueness of E, we get E↾uCu∗ ◦ Fu = E.
Hence, uCu∗ ∈ IMS(B,A,E) with respect to the compatible conditional expec-
tation Fu. �

With notation as in Lemma 4.12, we thus observe that the groupG :=NA(B)
admits an action on the set IMS(B,A, E) via the map

G× IMS(B,A, E) ∋ (u, C) 7→ uCu∗ ∈ IMS(B,A, E).

For any C ∈ IMS(B,A, E), its stabilizer

StabG(C) = NA(B) ∩ NA(C).
Let ̂IMS(B,A, E) denote a set of representatives of the orbits of IMS(B,A, E)
with respect to this action. Then, in view of Corollary 4.3, from some basic
theory of group actions, we immediately conclude the following.

Proposition 4.13. Let B ⊂A be an irreducible inclusion of unital C∗-algebras
with a finite-index conditional expectation E : A → B and G := NA(B). Then
(i)

[
NA(B) : NA(B) ∩ NA(C)

]
< ∞ for every C ∈ IMS(B,A, E), and

(ii) |IMS(B,A, E)| = ∑
C∈ ̂IMS(B,A,E)

[
NA(B) : NA(B) ∩NA(C)

]
.

Lemma 4.14. Let A,B,E,G be as in Proposition 4.13 and C ∈ IMS(B,A,E).
Then

[A : D]0 = [A : C]0 and [D : B]0 = [C : B]0
for every D ∈ OrbG(C).

Münster Journal of Mathematics Vol. 17 (2024), 241–272



On various notions of distance between subalgebras 257

Proof. Since B ⊂ A is an irreducible inclusion, the conditional expectation
E : A → B is unique by [24, Cor. 1.4.3]. Hence, it is minimal.

Suppose that C ∈ IMS(B,A, E) with respect to the compatible finite-index
conditional expectation F : A → C. Note that OrbG(C) = {uCu∗ | u ∈ G}.

LetD∈OrbG(C). ThenD= uCu∗ for some u∈NA(B) andD∈ IMS(B,A,E)
with respect to the conditional expectation Fu := Adu ◦ F ◦Adu∗ . Also,

Z(D) = Z(uCu∗) = uZ(C)u∗ = C = Z(A),

D′ ∩ A ⊆ B′ ∩ A = C and B′ ∩ D ⊆ B′ ∩ A = C,

so, by [24, Cor. 1.4.3] again, Fu and E↾D are both unique and hence minimal.
Thus, by [16, Thm. 3], we get [A : B]0 = [A :D]0[D : B]0 for every D ∈OrbG(C).
Note that [A : D]0 = [A : uCu∗]0 = [A : C]0 by [9, Lem. 2.8], which then shows
that [D : B]0 = [C : B]0 as well. �

5. Comparisons between various notions of distance

In this section, we discuss the various notions of distance between subal-
gebras of a given operator algebra by Christensen and Mashood–Taylor and
make comparisons between them and the Kadison–Kastler distance.

5.1. Christensen’s distances. Christensen has given two notions of dis-
tances and used them effectively in proving some significant perturbation re-
sults. The first one is defined between subalgebras of any tracial von Neumann
algebra [5] and, more generally, the other one is defined between subalgebras of
any C∗-algebra [6]. We briefly recall both notions in reversed order and state
some facts related to them.

5.1.1. Christensen’s distance between subalgebras of a normed algebra. Though
Christensen gave the notion of distance between subalgebras of a C∗-algebra,
the same can be used in the normed algebra context as well.

Let A be a normed algebra. Recall from [6] that, for C, D ∈ SubA and a
scalar γ > 0, C ⊆γ D if, for each x ∈ B1(C), there exists a y ∈ D such that
‖x− y‖ ≤ γ, and the Christensen distance between C and D is defined by

d0(C,D) = inf{γ > 0 | C ⊆γ D and D ⊆γ C}.
Here are some elementary observations regarding the Christensen distance,

some of which will be used ahead.

Remark 5.2. Let A be a normed algebra.
(i) d0(C,D) ≤ 1 for all C,D ∈ SubA.
(ii) d0(C,D) = d0(C,D) = d0(C,D) for all C,D ∈ SubA.
(iii) d0 is not a metric on SubA (as it does not satisfy the triangle inequality).

However, d0 and dKK are “equivalent” in the sense that

d0(C,D) ≤ dKK(C,D) ≤ 2d0(C,D)

for all C,D ∈ SubA (see [7, Rem. 2.3]).
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(iv) If C, D ∈ SubA and C is a norm closed proper subalgebra of D, then
d0(C, D) = 1. (This follows from [7, Prop. 2.4]—also compare with Re-
mark 3.2 (iii).)

5.2.1. Christensen’s distance between subalgebras of a tracial von Neumann
algebra. For a von Neumann algebra M, let

∗-SubuM := {*-subalgebras of M containing 1M}
and

W ∗-SubM := {von Neumann subalgebras of M
(possibly with different unit)}.

