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of lens spaces: An elementary approach
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Abstract. We present an elementary computational scheme for the moduli spaces of ratio-
nal pseudo-holomorphic curves in the symplectizations of 3-dimensional lens spaces, which
are equipped with Morse–Bott contact forms induced by the standard Morse–Bott contact
form on S3. As an application, we prove that, for p prime and 1 < q, q′ < p − 1, if there is
a contactomorphism between lens spaces L(p, q) and L(p, q′), where both spaces are equipped
with their standard contact structures, then q ≡ (q′)±1 in mod p. For the proof, we study
the moduli spaces of a pair of pants with two non-contractible ends in detail and establish
that the standard almost complex structure that is used is regular. Then the existence of
a contactomorphism enables us to follow a neck-stretching process, by means of which we
compare the homotopy relations encoded at the non-contractible ends of the pair of pants in
the symplectizations of L(p, q) and L(p, q′). Combining our proof with the result of Honda on
the classification of universally tight contact structures on lens spaces, we provide a purely
symplectic/contact topological proof of the diffeomorphism classification of lens spaces in
the class mentioned above.

1. Introduction

The objects of the study in this paper are 3-dimensional lens spaces and
the standard Reeb dynamics on them. These dynamical systems are given as
finite quotients of the Hopf fibration on S3. To be more precise, we consider
the standard contact form1 on S3 given by

(1) α0(z)[w] = Im〈w, z〉C,

where z = (z1, z2) ∈ S3 →֒ C2, w = (w1, w2) ∈ TzS
3 ⊂ TzC

2 ∼= C2 and 〈 · , · 〉C
is the standard hermitian product. Then the standard contact structure ξ0 at
z ∈ S3 is given by the hermitian complement of the complex line along z ∈ C2.
The Reeb vector field and its flow are given by

R0(z1, z2) = (iz1, iz2), φt(z1, z2) = (eitz1, e
itz2).

This work is part of a project in the SFB/TRR 191 “Symplectic Structures in Geometry,
Algebra and Dynamics”, funded by the DFG..

1In order to match conventions, S3 could be replaced by the sphere of radius
√
2.
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We see that all Reeb orbits are closed, and we have 2π as the common minimal
period. The fibration via Reeb orbits leads to the Hopf fibration

(2) π : S3 → CP 1, (z1, z2) 7→ (z1 : z2).

We consider the Zp-action on S3 generated by

σ(z1, z2) = (eiθz1, e
iqθz2), θ = 2π/p,

where 0 < q < p are integers with (p, q) = 1. This is a free action and gives rise
to the lens space L(p, q) as the quotient space, where

p : S3 → L(p, q)

is the quotient/covering map. We note that, since p is a universal covering,

π1(L(p, q)) ∼= H1(L(p, q),Z) ∼= Zp.

For later purposes, we fix the integer 0 < v < p such that

vq ≡ 1 mod p.

Since σ is a complex linear map on C2, it preserves the standard contact form.
Hence we have an induced standard contact form α on L(p, q), given by

p
∗α = α0,

which defines the standard contact structure

ξ = kerα = p∗ξ0.

We also note that p∗R0 = R, where R is the Reeb field of α.

Remark 1.1. (i) In this paper, we restrict ourselves to the case where 1 <
q < p − 1. In the remaining case, the Reeb flow still induces an S1-bundle
structure, and it is relatively less interesting; see [1].

(ii) We also assume that p is prime. This assumption simplifies the com-
putational aspect of our work, but we claim that most of the statements we
present in this paper can be generalized after some extra care.

(iii) In what follows, expressions like k ≡ l and k 6≡ l should be understood
in mod p.

The dynamics of the Reeb field R is of Morse–Bott type and is easy to
describe since σ commutes with the flow of R0. There are two closed orbits of
R0 in S3 which are invariant under the group action, namely

γ∞ = {(z1, 0) | |z1| = 1} = {(eit, 0) | t ∈ [0, 2π]},

γ0 = {(0, z2) | |z2| = 1} = {(0, eit) | t ∈ [0, 2π]}.

These orbits are mapped to the points ∞ and 0 in CP 1 ∼=C∪ {∞} respectively
via (2), and they project to p-fold covers of simple orbits γ∞ and γ0 in L(p, q).
These simple orbits have period 2π/p, and they represent generators of the
fundamental group. We note that the simple orbits of R0 besides γ0 and γ∞
are permuted by σ. In fact, we have an induced action on the orbit space

(3) σ♭ : CP
1 → CP 1, (z1 : z2) 7→ (eiθz1 : eiqθz2),
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Holomorphic curves in the symplectizations of lens spaces 391

which gives an orbifold structure to the orbit spaces of R via the quotient map

p♭ : CP
1 → CP 1.

The fixed points 0 and ∞ correspond to the (iterations of) orbits γ0 and γ∞
respectively. The isotropy group of both singularities is Zp.

Our aim is to study punctured holomorphic curves in the symplectizations
of lens spaces. These curves are the main objects studied in symplectic field
theory (SFT); see [6]. As pointed above, the standard Reeb flow on S3 is
perfectly symmetric, and if one chooses an almost complex structure on ξ0,
which is invariant under the Reeb flow, the resulting SFT-type almost complex
structure on R× S3 leads to a description of punctured curves in terms of the
closed curves in the orbit space CP 1 paired with meromorphic sections above
them since R × S3 may be viewed as a complex (in fact, holomorphic) line
bundle without its zero section; see Section 2. This is a particular example of
a phenomenon observed for the pre-quantization bundles; see [1].

If such a symmetric almost complex structure on R × S3 is also invariant
under the Zp-action, then it descends to R× L(p, q), and one may study punc-
tured curves in R×L(p, q) explicitly in terms of their lifts to R× S3, which are
obtained after precomposing the curves in R×L(p, q) with a suitable covering
of their domains. This idea goes back to [9] and is executed in detail for lens
spaces and their unit cotangent bundles in [19]. It turns out that it is easy to
determine whether a given moduli space of rational curves is nonempty and
has the correct dimension. We present a systematic treatment of this idea in
the next section. For an application of the resulting computational scheme, we
prove the following.

Theorem 1.2. Let p be a prime number and 1 < q, q′ < p− 1. Let α and α′

be the standard contact forms on L(p, q) and L(p, q′) respectively. Suppose that
there is a positive contactomorphism

ϕ : (L(p, q), ξ = kerα) → (L(p, q′), ξ′ = kerα′).

Then q ≡ (q′)±1.

Here the positivity of ϕ means that ϕ∗α′ = fα for some positive smooth
function f on L(p, q). For the proof, we study the moduli spaces of a pair of
pants with non-contractible positive ends in detail. We show that nonempty
components of such moduli spaces are cut out transversally by comparing the
Fredholm index of the pair of pants with the dimension of the equivariant
pseudo-holomorphic perturbations of their lifts. This enables us to perturb
the data and carry on a standard neck-stretching argument after the given
contactomorphism. Noting the homotopy/homology relation [γ∞] = q[γ0], the
result follows from the comparison of the homotopy relation that is encoded by
the positive ends of a certain pair of pants in R×L(p,q) with the corresponding
relation encoded by the pair of pants in R× L(p, q′), which is obtained after
stretching the neck; see Figure 4.

The lens spaces were introduced by W. Dyck in 1884, and since then, the
problem of their classification had attracted many great mathematicians like

Münster Journal of Mathematics Vol. 15 (2022), 389–440
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H. Tietze, H. Poincaré, J.W. Alexander, H. Seifert; see [22] for a more pre-
cise historical account. In 1935, the first complete classification of lens spaces
was given by Reidemeister in the category of piecewise linear (PL) homeomor-
phisms [16], and later, in 1960, Brody showed that the homeomorphism clas-
sification coincides with the classification in PL category; see [3]. After many
other contributions, we finally have the following classification statement for
3-dimensional lens spaces; see [5] for a modern proof.

Theorem 1.3. The lens spaces L(p, q) and L(p, q′) are
• homotopy equivalent if and only if

qq′ ≡ ±a2

for some a ∈ N,
• simple homotopy equivalent/homeomorphic/diffeomorphic if and only if

q ≡ ±(q′)±1.

One of the important aspects of the above theorem is providing examples
of manifolds which are homotopy equivalent but not simple homotopy equiv-
alent/homeomorphic/diffeomorphic. We also note that if q ≡ ±(q′)±1 is as-
sumed, then it is easy to define an explicit diffeomorphism between L(p, q) and
L(p, q′) for each case of the assumption. Hence the “only if” part of the second
statement of Theorem 1.3 is the nontrivial part, and it requires sophisticated
topological tools like the Reidemeister–Franz torsion, which was introduced by
Reidemeister in [16] for his classification result and later generalized by Franz
in [7].

We note that, from the topological point of view, Theorem 1.2 is a straight-
forward consequence of Theorem 1.3. If we orient lens spaces via the standard
contact forms, then due to the dimensional reasons, any contactomorphism,
independent of being positive or negative, is an orientation preserving diffeo-
morphism in the first place. Moreover, after paying more attention to the
smooth classification, one realizes that the existence of an orientation preserv-
ing diffeomorphism between L(p, q) and L(p, q′) implies that q ≡ (q′)±1.

On the other hand, once combined with the classification of universally tight
contact structure on 3-dimensional lens spaces given by Honda in [12], whose
proof is purely contact topological and does not rely on any classification state-
ment on lens spaces, Theorem 1.2 gives a pure symplectic/contact topological
proof of the following classification statement.

Theorem 1.4. Assume that p is prime and 1 < q, q′ < p− 1. If L(p, q) and
L(p, q′) are diffeomorphic, then q ≡ ±(q′)±1.

Proof. We orient L(p, q) and L(p, q′) via the volume forms α ∧ dα and α′ ∧ dα′

respectively, where α and α′ are the standard contact forms. Let ϕ : L(p, q)→
L(p, q′) be an orientation preserving diffeomorphism. We put β := ϕ∗α′. Since
ϕ is orientation preserving, β ∧ dβ is a positive volume form on L(p, q), and
consequently, (ker β, dβ) is a positive contact form in the sense of [12]. It is
also clear that kerβ is universally tight. By [12, Prop. 5.1], there are precisely
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two universally tight positive contact structures on L(p, q) since q 6= p − 1.
We note that (ξ, dα) and (ξ,−dα) are two positive universally tight contact
structures on L(p, q), and they are not isotopic as oriented contact structures
since they are distinguished by their Euler classes. In fact, an easy compu-
tation shows that the Poincaré dual of the Euler class of (ξ, dα) is given by
(q + 1)[γ0] ∈ H1(L(p, q), Z). Note that the Poincaré dual of the Euler class
of (ξ,−dα) is then given by (−q − 1)[γ0] and q + 1 6≡ −q − 1 since q 6= p− 1.
Hence (ker β, dβ) is isotopic to either (ξ, dα) or (ξ,−dα) as positive contact
structures. Hence we either have a positive contactomorphism

ψ+ : (L(p, q), ξ = kerα) → (L(p, q), kerβ)

or a positive contactomorphism

ψ− : (L(p, q), ξ = ker(−α)) → (L(p, q), kerβ).

