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Abstract. This paper investigates factorial W ∗-bundles and their ultraproducts. More
precisely, a W ∗-bundle is factorial if the von Neumann algebras associated to its fibers are
all factors. Let M be the tracial ultraproduct of a family of factorial W ∗-bundles over
compact Hausdorff spaces with finite, uniformly bounded covering dimensions. We prove
that, in this case, the set of limit traces in M is weak∗-dense in the trace space T (M). This
in particular entails that M is factorial. We also provide, on the other hand, an example
of an ultraproduct of factorial W ∗-bundles which is not factorial. Finally, we obtain some
results of model-theoretic nature: if A and B are exact, Z-stable C∗-algebras, or if they
both have strict comparison, then A ≡ B implies that T (A) is Bauer if and only if T (B) is.
If moreover both T (A) and T (B) are Bauer simplices and second countable, then the sets of

extreme traces ∂eT (A) and ∂eT (B) have the same covering dimension.

1. Introduction

W ∗-bundles, first introduced by Ozawa in [26] as tracial W ∗-analogs of
C∗-bundles and of C(X)-algebras, are C∗-algebras that arise as bundles over
compact topological spaces and whose fibers are tracial von Neumann algebras
(Definition 2.2).

Due to their hybrid nature, W ∗-bundles generally find their main raison
d’être in the role of bridge that they play between tracial von Neumann al-
gebras and stably finite C∗-algebras. Indeed, Ozawa’s foresighted intuition
to isolate this class in [26] was prompted by the celebrated paper by Matui
and Sato [24] and the subsequent series of work [20, 30, 31], investigating the
Toms–Winter Conjecture for C∗-algebras whose trace space is a Bauer simplex.
W ∗-bundles arise as tracial completions (in the sense of [26]; see Definition 5.9)
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of such C∗-algebras, and they have been used systematically for arguments re-
lying on approximations and properties where tracial 2-norms appear, with
numerous applications also in the equivariant framework [7, 22, 23, 32].

In this note, we investigate W ∗-bundles from a more abstract point of view,
as a class in its own right, with an approach closer to that in [13, 12]. The main
motivation for the present paper is the forthcoming work on tracially complete
C∗-algebras [8] by Carrión, Castillejos, Evington, Gabe, Schafhauser, Tikuisis
and White. We briefly pause to report some of the basic concepts and open
problems considered in their project in order to give the proper context and
motivation to our results. We would like to thank the authors of [8] for allowing
us to include here some of the contents of their work, not yet publicly available
at the time of writing this note.

The fundamental definition considered in [8] is that of tracially complete C∗-
algebra, which provides an abstract framework to study tracial completions of
C∗-algebras as defined in [26].

Definition 1.1 ([8]). Fix a C∗-algebra M and a nonempty set X of T (M),
the set of tracial states of M. Consider the 2-semi-norm

‖a‖2,X = sup
τ∈X

τ(a∗a)1/2, a ∈ M.

A tracially complete C∗-algebra is a pair (M, X), where M is a unital1 C∗-
algebra and X is a compact, nonempty, convex subset of the trace space T (M)
of M such that ‖ · ‖2,X is a norm on M and such that the C∗-norm unit ball
of M is ‖ · ‖2,X -complete. A tracially complete C∗-algebra (M,X) is factorial
if moreover X is a closed face of T (M).

The most elementary examples of tracially complete C∗-algebras are tracial
von Neumann algebras (M, τ), where τ is a faithful normal trace. This is the
scenario where X = {τ}. Moreover, W ∗-bundles form another important class
of tracially complete C∗-algebras (see § 2.1), and in the factorial case, they
correspond precisely to those (M, X) for which X is a Bauer simplex (this is
a consequence of [26, Thm. 3]; see Theorem 2.4).

A tracial von Neumann algebra (M, τ) is factorial as a tracially complete
C∗-algebra if and only if it is a factor, hence the name. Part of the motivation
why the class of factorial tracially complete C∗-algebras has been isolated in [8]
is that such algebras tend to be more manageable and tractable than general
tracially complete C∗-algebras. This emerges both in technical and elementary
facts (such as Lemma 5.2, Lemma 3.1 or Proposition 5.5), as well as in more
ambitious and sophisticated results like the classification theorems announced
in [8].

In this paper, we address the following question, which appeared in an early
version of [8].

1The assumption of unitality is proved to be redundant in [8].
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Question 1.2 ([8]). Let ((Mi,Xi) | i ∈ I) be a sequence of factorial tracially
complete C∗-algebras, let M =

∏U Mi be the corresponding tracial ultra-
product, and let X be the weak∗-closure of the set of all limit traces on M. Is
(M, X) factorial?

Limit traces on M are those that are obtained by taking U-limits of se-
quences of traces (τi)i∈I ∈

∏
i∈I Xi (see § 2.5). The tracial ultraproduct (M,X)

considered in Question 1.2 is the right notion of ultraproduct in the category of
tracially complete C∗-algebras (see § 2.5 for the case of W ∗-bundles and § 5.8
for general tracially complete C∗-algebras), so Question 1.2 is simply asking
whether factoriality is preserved when passing to the ultraproduct. This is the
case for tracial von Neumann algebras; indeed, it is well-known that the tracial
ultraproduct of a family of finite factors (which in this case corresponds to the
usual von Neumann ultraproduct) is again a finite factor (see e.g. [18]).

In [26, Thm. 8], Ozawa proved that, for ultraproducts of exact Z-stable C∗-
algebras, the set of limit traces is weak∗-dense in the trace space. Rephrased in
the framework of Question 1.2, what [26, Thm. 8] shows is that the ultraprod-
uct (M,X) of a sequence of factorial tracially complete C∗-algebras arising as
tracial completions of exact Z-stable C∗-algebras satisfies X = T (M); hence,
in particular, it is factorial. An analog result is [9, Prop. 2.5], from which it
can be deduced that if (M,X) is the tracial ultrapower of a factorial tracially
complete C∗-algebra which is the tracial completion of separable C∗-algebra
with complemented partitions of unity, then again X = T (M), so (M, X) is
factorial. The existence of complemented partitions of unity (usually referred
to as CPoU ) is a technical condition introduced in [10, Def. 3.1], which is
automatic for instance in Z-stable nuclear C∗-algebras [10, Thm. 3.8]. We
finally refer to [2] for a recent and more general account, employing Cuntz
semigroup techniques, on when limit traces are weak∗-dense in the trace space
of (C∗-norm) ultraproducts.

CPoU are an extremely powerful tool in the study of tracially complete C∗-
algebras in [8], effectively dividing these algebras in two subclasses, a tamer one
where the presence of CPoU allows to transfer numerous results and techniques
from the theory of von Neumann algebras, and its complement, much less
understood. This paper focuses on the latter, while restricting to W ∗-bundles.

The following theorem shows that Question 1.2 has affirmative answer for
ultraproducts of W ∗-bundles, even without complemented partitions of unity,
as long as their base spaces have bounded covering dimensions.

Theorem 1.3. Let (Mi)i∈I be a sequence of factorial W ∗-bundles over com-
pact Hausdorff spaces Ki. Suppose there is d ∈ N such that dim(Ki) ≤ d for
every i ∈ I. Let M be the corresponding ultraproduct, which is a W ∗-bundle
over the ultracoproduct

∑U
Ki. Then the set of limit traces is weak∗-dense in

T (M), and in particular, M is a factorial W ∗-bundle.

We also prove that if the uniform bound on the covering dimension of Ki

is removed from Theorem 1.3, then its conclusion might fail. In fact, we show
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that Question 1.2 has negative answer in general, even when restricted to W ∗-
bundles.

Theorem 1.4. There exists a sequence of factorial W ∗-bundles whose ultra-
product is not factorial.