Let M be a von Neumann algebra with a (fixed) faithful normal tracial state τ .
Then M inherits a natural inner-product structure with respect to the inner
product 〈x, y〉τ = τ(y∗x), x, y ∈ M. The corresponding norm on M will be
denoted by ‖x‖τ , i.e., ‖x‖τ = τ(x∗x)1/2, x ∈ M, and the Hilbert space com-
pletion of M is denoted by L2(M, τ). There is a natural embedding of M into
B(L2(M, τ)) via left multiplication and this allows us to consider M as a von
Neumann algebra on L2(M, τ).

Further, in order to distinguish the elements of the inner-product structure
M from that of the von Neumann algebra M, as is standard, we shall use
the notation x̂ for the elements of the inner-product space M. Thus, we have
〈x̂, ŷ〉τ = τ(y∗x) and x(1̂) = x̂ for all x, y ∈ M.

Recall from [5] that, for P,Q ∈ SubM and a scalar γ > 0, P ⊂γ Q if, for each
x ∈ B1(P ) (with respect to ‖ · ‖), there exists a y ∈ Q such that ‖x̂− ŷ‖τ ≤ γ,
and the Christensen distance between P and Q is defined by

dC(P,Q) = inf{γ > 0 | P ⊂γ Q and Q ⊂γ P}.
Here are some facts related to the Christensen distance dC.

Remark 5.3. With running notation, the following hold.
(i) dC(P,Q) ≤ 1 for all P,Q ∈ SubM.
(ii) dC is a complete metric on W ∗-SubM (see [5, Thm. 5.1]).
(iii) From Proposition 5.11 and Proposition 5.7 ahead, it follows that

dC(P,Q) = dC(P
S.O.T., QS.O.T.) = dC(P

′′, Q′′)

for all P,Q ∈ ∗-SubuM.

Here is a well-known observation which will be essential for our discussion—
see, for instance, [1, Prop. 2.6.4].

Proposition 5.4. Let M be a unital C∗-algebra equipped with a faithful tracial
state τ . Then M is a von Neumann algebra on L2(M,τ) if and only if B̂1(M)
is complete with respect to ‖ · ‖τ .

In particular, M is a W ∗-algebra if and only if B̂1(M) is complete with
respect to ‖ · ‖τ .
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5.5. Mashood–Taylor distance between subalgebras of a tracial von
Neumann algebra. Given a II1-factor M with a unique faithful normal tra-
cial state τ and any two subfactors P and Q of M , Mashood and Taylor [20]
consider the Hausdorff distance (with respect to ‖ · ‖τ ) between B1(P ) and
B1(Q) and prove some nice results related to continuity of “Jones” index.
They also mention [20, p. 56] that this distance gives the same topology on the
set of subfactors of M as the one given by the Christensen distance dC. We
shall show in this section that dC = dMT.

Mashood–Taylor distance can, in fact, be defined in a slightly more general
set-up as follows. For a von Neumann algebra M with a faithful normal tracial
state τ , for any pair P, Q ∈ SubM, the Mashood–Taylor distance between P
and Q is defined as

dMT(P,Q) = dH,‖ · ‖τ
(B̂1(P ), B̂1(Q)),

where dH,‖ · ‖τ
denotes the Hausdorff distance with respect to the metric in-

duced by the norm ‖ · ‖τ and Ŝ ⊆ L2(M, τ) for S ⊆ M (as in Section 5.2.1).

Lemma 5.6. Let M be a von Neumann algebra with a faithful normal tracial
state τ . Then the following hold.
(i) dMT is a semi-metric on SubM.
(ii) dMT is a metric on W ∗-SubM.
(iii) dC(P,Q) ≤ dMT(P,Q) for all P,Q ∈ SubM.

Proof. (i) follows readily from the definition.
(ii) Note that B̂1(Q) is closed and bounded in L2(M, τ) for every Q ∈

W ∗-SubM by Proposition 5.4. And it is well-known that the Hausdorff distance
is a metric on the collection of closed and bounded subsets of a metric space.

(iii) Let P,Q ∈ SubM and ǫ > 0. By the definition of dMT(P, Q), for each
x ∈ B1(P ), there exists a z ∈ B1(Q) such that ‖x̂− ẑ‖τ ≤ dMT(P,Q) + ǫ. This
implies that P ⊂dMT(P,Q)+ǫ Q. Similarly, we have Q ⊂dMT(P,Q)+ǫ P . Thus,
dC(P,Q) ≤ dMT(P,Q) + ǫ for all ǫ > 0, and we are done. �

The following observation is a nice tool to calculate the distance between two
von Neumann subalgebras and will be used ahead on more than one occasion.

Proposition 5.7. Let (M, τ) be as in Lemma 5.6. Then

dMT(P,Q) = dMT(P,Q
S.O.T.) = dMT(P

S.O.T., QS.O.T.) = dMT(P
′′, Q′′)

for all P,Q ∈ ∗-SubuM.

Proof. In order to avoid any possible confusion, for every x ∈ M and S ⊆ M,
let dτ (x̂, Ŝ) := inf{‖x̂− ŝ‖τ | s ∈ S}. Now, let P,Q ∈ ∗-SubuM. We first assert
that

dτ (â, B̂1(Q)) = dτ (â, ̂B1(QS.O.T.))

for all a ∈ B1(P ). Clearly,

dτ (â, ̂B1(QS.O.T.)) ≤ dτ (â, B̂1(Q))
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for all a ∈ B1(P ). For the reverse inequality, fix an a ∈ B1(P ) and an ǫ > 0.
Then there exists a b0 ∈ B1(Q

S.O.T.) such that

dτ (â, ̂B1(QS.O.T.)) ≤ ‖â− b̂0‖τ < dτ (â, ̂B1(QS.O.T.)) + ǫ.