In the first case, ϕ ◦ ψ+ is the desired positive contactomorphism. In the
second case, we consider the diffeomorphism ψ of L(p, q), which is induced
by the map (z1, z2) → (z1, z2) on S3. It is easy to see that ψ∗α = −α, and
therefore, ϕ ◦ ψ+ ◦ ψ is a positive contactomorphism. By Theorem 1.2, we get
q ≡ (q′)±1 in either case.

Now we assume that ϕ : L(p, q)→ L(p, q′) is an orientation reversing diffeo-
morphism. Then we consider the diffeomorphism ψ : L(p,−q)→ L(p, q), which
is induced by the map (z1, z2) → (z1, z2) on S

3. It is easy to see that ψ is ori-
entation reversing. Hence ϕ ◦ ψ is an orientation preserving diffeomorphism.
Applying the above argument to ϕ ◦ ψ leads to −q ≡ (q′)±1. �

The study of holomorphic curves in the symplectization of lens spaces with
respect to the Morse–Bott data is not new. We note that these curves can be
studied directly as orbicurves in the orbit space CP 1 paired with meromorphic
sections of orbibundles. This leads to a formal relation between the orbifold
Gromov–Witten potential of the orbit space CP 1 and the SFT hamiltonian
of L(p, q); see [18]. Compared to [18], our approach is rather elementary and
serves us well since we do not aim to compute the SFT hamiltonian. We just
provide a computational scheme, and applying this scheme to a small portion
of the SFT hamiltonian, namely a pair of pants with positive non-contractible
ends, gives us enough information to prove the classification statement.

Another work that aligns with our paper is presented in [4]. In [4], it
is proven that if there is a directed symplectic cobordism, whose respective
boundaries induce isomorphisms in integral homologies via their inclusions,
between two lens spaces, which are equipped with the standard contact struc-
tures, then the cobordism is necessarily trivial. This statement is an applica-
tion of the intersection theory for pseudo-holomorphic curves in 4-dimensional
symplectic orbifolds, which is the main result of [4]. Given a symplectic ho-
mology cobordism between two lens spaces, one compactifies both ends of
the symplectic cobordism in a particular way and studies a moduli space of
holomorphic spheres with certain properties in the resulting closed symplectic
orbifold. The moduli space turns out to be a closed 2-dimensional orbifold, and
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one shows that, after suitable compactification, the total space of a particu-
lar line bundle over this moduli space is diffeomorphic to the compactification
of the symplectic cobordism by means of an evaluation map. On the other
hand, the diffeomorphism type of the compactified line bundle turns out to
be the same as the compactification of the trivial cobordism over one of the
given lens spaces. Although our treatment of holomorphic curves stay in the
smooth category and we study punctured curves in the SFT setting, due to
the Morse–Bott data, the punctured curves that appear in this work can be
also thought as closed curves in suitable singular compactifications of the sym-
plectizations or symplectic cobordisms, which are essentially different than the
symplectic orbifold used in [4]. On the other hand, in order to achieve the
necessary control on the neck-stretching process, we lift punctured curves to
suitable coverings and apply the classical intersection theory to the extensions
of these lifts, which are now smooth curves.

The organization of the paper. In Section 2, we describe the computa-
tional scheme for holomorphic curves in the symplectizations of lens spaces.
In Section 3, we go over a simplified version of the computational scheme for
curves with two non-contractible ends and describe the moduli space of a pair
of pants in detail. We compute the dimension of the moduli space given by our
computational scheme and compare it to the Fredholm index in order to show
that the almost complex structure we use is generic. In Section 4, we prove
Theorem 1.2. We note that a reader, who is solely interested in this proof may
skip Sections 2.2 and 2.13 in the first reading.

2. Holomorphic curves in the symplectizations of lens spaces:
The general scheme

Let (M,α) be a closed, (2n− 1)-dimensional contact manifold, and let Rα

be the associated Reeb vector field with the flow φt, which is of Morse–Bott
type. Namely, the action spectrum of α is discrete, and for any action value
(period) T , NT := {x ∈ M | φT (x) = x} ⊆ M is a closed submanifold such
that the rank of dα|NT

is locally constant and TxNT = ker(dφT − id)x for all
x ∈NT . In the case that NT consists of a single orbit γ : R→M , we say that γ
is non-degenerate. We note that, in this case, dφT (γ(0))|ξγ(0)

does not admit 1
as an eigenvalue. We note that, for any period T , the Reeb flow defines an
S1-action on NT , and the resulting orbit space ST = NT /S

1 is an orbifold,
which consists of a single point if NT is geometrically a single orbit.

Given an almost complex structure J on ξ = kerα that is compatible with
dα, one extends it to the symplectization (R×M,d(eaλ)) in such a way that
J is invariant under translations along ∂a and J∂a = Rα. An almost complex
structure on R ×M , which is defined as above, is called a cylindrical or an
SFT-type almost complex structure.

Let (Σ, j) be a closed Riemann surface, and let Γ ⊂ Σ be a finite ordered
set of punctures. We consider the maps that satisfy the non-linear Cauchy–
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Riemann equation, namely

(4) u : Σ \ Γ → R×M, du ◦ j = J ◦ du.

We call such a map a (punctured) pseudo-holomorphic curve or a J-holomor-
phic curve.2 Note that if γ : R → M is a periodic orbit of Rα with period T ,
then the trivial cylinder over γ,

(5) u : R× S1 → R×M, (s, t) 7→ (Ts, γ(T t)),

is a holomorphic curve, where R × S1 := C/iZ. It turns out that finiteness
of a suitable notion of energy forces a pseudo-holomorphic curve to behave as
meromorphic objects in complex analysis. The Hofer energy of a holomorphic
curve u is defined to be

E(u) := sup
f∈F

∫

Σ\Γ

u∗d(efα),

where F = {f : R → (−1, 1) | f ′ > 0}. Under the Morse–Bott assumption,
a holomorphic curve u with finite Hofer energy converges to a trivial cylinder
near a puncture unless its image is bounded near that puncture, and in the
latter case, u extends holomorphically over a puncture [1]. More precisely, for
each honest puncture z ∈ Γ, one fixes a holomorphic coordinate chart identified
with an open disk D centered at z. The puncture set splits as Γ = Γ+ ∪ Γ−,
and one fixes the following cylindrical coordinates:
• Z+ := [0,+∞)× S1 → D \ {0} ⊂ Σ \ {z}, (s, t) 7→ e−2π(s+it) if z ∈ Γ+,
• Z− := (−∞, 0]× S1 → D \ {0} ⊂ Σ \ {z}, (s, t) 7→ e2π(s+it) if z ∈ Γ−.
Then, for every z ∈ Γ±, there is a T -periodic Reeb orbit γ such that

u(s, t) = exp(Ts,γ(Ts)) h(s, t), (s, t) ∈ Z±,

for |z| large, where h is a vector field along the trivial cylinder (5) such that
h(s, · ) → 0 uniformly as |s| → ∞, and exp is the exponential map defined via
an R-invariant metric on R×M . We say that
• z is a positive puncture if z ∈Γ+. We write u(z)= (+∞,γ) if the asymptotic

end is a non-degenerate orbit γ, and u(z) ∈ {+∞}× ST if the asymptotic
end belongs to a nontrivial orbit space ST .

• z is a negative puncture if z ∈ Γ−. We write u(z) = (−∞, γ) if the as-
ymptotic end is a non-degenerate orbit γ, and u(z) ∈ {−∞} × ST if the
asymptotic end belongs to a nontrivial orbit space ST .

Given a holomorphic curve u as (4) and a positive/negative puncture z with
the asymptotic end γz, which can be a non-degenerate orbit or an element in
a Morse–Bott orbit space, then the action (of α) at3 the puncture z is defined
to be the integral

∫

γz

α,

2If it is not necessary to specify the almost complex structure, then we call such maps
holomorphic curves or just curves in short.

3We also say the action at a given positive/negative end if the puncture itself is not
needed to be mentioned.
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which is simply the period of the orbit γz . From the definition of a cylindrical
almost complex structure, it follows that the dα-energy of u,

∫

Σ\Γ

u∗dα,

is nonnegative and satisfies
∫

Σ\Γ

u∗dα =
∑

z∈Γ+

∫

γz

α−
∑

z∈Γ−

∫

γz

α.

In particular, the total action at positive ends of u is greater than or equal to
the total action at its negative ends.

In general, one studies the moduli space of holomorphic curves for a fixed
asymptotic data. One picks a collection of orbit spaces S±

1 , . . . ,S
±
n± and defines

(6) M =
{

(Σ, j,Γ, u) | u(z±i ) ∈ {±∞}× S±
i for all z±i ∈ Γ±

}

/∼

to be the moduli space of equivalence classes [Σ, j,Γ, u] of holomorphic curves,
where (Σ, j,Γ, u) ∼ (Σ′, j′,Γ′, u′) if there exists a biholomorphism h : Σ → Σ′

such that h restricts to an ordering preserving bijection on the corresponding
puncture sets and u = u′ ◦ h. It turns out that, once it is cut out transversally,
the space (6) admits smooth structure (of finite dimension) as the zero set of
the Cauchy–Riemann operator

(7) ∂J(u) = du+ J ◦ du ◦ j,

which is defined on a suitable function space. In general, it is hard to carry
out a hands-on study of moduli spaces of holomorphic curves. Under nice
circumstances, a generic choice of J on ξ leads to a smooth structure on the
moduli space. But such a generic choice makes it hard to grasp the moduli
space itself even in the Morse–Bott case. But in certain perfectly symmetric
Morse–Bott situations like pre-quantization bundles, these moduli spaces can
be described as rather elementary objects [1].

Remark 2.1. In what follows, we will be mostly interested in moduli spaces
of rational curves, namely the case Σ = CP 1, with at least three punctures.
We note that, due to the uniqueness of the complex structure on CP 1, when
Σ = CP 1 and |Γ| = 3 + k, k ≥ 0, the above moduli space M given by (6) is
identified with the space of pairs (u, (z1, . . . , zk)), where

u : CP 1 \ {0, 1,∞, z1, . . . , zk} → R×M

is a holomorphic curve with prescribed sign of punctures and asymptotic ends.

The aim of this section is to study holomorphic curves in R × L(p, q) ex-
plicitly, where the cylindrical almost complex structure is a quotient of the
cylindrical almost complex structure on R× S3 associated to the tautological
line bundle over CP 1. Our strategy is to study curves in R× L(p, q) through
their lifts to R× S3. We want to describe spaces of solutions of the Cauchy–
Riemann equation on R× L(p, q) as the subspaces of equivariant solutions of
lifted problems on R× S3 on which one has a very good understanding.
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First we describe the cylindrical almost complex structure on R × S3. In
real coordinates zj = xj + iyj, (1) reads as

α0 = −y1dx1 + x1dy1 − y2dx2 + x2dy2.

The symplectic form dα0 on ξ0 is given by

dα0 = 2(dx1 ∧ dy1 + dx2 ∧ dy2)|ξ0 .

The Hopf fibration is the S1-bundle associated to the tautological line bundle

(8) L→ CP 1, L(z1:z2) = spanC{(z1, z2)} ⊂ C2

and the hermitian metric on L, which is induced by the standard hermitian
metric on C2. Hence the Euler class of (2) is given by

e(π) = c1(L) = −[π−1ωFS],

where ωFS is the Fubini–Study form on CP 1 such that 〈ωFS, [CP
1]〉 = π and

π∗ωFS = (dx1 ∧ dy1 + dx2 ∧ dy2)|S3 .