The sequence we use for Theorem 1.4 dates back to [27], and it consists
of 2-homogeneous C∗-algebras arising from certain vector bundles over finite-
dimensional complex projective spaces. We remark that such family is the
same as the one considered in [26] to give an example of an ultraproduct for
which the set of limit traces is not weak∗-dense in the whole trace space.

Note that the sequence considered in Theorem 1.4 is composed by W ∗-
bundles whose fibers are matrix algebras, hence type I. This is in contrast
with the primary focus of [8] and of most applications of W ∗-bundles and
tracial completions in the literature, which mainly concerns tracially complete
C∗-algebras whose fibers are infinite-dimensional. These are referred to as
type II1 tracially complete C∗-algebras in [8], and it would be interesting to
know whether Question 1.2 has negative answer also for those algebras.

The final part of the paper has a model-theoretic flavor, investigating how
the first-order theory of a C∗-algebra can determine the topological properties
of its trace space. A precursor to the result below can be found in [16, Sec. 3.5],
where it is proved that, for classes of C∗-algebras where the Cuntz–Pedersen
nullset is definable (in the sense of [16, Chap. 3]), being monotracial is preserved
by elementary equivalence.

Theorem 1.5. Let A, B be two unital C∗-algebras which are exact and Z-
stable, or which have strict comparison, or which belong to any other class
where the Cuntz–Pedersen nullset is definable. Suppose that A is elementarily
equivalent to B. Then T (A) is a Bauer simplex if and only if T (B) is. If
moreover both T (A) and T (B) are Bauer simplices and second countable, then
∂eT (A) and ∂eT (B) have the same covering dimension.

The proof of Theorem 1.5 uses a tracial analog of Dixmier’s averaging prop-
erty for factorial W ∗-bundles (Proposition 5.5), which permits us to show that
the center of the ultraproduct of a sequence of factorial W ∗-bundles is isomor-
phic to the ultraproduct of the centers (Theorem 5.7).

The paper is structured as follows. In § 2, we present definitions and pre-
liminaries needed in later sections, § 3 is devoted to the proof of Theorem 1.3,
while § 4 is where Theorem 1.4 is proved. Finally, § 5 contains the background
and proofs needed to show Theorem 1.5.

2. Preliminaries

Given a C∗-algebra A, denote by A1, Asa and A+ respectively the set of all
contractions, selfadjoint and positive elements in A. We let Z(A) denote the
center of A, and given a, b ∈ A, we abbreviate the commutator ab− ba as [a, b].
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The trace space T (A) of A is the set of all tracial states on A, which we
refer to simply as traces. For τ ∈ T (A), define the 2-semi-norm ‖ · ‖2,τ on A as

‖a‖2,τ = τ(a∗a)1/2 for every a ∈ A.

Given a nonempty X ⊆ T (A), the 2-semi-norm on A associated to X is

‖a‖2,X = sup
τ∈X

‖a‖2,τ for every a ∈ A.

Note that ‖ ·‖2,X = ‖ ·‖2,conv(X), where conv(X) is the closed convex hull of X .
Given a convex set X , we let ∂eX denote the set of extreme points of X . The
equality ‖ · ‖2,X = ‖ · ‖2,∂eX follows by the Krein–Milman Theorem.

Given a unital C∗-algebra A, the trace space T (A), as well as any other of
its closed, convex subsets X , is a Choquet simplex [1, Sec. 3]. In particular, for
every x ∈ X , there exists a unique boundary measure µx (in the sense of [1,
Prop. I.4.5]) such that f(x) =

∫
X
f(t) dµx for every continuous affine function

f : X → R. A Bauer simplex X is a Choquet simplex such that ∂eX is closed.

2.1. W
∗-bundles.

Definition 2.2 ([26, Sec. 5]). A W ∗-bundle over (a compact Hausdorff space)
K is a unital C∗-algebra M, with a unital embedding of C(K) in the center
of M and a faithful unital conditional expectation E : M → C(K) such that
(i) E is tracial, that is, E(ab) = E(ba) for all a, b ∈ M,
(ii) the C∗-norm unit ball of M is complete with respect to the norm ‖ · ‖2,K

induced by E, defined as ‖a‖2,K = ‖E(a∗a)‖1/2 for all a ∈ M.

Let M be a W ∗-bundle over K with conditional expectation E :M→C(K),
and fix λ ∈K. Throughout the paper, we shall denote by τλ the trace evλ ◦E
and by πλ the GNS-representation corresponding to τλ. The von Neumann
algebra πλ(M)′′ is the fiber corresponding to λ.

More generally, every regular Borel probability measure µ over K naturally
induces a trace τµ defined for a ∈ M as

τµ(a) =

∫

K

E(a) dµ.

Let X = {τµ | µ ∈ Prob(K)}. Faithfulness of E entails that ‖ · ‖2,X is a norm
on M, while item (ii) of Definition 2.2 implies that (M,X) is a tracially com-
plete C∗-algebra since ‖ · ‖2,X = ‖ · ‖2,∂eX = ‖ · ‖2,K . We sometimes identify X
and ∂eX with Prob(K) and K respectively. Note that the notations ‖ · ‖2,∂eX

and ‖ · ‖2,K are consistent with this identification. We always implicitly con-
sider the W ∗-bundle M as a tracially complete C∗-algebra; in particular, we
say that M is factorial if the pair (M,Prob(K)) is a factorial tracially complete
C∗-algebra.

The following proposition isolates some useful reformulations of factoriality.
Its statement, as well as its proof, originates from some analog statements
appearing in an early version of [8].
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Proposition 2.3. Let (M,X) be a tracially complete C∗-algebra. The follow-
ing conditions are equivalent.
(i) (M, X) is factorial.
(ii) ∂eX ⊆ ∂eT (M).
(iii) πλ(M)′′ is a factor for every λ ∈ ∂eX.

Proof. (1) ⇒ (2) is true since every extreme point of a face must be extreme
in the simplex itself.

For (2) ⇒ (1), let F = conv(∂eX) be the convex hull of ∂eX . Given x ∈ F ,
then x ∈ conv(x1, . . . , xn) for some x1, . . . , xn ∈ ∂eX . The set conv(x1, . . . , xn)
is the (closed) convex hull of a compact subset of ∂eX ⊆ ∂eT (M); hence it is
a face of T (M) by [19, Cor. 11.1.19]. It follows that if x = λy + (1 − λ)z for
λ ∈ (0,1) and y, z ∈ T (M), then y, z ∈ conv(x1, . . . , xn) ⊆ F ; hence F is a face
of T (M). Finally, X = F is face by [29, Prop. 4.4].

(2) ⇔ (3) follows by the well-known fact that, for τ ∈ T (M) and πτ the cor-
responding GNS-representation, πτ (M)′′ is a factor if and only if τ ∈ ∂eT (M).

�

Summarizing, a W ∗-bundle M over K gives rise to a tracially complete C∗-
algebra (M,X), where X is a Bauer simplex whose boundary is homeomorphic
to K. The converse also holds in the factorial case: every factorial tracially
complete C∗-algebra whose base space is a Bauer simplex can be naturally
endowed with a W ∗-bundle structure. This fact is direct consequence of [26,
Thm. 3], and it is stated and proved below in a form which is due to [8].

Theorem 2.4 ([26, Thm. 3], [8]). Let (M,X) be a factorial tracially complete
C∗-algebra such that X is a Bauer simplex. Then there exists an embedding
θ : C(∂eX) → Z(M) such that

τ(θ(f)a) =

∫

∂eX

f(σ)σ(a) dµτ (σ) for every τ ∈ X, f ∈ C(∂eX), a ∈ M.

Moreover, (M,X) can be endowed with the structure of a W ∗-bundle over ∂eX
with the conditional expectation E : M → C(∂eX) defined as E(a)(τ) = τ(a)
for τ ∈ ∂eX.