As
B1(Q

S.O.T.) = B1(Q)S.O.T.

(by Kaplansky density theorem), there exists a net

{bα} ⊆ B1(Q) such that bα
S.O.T.−−−−→ b0.

Hence, there exists an α0 such that

‖â− b̂α0
‖τ < dτ (â, ̂B1(QS.O.T.)) + ǫ.

This implies that

dτ (â, B̂1(Q)) ≤ ‖â− b̂α0
‖τ < dτ (â, ̂B1(QS.O.T.)) + ǫ.

As ǫ > 0 was arbitrary, we get

dτ (â, B̂1(Q)) ≤ dτ (â, ̂B1(QS.O.T.)).

This proves our assertion.
Then we get

β := sup
a∈B1(P )

dτ (â, B̂1(Q)) = sup
a∈B1(P )

dτ (â, ̂B1(QS.O.T.))

≤ sup
z∈B1(P S.O.T.)

dτ (ẑ, ̂B1(QS.O.T.)) =: α.

Further, for any η > 0, there exists a z0 ∈ B1(P
S.O.T.) such that

α− η < dτ (ẑ0, ̂B1(QS.O.T.)) ≤ α.

Then, by Kaplansky density theorem again, there exists a net

{zλ} ⊂ B1(P ) such that zλ
S.O.T.−−−−→ z0.

In particular, ẑλ → ẑ0 with respect to ‖ · ‖τ , and since dτ is continuous with
respect to ‖ · ‖τ , it follows that

dτ (ẑλ, ̂B1(QS.O.T.)) → dτ (ẑ0, ̂B1(QS.O.T.)).

Thus, there exists a λ0 such that

dτ (ẑλ0
, ̂B1(QS.O.T.)) > α− η,

so that β ≥ α − η. Since η > 0 was arbitrary, we have β ≥ α. Thus, α = β,
i.e.,

dMT(P,Q) = dMT(P,Q
S.O.T.).

By a similar argument, we conclude that

dMT(P,Q) = dMT(P
S.O.T., QS.O.T.).

The rest follows from von Neumann’s Double Commutant Theorem. �
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5.8. Comparisons between dKK, dC and dMT. We first present the fol-
lowing comparison between dMT and dKK.

Lemma 5.9. Let M be a von Neumann algebra with a faithful normal tracial
state τ . Then dMT(P,Q) ≤ dKK(P,Q) for all P,Q ∈ SubM.

Proof. Let P,Q ∈ SubM and p ∈ B1(P ). Then

dτ (p̂, B̂1(Q)) ≤ ‖p̂− q̂‖τ ≤ ‖p− q‖
for all q ∈ B1(Q). Thus,

dτ (p̂, B̂1(Q)) ≤ d(p,B1(Q))

for all p ∈ B1(P ). In particular,

sup
p∈B1(P )

dτ (p̂, B̂1(Q)) ≤ sup
p∈B1(P )

d(p,B1(Q)).

Similarly,

sup
q∈B1(Q)

dτ (q̂, B̂1(P )) ≤ sup
q∈B1(Q)

d(q, B1(P )).

Hence, dMT(P,Q) ≤ dKK(P,Q). �

The following useful observation is well-known to the experts (see, for in-
stance, [5, Eqn. (6)]).

Lemma 5.10. Let (M, τ) be as in Lemma 5.9 and let N be a von Neumann
subalgebra of M (with common unit). Then

dτ (x̂, B̂1(N )) = ‖x̂− ÊN (x)‖τ = dτ (x̂, L
2(N ))

for all x ∈ B1(M), where EN denotes the unique τ-preserving normal condi-
tional expectation from M onto N .

We are now all set to show that the Mashood–Taylor distance agrees with
the Christensen distance on ∗-SubuM .

Proposition 5.11. Let (M, τ) be as in Lemma 5.10. Then

dC(P,Q) = dMT(P,Q)

for all P,Q ∈ ∗-SubuM.

Proof. Let P,Q ∈ ∗-SubuM and consider

P̃ := P S.O.T. and Q̃ := QS.O.T..

In view of Lemma 5.6 and Proposition 5.7, it suffices to show that

dC(P,Q) ≥ dMT(P̃ , Q̃).

We first assert that

dτ (p̂,
̂(B1(Q̃))) = dτ (p̂, L

2(Q̃)) = dτ (p̂, Q̂)

for all p ∈ B1(P ).
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Let p ∈ B1(P ). Then, by Lemma 5.10,

dτ (p̂, B̂1(Q̃)) = ‖p̂− ÊQ̃(p)‖τ = dτ (p̂, L
2(Q̃)).