Since the S1-action is generated by the Reeb field R0 and the period is 2π,
being the associated contact form, α0 satisfies LR0α0 = 0 and α0(R0) = 1. So
α0 is a connection 1-form, and from the equality above, we have π∗ωFS =

1
2dα0,

that is, 2ωFS is the curvature form.
We pull the standard complex structure on CP 1 back to the contact distri-

bution ξ0 as an S1-invariant complex structure via the map (2), and we extend
it to the symplectization as described above. We call this almost complex
structure the standard almost complex structure and denote it by J0. We note
that the extension π : R× S3 → CP 1 of the Hopf fibration is J0-holomorphic.
We consider the diffeomorphism

Φ : R× S3 → L∗, (a, (z1, z2)) 7→ ea(z1, z2),

where L∗ is the total space of (8), where the zero section is removed. We note
that, once conjugated by Φ, J0 coincides with the complex structure on the
fibers of L. Since Φ also covers holomorphic bundle projections on both its
domain and target, it is a biholomorphism.

For any punctured curve

u : Σ \ Γ → R× S3

with finite energy, the holomorphic map c = π ◦ u extends over the punctures
and gives a closed holomorphic curve in CP 1. The map u then corresponds
to a meromorphic section f of the holomorphic line bundle c∗L→ Σ; see [1].
The positive ends of u correspond to the poles of f , and negative ends of u
correspond to the zeros of f since the complex structure on the symplectization
fits to the complex structure on the fibers of L. Note that the first Chern
number of the bundle c∗L is given by −d, where d ≥ 0 is the degree of the
map c. If Σ = CP 1, then a necessary and sufficient condition for the existence
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L∗ L∗

Σ \ Γ̃ CP 1 \ Γ

CP 1 CP 1

p

π π
p

u

c

u

c

p♭

Figure 1. Lifting diagram for a holomorphic curve in R× L(p, q).

of a meromorphic section f is that both the divisor of the section and the
bundle have the same degree, namely

#f−1(0)−#f−1(∞) = −d.

We note that the above formula says that there is no punctured curve with
only negative ends, which is consistent with the maximum principle.

We now want to add the Zp action into the setting. This action is free on
L∗ but has two fixed points on the zero section CP 1; see (3). Note that the
standard almost complex structure J0 on R× S3 is Zp-invariant, so we identify
R × L(p, q) with L∗ := L∗/Zp, where the former space is equipped with the
quotient almost complex structure denoted by Jα. We call Jα the standard
almost complex structure on R× L(p, q).

We consider a rational Jα-holomorphic curve

u : CP 1 \ Γ → R× L(p, q) ∼= L∗.

Such a curve lifts to the cover L∗ if and only if u∗ = 0 on π1(CP
1 \ Γ). We

note that CP 1 \ Γ is homotopy equivalent to the bouquet of (#Γ− 1) circles,
so its fundamental group is the free group with (#Γ − 1) generators. Hence
the image of the fundamental group is trivial if and only if the image of each
generator is trivial, that is, if all of the asymptotics are contractible. In this
paper, our main concern are the curves with non-contractible ends. But since
a curve u with a non-contractible end does not lift to the cover immediately,
we need to precompose the map u with a suitable covering map

(9) p : Σ \ Γ̃ → CP 1 \ Γ.

Once we pick a suitable cover (9), we have the commutative diagram given by
Figure 1. The problem is then to study the lifted J0-holomorphic curves

u : Σ \ Γ̃ → R× S3 ∼= L∗,

which are equivariant with respect to the action of the group of Deck trans-
formations G on the punctured surface Σ \ Γ̃ and Zp-action on L∗.
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2.2. Equivariant curves: The necessary conditions for the existence.

In this section, our aim is to determine a suitable minimal covering (9) and
establish a correspondence between a given moduli problem in L∗ and a lifted
moduli problem in L∗, which is determined by (9).

We fix a set of punctures Γ ⊂ CP 1, which partitions as follows:
• Γ = Γnc ∪ Γc with cardinalities nnc and nc,
• Γnc = Γ0 ∪ Γ∞ with cardinalities n0 and n∞ so that nnc = n0 + n∞,
• Γ0 = Γ+

0 ∪ Γ−
0 with cardinalities n+

0 and n−
0 so that n0 = n+

0 + n−
0 ,

• Γ∞ = Γ+
∞ ∪ Γ−

∞ with cardinalities n+
∞ and n−

∞ so that n∞ = n+
∞ + n−

∞,
• Γc = Γ+

c ∪ Γ−
c with cardinalities n+

c and n−
c so that nc = n+

c + n−
c ,

• Γ±
0 = {z0,±1 , . . . , z0,±

n±

0

}, Γ±
∞ = {z∞,±

1 , . . . , z∞,±
n±
∞

} and Γ±
c = {w±

1 , . . . , w
±
n±
c
}.

Suppose that we have a holomorphic curve

u : CP 1 \ Γ → L∗ ∼= R× L(p, q)

with asymptotics
(a1) u(z0,±i ) = (±∞, k0,±i γ0), where k

0,±
i 6≡ 0 for i = 1, . . . , n±

0 , that is, u has
a positive/negative puncture at z0,±i with positive/negative non-contract-
ible asymptotic end k0,±i γ0 for i = 1, . . . , n±

0 ,
(a2) u(z∞,±

i ) = (±∞, k∞,±
i γ∞), where k∞,±

i 6≡ 0 for i = 1, . . . , n±
∞, that is,

u has a positive/negative puncture at z∞,±
i with positive/negative non-

contractible asymptotic end k∞,±
i γ∞ for i = 1, . . . , n±

∞,
(a3) u(w±

i ) ∈ {±∞}× S±
k±
i
for i = 1, . . . , n±

c , that is, u has a positive/negative
puncture atw±

i with positive/negative contractible asymptotic end, which
lies in the orbit space S±

k±
i
of orbits with action 2πk±i .

We fix a point z ∈ CP 1 \ Γ and consider the map

u∗ : π1(CP
1 \ Γ, z) → π1(L

∗, xu) ∼= Zp,

where xu = u(z). Since p is prime, it is clear that u∗ is surjective if and only
if nnc ≥ 1. We know that K := keru∗ is a normal subgroup of π1(CP

1 \ Γ, z)
and there exists a covering space

p : Σ \ Γ̃ → CP 1 \ Γ,

where Σ \ Γ̃ is smooth punctured surface and p∗(π1(Σ \ Γ̃, z̃)) = K, where z̃ is
a fixed lift of z. This covering is (up to isomorphism) determined by K, and
the group of Deck transformations G is given by

G ∼= π1(CP
1 \ Γ, z)/K ∼= Zp.

We endow Σ \ Γ̃ with the pullback complex structure and get a punctured
Riemann surface so that p is holomorphic. By the removal of singularities
theorem, p extends to a holomorphic branched covering p : Σ → CP 1.

We note that u ◦ p : Σ \ Γ̃ → L∗ satisfies

(u ◦ p)∗(π1(Σ \ Γ̃, z̃)) = u∗p∗(π1(Σ \ Γ̃, z̃)) = {0} = p∗(π1(L
∗, x̃u)),

where x̃u is a fixed lift of xu. Hence we have the unique lift

(10) u := ũ ◦ p : Σ \ Γ̃ → L∗, u(z̃) = x̃u.
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We note that u is equivariant with respect to the action of G on Σ \ Γ̃ and the
action of Zp on L∗. We fix a generator τ♭ of G such that

(11) u ◦ τ♭ = σ ◦ u.

Now we take a closer look at the branched covering p : Σ → CP 1. It is clear
that Γ̃ = p−1(Γ). We put Γ̃nc := p−1(Γnc) and Γ̃c = p−1(Γc).

Lemma 2.3. Each point in Γnc is a branch point with exactly one preimage
and each point in Γc is regular and has exactly p preimages. Further, Γ̃nc forms
the fixed point set of the extended action of G over Σ. Moreover, the genus of
Σ is given by

(12) g =
(p− 1)(nnc − 2)

2
.

Proof. For any zi,±j ∈ Γnc, the cardinality of the set p−1(zi,±j ) is either p or 1.
In fact, any element in p−1(zi,±j ) has a local isotropy group with respect to
the extended action of G on Σ, which is a subgroup of G ∼= Zp. Since p is
prime, this subgroup is either trivial or Zp. We note also that at least one
point in p−1(zi,±j ) is a puncture of u with an asymptotic, which descends to
a non contractible asymptotic u at zi,±j . Hence at least one point in p−1(zi,±j )
has isotropy group Zp, and therefore, p−1(zi,±j ) consists of a single point. We
conclude that p branches points over Γnc so that each branch point has a sin-
gle preimage with ramification number p. Similarly, for each w±

j ∈ Γc, there is
a contractible end of u, which lifts to p contractible ends of u. Hence the punc-
tures corresponding to these ends are precisely the preimages of w±

j . Applying
the Riemann–Hurwitz formula, we get

2− 2g = 2p− nnc(p− 1) =⇒ g =
(p− 1)(nnc − 2)

2
.

It is clear that Γ̃nc is the fixed point set of the extended G-action. �

We abuse the notation and denote preimages of z0,±i , z∞,±
i under p by the

same letters. For the preimages of w±
i , which is given by G = 〈τ♭〉-orbit of any

point in the preimage, we write w±
i,j , j = 1, . . . , p. Now we have an equivariant

curve u : Σ \ Γ̃ → L∗ with asymptotics
(la1) u(z0,±i ) = (±∞, k0,±i γ0) for i = 1, . . . , n±

0 ,
(la2) u(z∞,±

i ) = (±∞, k∞,±
i γ∞) for i = 1, . . . , n±

∞,
(la3) u(w±

i,j) ∈ {±∞}× S±
k±
i
for i = 1, . . . , n±

c , j = 1, . . . , p,

where now S±
k±
i
denotes the space of orbits in S3 with the action 2πk±i .

Remark 2.4. We note the lift u depends on the choice of the lift x̃u. In
fact, imposing that the lift maps z̃ to σkx̃u leads to the unique lift, say u′,
which satisfies u′ = u ◦ τk♭ . More precisely, there are p lifts of u, which are

distinct as maps, given by u ◦ τk♭ , k = 0, . . . , p− 1 or alternatively by σk ◦ u,
k = 0, . . . , p − 1. We note that any such lift u′ satisfies u′ ◦ τ♭ = σ ◦ u′. In
particular, the image of any lift is invariant under σ and the images of all lifts
coincide.
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Figure 2. An example of a curve in R× L(p, q) and its lift to R× S3.

Now we want to understand to what extent the above description depends
on u.

Remark 2.5. By (12), the topology of Σ depends only on the number of the
non-contractible ends of u.

Since π1(L
∗, ∗) is abelian, the homomorphism u∗ is invariant under conju-

gations and therefore depends only on non-contractible asymptotic ends of u.
In fact, given any representation of π1(CP

1 \ Γ, z) via loops, each being the
concatenation of a small simple loop around a puncture and a path joining
a point on it to the base point z, the image of a generator (associated to
a puncture) under u∗ is equal to the image of the generator (associated to the
same puncture) represented by the small simple loop itself, which comes from
a representation where the base point z is taken on that very same loop. Hence
u∗ and therefore K are determined up to conjugacy by the data (a1) and (a2).
In particular, if u is contained in a continuous family of parametrized curves,
one can fix the same subgroup K for the whole family. We also note that the
generator τ♭ of G can be chosen constantly for such a family of curves.