Proof. The existence of an embedding of θ : C(∂eX) → Z(M) as claimed in
the statement is a consequence of [26, Thm. 3]. The latter result is proved for
X a metrizable face (which appears as S in the notation of [26]), where metriz-
ability is required only to make sure that ∂eX is Borel. In our context, this is
automatic since ∂eX is assumed to be closed. Given a ∈M, let â ∈ C(∂eX) be
defined as â(τ) = τ(a) for every τ ∈ ∂eX . Let E be the conditional expectation
E(a) = θ(â). It is immediate to check that the 2-norm induced by E is the
same as ‖ · ‖2,∂eX = ‖ · ‖2,X . By assumption, M1 is ‖ · ‖2,X -complete, making
M a W ∗-bundle over ∂eX . �

2.5. Ultrapowers and ultraproducts of W ∗-bundles. Fix an infinite in-
dex set I and a free ultrafilter U over I. Let ((Ai,Xi) | i ∈ I) be a sequence of
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pairs, where Ai is a unital C∗-algebra and Xi is a nonempty subset of T (Ai)
for every i ∈ I. The tracial ultraproduct of such sequence is the C∗-algebra

U∏
(Ai, Xi) =

∏
i∈I Ai

{(ai)i∈I ∈
∏

i∈I Ai | limi→U‖ai‖2,Xi
= 0}

.

In case of a constant sequence (Ai,Xi) = (A,X), we use the notation AU
X and

refer to this C∗-algebra as the tracial ultrapower of (A,X). We write AU if
X = T (A). Throughout this paper, we shall only consider cases where ‖ · ‖2,Xi

is a norm for every i ∈ I.
We drop Xi from the notation when it is clear from the context and simply

write
∏U Ai. For instance, let (Mi)i∈I be W ∗-bundles over Ki. Then, by∏U Mi, we mean the tracial ultraproduct of the sequence ((Mi,Ki) | i ∈ I).

Given ((Ai, Xi) | i ∈ I), every sequence of traces τ̄ = (τi)i∈I ∈
∏

i∈I Xi de-
termines a trace on

∏U
Ai defined on each representing sequence as

τ̄((ai)i∈I) = lim
i→U

τi(ai).

We denote by
∏

U Xi the set of traces which arise in this manner, and we refer
to them as limit traces. Moreover,

∏
U Xi corresponds to the set-theoretic

ultraproduct of (Xi)i∈I . This is a convex, not necessarily closed, subset of the
trace space of

∏U
Ai. Let

∑U
Xi denote its weak∗-closure. In case Xi = X

for every i ∈ I, we abbreviate such closure as XU . When every Xi is compact
(e.g. in the case of W ∗-bundles), the space

∑U Xi can also be obtained as the
ultracoproduct of the sequence (Xi)i∈I , namely the compact Hausdorff space

such that C(
∑U

Xi) ∼=
∏

U C(Xi), where the latter (with U in subscript) is the
canonical C∗-norm ultraproduct.

The unit ball of the tracial ultraproduct
∏U

Ai is complete with respect to
the 2-norm ‖ ·‖∑U Xi

(see § 5.8); in particular, for ultraproducts of W ∗-bundles,
we have the following.

Proposition 2.6 ([7, Prop. 3.9]). Let (Mi)i∈I be a sequence of W ∗-bundles
over Ki with conditional expectations Ei : Mi → C(Ki). The tracial ultraprod-
uct

∏U Mi is a W ∗-bundle over
∑U Ki, with the conditional expectation

EU :

U∏
Mi → C

( U∑
Ki

)
,

(ai)i∈I 7→ (Ei(ai))i∈I

inducing the norm ‖ · ‖∑U Ki
.

3. W ∗-bundles with finite-dimensional base space

Despite employing different techniques, both [26, Thm. 8] and [9, Prop. 2.5]
are proved by showing first that elements which are small with respect to all
traces can be approximated with sums of commutators, with the number of
summands not changing, or at least being kept under control, as the precision
of the approximation varies. Theorem 1.3 is no exception and is based on the
following lemma.
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Lemma 3.1. Let M be a factorial W ∗-bundle over the space K. Suppose
that K has finite covering dimension d, and let a ∈ Msa be a contraction such
that E(a) = 0. Then, for every ε > 0, there exist contractions wi, zi ∈ M for
i = 1, . . . , 10d such that

∥∥∥a− 24
∑

i≤10d

[wi, zi]
∥∥∥
2,K

< ε.

Proof. Let λ ∈K. Recall that τλ denotes the trace evλ ◦E on M and that πλ

denotes the GNS-representation corresponding to τλ. Fix a ∈ Msa as in the
statement. As M is factorial, by Proposition 2.3, the von Neumann algebra
πλ(M)′′ is a factor. The assumption E(a)(λ) = 0 thus entails that πλ(a) is
mapped to zero by the unique trace on πλ(M)′′. By [14, Thm. 2.3], there exist
contractions w̃λ

1 , . . . , w̃
λ
10, z̃

λ
1 , . . . , z̃

λ
10 ∈ πλ(M)′′ such that

πλ(a) = 24
∑

k≤10

[w̃λ
k , z̃

λ
k ].

By the Kaplansky Density Theorem, for every k ≤ 10, there are contractions
wλ

k , z
λ
k ∈ M approximating w̃λ

k and z̃λk well enough so that
∥∥∥a− 24

∑

k≤10

[wλ
k , z

λ
k ]
∥∥∥
2,τλ

=
∥∥∥πλ(a) − 24

∑

k≤10

[πλ(wλ
k ), πλ(zλk )]

∥∥∥
2,τλ

< ε.

By continuity of the 2-norm, for every λ ∈ K, there exists an open neigh-
borhood Uλ of λ such that

(1)
∥∥∥a− 24

∑

k≤10

[wλ
k , z

λ
k ]
∥∥∥
2,τλ′

< ε for every λ′ ∈ Uλ.

By compactness of K, there exists a finite open cover V of K where, for each
U ∈ V , there is λU ∈ K such that U = UλU

. Moreover, as K has covering
dimension equal to d, V can be partitioned as V0 ⊔ · · · ⊔ Vd so that the elements
of each Vj are pairwise disjoint [6, Lem. 3.2].

Let {fU}U∈V ⊆ C(K) ⊆ M be a partition of the unity on K such that
supp(fU ) ⊆ U for every U ∈ V . For every j = 0, . . . , d and k = 1, . . . ,10, define
the following elements of M:

wk+10j =
∑

U∈Vj

f
1/2
U wλU

k ,

zk+10j =
∑

U∈Vj

f
1/2
U zλU

k .

Note that, as the functions {fU}U∈Vj
have pairwise disjoint support, the ele-

ments defined above are still contractions and verify the equality

(2) [wk+10j , zk+10j ] =
∑

U∈Vj

fU [wλU

k , zλU

k ]

for every j = 0, . . . , d and k = 1, . . . , 10.
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We claim that {wi, zi}i≤10d are the desired elements. Indeed, for any λ ∈K
and 0 ≤ j ≤ d, there is at most one Uj ∈ Vj such that λ ∈ Uj (if there is none,
simply pick a random Uj ∈ Vj); hence

∥∥∥a− 24
∑

i≤10d

[wi, zi]
∥∥∥
2,τλ

(2)
=

∥∥∥
∑

j

∑

U∈Vj

fU (λ)a − 24
∑

k,j

∑

U∈Vj

fU (λ)[wλU
k , zλU

k ]
∥∥∥
2,τλ

=
∥∥∥
∑

j

fUj
(λ)a − 24

∑

k,j

fUj
(λ)[wλUj

k , zλUj
k ]

∥∥∥
2,τλ

≤
∑

j

fUj
(λ)

∥∥∥a− 24
∑

k

[wλUj
k , zλUj

k ]
∥∥∥
2,τλ

(1)
<

∑

j

fUj
(λ)ε ≤ ε.