Thus, as B̂1(Q) ⊂ Q̂ ⊂ L2(Q̃), we see that

dτ (p̂, B̂1(Q̃)) = dτ (p̂, L
2(Q̃)) ≤ dτ (p̂, Q̂) ≤ dτ

(
p̂, B̂1(Q)

)
= dτ (p̂, B̂1(Q̃))

for all p ∈ B1(P ). Hence, our first assertion is true.
Now, suppose that P ⊂γ Q and Q ⊂γ P for some γ > 0. We then assert

that

dτ (p̂, B̂1(Q̃)) ≤ γ for all p ∈ B1(P̃ ).

So let p ∈ B1(P̃ ) and, by Kaplansky density theorem, fix a net

{pα} ⊂ B1(P ) such that pα
S.O.T.−−−−→ p in B(L2(M, τ)).

Since P ⊂γ Q, for each α, there exists a qα ∈ Q such that ‖p̂α − q̂α‖τ ≤ γ. So

γ ≥ ‖p̂α − q̂α‖τ ≥ dτ (p̂α, Q̂) = dτ (p̂α, B̂1(Q̃)) = ‖p̂α − ÊQ̃(pα)‖τ
for all α, where EQ̃ is the unique τ -preserving normal conditional expectation
from M onto Q̃. Thus,

dτ (p̂, B̂1(Q̃)) ≤ inf
α
‖p̂− ÊQ̃(pα)‖τ ≤ inf

α
‖p̂− p̂α‖τ + inf

α
‖p̂α − ÊQ̃(pα)‖τ ≤ γ,

where the last inequality holds because ‖p̂α − p̂‖τ → 0 (as pα → p in S.O.T.)
and

‖p̂α − ÊQ̃(pα)‖τ ≤ γ

for all α. Thus, our second assertion is also true.
As a consequence,

sup
p∈B1(P̃ )

dτ (p̂, B̂1(Q̃)) ≤ γ.

Likewise,

sup
q∈B1(Q̃)

dτ (q̂, B̂1(P̃ )) ≤ γ

as well. Hence, dMT(P̃ , Q̃) ≤ γ, which then implies that

dMT(P̃ , Q̃) ≤ dC(P,Q),

and we are done. �

In view of Lemma 5.9, we also have the following.

Corollary 5.12. Let (M, τ) be as in Lemma 5.10. Then

dC(P,Q) ≤ dKK(P,Q)

for all P,Q ∈ SubM.
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6. Kadison–Kastler and Christensen distance between
subalgebras corresponding to subgroups

6.1. Distances between crossed-product subalgebras associated to
subgroups. Let G be a discrete group acting on a C∗-algebra A via the
map α : G → Aut(A). Consider the space Cc(G,A) consisting of compactly
supported A-valued functions on G, which can be identified naturally with
the vector space {∑finite agg | ag ∈ A, g ∈ G} consisting of formal finite sums.
Further, Cc(G,A) is a ∗-algebra with respect to the (so-called twisted) multi-
plication given by the convolution operation

(∑

s∈I

ass
)(∑

t∈J

btt
)
=

∑

s∈I, t∈J

asαs(bt)st

and involution given by
(∑

s∈I

ass
)∗

=
∑

s∈I

αs−1(a∗s)s
−1

for any two finite sets I and J in G. The reduced crossed product A ⋊r
α G

and the universal crossed product A ⋊u
α G are defined, respectively, as the

completions of Cc(G,A) with respect to the reduced norm and the universal
norm on Cc(G,A), as described below.

The reduced norm is given by
∥∥∥
∑

finite

agg
∥∥∥
r
:=

∥∥∥
∑

finite

π(ag)(1⊗ λg)
∥∥∥
B(H⊗l2(G))

,

where A ⊂ B(H) is an (equivalently, any) fixed faithful representation of A,
λ : G → B(l2(G)) is the left regular representation and π : A → B(H ⊗ l2(G))
is the representation satisfying π(a)(ξ ⊗ δg) = αg−1 (a)(ξ)⊗ δg for all ξ ∈H and
g ∈ G.

The universal norm is given by

‖x‖u := sup
π
‖π(x)‖B(Hπ) for x ∈ Cc(G,A),

where the supremum runs over all (cyclic) ∗-homomorphisms π : Cc(G,A) →
B(Hπ). Note that ‖x‖r ≤ ‖x‖u for all x ∈ Cc(G,A).

We refer the reader to [4] for more on crossed products.

6.1.1. Distances between subalgebras of reduced crossed product. First, we gath-
er some relevant facts related to the reduced crossed product construction.

Remark 6.2. Let G and A be as above and H be a subgroup of G.
(i) The canonical injective ∗-homomorphism

Cc(H,A) ∋
∑

finite

ahh 7→
∑

finite

ahh ∈ Cc(G,A)

extends to an injective ∗-homomorphism from A⋊r
α H into A ⋊r

α G. So
we can consider A⋊r

α H as C∗-subalgebra of A⋊r
α G (see [17, Rem. 3.2]).
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(ii) There exists a faithful conditional expectation EH : A ⋊r
α G → A ⋊r

α H
satisfying

EH

(∑

g∈I

agg
)
=

∑

h∈I∩H

ahh for all
∑

g∈I

agg ∈ Cc(G,A)

(see [17, Rem. 3.2]), and if [G : H ] < ∞, then EH has finite (Watatani)
index with a quasi-basis given by any set of left coset representatives
{gi | 1 ≤ i ≤ [G : H ]} of H in G.