Remark 2.6. We note that the set of punctures Γ is fixed so far, but in
general, one needs to let punctures move. Although the covering p topologically
depends only on nnc, the complex structure on Σ does depend on the positions
of the punctures in CP 1.
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Now we want to understand the picture for the base curves. We fix a lift u
given by (10) and get a holomorphic map

c := π ◦ u : Σ \ Γ̃ → CP 1;

see Figure 1. After extending c over Γ̃, we have a closed curve

(13) c : Σ → CP 1 such that c ◦ τ♭ = σ♭ ◦ c

in the view of (3) and (11). We call such a curve c a lifted base curve. Since
c is equivariant, one can pull back the action on the total space of L → CP 1

uniquely to the total spaces of c∗L → Σ in such a way that the bundle map
c∗L→ L, which covers the map c, is equivariant. We fix a generator τ of this
Zp-action on c∗L so that u corresponds to a meromorphic section u : Σ → c∗L
such that

(14) u ◦ τ♭ = τ ◦ u.

Moreover, the section u has poles/zeros at z0,±i ’s, z∞,±
i ’s and w±

i,j ’s. We note
that

c(z0,±i ) = (0 : 1) = 0 ∈ CP 1 = C ∪ {∞},

c(z∞,±
i ) = (1 : 0) = ∞ ∈ CP 1 = C ∪ {∞}

for all i, which explains the notation for z0/∞,±
i .

We want to understand the consequences of (14) in terms of the multiplici-
ties k0/∞,±

i . To this end, we need to understand the 〈τ〉-action on c∗L around
the fixed points of 〈τ♭〉-action on Σ. We note that, since we do not know much
about the global behavior of the map c, it is hard to describe 〈τ♭〉-action glob-
ally. But since c behaves as a monomial around any point, which is determined
by the ramification number at that point, a local description is still easy to get.

We first fix local trivializations of L and compute the 〈σ〉-action on these
trivializations.
• Near 0 = (0 : 1), we fix the local trivialization

(15) φ̃0 : C× C → L, (z, λ) 7→

(

λ
z

√

1 + |z|2
, λ

1
√

1 + |z|2

)

,

which covers the chart φ0 : C → CP 1, z 7→ (z : 1). Hence σ reads as

(16) σ0(z, λ) := (φ̃−1
0 σφ̃0)(z, λ) = (ei(1−q)θz, eiqθλ).

• Near ∞ = (1 : 0), we fix the local trivialization

(17) φ̃∞ : C× C → L, (z, λ) 7→

(

λ
1

√

1 + |z|2
, λ

z
√

1 + |z|2

)

,

which covers the chart φ∞ : C → CP 1, z 7→ (1 : z). Hence σ reads as

(18) σ∞(z, λ) := (φ̃−1
∞ σφ̃∞)(z, λ) = (ei(q−1)θz, eiθλ).

We recall that Γ̃nc is the fixed point set of the G action on Σ. So, using the
above trivializations, we may determine the local behavior of an equivariant
meromorphic section of c∗L near Γ̃nc.
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• Around z0,±j , we take holomorphic coordinates on Σ centered at z0,±j so
that c(z) = zr for some r, and we trivialize c∗L above this coordinate
neighborhood using (15). Locally, τ♭ = eimθ for some 0 < m < p. By (13)
and (16), we have

c(τ♭(z)) = σ♭c(z) =⇒ eimrθzr = ei(1−q)θzr =⇒ m ≡ (1− q)r−1.

Hence, by (16), τ reads locally as

τ(z, λ) = (eimθz, eiqθλ).

For a local section z 7→ (z, f(z)) of c∗L to be equivariant, it has to satisfy

f(eimθz) = eiqθf(z).

Writing the meromorphic section f as f(z) =
∑

k akz
k around z0,±j , we get

∑

k

ake
imkθzk =

∑

k

ake
iqθzk,

and we note that

ak 6= 0 ⇐⇒ mk ≡ q ⇐⇒ k ≡ qm−1 ⇐⇒ k ≡ rq(1 − q)−1.

• Around z∞,±
j , similarly, we have c(z) = zr for some r, and we put τ♭ = eimθ

for some 0 < m < p. By the equivariance of c and (18), we have

c(τ♭(z)) = σ♭c(z) =⇒ eimrθzr = ei(q−1)θzr =⇒ m ≡ (q − 1)r−1

and locally
τ(z, λ) = (eimθz, eiθλ).

Hence, for an equivariant meromorphic section f =
∑

k akz
k, one gets

ak 6= 0 ⇐⇒ mk ≡ 1 ⇐⇒ k ≡ m−1 ⇐⇒ k ≡ r(q − 1)−1.

The above observations lead to the following lemma.

Lemma 2.7. Let u be a lift of u, and let c : Σ→CP 1 be the corresponding lifted
base curve. Let r0/∞,±

i denote the local degree of c at z0/∞,±
i ∈ Γ̃nc, and let

m0/∞,±
i denote the local representative of τ♭ at z0/∞,±

i , that is τ♭ = eim
0/∞,±
i θ

near z0/∞,±
i . Then we have the following relations.

(i) For the positive punctures z0/∞,+
i , we have

• m0,+
i ≡ (1− q)(r0,+i )−1 and k0,+i ≡ r0,+i (1− v)−1,

• m∞,+
i ≡ (q − 1)(r∞,+

i )−1 and k∞,+
i ≡ r∞,+

i (1− q)−1.
(ii) for the negative punctures z0/∞,−

i , we have
• m0,−

i ≡ (1− q)(r0,−i )−1 and k0,−i ≡ r0,−i (v − 1)−1,
• m∞,−

i ≡ (q − 1)(r∞,−
i )−1 and k∞,−

i ≡ r∞,−
i (q − 1)−1.

Proof. As a meromorphic section of c∗L, u satisfies u ◦ τ♭ = τ ◦ u. We write u
locally as (z, f(z)) so that f has poles at z0,+i /z∞,+

i of order k0,+i /k∞,+
i and

has zeros at z0,−i /z∞,−
i of order k0,−i /k∞,−

i . Hence, at any z0,+i or z∞,+
i , the

Laurent expansions terminates at degrees−k0,+i and −k∞,+
j respectively, while

at any z0,−i and z∞,−
j at degrees k0,−i and −k∞,−

j respectively. Making these
adjustments in above local descriptions, we get the required relations. �
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Remark 2.8. We note that the relations in the above lemma depend only on
the multiplicities of non-contractible ends of u. Hence, given a moduli space
of curves (parametrized or unparametrized) with fixed non-contractible ends,
the multiplicities of these ends determine, in mod p, local degrees of lifted base
curves at fixed points of τ♭ on Σ and the behavior of τ♭ around these fixed
points.

We point out two immediate necessary conditions for the existence of u in
terms of the multiplicities of its asymptotic ends.

Lemma 2.9. Given u as with asymptotics (a1), (a2) and (a3), one has

−d =

n−

0
∑

i=1

k0,−i +

n−
∞

∑

i=1

k∞,−
i + p

n−
c

∑

i=1

k−i −

n+
0

∑

i=1

k0,+i −

n+
∞

∑

i=1

k∞,+
i − p

n+
c

∑

i=1

k+i ,

where d is the degree of c.

Proof. Let u be a lift of u as in (10). Then it has the asymptotics (la1)–
(la3). Viewing u as a meromorphic section of the bundle c∗L leads to the
desired equation since the left-hand side is the degree of the bundle c∗L and
the right-hand side is the degree of the divisor of the section u. �

Lemma 2.10. Given u as with asymptotics (a1), (a2) and (a3), one has

n−

0
∑

i=1

k0,−i + q

n−
∞

∑

i=1

k∞,−
i −

n+
0

∑

i=1

k0,+i − q

n+
∞

∑

i=1

k∞,+
i ≡ 0.

Proof. Since u is a rational curve, the sum of the homotopy classes of positive
ends is equal to the sum of the homotopy classes of negative ends. Writing all
homotopy classes in terms of [γ0] leads to the above equation since [γ∞] = q[γ0]
in π1. �

We now have a closer look at the singular base curve

c := π ◦ u : CP 1 \ Γ → CP 1,

where π : R×L(p, q)→CP 1 is the projection along the Reeb orbits. Using the
extension of c, we get the orbicurve c : CP 1 → CP 1. We remove singularities
{0,∞} ⊂ CP 1 and consider the map

(19) c : CP 1 \ P → CP 1 \ {0,∞}, P := c−1({0,∞}),

which is a holomorphic branched covering. One can biholomorphically identify
CP 1 \ {0,∞} with C∗, and c can be viewed as a holomorphic branched covering
of C∗. Extending over P , we get a holomorphic branched covering

(20) ĉ : CP 1 → CP 1,

which we call the smoothened base curve of u. We note that P = ĉ−1({0,∞})

and P is in general larger than Γnc. We put P̃ := c−1({0,∞}) = p−1(P ) ⊂ Σ.
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Lemma 2.11. The degrees of the maps (19), (20) and (13) coincide.

Proof. It is clear that degrees of c and ĉ coincide. The last part of the statement
follows since c ◦ p = p♭ ◦ c and both p and p♭ are p : 1 coverings. �

Lemma 2.12. The ramification profiles of ĉ and c satisfy the following.
(i) For all i, the ramification number of ĉ at z0/∞,±

i ∈ Γnc coincides with the

ramification number r0/∞,±
i of c at z0/∞,±

i ∈ Γ̃nc (see Lemma 2.7).

(ii) |P̃ \ Γ̃nc| = p|P \ Γnc|.
(iii) For any z ∈ P \ Γnc, the ramification numbers of c at p preimages of z are

all the same.
(iv) For any z ∈ P \ Γnc, the ramification number of ĉ at z is p times the

ramification number of c at any preimage of z.

Proof. We note that the ramification number of ĉ at any z ∈ P corresponds to
the local covering number of (19) around z. Hence the remaining statements
follow from the local description of the equation c ◦ p = p♭ ◦ c. �

2.13. Equivariant curves: The sufficient conditions for the existence.

In this section, we discuss the sufficient conditions for the existence of equi-
variant meromorphic sections of L. It turns out that, when nnc = 2, due to
Lemma 2.3 the necessary conditions given above are also sufficient. But if
nnc ≥ 3, then there may be an a priori obstruction due to the genus of Σ. We
postpone the treatment of the first case to the next section, and concerning
the second case, we discuss the problem for nnc = 3 for the sake of presen-
tation. We further assume nc = 0 since contractible ends do not essentially
change the problem and we can omit the ambiguity between parametrized or
unparametrized curves; see Remark 2.1. At the end of the section, we point
out the necessary modifications for more general types of curves.

Let M denote the moduli space of Jα-holomorphic curves

(21) u : CP 1 \ Γ → L∗, Γ = {z0,+, z∞,+, z0,−}

with the asymptotics
• u(z0,+) = (+∞, k0,+γ0),
• u(z∞,+) = (+∞, k∞,+γ∞),
• u(z0,−) = (−∞, k0,−γ0),
where the necessary conditions given by Lemma 2.10 and Lemma 2.9 are sat-
isfied, namely

d := k0,+ + k∞,+ − k0,− > 0, k0,+ + qk∞,+ − k0,− ≡ 0.