We conclude that∥∥∥a− 24
∑

i≤10d

[wi, zi]
∥∥∥
2,K

= sup
λ∈K

∥∥∥a− 24
∑

i≤10d

[wi, zi]
∥∥∥
2,τλ

< ε. �

We first prove Theorem 1.3 for the case I = N, to make it more accessible
for readers not well acquainted with model theory. An elementary model-
theoretic argument (which we defer to § 5.8) shows that its conclusion holds
for ultraproducts over arbitrary sets of indices.

Theorem 3.2. Let (Mn)n∈N be a sequence of factorial W ∗-bundles over com-
pact Hausdorff spaces Kn. Suppose there is d ∈ N such that dim(Kn) ≤ d for
every n ∈ N. Let M =

∏U Mn be the corresponding ultraproduct. Then the
set of limit traces is weak∗-dense in T (M), and in particular, M is a factorial
W ∗-bundle.

Proof. By Proposition 2.6, the ultraproduct M =
∏U Mn is a W ∗-bundle over

K =
∑U

Kn. Arguing as in [10, Lem. 4.4] and [26, Thm. 8], by an application of
the Hahn–Banach Theorem, it is sufficient to show that the following equality
holds for every a ∈ Msa:

(3) sup
λ∈K

|τλ(a)| = sup
τ∈T (M)

|τ(a)|.

Fix thus a contraction a ∈ Msa, and suppose then that supλ∈K |τλ(a)| ≤ δ
for some δ ≥ 0. The equality in (3) follows if we can provide c, w1, . . . , w10d,
z1, . . . , z10d ∈ M such that ‖c‖ ≤ δ and

(4) a− c =
∑

i≤10d

[wi, zi].

Let (an)n∈N be a representative sequence of selfadjoint contractions for a.
Up to a rescaling of an, we can assume that supλ∈Kn

|τλ(an)| ≤ δ for all n ∈ N.
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This gives

(5) ‖En(an)‖ ≤ δ for every n ∈ N.

Moreover, by Lemma 3.1, there exist w1,n, . . . , w10d,n, z1,n . . . , z10d,n ∈ Mn of
norm bounded by 48 (since ‖an − En(an)‖ ≤ 2) such that

∥∥∥an − En(an) −
∑

i≤10d

[wi,n, zi,n]
∥∥∥
2,Kn

<
1

n
for every n ∈ N.

The elements c = (En(an))n∈N, wi = (wi,n)n∈N and zi = (zi,n)n∈N satisfy
the equality in (4), and ‖c‖ ≤ δ by (5) as desired. �

4. A non-factorial ultraproduct

The example we provide for Theorem 1.4 is an ultraproduct of homogeneous
C∗-algebras. The fact that unital homogeneous C∗-algebras can be endowed
with a structure of W ∗-bundle over their spectrum is proved in Proposition 4.1,
and it is a direct consequence of the Dauns–Hoffman Theorem [28, Thm. A.34].

A C∗-algebra is n-homogeneous if every irreducible representation has di-
mension n. A C∗-algebra is homogeneous if it is n-homogeneous for some
n ∈ N. Homogeneous C∗-algebras have continuous trace [5, Prop. IV.1.4.14],
and in the unital case, their spectrum, namely the set of all irreducible rep-
resentations up to unitary equivalence, is compact and Hausdorff with the
Jacobson topology. For a C∗-algebra A, let Â denote its spectrum. When A
has continuous-trace, the spectrum Â is homeomorphic to the primitive ideal
space of A. In what follows, we shall thus identify every t ∈ Â with the corre-
sponding primitive ideal on A. Given a ∈ A, we denote by a(t) the class of a
in the quotient A/t.

Proposition 4.1. Let A be a unital n-homogeneous C∗-algebra. Then A is
a factorial W ∗-bundle over Â with conditional expectation E : A → C(Â) de-
fined as E(a)(t) = trn(a(t)), where trn is the normalized trace on n× n matri-
ces.

Proof. Since A has continuous trace and A/t ∼= Mn for every t ∈ Â, the func-

tion â mapping t ∈ Â to trn(a(t)) is continuous over Â for every a ∈ A. By
the Dauns–Hoffman Theorem [28, Thm. A.34], there exists an isomorphism θ

of C(Â) onto the center Z(A) of A such that

(6) (θ(f)a)(t) = f(t)a(t) for every t ∈ Â, f ∈ C(Â), a ∈ A.

As a consequence of these facts, the map

E : A → C(Â),

a 7→ â

is a tracial conditional expectation of A onto Z(A) (up to θ). The map E is
moreover faithful since trn is faithful and, for every a ∈ A+, there exists some

t ∈ Â such that a(t) > 0.
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We claim next that every extremal trace on A is of the form evt ◦ E for
some t ∈ Â. To see this, fix τ ∈ ∂eT (A), and let πτ be the corresponding
GNS-representation. The center Z(A) is mapped by πτ into Z(πτ (A)′′) which,

as τ is extremal, only consists of scalars. The restriction of πτ to θ(C(Â)) is

hence a point evaluation, meaning that there is s ∈ Â such that πτ (θ(f)) = 0

whenever f ∈ C(Â) verifies f(s) = 0. This fact can be used to show that πτ

factors through the quotient map A → A/s. Indeed, given a ∈ A such that

a(s) = 0 and ε > 0, we can find an open neighborhood U of s in Â such that

‖a(t)‖ < ε for every t ∈ U (see [28, Lem. 5.2.b]). Let next g ∈ C(Â) of norm 1

be such that g(s) = 0 and g ↾ Â \ U ≡ 1. It follows that

‖a− θ(g)a‖
(6)
= sup

t∈Â

‖a(t) − g(t)a(t)‖ < 2ε.

Since g(s) = 0, it follows that θ(g)a ∈ kerπτ . We have thus showed that a can
be approximated with elements in ker πτ , so πτ (a) = 0, and both πτ and τ
factor through A/s. Since the latter admits a unique trace, we conclude that
τ(a) = E(a)(s) for every a ∈ A.

In order to conclude that A is a W ∗-bundle, we need to prove that the unit
ball of A is complete with respect to the 2-norm induced by E. Note that,
since every extremal trace on A is captured by E, then the 2-norm induced
by E is equal to ‖ · ‖2,T (A). As A is n-homogeneous, the C∗-norm ‖ · ‖ and
‖ · ‖2,T (A) are equivalent; in fact, we have

n−1/2‖a‖ ≤ ‖a‖2,T (A) ≤ ‖a‖ for every a ∈ A.

The inequality ‖a‖2,T (A) ≤ ‖a‖ is always verified. For the other inequality, as

A/t ∼= Mn for every t ∈ Â, we have

‖a(t)‖ ≤ n1/2 trn(a∗a(t))1/2 = n1/2â∗a(t)1/2 for every a ∈ A.

We thus conclude that, for every a ∈ A,

‖a‖ = sup
t∈Â

‖a(t)‖ ≤ n1/2‖E(a∗a)‖1/2 = n1/2‖a‖2,T (A).

This implies that A is ‖ · ‖2,T (A)-complete.
Finally, we verify the third condition of Proposition 2.3 to prove that A

is factorial. Every trace τ of the form evt ◦ E, for t ∈ Â, annihilates on the
primitive ideal t. Further, A/t is simple; hence πτ (A) ∼= A/t ∼= Mn, which
in turn implies that πτ (A)′′ ∼= Mn is a factor and thus that the trace τ is
extremal. �

Using the arguments in the previous proof, one can furthermore deduce that
the map from Â to ∂eT (A) sending t 7→ evt ◦ E is a homeomorphism.