(iii) Thus, as in Section 2, the vector space A⋊r
α G is a natural left (A⋊r

α H)-
module via multiplication from left. Hence, following [24], we consider
A ⋊r

α G as a pre-Hilbert (left) (A ⋊r
α H)-module with respect to the

(A⋊r
α H)-valued inner product given by

〈x, y〉 = EH(x∗y) for x, y ∈ A⋊r
α G.

Further, in order to distinguish the elements of the C∗-algebra A ⋊r
α G

and the pre-Hilbert (A⋊r
α H)-module A⋊r

α G, following [24], we consider
the identity map ηH :A⋊r

α G→A⋊r
α G, where we consider the codomain

as the pre-Hilbert (A⋊r
α H)-module. Since EH is a contraction, we have

(2) ‖ηH(x)‖ = ‖EH(x∗x)‖1/2r ≤ ‖x‖r
for all x ∈ A⋊r

α G.
(iv) Note that, for two subgroups H (K of a discrete group G, ‖ηH(x)‖ need

not be equal to ‖ηK(x)‖ for every x ∈ A⋊r
α G.

For instance, consider the trivial action of the finite permutation group
G = S3 on the C∗-algebra C. Let H = {e}, K = A3 and

x = a1(123) + a2(132) ∈ C∗
r (G) = C[G] with a1, a2 6= 0.

Then x∗x = (|a1|2 + |a2|2)e+ ā1a2(123) + ā2a1(132) and

‖ηK(x)‖2 = ‖EK(x∗x)‖r
= ‖(|a1|2 + |a2|2)e+ (ā1a2)(123) + (ā2a1)(132)‖r
= ‖(|a1|2 + |a2|2)λe + (ā1a2)λ(123) + (ā2a1)λ(132)‖B(ℓ2(S3))

≥
∥∥((|a1|2 + |a2|2)λe + (ā1a2)λ(123) + (ā2a1)λ(132)

)
(δe)

∥∥
ℓ2(S3)

= ‖(|a1|2 + |a2|2)δe + (ā1a2)δ(123) + (ā2a1)δ(132)‖ℓ2(S3)

=
(
(|a1|2 + |a2|2)2 + |ā1a2|2 + |ā2a1|2

) 1

2

>
(
(|a1|2 + |a2|2)2

) 1

2 = (|a1|2 + |a2|2) = ‖ηH(x)‖2.
(v) We shall denote E{e} (resp., η{e}) simply by E (resp., η).

The following is an elementary and useful observation. A more general
version of it was proved by Phillips (see [21, Prop. 9.16 (3)]).

Lemma 6.3. Let G be a discrete group acting on a C∗-algebra A. If

a =
∑

g∈I

agg ∈ Cc(G,A),

Münster Journal of Mathematics Vol. 17 (2024), 241–272



On various notions of distance between subalgebras 265

then

‖ag‖2 ≤ ‖E(a∗a)‖r = ‖η(a)‖2 for all g ∈ I.

Proposition 6.4. Let G,A be as in Lemma 6.3 and let H and K be two
distinct subgroups of G. Then

dKK(Cc(H,A), Cc(K,A)) = 1 = d0(Cc(H,A), Cc(K,A))

in A⋊r
α G.

Proof. Note that dKK(Cc(H,A), Cc(K,A)) ≤ 1 by definition, and

d0(Cc(H,A), Cc(K,A)) ≤ dKK(Cc(H,A), Cc(K,A))

by Remark 5.2. So it just remains to show that

d0(Cc(H,A), Cc(K,A)) ≥ 1.

Since H and K are distinct, either H 6= H ∩ K or K 6= H ∩ K. Without
loss of generality, we can assume that H 6= H ∩K. Then, in view of (2) and
Lemma 6.3, we observe that

‖h− x‖r ≥ ‖η(h− x)‖ ≥ 1 > γ

for all h ∈ H \H ∩K, x ∈ B1(Cc(K,A)) and for every 0 < γ < 1. Thus, if
Cc(H,A) ⊆γ Cc(K,A) for some γ > 0, then γ ≥ 1. So, by the definition of d0,
we must have

d0(Cc(H,A), Cc(K,A)) ≥ 1. �

6.4.1. Distances between subalgebras of universal crossed product.

Remark 6.5. Let G, A and α :G→Aut(A) be as in the preceding subsection
and let H be a subgroup of G. Then the canonical injective ∗-homomorphism

Cc(H,A) ∋
∑

finite

ahh 7→
∑

finite

ahh ∈ Cc(G,A)

extends to an injective ∗-homomorphism from A ⋊u
α H into A ⋊u

α G. Hence,
we can consider A⋊u

α H as C∗-subalgebra of A⋊u
α G (see [17, Prop. 3.1]).

Since ‖x‖u ≥ ‖x‖r on Cc(G,A), the following is immediate from the proof
of Proposition 6.4.

Proposition 6.6. Let G, A be as in Lemma 6.3 and let H and K be two
distinct subgroups of G. Then

dKK(Cc(H,A), Cc(K,A)) = 1 = d0(Cc(H,A), Cc(K,A))

in A⋊u
α G.

In view of Lemma 3.3, its analog in Remark 5.2 and the preceding two
propositions, we obtain the following corollary.