Now, given the above data, we define CM to be the moduli space of curves

ĉ : CP 1 → CP 1; ĉ(z0,+) = 0, ĉ(z∞,+) = ∞, ĉ(z0,−) = 0

such that
(cm1) the degree of ĉ is d,
(cm2) the ramification numbers of ĉ satisfies

• at z0,+, r0,+ ≡ k0,+(1− v),
• at z0,−, r0,− ≡ k0,−(v − 1),
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Σ \ P̃ CP 1 \ {0,∞}

CP 1 \ c−1({0,∞}) CP 1 \ {0,∞}

c

p p♭

c

Figure 3. Lifting diagram for c.

• at z∞,+, r∞,+ ≡ k∞,+(1− q),
• for any z ∈ P \ Γ, the ramification number at z is divisible by p,

where P := ĉ−1{0,∞}.

Given the moduli problem M, we fix the covering (Σ, Γ̃, p), which exists even
if M is empty; see Remark 2.5. We note that, for each u ∈ M, there is a
corresponding smoothened base curve ĉ, and due to Lemmas 2.7, 2.2 and 2.12,
we know that ĉ ∈ CM. Now the question is to determine which curves in CM
provide a curve in M. Hence we need to reverse the procedure given in the
previous section. Now, given ĉ∈ CM, it corresponds to a non-singular branched
covering

c : CP 1 \ P → CP 1 \ {0,∞},

where P := c−1({0,∞}). We first need to construct the lifted base curve c.
Namely, we should check the diagram in Figure 3 is valid.

Lemma 2.14. For any ĉ ∈ CM, the corresponding (non-singular) branched
covering c lifts through

p : Σ \ P̃ → CP 1 \ P,

where P̃ := p−1(P ).

Proof. As in the previous section, we fix z ∈ CP 1 \ P and put w := c(z). We
have the induced homomorphism

c∗ : π1(CP
1 \ P, z) → π1(CP 1 \ {0,∞}, w) ∼= Z,

where we fix the generator η := {weit : t ∈ [0, θ]} for the latter group. The
covering

p♭ : CP
1 \ {0,∞} → CP 1 \ {0,∞}

induces the monomorphism Z → Z, 1 → p on the fundamental group, where
we fix a generator of the former group as a lift of pη. Let

ρ : Z → Z/ im(p♭)∗ = coker(p♭)∗ ∼= Zp = 〈[η]〉

denote the quotient homomorphism. Then c ◦ p lifts if and only if

(22) ρ ◦ c∗ ◦ p∗ : π1(Σ \ P̃ , z̃) → Zp
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is trivial for some z̃ ∈ p−1(z). We note that, by the last statement of (cm2)
and the fact that Zp is abelian, we have the following commutative diagram:

π1(CP
1 \ P, z) π1(CP

1 \ Γ, z)

Zp,

ı∗

ρ◦c∗
ρ◦c∗

where the upper horizontal arrow is induced by the inclusion ı : CP 1 \ P →֒
CP 1 \ Γ. Combining this with the with the commutative diagram induced by

Σ \ P̃ Σ \ Γ̃

CP 1 \ P CP 1 \ Γ,

ı̃

p p

ı

we conclude that if

(23) ρ ◦ c∗ ◦ p∗ : π1(Σ \ Γ̃, z̃) → Zp

vanishes, then (22) vanishes as well. Once we fix an isomorphism ϕ : π1(L
∗)→

coker (p♭)∗ ∼=Zp such that ϕ([γ0]) = [η], then it is not hard to see that, by (cm2),
ρ ◦ c∗ coincides with the homomorphism π1(CP

1 \ Γ, z) → π1(L
∗) determined

by M (see Remark 2.5) up to multiplication by (1− q). But the kernel of the
latter homomorphism is precisely the image of p∗. Hence (23) is trivial. �

Remark 2.15. As in Remark 2.4, there are p lifts of given c. Once we fix
a lift c, the other lifts are given by σk

♭ ◦ c, k = 1, . . . , p− 1.

Given ĉ ∈ CM, we consider the extension c : Σ → CP 1 of a lift of u such
that c ◦ τ♭ = σ♭ ◦ c, where τ♭ is a fixed generator of the group G acting on Σ.
The question is now to determine whether there is a meromorphic section
u : Σ → c∗L such that u ◦ τ♭ = τ ◦ u, where τ is the corresponding generator
of the Zp action on c∗L and zeros and poles of u are given by the moduli
problem M. Namely, we ask for a pole at z0,+ of order k0,+, a pole at z∞,+

of order k∞,+ and a zero at z0,− of order k0,− (as in the previous section, zi,±

denotes the punctures in Γ̃nc corresponding to punctures in Γnc).

Lemma 2.16. Assume that there is meromorphic section u of c∗L with zeros
and poles determined by M, and c is equivariant. Then u is also equivariant.

Proof. Given fixed zeros and poles, one has a C∗-family of meromorphic sec-
tions given by λu, λ ∈ C∗. Note that, since the scaling along fibers commutes
with τ -action, if there is some equivariant meromorphic section u, then all
meromorphic sections of the form λu are equivariant.

Let u be a meromorphic section of c∗L with fixed zeros and poles, where
c is equivariant. Then u′ := τ−1 ◦ u ◦ τ♭ is also a meromorphic section of c∗L
having same zeros and poles with u. Hence there is some λ ∈ C∗ such that
u′ = λu. In fact, λ ∈ S1 since all the actions we have are unitary. Both u and u′
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have a pole at z∞,+ of order k∞,0. We know that the ramification number of c
at z∞,+ coincides with ĉ and satisfies

(24) k∞,+ ≡ r∞,+(1 − q)−1

by the definition of CM. We take the local trivialization of c∗L around z∞,+ ∈Σ
as in the previous section (see Lemma 2.7) so that, around z∞,+, we have
τ(z, λ) = (eimθz, eiθλ) and τ♭(z) = eimθz, where

(25) r∞,+m ≡ (q − 1).

With respect to the above trivialization, we write u(z) = (z, f(z)) and u′(z) =
(z, f ′(z)), where f and f ′ are meromorphic functions. With polar coordinates
z = ρeit, we have

lim
ρ→0

f(ρeit)

|f(ρeit)|
= e−ik∞,+t, lim

ρ→0

f ′(ρeit)

|f ′(ρeit)|
= λe−ik∞,+t.

On the other hand, definition of u′ gives

lim
ρ→0

f ′(ρeit)

|f ′(ρeit)|
= lim

ρ→0

τ−1 ◦ f(τ♭(ρe
it))

|τ−1 ◦ f(τ♭(ρeit))|
= lim

ρ→0

e−iθf(ρeit+imθ)

|f(ρeit+imθ)|

= e−iθ(e−ik∞,+(t+mθ)) = e−ik∞,+te−i(k∞,+m+1)θ = e−ik∞,+t,

where the last equation follows from (24) and (25). Hence λ= 1, and therefore,
τ ◦ u = u ◦ τ♭. �

We want to understand the moduli space CM and possible obstructions on
the existence of meromorphic sections over the lifts of singular curves, which
correspond to the elements of CM. To this end, we recall some basic notions
in the theory of Riemann surfaces; see [14] for details.

Given a closed Riemann surface Σ with genus g and [c] ∈ H1(X,Z), there
is a functional on the (vector) space Ω1(Σ) consisting of holomorphic 1-forms
on Σ,

∫

[c]

: Ω1(Σ) → C, ω 7→

∫

c

ω,

which is well-defined since any holomorphic 1-form on Σ is necessarily closed.
An element of Ω1(Σ)∗ is called a period if it is of the above form. The Jacobian
of Σ is the quotient space

J(Σ) := Ω1(Σ)∗/Λ,

where Λ is the space of periods. It turns out that J(Σ) is isomorphic to the
complex torus of dimension g.

Let z0 be a point in Σ. We consider the map

A : Σ → Ω1(Σ)∗; A(z)(ω) :=

∫

γz

ω, ω ∈ Ω1(Σ),

where γz is some path connecting z0 to z. Although this map depends on γz ,
it descends to the so-called Abel map A : Σ → J(Σ) which is independent
of the choice of γz. Note that the Abel map naturally extends to a group
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homomorphism over the group Div(Σ) of divisors via A(
∑

nzz) :=
∑

nzA(z).
It turns out that, once restricted to the subgroup Div0(Σ)= kerdeg, where deg :
Div(Σ) → Z is the degree map, the Abel map is independent of the point z0.

Div0(Σ) has a special subgroup PDiv(Σ) consisting of principal divisors,
namely the divisors given by meromorphic functions. Given a meromorphic
function f on Σ, then its divisor is given by D(f) = D0(f)−D∞(f), where

D0(f) :=
∑

f(z)=0

oz(f)z, D∞(f) :=
∑

f(z)=∞

oz(f)z

and oz(f) > 0 stands for the order of zeros/poles. It turns out that the map

A : Div0(Σ) → J(Σ)

is surjective and its kernel is given by PDiv(Σ). Hence one gets the isomor-
phism

Pic(Σ) = Div0(Σ)/PDiv(Σ) ∼= J(Σ),

where the Picard group Pic(Σ) is the group of isomorphism classes of degree
zero line bundles over Σ. Moreover, if A([D]) = 0 for some [D] ∈ Pic(Σ), then
the divisor D defines the trivial bundle and we have the following consequence.
If D1 and D2 are two divisors, which define a line bundle of the same degree,
then these bundles are isomorphic if and only if A(D1 −D2) = 0, and this is
trivially the case if D1 −D2 = 0. We let Sn(X) denote the n-fold symmetric
product of the set X .

Setting the ground, we first give a description of CM, which is adopted
from [15].

Lemma 2.17. CM is biholomorphic to
(

(Sn0(CP 1 \ {z∞,+})×Sn∞(CP 1 \ {z0,−, z0,+})) \∆
)

× C∗,

where ∆ is the subset of pairs (D0,D∞) in Sn0(CP 1 \ {z∞,+})×Sn∞(CP 1 \
{z0,−, z0,+}) with at least one common point and

n0 :=
d− r0,+ − r0,−

p
, n∞ :=

d− r∞,+

p
.

Proof. The moduli space CM itself can be seen as the space of meromorphic
functions on CP 1, which has a particular distribution of its zeros and poles. We
note that, in this case, the Abel map vanishes identically, that is, any degree
zero divisor defines a C∗-family of meromorphic functions. Hence it is enough
to characterize the set of divisors satisfying conditions (cm1) and (cm1).

Condition (cm1) tells us that deg(D0(ĉ)) = deg(D∞(ĉ)) = d. Namely, we
have complex d-dimensional freedom to choose the zeros or poles. The condi-
tions given by (cm2) translate as follows. We have two zeros z0,−, z0,+ and
a pole z∞,+ whose orders, which correspond to the ramification numbers, are
fixed in mod p. We fix

r0,+, r∞,−, r0,+ ∈ {1, . . . , p− 1}
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such that

r0,+ ≡ r0,+, r∞,+ ≡ r∞,+, r0,− ≡ r0,−.