The sequence of factorial W ∗-bundles that we consider to prove Theorem 1.4
goes back to [27]. We briefly recall their definition here, and we refer to the
discussion preceding [27, Lem. 3.5] and to [4, Sec. 2] for all the missing details.
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Given n ∈ N, let An be the C∗-algebra of continuous sections of the following
vector bundle over the n-dimensional complex projective space CPn:

Bn =

{(
x,

(
a b

c d

)) ∣∣∣∣ a, d ∈ C, b ∈ x, c̄ ∈ x

}
,

where c̄ = (c1, . . . , cn+1) = (c̄1, . . . , c̄n+1), with multiplication and adjoint de-
fined pointwise as
(
a b

c d

)(
a′ b′

c′ d′

)
=

(
aa′ + b · c′ ab′ + d′b
a′c + dc′ dd′ + b′ · c

)
and

(
a b

c d

)∗

=

(
ā c̄

b̄ d̄

)
.

All fibers of this bundle are isomorphic to M2 (see e.g. [27, p. 201]); hence each
An is a 2-homogeneous C∗-algebra.

We recall that the C∗-norm ultraproduct of {An}n∈N is defined as

∏

U

An =

∏
n An

{(an)n∈N ∈
∏

n An | limn→U‖an‖ = 0}
.

As pointed out by Ozawa before stating [26, Thm. 8], the C∗-norm ultraprod-
uct M =

∏
U An is an example where the set of limit traces is not weak∗-dense

in T (M). The reason for this is the existence, for every n ∈ N, of nonzero
projections pn, qn ∈ An such that pn − qn can be approximated by a finite sum
of commutators of the form a∗a− aa∗, but it cannot be approximated by sums
of less than n + 1 such commutators (see [27, Lem. 3.5] or [4, Thm. 2.1]). As
a consequence, the projections p = (pn)n∈N and q = (qn)n∈N in M are such
that p− q is evaluated as zero on every limit trace, but on the other hand, it
cannot be approximated by a finite sum of commutators in M. That is saying
that p− q does not belong to the Cuntz–Pedersen nullset M0 of M (see [11]
and also § 5.8); hence, by [11, Prop. 2.7], the weak∗-closure of the set of limit
traces does not exhaust T (M).

This set-up, combined with some elementary arguments, provides an answer
to Question 1.2, even in the setting of W ∗-bundles.

Corollary 4.2. There exists a sequence of factorial W ∗-bundles whose ultra-
product is not factorial.

Proof. Let (An)n∈N be the sequence of C∗-algebras discussed above. Since
An is unital and 2-homogeneous for every n ∈ N, by Proposition 4.1, each
An can be naturally endowed with a structure of factorial W ∗-bundle over
∂eT (An) ∼= Ân

∼= CPn. The tracial ultraproduct
∏U An is a W ∗-bundle over

the space K =
∑U

Ân by Proposition 2.6. Every An is 2-homogeneous; hence
the quotient map from the C∗-norm ultraproduct M =

∏
U An onto the tracial

ultraproduct
∏U

An is an isomorphism. Indeed, the kernel of the quotient
map is {

(an)n∈N ∈
∏

U

An

∣∣∣ lim
n→U

‖an‖2,T (An) = 0
}
,
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which in this case is equal to the set of those (an)n∈N such that limn→U‖an‖= 0,
since, for every n, arguing as in the proof of Proposition 4.1, we have

‖a‖2,T (An) ≤ ‖a‖ ≤ 21/2‖a‖2,T (An) for every a ∈ An.

This also entails that the C∗-norm and ‖ · ‖2,K = limn→U‖ · ‖2,T (An) on M are
equivalent; in particular,

(7) ‖a‖2,K ≤ ‖a‖ ≤ 21/2‖a‖2,K for every a ∈ M.

Identify K with a subspace of T (M), and let X be its closed convex hull,
namely the weak∗-closure of the set of all limit traces on M (the unconvinced
reader may take a look at the discussion leading to equation (11)). To show
that (M, X) is not factorial, we argue by contradiction and suppose that X
is a closed face of T (M). Let σ ∈ T (M) \X , whose existence is guaranteed
by the discussion preceding the statement of the corollary. By [1, Cor. II.5.20]
and [20, Lem. 6.2], there exists a ∈ M+ such that
(i) τ(a) < 1/4 for every τ ∈ X ,
(ii) σ(a) > 1/2.
Then ‖a1/2‖22,X < 1/4; thus, by (7), it follows that ‖a1/2‖2 < 1/2, which is

a contradiction since, by item (ii) above,

‖a1/2‖2 = ‖a‖ ≥ σ(a) > 1/2. �

5. Center of the ultraproduct and consequences in model theory

We start this section with a preliminary result (Theorem 5.7), a general-
ization of [17, Cor. 4.3], where we show that the center of the ultraproduct of
a family of factorial W ∗-bundles is the ultraproduct of the centers. We then
proceed to prove Theorem 1.5.

5.1. Center of the ultraproduct. Theorem 5.7 is a consequence Proposi-
tion 5.5, stating that factorial W ∗-bundles verify a tracial analog of the strong
Dixmier’s averaging property [5, Def. III.2.5.16]. This fact is neither explic-
itly stated nor proved in [26], but it follows from arguments analog to those
appearing in that paper and was known to the author, who uses it to show
[26, Thm. 15]. We give a full proof for the reader’s convenience, starting with
some preliminary lemmas. The argument for the first one is due to the authors
of [8].

Lemma 5.2 ([8]). Let A be a unital C∗-algebra and let X ⊆ T (A) be nonempty.
Set π =

⊕
τ∈X πτ and let σ ∈ T (π(A)′′). Then the trace σ ◦ π on A belongs to

the closed face generated by X in T (A).

Proof. Let F be the closed face generated by X in T (A). It is sufficient to prove
the lemma for normal traces since F is closed and the set of normal traces is
weak∗-dense in T (π(A)′′). Let then σ ∈ T (π(A)′′) be normal and suppose
that σ ◦ π /∈ F . By [1, Cor. II.5.20], there exists a continuous affine function
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f : T (A) → [0,1] such that f(σ ◦ π) = 1 and f ↾ F ≡ 0. By [20, Lem. 6.2], there
is a sequence (an)n∈N ⊆ A+ such that

lim
n→∞

sup
τ∈T (A)

|τ(an) − f(τ)| = 0.

This means that τ(an) → 0 for every τ ∈ F which, as an ≥ 0 for every n ∈ N,
implies that π(an) converges to zero in the strong topology. The trace σ is
normal; hence σ(π(an)) also converges to zero, which contradicts the fact

lim
n→∞

σ(π(an)) = f(σ ◦ π) = 1. �

Lemma 5.3. Let A be a unital C∗-algebra and let X ⊆ T (A) be a nonempty
closed face. Let π =

⊕
τ∈X πτ and let ctr : π(A)′′ → Z(π(A)′′) be the center-

valued trace on π(A)′′. Then

‖a‖2,X = ‖ctr(π(a∗a))‖1/2 for all a ∈ A.

Proof. By [5, Thm. III.2.5.7], the map from the state space of Z(π(A)′′) to
T (π(A)′′) sending ϕ to ϕ ◦ ctr is a bijection; hence

‖ctr(b∗b)‖1/2 = ‖b‖2,T (π(A)′′) for every b ∈ π(A)′′.

The conclusion of the lemma with b = π(a) for a∈A follows by Lemma 5.2. �

Lemma 5.4. Let M be a factorial W ∗-bundle over K with conditional expec-
tation E : M → C(K). Let π =

⊕
µ∈Prob(K) πτµ , let N = π(M)′′, and denote

by ctr the center-valued trace of N . Then, for every a ∈ M,

π(E(a)) = ctr(π(a)).