Corollary 6.7. Let G, H, K, A and α be as in Proposition 6.4. Then
(i) dKK(A⋊r

α H,A⋊r
α K) = 1 = d0(A⋊r

α H,A⋊r
α K) in A⋊r G, and

(ii) dKK(A⋊u
α H,A⋊u

α K) = 1 = d0(A⋊u
α H,A⋊u

α K) in A⋊u
α G.
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6.7.1. Some observations related to the C∗-algebras associated to groups. Re-
call that, for any discrete group G, if A = C and α : G→ Aut(G) is the trivial
action, then A ⋊r

α G (resp., A ⋊u
α G) is just the reduced group C∗-algebra

C∗
r (G) (resp., the (universal) group C∗-algebra C∗

u(G)). Thus, we readily ob-
tain the following.

Corollary 6.8. Let G be a discrete group and let H and K be two distinct
subgroups of G. Then

dKK(C[H ],C[K]) = dKK(C
∗
r (H), C∗

r (K)) = 1

= d0(C[H ],C[K]) = d0(C
∗
r (H), C∗

r (K)) in C∗
r (G),

dKK(C[H ],C[K]) = dKK(C
∗
u(H), C∗

u(K)) = 1

= d0(C[H ],C[K]) = d0(C
∗
u(H), C∗

u(K)) in C∗
u(G).

As in Remark 6.2, for any subgroup H of G, we consider the identity map
ηH : C∗

r (G) → C∗
r (G) with the pre-Hilbert C∗

r (H)-norm

‖ηH(x)‖ := ‖EH(x∗x)‖1/2r

for all x ∈ C[G]. Also, we simply write η for ηe.

Lemma 6.9. With running notation,
∥∥∥η

(∑

g∈G

αgg
)∥∥∥

2

≤
∑

g∈G

|αg|
( ∑

x∈gH

|αx|
)

for all
∑

g αgg ∈ C[G].

Proof. Note that

E
((∑

g∈G

αgg
)∗(∑

g∈G

αgg
))

=
∑

g∈G

∑

x∈gH

αgαxg
−1x =

∑

g

αgg
−1

( ∑

x∈gH

αxx
)

for all
∑

g αgg ∈ C[G]. �

Further, the reduced group C∗-algebra always admits a canonical faithful
tracial state τ : C∗

r (G) → C which satisfies τ(x) = 〈λ(x)δe, δe〉 for all x ∈ C[G],
where λ :C[G]→B(ℓ2(G)) is the faithful ∗-representation induced by the (left)
regular representation of G.

Remark 6.10. Let G be a discrete group.
(i) If H is the trivial subgroup of G, then the conditional expectation E

from C∗
r (G) onto C (≡ C∗

r (H)) is just the tracial state τ on C∗
r (G), which

satisfies

E
(∑

g∈G

αgg
)
= αe for all

∑

g

αgg ∈ C[G],

the C-valued inner product induced by E is just the usual inner product
on C∗

r (G) induced by τ , and
∥∥∥η

(∑

g∈G

αgg
)∥∥∥ =

√∑

g∈G

|αg|2
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for all
∑

g αgg ∈ C[G] because

E
((∑

g∈G

αgg
)∗(∑

g∈G

αgg
))

=
∑

g∈G

|αg|2.

(ii) We thus deduce that

∥∥∥
∑

g

αgg
∥∥∥
r
≥

√(∑

g

|αg|2
)

for all
∑

g

αgg ∈ C[G].

In particular,
√
2 ≤ ‖g − h‖r ≤ 2 for any two distinct elements g, h of G.

Thus, {g | g ∈ G} is a discrete linearly independent subset of the unit
sphere of C∗

r (G).
(iii) If G is finite, then C∗

r (G) = C[G] and

(3) ‖η(x)‖ ≤ ‖x‖r ≤ |G|‖η(x)‖
for all x ∈ C[G], because

‖η(x)‖ =

√∑

g∈G

|αg|2 for every x =
∑

g

αgg ∈ C[G]

(and the last inequality in (3) follows from Hölder’s inequality).
Moreover, E : C[G] → C has finite index with a quasi-basis {g | g ∈ G}

and IndW (E) = |G|.
Remark 6.11. If B is a ∗-subalgebra of a unital C∗-algebra A, then NA(B) is
a subgroup of NA(B). In particular, for any subgroup H of a discrete group G,

NG(H) ≤ NC∗
r
(G)(C[H ]) ≤ NC∗

r
(G)(C

∗
r (H)).

Given a subgroup H of a discrete group G and a unitary u in U(C∗
r (G)) \

NC[G](C[H ]), it is natural to ask whether

uC[H ]u∗ = C[K] or uC∗
r (H)u∗ = C∗

r (K)

for some subgroup K of G or not. Obviously, for every g ∈ G,

gC[H ]g∗ = C[gHg−1], gC∗
r (H)g∗ = C∗

r (gHg−1) and ‖g − 1‖r ≥
√
2.

However, when u /∈ G, then it is not clear when uC[H ]u∗ equals C[K] for
some subgroup K of G. Corollary 6.8 allows us to deduce the following partial
answer to this question.