Now we can perturb away (r0,+ − r0,+) zeros at z0,+, but any zero different
than z0,± has to have order divisible by p. The same reasoning applies to z0,+

and z∞,+. Hence, for zeros, we have (d − r0,+ − r0,−)/p choices among the
points in CP 1 \ {z∞,+}, and for poles, we have (d − r∞,+)/p choices among
the points in CP 1 \ {z0,+, z0,−}. We note that d ≡ r0,+ + r0,− ≡ r∞,+. After
taking suitable symmetric products of our domain and removing collections of
points which do not result in divisors, we get the above description. �

We note that

Sn0(CP 1 \ {z∞,+})×Sn∞(CP 1 \ {z0,−, z0,+})

is a complex manifold and ∆ is an irreducible subvariety of (complex) codi-
mension one [15]. In particular, the dimension of CM is given by

dimR CM = 2 + 2n0 + 2n∞ = 2 +
2

p
(2d− r0,+ − r0,− − r∞,+).

Now the question is that, given ĉ ∈ CM, does c∗L admit a meromorphic
section with zeros and poles determined byM for some lift c of corresponding c.
It turns out that, by the very nature of the equivariant picture, there is no
obstruction to the existence of such meromorphic sections.

Proposition 2.18. Given ĉ ∈ CM, there exists a meromorphic section of c∗L,
which leads to a punctured curve in M, where c is a lift of the singular curve
c corresponding to ĉ.

Proof. We define the divisor DM of Σ by

DM = k0,−z0,− − k0,+z0,+ − k∞,+z∞,+.

We note that the isomorphism class of the line bundle L is determined by the
isomorphism class of divisors on CP 1, whose degree is −1. We fix a divisor in
this class of the form

DL := l · 0− (l + 1) · ∞, l > 0,

where l is to be chosen. Since the phase shift on CM is not relevant for our
problem, we ignore it in what follows. The lifting scheme above provides the
following continuous embedding:

k : CM → Div0(Σ), ĉ 7→ DM − c∗DL,

where c is (up to phase shift) the unique lift of ĉ corresponding to ĉ satisfying

c ◦ τ♭ = σ♭ ◦ c

and c∗DL is the pullback divisor. We note that deg(DM) = deg(c∗DL) = d
so that the map is well-defined. Now we want to show that there exists some
l ≥ 0 such that A ◦ k(ĉ) = 0 for a curve ĉ satisfying

D0(ĉ) = r0,+z0,+ + r0,−z0,−, D∞(ĉ) = r∞,+z∞,+.
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In this case,

DM − c∗DL = (k0,− − lr0,−)z0,− + (−k0,+ − lr0,+)z0,+

+
(

(l + 1)r∞,+ − k∞,+
)

z∞,+.

First we want to find l such that all the coefficients above are zero in mod p,
and by (cm2), we see that this holds for l ≡ (1 − v)−1. We choose some l > 0
such that l ≡ (1 − v)−1. Then

DM − c∗DL = p(m0,−z0,− +m0,+z0,+ +m∞,+z∞,+)

for some m0/∞,± ∈ Z. We note that the divisor

m0,−z0,− +m0,+z0,+ +m∞,+z∞,+

descends to a divisor on CP 1, where z0/∞,± stands for the images of z0/∞,± un-
der p. Moreover, this divisor has degree 0. Then we know that there is a mero-
morphic function, say f on CP 1 which realizes this divisor. Then DM − c∗DL

is precisely the divisor for the meromorphic function f ◦ p on Σ. Hence we
have A(DM − c∗DL) = 0. �

Corollary 2.19. We have M ∼= CM × C∗, and in particular,

dimR M = 4 +
2

p
(2d− r0,+ − r0,− − r∞,+).

Remark 2.20. Note that, given the moduli problem (21), one reads of the
degree d and the quantities r0/∞,± from the multiplicities and immediately
gets the dimension of the moduli space. Then one can check the Fredholm reg-
ularity of Jα-holomorphic curves in M immediately by comparing the above
dimension with the virtual dimension of the moduli space; see Section 3.6 for
the definitions. Such a comparison will be carried out for a pair of pants in
Section 3.6, and the arguments used for the pair of pants immediately gener-
alizes to other configurations. In fact, we claim that moduli spaces of rational
Jα-holomorphic curves are cut out transversally.

3. Computations: Pair of pants, cylinders and others

As we saw above, if nnc = 2, then one has g = 0. In this case, the covering p

can be studied more explicitly and one can study all possible lifted base curves,
which lead to the different nonempty components of the moduli space. In this
section, we study the pair of pants with two positive non-contractible ends in
detail and comment on other kinds of moduli problems with nnc = 2 as well.

After determining the nonempty moduli spaces of a pair of pants, we com-
pute the dimensions of these moduli spaces in terms of the dimensions of
equivariant moduli spaces in the lift (see Remark 2.20) and compare them
with the virtual dimension of these moduli spaces given by the well-known
index formula (31). The observation is that the dimension of the equivariant
moduli space coincides with the index of the problem, and this establishes the
regularity of the almost complex structure Jα; see Remark 2.20.
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3.1. The moduli space of pair of pants. We consider the following moduli
problem M of Jα-holomorphic curves:

(26) u : CP 1 \ {0, 1,∞} → R× L(p, q)

with asymptotics

(27) u(0) = (+∞, k0γ0), u(∞) = (+∞, k∞γ∞), u(1) ∈ {−∞}× Sk,

where k0, k∞ 6≡ 0 and Sk denotes the orbit space of contractible orbits of action
2πk.

In order to work with simpler terms, we choose a model for the domain of
(26) as follows. We consider the G ∼= Zp-action on CP 1 given by

τ♭((z : 1)) = (eimθz : 1),

wherem ∈ {1, . . . , p− 1} and θ= 2π/p. The quotient map leads to the covering
map

p : CP 1 \ {0, 1, w1, . . . , wp−1,∞} → CP 1 \ {0, 1,∞}.

We identify the quotient space above with the our domain CP 1 \ {0, 1,∞}.
Now we need to determine lifted base curves, namely the equivariant holo-

morphic maps c : CP 1 → CP 1, where the 〈σ♭〉-action on the range is given by

σ♭((z1 : z2)) = (ei(1−q)θz1 : z2).

Once we parametrize the domain and the range via z 7→ (z : 1), any nontrivial
holomorphic map c is given by c(z) = λg(z)/h(z), where λ ∈ C∗ and g and
h are monic polynomials without a common root. Imposing the equivariance
leads to the following characterization.

Lemma 3.2. A nontrivial holomorphic map c satisfies c ◦ τ♭ = σ♭ ◦ c if and
only if it has the following form:

c(z) = λzrg(z)/h(z),

where mr ≡ 1− q and

g(z) =

n
∏

s=1

(zp − as)
ks , h(z) =

m
∏

t=1

(zp − bt)
lt

such that λ ∈ C∗, r ∈ {∓1,∓2, . . . ,∓(p− 1)}, ks, lt ∈ N and as, bt ∈ C.

Proof. It is clear that such a map is equivariant. For the other direction, one
sees that if c admits w ∈CP 1 \ {0,∞} as a zero or pole, then it must admit p− 1
distinct zeros/poles which are given by the orbit of w. Hence these polynomials
have to factorize through terms like (zp − as)

as and (zp − bt)
bt , where as and

bt are any nonzero complex numbers. The only thing that requires attention
then is the case where we have zero or infinity as zero or pole. Checking the
equivariance, one gets the relation above between m and r. �
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Now we restate the equivariance conditions given by Lemma 2.7 in this
special case. By (27), we have c(0) = 0 and c(∞) = ∞, and by (15) and (17),
an equivariant section u locally looks like (z, f(z)), where

f(eimθz) = eiqθ around 0,

f(e−imθz) = eiθ around ∞.

Now, if f(z) =
∑

anz
n around 0, we have

an 6= 0 =⇒ n ≡ m−1q.

Similarly, if f(z) =
∑

bnz
n around ∞, we have

bn 6= 0 =⇒ n ≡ −m−1.

Since we require that u has poles of order k0 at 0 and of order k∞ at ∞, we
get −k0 ≡ m−1q and −k∞ ≡ −m−1. This means that

(28) k0 ≡ −m−1q ≡ rq(q − 1)−1 and k∞ ≡ m−1 ≡ r(1 − q)−1.

Since c(0) = 0 and c(∞) =∞, we have r > 0 and r + p
∑

ks >
∑

lt so that the
degree of c is given by deg(c) = r + p

∑

ks. We note that

−k0 − k∞ ≡ m−1q −m−1 ≡ −m−1(1 − q) ≡ −r ≡ − deg(c) ≡ deg(c∗L).

We also require that u has p zeros of order k. Hence, for suitable choice of k,
we have

(29) pk − k0 − k∞ = −r − p
∑

ks = deg(c∗L)

so that the divisor of u has the correct degree. Therefore, in the lift, we have
a curve with two positive ends asymptotic to k0γ0 and k∞γ∞ and p negative
ends with multiplicity k. Passing to the quotient, we get a pair of pants in the
moduli space we look for.

Remark 3.3. We remark that, in terms of Lemma 2.7, we have m0,+ =m and
m∞,+ = −m. Moreover, r > 0 implies that the ramification numbers r0/∞,+

given in Lemma 2.7 coincide with r in mod p and (28) coincides with the
conditions given in Lemma 2.7.

Remark 3.4. In the previous section, we constructed the covering (Σ, Γ̃, p)
together with a fixed generator τ♭ for the Deck group so that, given the moduli
space with fixed asymptotics, the equivariant curves are given by u ◦ τ♭ =
σ ◦ u. In the above treatment, the representation m of τ♭ determines r and
hence the homotopy classes of positive ends. Hence different choices of τ♭,
equivalently r, lead to different homotopy classes of non-contractible ends and
therefore different components of the moduli space.

We want to compute the dimension of the moduli space M using the above
description. We note that the formula given in Corollary 2.19 immediately
applies here. Nevertheless, we repeat this computation by directly looking at
the lifted base curves.
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Let c be a curve as in Lemma 3.2. As a lifted base curve, c contributes to
the dimension of the moduli spaces in only two ways. One is the freedom of
perturbing the roots of g and h, and the other is perturbing the constant λ.
In fact, if one moves the “roots” of zr, then the resulting nonzero root has to
appear p times, but this is not possible since this makes the degree of the map
jump. The contribution of moving “roots” of g and h is a little delicate. Given
a term like (zr − as)

ks in the factorizations of these polynomials, one has to
move roots of as simultaneously to keep invariance, that is, we only have the
freedom of moving as’s and bt’s. More precisely, if d is the degree of a given
base curve c, then the contribution of the base curve to the dimension of the
moduli space is 4⌊d/p⌋+ 2.

For the problem M given by (26) and (27), the lifted base curves satisfy
r > 0 and r + p

∑

ks >
∑

lt so that the degree of c is given by r + p
∑

ks
and therefore ⌊d/p⌋ =

∑

ks. Hence, for fixed a > 0 and dI := ⌊d/p⌋ ≥ 0, the
dimension of M is given by (compare to Corollary 2.19)

(30) 4 + 4dI ,

where we add 2-dimensional freedom of rescaling sections.