Proof. Suppose π(E(a)) 6= ctr(π(a)) for some a ∈ M. By [5, Thm. III.2.5.7],
there exists τ ∈ T (N ) such that τ(π(E(a))) 6= τ(ctr(π(a))). As M is factorial,
by Lemma 5.2, there is µ ∈ Prob(K) such that τ ◦ π = τµ. In particular,
τµ ◦ E = τµ; hence, on the one hand, we have

τ(π(E(a))) = τµ(E(a)) = τµ(a).

On the other hand,

τ(ctr(π(a))) = τ(π(a)) = τµ(a),

which is a contradiction. �

Proposition 5.5. Let M be a factorial W ∗-bundle over K with conditional
expectation E : M → C(K). For every a ∈ M and ε > 0, there are unitaries
u1, . . . , uk ∈ M such that

∥∥∥∥E(a) −
1

k

k∑

i=1

uiau
∗
i

∥∥∥∥
2,K

< ε.
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Proof. The proof follows closely the one of [26, Thm. 3]. Fix a ∈ M and
ε > 0. Let π be the direct sum

⊕
µ∈Prob(K) πτµ and set N = π(M)′′. Denote

by ctr : N → Z(N ) the center-valued trace of N . By the Dixmier Averaging
Theorem [5, Thm. III.2.5.19] and Lemma 5.4, the element π(E(a)) belongs to
the norm closure of the convex hull of {uπ(a)u∗ | u ∈ U(N )}.

Let C = {π(uau∗) | u ∈ U(M)}. By the Kaplansky Density Theorem, ev-
ery u ∈ U(N ) is a strong limit of a net of unitaries from π(M). Since the
adjoint operation is strongly continuous on normal operators [25, Thm. 4.3.1]
and multiplication is strongly continuous on bounded sets [25, Rem. 4.3.1],
there exists a net {bλ}λ, where every bλ belongs to convex hull of C, which
converges to b = π(E(a)) in the strong topology. This in turn entails that the
net {(bλ − b)∗(bλ − b)}λ converges to 0 in the weak operator topology and thus,
being a bounded net, in the ultraweak topology. Since the center-valued trace
ctr is ultraweakly continuous, this in particular implies

(8) ϕ
(
ctr((bλ − b)∗(bλ − b))

)
→ 0 for every ϕ ∈ Z(N )∗,

where Z(N )∗ denotes the set of normal functionals on Z(N ).
We claim that (8) implies

(9) ϕ
(
ctr((bλ − b)∗(bλ − b))

)
→ 0 for every ϕ ∈ Z(N )∗.

Indeed, let ϕ ∈ Z(N )∗. Then ϕ ◦ ctr ∈ T (N ); hence, by Lemma 5.2, there is
µ∈ prob(K) such that ϕ ◦ ctr ↾π(M) = τµ. The latter extends to a normal trace
on N ; hence there is ϕ′ ∈Z(N )∗ such that ϕ ◦ ctr ↾ π(M) =ϕ′ ◦ ctr ↾ π(M). We
conclude that ϕ and ϕ′ are equal on {ctr((bλ − b)∗(bλ − b))}λ by Lemma 5.4,
and therefore (9) follows.

By the Hahn–Banach Theorem, there are thus finitely many αj > 0 with∑
j αj = 1 such that

(10)
∥∥∥
∑

j

αj ctr((bλj
− b)(bλj

− b)∗)
∥∥∥ < ε.

Set c =
∑

j αjbλj
and note that

c = [α
1/2
1 . . . α1/2

m ]



α
1/2
1 bλ1

...

α
1/2
m bλm


 =: rs.

Hence c∗c ≤ s∗r∗rs ≤ ‖r‖2s∗s =
∑

j αjb
∗
λj
bλj

, which in turn gives

ctr((c− b)∗(c− b)) = ctr(c∗c− b∗c− c∗b + b∗b)

≤ ctr
(∑

j

αjb
∗
λj
bλj

− b∗
∑

j

αjbλj
−
∑

j

αjb
∗
λj
b + b∗b

)

= ctr
(∑

j

αj(bλj
− b)∗(bλj

− b)
)
.

As a consequence, by (10), we have ‖ctr((c− b)∗(c− b))‖< ε. Summarizing,
there are unitaries u1, . . . , uℓ ∈ M and βi ≥ 0 with

∑
i≤ℓ βi = 1 such that
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c = π(
∑

i≤ℓ βiuiau
∗
i ), and by Lemma 5.3 and the inequalities above, it follows

that ∥∥∥E(a) −
∑

i≤ℓ

βiuiau
∗
i

∥∥∥
2

2,K
= ‖ctr((b− c)∗(b− c))‖ < ε. �

We need one last lemma before showing Theorem 5.7 (see also [17, Lem. 4.2]).

Lemma 5.6. Let M be a factorial W ∗-bundle over K with conditional expec-
tation E : M → C(K). Then, for every a ∈ M, the following holds:

‖a− E(a)‖2,K ≤ sup
b∈M1

‖[a, b]‖2,K ≤ 2‖a− E(a)‖2,K .

Proof. Let a∈M and b ∈M1. The right-hand side inequality in the statement
follows from the computation below:

‖ab− ba‖2,K ≤ ‖ab− E(a)b‖2,K + ‖bE(a) − ba‖2,K

≤ ‖a− E(a)‖2,K‖b‖ + ‖b‖‖E(a) − a‖2,K

≤ 2‖E(a) − a‖2,K .

For the other inequality, given ε > 0, by Proposition 5.5, there exist unitaries
u1, . . . , uk ∈ M such that

∥∥∥∥E(a) −
1

k

k∑

i=1

uiau
∗
i

∥∥∥∥
2,K

< ε.

We thus have

‖a− E(a)‖2,K <

∥∥∥∥a−
1

k

k∑

i=1

uiau
∗
i

∥∥∥∥
2,K

+ ε

≤
1

k

k∑

i=1

‖aui − uia‖2,K + ε

≤ sup
b∈M1

‖[a, b]‖2,K + ε. �

Theorem 5.7. Let (Mi)i∈I be a sequence of factorial W ∗-bundles. Then

Z
( U∏

Mi

)
=

U∏
Z(Mi).

Proof. The inclusion
∏U Z(Mi)⊆Z(

∏U Mi) always holds. For the reverse in-
clusion, let (ai)i∈I ∈ Z(

∏U Mi). It suffices to show that (ai)i∈I = (Ei(ai))i∈I .
For every i ∈ I, let bi ∈ (Mi)1 be such that

2‖[ai, bi]‖2,Ki
≥ sup

c∈(Mi)1

‖[ai, c]‖2,Ki
.

Lemma 5.6 gives

‖ai − Ei(ai)‖2,Ki
≤ sup

c∈(Mi)1

‖[ai, c]‖2,Ki
≤ 2‖[ai, bi]‖2,Ki

for every i ∈ I.

The right-most term goes to zero as i → U since (ai)i∈I ∈ Z(
∏U Mi); hence

(ai)i∈I = (Ei(ai))i∈I . �
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5.8. Consequences in model theory. Before proving Theorem 1.5, we set
up a model-theoretic framework suitable for tracially complete C∗-algebras.

We refer to [16] for all the necessary background concerning continuous
model theory of C∗-algebras (see also [3] for a more general approach beyond
the context of operator algebras). In [16], unital C∗-algebras are presented as
multi-sorted structures in the language LC∗ = {‖ ·‖,+, · , ∗,{z}z∈C,0,1} whose
sorts, interpreted as the closed balls, represent the domains of quantification.
This language is not handy for studying tracially complete C∗-algebras, whose
behavior is closer to that of tracial von Neumann algebras (see e.g. [18]).