Proposition 6.12. Let H be a proper subgroup of a discrete group G and let
u be a unitary in C[G] (resp., C∗

r (G)) such that ‖u− 1‖r < 1/2. If uC[H ]u∗ =
C[K] (resp., uC∗

r (H)u∗ = C∗
r (K)) for some subgroup K of G, then K = H

and, in particular, u ∈ NC[G](C[H ]) (resp., u ∈ NC∗
r
(G))(C

∗
r (H))),

Proof. For the group algebra case, let u ∈ C[G] with ‖u− 1‖r < 1/2. Suppose
that uC[H ]u∗ = C[K] for some subgroup K of G. Then, by Lemma 3.5, we
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observe that

dKK(C[H ],C[K]) = dKK(C[H ], uC[H ]u∗) ≤ 2‖u− 1‖r < 1.

Thus, K = H by Corollary 6.8.
Even in the reduced group C∗-algebra case, when u is a unitary in C∗

r (G)
satisfying the inequality ‖u− 1‖r < 1/2 and that uC∗

r (H)u∗ =C∗
r (K) for some

subgroup K of G, the same argument shows that dKK(C
∗
r (H), C∗

r (K)) < 1, so
that K = H (by Corollary 6.8 again). �

Here are two obvious reformulations of the preceding corollary.

Remark 6.13. Let H , G be as in Proposition 6.12 and let u be a unitary in
C[G] (resp., C∗

r (G)).
(i) If uC[H ]u∗ =C[K] (resp., uC∗

r (H)u∗ =C∗
r (K)) for some subgroupK other

than H , then ‖u− 1‖r ≥ 1/2.
(ii) If ‖u− 1‖r < 1/2, the conjugate ∗-subalgebra uC[H ]u∗ (resp., uC∗

r (H)u∗)
is not equal to C[K] (resp., C∗

r (K)) for any subgroup K other than H .

Remark 6.14. One could ask whether every unitary u in NC[G](C[H ]) (resp.,
in NC∗

r
(G)(C

∗
r (H))) satisfies the inequality ‖u − 1‖r < 1/2. This is trivially

seen to be false.
Indeed, ifH is a subgroup of G with a nontrivial normalizer, then gC[H ]g∗ =

C[gHg−1] =C[H ] for any e 6= g ∈NG(H), whereas, as noted in Remark 6.10 (ii),
we have

‖g − 1‖r = ‖g − e‖r ≥
√
2 > 1/2.

By the same argument, one also concludes that if u ∈ NC∗
r
(G)(C

∗
r (H)), then

the inequality ‖u− 1‖r < 1/2 need not be true.

Remark 6.15. Note that, by Lemma 3.4, we can always find a unitary u
in C∗

r (G) such that 0 < ‖1 − u‖r < 1/2. Hence, as is well-known, not every
C∗-subalgebra of C∗

r (G) is a reduced subgroup C∗-algebra.

The following recipe provides a concrete way of obtaining unitaries arbitrar-
ily close to 1.

Lemma 6.16. Let G be a discrete group. If there exists an element g ∈ G
such that g = g−1, then uθ := cos(θ)e+ i sin(θ)g is a unitary in C[G] for every
θ ∈ R. Also, for each ǫ > 0, there exists a δ > 0 such that ‖uθ − 1‖r < ǫ
whenever |θ| < δ.

Proof. Let θ ∈ R. Then

uθu
∗
θ =

(
cos(θ)e + i sin(θ)g

)(
cos(θ)e − i sin(θ)g

)

=
(
cos2(θ) + sin2(θ)

)
e+

(
i sin(θ) cos(θ)− i sin(θ) cos(θ)

)
g = e.

Similarly, u∗
θuθ = e. Hence, uθ is a unitary in C[G] for every θ ∈ R.

Note that, for any given ǫ > 0, there exists a δ > 0 such that |cos(θ) − 1|,
|sin(θ)| < ǫ/2 whenever |θ| < δ. So

‖uθ − 1‖r = ‖(cos(θ)− 1)e+ i sin(θ)g‖r ≤ |cos(θ)− 1|+ |sin(θ)| < ǫ

whenever |θ| < δ. �
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We can now find unitaries arbitrarily close to 1 yet not in the normalizer of
a subalgebra. Compare with Corollary 3.7.

Lemma 6.17. Let H be a proper subgroup of a discrete group G. If there
exists an element g ∈ G \H such that g = g−1 and g /∈ CG(H) (centralizer of
H in G), then uθ /∈ NC∗

r
(G)(C

∗
r (H)) for every θ ∈ R \ {nπ

2 | n ∈ Z}.

Proof. Since g /∈ CG(H), there exists an h ∈H such that gh 6= hg; also, we have
gh, hg /∈ H . Then, for this h ∈ C[H ] and θ ∈ R \ {nπ

2 | n ∈ Z},

uθhu
∗
θ = cos2(θ)h+ i sin(θ) cos(θ)gh− i sin(θ) cos(θ)hg + sin2(θ)ghg.