Remark 3.5 (Components of the moduli space). The description given above
makes it easy to determine the components of the moduli space of pants with
two non-contractible ends in general. For the moduli space of curves given by
(26) and (27), when dI and the multiplicity of the contractible end are fixed, we
have p− 1 components, corresponding to each value of 0 < r < p and therefore
to each nontrivial homotopy class of ends. We note that the minimal dimension
for the moduli space of pair of pants is 4, and it corresponds to the case dI = 0.
If dI = 0, then each component may be identified with C∗ × C∗, where one
factor stands for the freedom of perturbing λ and the other corresponds to the
rescaling of the meromorphic section.

We note that, once dI is fixed, one may increase multiplicities of all ends
simultaneously in such a way that the degree condition is satisfied and the
dimension is unchanged. Hence, once we fix the dimension, the moduli space of
the pair of pants, whose asymptotics at punctures 0,∞ are fixed geometrically
as above, can be written as

⋃

dI≥0

⋃

k≥0

p−1
⋃

a=1

MdI ,k,a, dimMdI ,k,a = 4 + 4dI ,

where k is the multiplicity of the contractible end.

3.6. The index of pair of pants. In the previous section, we studied the
moduli space of a pair of pants with a hands-on approach, and at the end,
we endow the moduli space with a smooth atlas so that it gets the structure
of a smooth manifold with a prescribed dimension. Since we later want to
perturb the almost complex structure Jα, we need to establish that the moduli
space of a Jα-holomorphic pair of pants is cut out transversally as the zero set
of the associated Cauchy–Riemann operator (7).
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To this end, we first recall the generalities on the virtual dimension of mod-
uli spaces and sufficient conditions for endowing them with smooth structure
without going into functional analytic details. Consider a general moduli space
M given by (6), where (M, ξ = kerα) is a 3-dimensional Morse–Bott contact
manifold. As in the non-degenerate case, the virtual dimension of a moduli
space is determined by the Conley–Zehnder indices of the asymptotic ends,
where the Conley–Zehnder index is suitably generalized to the Morse–Bott
situation. We consider the generalization given in [17], which is axiomatically
described as follows in dimension two [8].

Let Σ(1) be the space of paths ϕ : [0,1]→ Sp(1) with ϕ(0) = I, where Sp(1)
is the space of 2-by-2 symplectic matrices and I is the identity matrix. The
Conley–Zehnder index is a unique map µ : Σ(1) → 1

2Z characterized by the
following axioms.
(CZ1) µ is constant on homotopies ϕs ∈ Σ(1) for which dimker(ϕs(1)− I) is

constant.
(CZ2) If ϕ ∈ Σ(1) and ψ : R/Z → Sp(1) is a loop, then

µ(ψϕ) = µ(ϕ) + 2m(ψ),

where m(ψ) is the Maslov index of ψ.
(CZ3) If ϕ ∈ Σ(1) and ϕ−1 ∈ Σ(1) is the corresponding path of inverses, then

µ(ϕ) + µ(ϕ−1) = 0.

(CZ4) µ(eiπt) = 1 and if ϕ(t) =
[

1 −t
0 1

]

, then µ(ϕ) = 1
2 .

Recall that, for any x ∈ M and t ∈ R, the linearization of the Reeb flow φt
leads to a symplectic map

dφt(x) : (ξx, (dα)x) → (ξφt(x), (dα)φt(x)).

Let γ be a closed Reeb orbit with period T > 0. We fix a symplectic trivial-
ization

Φ : S1 × R2 → γ(T · )∗ξ,

where S1 = R/Z. Then the Conley–Zehnder index of the orbit γ with respect
to Φ is given by

µΦ(γ) := µ
(

{t 7→ Φ−1(t) ◦ dφTt(γ̃(0)) ◦ Φ(0)}
)

.

Let C = [Σ, j,Γ, u] ∈ M. We pick a collection {Φz±

i
} of trivializations for the

asymptotic ends {γ±i }. Then we consider the complex line bundle (u∗ξ, J) →
Σ \ Γ. Let U ⊂ Σ be an open neighborhood of the puncture set Γ, consisting
of disks centered at each puncture. We endow each such disk with cylindrical
coordinates via

[0,+∞)× S1 → D, (s, t) 7→ e−2π(s+it),

and we extend {Φz} to a complex trivialization Φ : U × C → (u∗ξ, J)|U and
define the first Chern number of u relative to Φ to be the signed count

cΦ1 (u) := #s−1(0),
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where s is a generic section of u∗ξ such that Φ(s) = 1. Having all the ingredients
at hand, the Fredholm index of C = [Σ, j, Γ, u] ∈ M (or the index of C for
short) given in [1] reads as4

ind(C) = 2cΦ1 (u) +
∑

z+
i ∈Γ+

µΦ(γ+i )−
∑

z−

i ∈Γ−

µΦ(γ−i )(31)

+
1

2

∑

z±

i ∈Γ

dimS±
i +#Γ− χ(Σ).

We recall that ind(C) is precisely the index of the Fredholm operator asso-
ciated to the curve C so that, once this Fredholm operator is surjective, an
open neighborhood of C ∈ M is cut out transversally as the zero set of the
Cauchy–Riemann operator (7). Hence M gains a smooth structure (of an orb-
ifold in general) near C, and the kernel of the Fredholm operator defines the
tangent space TCM. In such a circumstance, we say that the J-holomorphic
curve C is (Fredholm) regular. We note that the Fredholm index is constant
on a component of the moduli space. In this sense, the Fredholm index is the
virtual dimension of a given component of the moduli space, which turns out
to be the actual dimension once the component is cut out transversally.

Now we want to compute the index given by (31) for any curve in the moduli
space M of a pair of pants given by (26) and (27). We note that this make
sense due to Remark 2.1. Our strategy is to utilize the lifting procedure here
as well.

We first fix “trivializations” of ξ0 and ξ. Using (1), we define a non-vanishing
section

s : S3 → C2; (z1, z2) 7→ (z2,−z1)

of ξ0 and get a global complex trivialization

(32) Φ0 : S3 × C → ξ0, ((z1, z2), λ) 7→ λs(z1, z2).

Note that, on ξ0, the standard almost complex structure J0 coincides with i.
As mentioned in the introduction, ξ → L(p, q) is nontrivial. Nevertheless, it
is convenient to fix a section of it which vanishes along a mild subset. We
construct such a section as a quotient of a section of ξ0 as follows. We define
a section

k(z1, z2) := f(z1, z2)s(z1, z2), f(z1, z2) := zq+1
1 + zv+1

2 .

An easy computation shows that the section k : S3 → ξ0 ⊂ TS3 is equivariant
in the sense that

k(σ(z1, z2)) = dσ(z1,z2)[k(z1, z2)],

where 〈dσ〉 is the induced action on TS3 for which ξ0 is invariant. We note
that k vanishes along a torus knot K ⊂ S3, which does not intersect with γ0

4Although we cite different sources for the Conley–Zehnder index and the Fredholm index,
the formulas we used are taken from [21]. This choice is made in order to avoid possible
inconsistencies due to the conventions used by other sources.
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or γ∞. It is not hard to see that K descends to a curve that is homologous to
(q + 1)[γ0] in L(p, q). We define another trivialization of ξ0 away from K,

(33) Φ : (S3 \K × C) → ξ0, ((z1, z2), λ) 7→ λk(z1, z2),

so that Φ induces a trivialization of ξ away from p(K) given by

Φ : (L(p, q) \ p(K))× C → ξ such that Φ ◦ (p× id) = dp ◦ Φ.

We use this trivialization along the orbits which are away from the vanishing
set p(K).

We first compute the Conley–Zehnder indices of the positive ends given
by (27). Due to the definition of Φ, instead of considering the flow of R along
k∞γ∞, we consider the flow of R0 along the lifted Reeb arc

[0, k∞θ] → S3, t 7→ (eit, 0); θ = 2π/p,

together with the trivialization Φ. The resulting symplectic arc ϕ∞(t) is given
by

ϕ∞(t) = Φ−1(eitk
∞θ, 0) ◦ dφ(tk∞θ)(1, 0) ◦ Φ(1, 0).

Viewing ϕ∞(t) ∈ C, we compute

ϕ∞(t)Φ(eitk
∞θ, 0) = dφ(tk∞θ)(1, 0)[f(1, 0)(0,−1)],

ϕ∞(t)f(eitk
∞θ, 0)s(eitk

∞

θ, 0) = (0,−eitk
∞θ),

ϕ∞(t)eit(q+1)k∞θ(0,−e−itk∞

θ) = (0,−eitk
∞θ)

and get

ϕ∞(t) = eit2π
k∞(1−q)

p .

A similar computation for k0γ0 leads to the arc

ϕ0(t) = eit2π
k0(1−v)

p .

We note that the orbits kγ0/∞ are non-degenerate if and only if k 6≡ 0 since
v,q > 1. Hence we can compute the Conley–Zehnder indices of k0/∞γ0/∞ using
a standard computational recipe; see [8]. We note that

det
R

(I − ϕ0/∞(1)) > 0,

that is, ϕ0/∞(1) and −I = eiπ are in the same component of non-degenerate
symplectic matrices. We connect

ϕ∞(1) = ei2π
k∞(1−q)

p to −I = ei2π(⌊
k∞(1−q)

p ⌋+ 1
2 )

by a rotation that does not hit the Maslov cycle. Squaring the resulting loop
and computing the degree leads to

µΦ(k∞γ∞) = 2
⌊k∞(1− q)

p

⌋

+ 1.

A similar argument gives

µΦ(k0γ0) = 2
⌊k∞(1− v)

p

⌋

+ 1.
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Lemma 3.7. The Fredholm index of a pair of pants given by (26) and (27) is
given by

(34) ind(u) = µΦ(k∞γ∞) + µΦ(k0γ0) +
2

p
(d+ k0v + k∞q)− 2k + 2,

where d = k0 + k∞ − pk.

Proof. Let u be given by (26) and (27). We can safely assume that u(1) =
(−∞, kγ) and γ is away from the vanishing set of Φ. Then, by (31), the index
of u is given by

(35) ind(u) = 2cΦ1 (u) + µΦ(k0γ0) + µΦ(k∞γ∞)− µΦ(kγ) + 2.

Now, instead of directly computing the unknown terms, we utilize the lifting
procedure again. Let u be a lift of u. We consider u as a representative of
an unparametrized curve C and compute the index via formula (31) and the
trivialization Φ given by (33). We get

ind(C) = 2cΦ1 (u) + µΦ(k0γ0) + µΦ(k∞γ∞)

−

p
∑

i=1

µΦ(kγi) +
1

2

p+2
∑

i=1

dimSi + (p+ 2)− 2

= 2cΦ1 (u) + µΦ(k0γ0) + µΦ(k∞γ∞)−

p
∑

i=1

µΦ(kγi) + 2p+ 2,

where γ1, . . . , γp are p-distinct lifts of the simple contractible orbit γ. Due
to the equivariance, we have µΦ(kγi) = µΦ(kγ) for all i and cΦ1 (u) = cΦ1 (u)/p.
Hence we have

(36) 2cΦ1 (u)− µΦ(kγ) =
1

p

(

ind(C)− µΦ(k0γ0)− µΦ(k∞γ∞)− 2p− 2
)

.