Anticipating the model-theoretic analysis of tracially complete C∗-algebras
which will be presented in [15], let L2 = {‖·‖2,+, · ,∗,{z}z∈C,0,1} be a language
with a single sort and countably many domains Dk, with two constant symbols
0 and 1, symbols for the algebraic operations +, · , and ∗, a symbol z for each
z ∈ C and a symbol for the tracial norm ‖ · ‖2. The moduli of continuity
assigned to the algebraic operations are chosen in the natural fashion. This is
similar to the language considered in [18] for von Neumann algebras with the
exception of the predicate tr, interpreted on tracial von Neumann algebras as
the trace.

A tracially complete C∗-algebra (M,X) is an L2-structure with the symbol
‖ · ‖2 interpreted as ‖ · ‖2,X , the operation symbols interpreted in the obvious
way, and Dk interpreted as the k-ball in the operator norm.

Given a sequence ((Mi, Xi) | i ∈ I) of tracially complete C∗-algebras, it
is possible to check that the tracial ultraproduct

∏U Mi introduced in § 2.5
corresponds to the standard ultraproduct of metric structures (see [3, Sec. 5])
obtained when considering each (Mi, Xi) as an L2-structure. In fact, the
ultraproduct of the norms ‖ · ‖2,Xi

can be verified to be precisely ‖ · ‖2,
∑

U Xi
,

that is,

‖(ai)i∈I‖2,
∑

U Xi
= lim

i→U
‖ai‖2,Xi

for every (ai)i∈I ∈
U∏

Mi.

This implies in particular that the unit ball of
∏U Mi is ‖ · ‖2,

∑
U Xi

-complete
(see [3, Prop. 5.3]), so it automatically follows that

( U∏
Mi,

U∑
Xi

)

is a tracially complete C∗-algebra. Through this section, we stress the fact that
we consider

∏U Mi as an L2-structure with the 2-norm induced by
∑U

Xi by
saying that the ultraproduct of the sequence ((Mi, Xi) | i ∈ I) is the pair
(
∏U Mi,

∑U Xi).
In case the sequence ((Mi,Xi) | i∈ I) is composed of W ∗-bundles, with Xi =

Prob(Ki), then the W ∗-bundle structure induced on
∏U Mi over K =

∑U
Ki

as in Proposition 2.6 makes the pair (
∏U Mi,Prob(K)) a tracially complete

C∗-algebra (see the discussion preceding Proposition 2.3). On the other hand,
the ultraproduct of ((Mi, Xi) | i ∈ I) as L2-structures is (

∏U Mi,
∑U Xi).
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These are two presentations of the same object; in fact,

U∑
Xi = Prob(K).

Indeed, given (ai)i∈I ∈
∏U Mi, we have

sup
τ∈

∑
U Xi

|τ((ai)i∈I)| = lim
i→U

sup
τ∈Xi

|τ(ai)| = lim
i→U

sup
τ∈Ki

|τ(ai)|(11)

= sup
τ∈K

|τ((ai)i∈I)| = sup
τ∈Prob(K)

|τ((ai)i∈I)|.

An application of the Hahn–Banach Theorem as in [10, Lem. 4.4] then yields∑U Xi = Prob(K) since they are both convex and closed. In particular, in this
case, ∂e(

∑U
Xi) =

∑U
∂eXi.

Given this model-theoretic set-up, a direct application of  Loś’s Theorem
gives Theorem 1.3 for ultrapowers over sets of indices different from N.

Proof of Theorem 1.3. Let (Mi)i∈I be a sequence of factorial W ∗-bundles over
Ki, and suppose that there is d ∈ N such that dim(Ki) ≤ d for every i ∈ I.
Then M =

∏U Mi is a W ∗-bundle over K =
∑U

Ki, and as in the proof of
Theorem 3.2, it is sufficient to show that, for every a ∈ Msa,

(12) sup
λ∈K

|τλ(a)| = sup
τ∈T (M)

|τ(a)|.

Consider the formula

ϕ(x, y) = inf
w1,...,w10d
z1,...,z10d

∥∥∥x− y − 48
∑

i≤10d

[wi, zi]
∥∥∥
2
,

where the inf ranges over the sort corresponding to the unit ball. Fix a con-
traction a = (ai)i∈I ∈M. Lemma 3.1 entails that ϕ(Mi,Prob(Ki))(ai,Ei(ai)) = 0
for every i ∈ I. Then, by  Loś’s Theorem [3, Thm. 5.4], we also have

ϕ(M,Prob(K))(a,EU (a)) = 0.

In case supλ∈K |τλ(a)| ≤ δ for some δ ≥ 0, then ‖EU (a)‖ ≤ δ; hence, arguing
as in the proof of Theorem 3.2, it follows that

sup
τ∈T (M)

|τ(a)| ≤ δ.

The equality in (12) follows since δ was chosen arbitrarily. �

The C∗-algebras A and B considered in the statement of Theorem 1.5 are
assumed to be elementarily equivalent as LC∗ -structures. In order to use the
tools developed in the previous sections, we would like to be able to compare
their tracial completions, as defined in [26].

Definition 5.9. Given a unital C∗-algebra A with nonempty trace space T (A),
its tracial completion is the C∗-algebra

AT (A) =
{(an)n∈N ∈ ℓ∞(A) | (an)n∈N is a ‖ · ‖2,T (A)-Cauchy sequence}

{(an)n∈N ∈ ℓ∞(A) | limn→∞‖an‖2,T (A) = 0}
.
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Every trace τ ∈ T (A) canonically extends to a trace τ̄ on AT (A), defined on
each representing Cauchy sequence (an)n∈N as

τ̄ ((an)n∈N) = lim
n→∞

τ(an).

We can thus identify T (A) with a subset of the trace space of AT (A), and
it is immediate to check that (AT (A), T (A)) is a factorial tracially complete
C∗-algebra.

Lemma 5.10 below is a straight-forward generalization of [16, Prop. 3.5.1],
and it shows that the first-order LC∗ -theory of a C∗-algebra completely deter-
mines the L2-theory of its tracial completion for classes where the Cuntz–
Pedersen nullset is definable, in the sense of [16, Chap. 3]. Given a C∗-
algebra A, its Cuntz–Pedersen nullset A0, introduced in [11], is the norm-
closure of the linear span of the set of selfadjoint commutators [a, a∗]. The-
orem 2.9 in [11] tightly relates the 2-norm ‖ · ‖2,T (A) of an element with its
distance from A0; more precisely, it shows that

(13) ‖a‖22,T (A) = sup
τ∈T (A)

τ(a∗a) = d(a∗a,A0) for all a ∈ A.

In [16, Thm. 3.5.5], various classes where the Cuntz–Pedersen nullset is LC∗ -
definable are listed. Examples are the set of exact Z-stable C∗-algebras, and
the collection of C∗-algebras with strict comparison, to which the following
lemma and Theorem 1.5 apply.

Lemma 5.10. Let A and B be C∗-algebras belonging to a class where the
Cuntz–Pedersen nullset is definable. If A ≡ B as LC∗-structures, then

(AT (A), T (A)) ≡ (BT (B), T (B))

as L2-structures.

Proof. This fact is a consequence of [16, Prop. 3.5.1] in case both T (A) and
T (B) are singletons. More generally, given a C∗-algebra A, definability of A0

implies that the norm ‖ ·‖2,T (A) is also a definable predicate, by [16, Thm. 3.2.2]
and (13).

It follows that if A is a C∗-algebra belonging to a class where the Cuntz–
Pedersen nullset is definable, then all interpretations of L2-formulas on A are
LC∗ -definable predicates. This can be proved arguing by induction on the
complexity of formulas, with the atomic case being covered since ‖ · ‖2,T (A) is
a definable predicate and the quantifier case since A1 is dense in (AT (A))1. �

The following lemma shows that isomorphisms between tracially complete
C∗-algebras preserving the 2-norm also induce affine homeomorphisms between
the sets of traces inducing the 2-norms. The argument, an application of the
Hahn–Banach Theorem, is due to the authors of [8].