Hence, uθ /∈ NC∗
r
(G)(C

∗
r (H)) for every θ ∈ R \ {nπ

2 | n ∈ Z}. �

Example 6.18. Let G = S3 and H = A3. Then uθ := cos(θ)e+ i sin(θ)(12) is
a unitary in C[S3] for every θ ∈ R. Clearly, by the preceding lemma, we have
uθ /∈NC[S3](C[A3]) for every θ ∈R \ {nπ

2 | n∈ Z}, because (12) /∈ CS3
(A3). Also,

we can choose 0 < θ < π/2 small enough so that ‖uθ − 1‖r is as small as we
wish. Thus,
(i) for each ǫ > 0, there exists a unitary u in C[S3] such that

0 < dKK(C[A3], uC[A3]u
∗) < ǫ,

(ii) 1 is not an interior point of NC[S3](C[A3]) in U(C[S3]).

6.19. Kadison–Kastler distance between (Banach) subgroup algebras.
Recall that, for a discrete group G, the Banach space

ℓ1(G) :=
{
f : G → C

∣∣∣
∑

g∈G

|f(g)| < ∞
}

is a unital Banach ∗-algebra with multiplication given by convolution, i.e., for
a, b ∈ ℓ1(G),

(ab)(g) :=
∑

h∈G

a(h)b(h−1g),

and involution given by

a∗(g) := a(g−1)

for a ∈ ℓ1(G), g ∈ G.
Further, for each g ∈ G, we define ug ∈ ℓ1(G) by ug(h) = δg,h. Then ue is

the multiplicative identity for ℓ1(G).

Remark 6.20. With running notation,
(i) there exists an injective unital ∗-homomorphism i :C[G]→ ℓ1(G) such that

i(g) = ug for all g ∈ G and the image of i is dense in ℓ1(G). In particular,
C[G] can be considered as a dense subspace of ℓ1(G).

(ii) For any subgroup H of G, the natural embedding of C[H ] into C[G] ex-
tends to an isometric unital ∗-homomorphism from ℓ1(H) into ℓ1(G). We
can thus identify ℓ1(H) with a unital Banach ∗-subalgebra of ℓ1(G).
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Proposition 6.21. Let H and K be two distinct subgroups of a discrete
group G. Then

dKK(C[H ],C[K]) = dKK(ℓ
1(H), ℓ1(K)) = 1

in ℓ1(G).

Proof. Since C[G] is dense in ℓ1(G), by Lemma 3.3, it is enough to show that
dKK(C[H ]),C[K]) = 1 in ℓ1(G). In view of Remark 3.2 (iii), we can assume
that H 6= H ∩K 6= K.

For convenience, let C :=C[H ] and D :=C[K] and let h ∈H \H ∩K. Then

‖h−
∑

k∈K

αkk‖1 ≥ 1 for all
∑

k∈K

αkk ∈ B1(D).

This implies that d(h,B1(D)) ≥ 1. Thus, by definition, we get

dKK(C[H ],C[K]) ≥ 1,

and we are done. �

6.22. Kadison–Kastler and Christensen distances between subgroup
von Neumann subalgebras. Recall that, for any discrete group G, the
group von Neumann algebra associated to G is the von Neumann algebra
given by

L(G) = {λ(G)}′′ ⊆ B(ℓ2(G)),

where λ : G→ B(ℓ2(G)) is the left regular (unitary) representation of G. Also,
there is a natural ∗-isomorphism between C[G] and ∗-alg(λ(G)), and for any
subgroup H of G, there is a natural ∗-isomorphism from L(H) onto λ(H)′′ ⊂
L(G); thus, L(H) can be considered as a von Neumann subalgebra of L(G).
Further, L(G) always admits a faithful normal tracial state τ given by τ(x) =
〈x(δe), δe〉 for x ∈ L(G). Thus, L(G) admits an inner-product structure via τ
which induces a norm ‖ · ‖τ on L(G) given by ‖x‖τ = τ(x∗x)1/2, x ∈ L(G).

Proposition 6.23. Let G be a discrete group and let H and K be two distinct
nontrivial subgroups of G. Then, in L(G), the distances

dC(C[H ],C[K]), dMT(C[H ],C[K]), dKK(C[H ],C[K]),

dC(L(H), L(K)), dMT(L(H), L(K)) and dKK(L(H), L(K))

are all equal to 1.

Proof. By Lemma 5.9, dMT(C[H ],C[K]) ≤ dKK(C[H ],C[K]) ≤ 1. So, in view
of Proposition 5.7 and Proposition 5.11, it is enough to show that

dMT(C[H ],C[K]) ≥ 1.

We prove this by considering the following two possibilities separately.
Case 1. Suppose that H (K or K (H . Without loss of generality, assume

that H ( K. Then C[H ] ( C[K] and

dτ (â, ̂B1(C[K])) = 0
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for all a ∈ B1(C[H ]). Further, for any k ∈ K \H ∩K, we have ‖k̂ − x̂‖τ ≥ 1
for all x ∈ B1(C[H ]). Thus,

sup
z∈B1(C[K]))

dτ (ẑ, ̂B1(C[H ])) ≥ 1,

and hence dMT(C[H ],C[K]) ≥ 1.
Case 2. Suppose that H 6=H ∩K 6=K. Then, again for any h ∈H \H ∩K,

‖ĥ− x̂‖τ ≥ 1 for all x ∈ B1(C[K]). Thus, as above, dMT(C[H ],C[K]) ≥ 1, and
we are done. �
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