Lemma 5.11 ([8]). Let (M, X) and (N , Y ) be two tracially complete C∗-
algebra and let θ : M → N be an isomorphism such that ‖a‖2,X = ‖θ(a)‖2,Y
for every a ∈ M. Then θ∗(Y ) = X.
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Proof. Suppose that θ∗(Y ) 6=X and that there is τ ∈X \ θ∗(Y ) (the case where
τ ∈ θ∗(Y ) \X is analog). As θ∗(Y ) is closed and convex, by the Hahn–Banach
Theorem, there exist an affine, positive, continuous function f on T (M) and
α ∈ R such that f(τ) > α and f(σ) < α for every σ ∈ θ∗(Y ). By [20, Lem. 6.2],
we can approximate f arbitrarily well with evaluations on positive elements
of M; hence there exists a ∈ M+ such that

sup
σ∈θ∗(Y )

σ(a) < τ(a).

This gives ‖θ(a1/2)‖2,Y < ‖a1/2‖2,X , which contradicts the assumption on θ.
�

In the next proof, we repeatedly use the fact, a consequence of a standard
density argument, that the tracial ultraproduct AU of a unital C∗-algebra A
is equal to the ultrapower of its tracial completion (AT (A))UT (A).

Theorem 5.12. Let A, B be two unital C∗-algebras belonging to any class
where the Cuntz–Pedersen nullset is definable. Suppose that A ≡ B (as LC∗-
structures). Then T (A) is a Bauer simplex if and only if T (B) is. If moreover
both T (A) and T (B) are Bauer simplices and second countable, then ∂eT (A)
and ∂eT (B) have the same covering dimension.

Proof. Fix A and B as in the statement. By Lemma 5.10, their tracial com-
pletions are elementarily equivalent as L2-structures; thus, by [3, Thm. 5.7],
there are an index set I and an ultrafilter U over I such that

(AU , T (A)U ) ∼= (BU , T (B)U)

with an isomorphism which is ‖ · ‖2,T (A)U − ‖ · ‖2,T (B)U -isometric. Suppose
that T (A) is a Bauer simplex. By Theorem 2.4 and Proposition 2.6, the pair
(AU , T (A)U ) can be endowed with a W ∗-bundle structure over (∂eT (A))U =
∂e(T (A)U ), and thus T (A)U is a Bauer simplex (see also the discussion pre-
ceding the computation in (11)). This in turn implies, by Lemma 5.11, that
T (B)U is a Bauer simplex.

Fix τ ∈ ∂eT (B). We prove that the canonical extension of τ to BU (which
we still denote τ) belongs to the boundary of T (B)U . This is sufficient to
conclude that τ ∈ ∂eT (B) since any nontrivial convex decomposition of τ in
T (B) induces a nontrivial convex decomposition of τ as an element of T (B)U .
The simplex T (B)U is Bauer; hence it is enough to prove that τ is in the closure
of ∂e(T (B)U ). To this end, pick ε > 0 and a1, . . . , am ∈ BU . Fix a representing
sequence (aj,i)i∈I of aj for all j ≤ m. For every i ∈ I, let σi ∈ ∂eT (B) be such
that

max
j≤m

{|σi(aj,i) − τ(aj,i)|} < ε.

Notice that the limit trace σ = (σi)i∈I is extremal in T (BU ). This is the
case since, by uniqueness of the GNS representation, the identity map on BU

induces a surjective isomorphism

πσ(BU )′′ →
U∏

πσi
(B)′′
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between the von Neumann algebra πσ(BU )′′ generated by the GNS-represen-
tation corresponding to σ, and the tracial ultraproduct of those corresponding
to σi. Each σi is extremal; hence every πσi

(B)′′ is factor, and so is their
ultraproduct. We conclude that πσ(BU )′′ is a factor and therefore that σ is an
extremal point in T (BU) approximating τ .

We rely on Theorem 5.7 to prove the second part of the statement. More
in detail, the completion AT (A) is a factorial W ∗-bundle over ∂eT (A) by The-
orem 2.4, and its center is equal to C(∂eT (A)) by factoriality. The same holds
for B. The relation AU ∼= BU implies Z(AU ) ∼= Z(BU ); hence Theorem 5.7
gives C(∂eT (A))U ∼= C(∂eT (B))U . This in turn gives C(∂eT (A)) ≡ C(∂eT (B))
as LC∗ -structures since, for abelian C∗-algebras, the tracial ultrapower is equal
to the C∗-norm ultrapower. The covering dimension of X is equal to the de-
composition rank of C(X) (see [21, Prop. 3.3]; this is the only step where the
fact that T (A) and T (B) are second countable is used), and the latter is defin-
able by uniform families of formulas [16, Thm. 5.7.3]; therefore, the conclusion
follows. �

Acknowledgments. I am grateful to the authors of [8] for sharing with me
a preliminary version of their work and for allowing me to include some parts of
it in the present paper. I would moreover like to thank them for some helpful
feedback on an early draft of this manuscript. Finally, I wish to thank the
anonymous referee for carefully reading this note and for their useful remarks.

References

[1] E. M. Alfsen, Compact convex sets and boundary integrals, Ergeb. Math. Grenzgeb. (3)
57, Springer, New York, 1971. MR0445271

[2] R. Antoine, F. Perera, L. Robert, and H. Thiel, Traces on ultrapowers of C∗-algebras,
arXiv:2303.01929v2 [math.OA] (2023).

[3] I. Ben-Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsovet, Model theory for
metric structures, in Model theory with applications to algebra and analysis. Vol. 2,
315–427, London Math. Soc. Lecture Note Ser. 350, Cambridge Univ. Press, Cambridge,
2008. MR2436146

[4] T. M. Bice and I. Farah, Traces, ultrapowers and the Pedersen-Petersen C∗-algebras,
Houston J. Math. 41 (2015), no. 4, 1175–1190. MR3455354

[5] B. E. Blackadar, Operator algebras, Encyclopaedia Math. Sci. 122, Springer, Berlin,
2006. MR2188261

[6] E. F. Blanchard and E. Kirchberg, Global Glimm halving for C∗-bundles, J. Operator
Theory 52 (2004), no. 2, 385–420. MR2120237

[7] J. Bosa, N. P. Brown, Y. Sato, A. Tikuisis, S. White, and W. Winter, Covering dimen-
sion of C∗-algebras and 2-coloured classification, Mem. Amer. Math. Soc. 257 (2019),
no. 1233, vii+97 pp. MR3908669

[8] J. Carrión, J. Castillejos, S. Evington, J. Gabe, C. Schafhauser, A. Tikuisis, and
S. White, Tracially complete C∗-algebras, manuscript in preparation.

[9] J. Castillejos et al., Classifying maps into uniform tracial sequence algebras, Münster
J. Math. 14 (2021), no. 2, 265–281. MR4359832

[10] J. Castillejos, S. Evington, A. Tikuisis, S. White, and W. Winter, Nuclear dimension of
simple C∗-algebras, Invent. Math. 224 (2021), no. 1, 245–290. MR4228503

[11] J. Cuntz and G. K. Pedersen, Equivalence and traces on C∗-algebras, J. Functional
Analysis 33 (1979), no. 2, 135–164. MR0546503

Münster Journal of Mathematics Vol. 16 (2023), 301–322



322 Andrea Vaccaro

[12] S. Evington, W ∗-bundles, PhD thesis, University of Glasgow, 2018.
[13] S. Evington and U. Pennig, Locally trivial W∗-bundles, Internat. J. Math. 27 (2016),

no. 11, 1650088, 25 pp. MR3570373
[14] T. Fack and P. de la Harpe, Sommes de commutateurs dans les algèbres de von Neumann
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