Now we compute the right-hand side of the above equation. A computation
similar to the one carried out for k0/∞γ0/∞ leads to the symplectic paths

ψ∞(t) = eit2πk
∞(1−q), ψ0(t) = eit2πk

0(1−v)

for k∞γ∞ and k0γ0 respectively. We first observe that the constant path
I(t) = I leads to

µ(I) =
1

2

(

µ(I) + µ(I)
)

=
1

2

(

µ(I) + µ(I−1)
)

= 0

by (CZ3). For a general symplectic path of the form ϕ= eitk2π , k ∈ Z, viewing
the inverse path as a loop and using (CZ2), we get

0 = µ(I) = µ(ϕ−1ϕ) = µ(ϕ) + 2m(ϕ−1) = µ(φ)− 2k =⇒ µ(ϕ) = 2k.

Hence we get

µΦ(k∞γ∞) = 2k∞(1 − q), µΦ(k0γ0) = 2k0(1− v).
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Now, for the term ind(C), we use the trivialization Φ0 given by (32). Note

that, since it is induced by a non-vanishing section, we have cΦ0
1 (u) = 0. For

any closed orbit

kγ(t) = (eitz1, e
itz2), t ∈ [0, 2πk],

the associated symplectic path reads as

ϕ(t)Φ0(e
itk2πz1, e

itk2πz2) = dφ(tk2π)(z1, z2)[(z2,−z1)],

ϕ(t)(e−itk2πz1, e
−itk2πz2) = (eitk2πz2, e

itk2π − z1),

ϕ(t) = eit(2k)2π .

Hence we get µΦ0(kγ) = 4k, and therefore,

ind(C) = 2cΦ0
1 (u) + µΦ0(k0γ0) + µΦ0(k∞γ∞)

−

p
∑

i=1

µΦ0(kγi) +
1

2

p+2
∑

i=1

Si + (p+ 2)− 2

= 4k0 + 4k∞ − p4k + 2p+ 2.

Then (36) leads to

2cΦ1 (u)− µΦ(kγ) =
1

p

(

4k0 + 4k∞ − p4k − 2k0(1− v)− 2k∞(1− q)
)

=
2

p
(d+ k0v + k∞q)− 2k.

Substituting the above formula in (35) leads to formula (34). �

Lemma 3.8. For any u given by (26) and (27), we have

ind(u) = 4 + 4dI ,

where dI = ⌊d/p⌋.

Proof. We write

k∞(1− q) = l∞ + n∞p, k0(1− v) = l0 + n0p, 0 < l∞, l0 < p,

so that

µ(k∞γ∞) = 2n∞ + 1, µ(k0γ0) = 2n0 + 1.

We note that, by (28),

k∞(1− q) ≡ k0(1 − v) ≡ k∞ + k0.

By (29), we also have k∞ + k0 = r + p(dI + k), where 0 < r < p. In particular,
k∞ + k0 ≡ r. Hence we conclude that r = l1 = l2. Combining all these, we get

ind(u) =
2

p
(k1q + k2u+ d) + µΦ(k∞γ∞) + µΦ(k0γ0)− 2k + 2

=
2

p
(k∞ − r − n∞p+ k0 − r − n0p+ r + pdI)

+ (2n∞ + 1) + (2n0 + 1)− 2k + 2
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=
2

p

(

k0 + k∞ − r + pdI − (n0 + n∞)p
)

+ 2(n0 + n∞)− 2k + 4

=
2

p

(

r + pdI + pk − r + pdI − (n0 + n∞)p
)

+ 2(n0 + n∞)− 2k + 4

=
2

p

(

2pdI + pk − (n0 + n∞)p
)

+ 2(n0 + n∞)− 2k + 4

=
(

4dI + 2k − 2(n0 + n∞)
)

+ 2(n0 + n∞)− 2k + 4

= 4dI + 4. �

We list the outcomes of the above discussion below.

Remark 3.9 (Regularity of Jα-holomorphic pair of pants). By the above
discussion, we conclude that any nonempty component of the moduli space
(26)–(27) admits a smooth structure as the zero set of the Cauchy–Riemann
operator. More precisely, Lemma 3.8 shows that any Jα-holomorphic pair of
pants u with the asymptotics (26)–(27) is Fredholm regular. Note that the
Jα-holomorphic perturbations of u are in one-to-one correspondence with the
equivariant holomorphic perturbations of the lift u. The dimension of these
perturbations, which is the dimension of M with the smooth structure given
in Section 3.1, is given precisely by (30) and it coincides with ind(u) by the
above lemma. Hence the kernel of the corresponding Fredholm operator has
the dimension equal to the index of u. This implies that the Fredholm operator
is surjective at u.

3.10. Other configurations. The discussion above can be repeated with mi-
nor modifications for other curves with only two non-contractible ends.

More contractible ends. Adding more contractible ends to the pair of pants con-
figuration does not require any essential change. To be more specific, let us con-
sider the moduli space M of unparametrized curves with two non-contractible
positive ends, which are fixed geometrically as above, s+ contractible positive
ends and (s− + 1) negative contractible ends. As noted in Remark 2.1, we
interpret M as the set of tuples

(u, (z1, . . . , zs+), (w1, . . . , ws−)),

where u has the positive ends at 0 asymptotic to k2γ0 and at ∞ asymptotic to
k1γ∞, a negative end at 1 of multiplicity k, positive ends at z1, . . . , zs+ of mul-
tiplicities l+1 , . . . , l

+
s+ , negative ends at w1, . . . , ws− of multiplicities l−1 , . . . , l

−
s− .

That is, we fix tree punctures and let the rest of the punctures move. Given
such an object, we have a lifted base curve c with r > 0 and deg(c) = r + pdI

and
−k∞ − k0 − p

∑

l+i + pk + p
∑

l−j = −(r + pdI).

The multiplicities ki are determined in mod p as before. The dimension of the
component of (u, (z1, . . . , zs+), (w1, . . . , ws−)) is then

4 + 4dI + 2s+ + 2s−
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since we added the freedom of choosing the places of zeros and poles of the
meromorphic section other than 0, ∞ and the lifts of 1. Yet, in the cover, lifts
of the remaining zeros and poles should be distributed invariantly. Moreover,
an analysis similar to above shows that

ind(u, (z1, . . . , zs+), (w1, . . . , ws−)) = 4 + 4dI + 2s+ + 2s−.

In order to describe the components of the moduli space, one simply adds free
zeros and poles to the pair of pants configurations, and the multiplicities of
the non-contractible ends are adjusted until the degree condition is satisfied.
For fixed values of dI , a and k as before, each component of the moduli space
may be identified with

MdI ,k,a ×S(s++s−)(CP 1 \ {0, 1,∞}),

where MdI ,k,a is given in Remark 3.5.

Cylinders. For the cylinders, we first consider the parametrized cylinders and
then mode out biholomorphisms that fix the punctures. In our case, this cor-
responds to removing the contractible end from the configurations of the pair
of pants with one positive and one negative non-contractible end and killing
the freedom in the domain. More concretely, lets consider the moduli space of
cylinders with positive end asymptotic to k0γ0 and negative end asymptotic to
k∞γ∞. The equivariant index of parametrized cylinders is again 4 + 4dI , and
moding out reparametrization means we kill the freedom of moving λ in the
definition of the lifted curve c; see Lemma 3.2. Hence the equivariant index
reads as 2 + 4dI . On the other hand, the Fredholm index reads as

ind([u]) = 2cΦ1 (u) + µΦ(k0γ0)− µΦ(k∞γ∞).

We know that a lift u lies above a closed curve c so that k∞ − k0 = −deg(c),
and similar to Lemma 3.7, we get

c1(u) = k0v − k∞q + k∞ − k0.

Combining all these, one can show that ind([u]) = 4dI + 2, and therefore, we
have transversality for cylinders as well. Concerning the big moduli space of
fixed dimension, we have two parameters, namely dI and a, that may be used
as indices of the components.

4. The application

In this section, we carry out a neck-stretching procedure, which is initiated
by a positive contactomorphism. We perturb a Jα-holomorphic pair of pants
with non-contractible positive ends in R×L(p,q), which come from a particular
component of the moduli space, and at the end, we would like to obtain a very
particular holomorphic building; see Figure 4.

In general, it is very unlikely to achieve such a picture since there are the
common issues of transversality and compactness. It turns out that the study
of the index behavior of multiples of non-contractible Reeb orbits does not give
enough control to handle these issues. The crucial observation is that one can
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Figure 4. One of the two possible outcomes of the neck-stretching
procedure, which leads to q ≡ q′.

apply well-established 4-dimensional methods to the lifts of punctured curves
in the symplectic cobordisms that show up along the way, after extending them
to closed curves in certain completions of these cobordisms. The outcome of
this observation is that, given any holomorphic curve in a cobordism, the total
action of its positive ends is greater than or equal to the total action of its
negative ends. We note that this property holds in general for symplectizations
and for cobordisms where the contact forms at ends are suitably rescaled. But
here, we achieve this property for the cobordisms for which contact forms
are not rescaled, and this provides a strong control over the components of
the limiting buildings that emerge along the neck-stretching procedure. As
a result, we prove the following.

Theorem 4.1. Let p be prime and 1 < q, q′ < p − 1. Suppose that there is
a positive contactomorphism

(37) ϕ : (L(p, q), ξ = kerα) → (L(p, q′), ξ′ = kerα′).

Then q ≡ (q′)±1 mod p.

4.2. The proof of Theorem 4.1. We take two lens spaces L(p,q) and L(p,q′),
where p, q and q′ satisfy the assumptions of Theorem 4.1, with the contact
structures induced by contact forms α and α′, which are quotients of α0; see
the introduction.

We consider the moduli space of Jα-holomorphic pair of pants with non-
contractible positive ends in the symplectization of L(p, q), which has the min-
imal index. By the consideration of equivariant curves in R × S3 ∼= L∗ (see
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Section 3), we know that the minimal index for this problem is 4, and we have
a moduli space with countably many components that can be collected in p− 1
groups, each group being determined by the degree of the underlying closed
curve; see Remark 3.5.

We consider the component, denoted by M(Jα), associated to the underly-
ing closed curve with degree one and minimal multiplicity of non-contractible
ends. More precisely, M(Jα) is the moduli space of a pair of pants

u = (a, v) : CP 1 \ Γ → R× L(p, q) ∼= L∗

with punctures Γ = {0, 1,∞} and asymptotics

(38) u(0) = (+∞, k0γ0), u(∞) = (+∞, k∞γ∞), u(1) ∈ {−∞}× S1,

where S1 is the orbit space of the contractible orbits of action 2π. We know
from the previous section that

(39) k0 ≡ (1− v)−1, k∞ ≡ (1− q)−1, k0 + k∞ = p+ 1.

Next we impose a 4-dimensional constraint on M as follows. We pick a point
x0 ∈ L(p, q) away from the non-contractible orbits and with the property that
ϕ(x0) is also away from the non-contractible orbits in L(p, q′). Given the
contactomorphism in (37), we have a positive function

(40) f : L(p, q) → (0,+∞) such that ϕ∗α′ = fα.

Now consider the evaluation map

(41) ev : M → R× L(p, q), ev(u) = u(2).

We cut out a 0-dimensional submanifold of M via

M0(Jα) := ev−1((log f(x0), x0)).

By Remark 3.9 and the description of the curves in M(Jα) given in Section 3.1,
it is easy to see that M0(Jα) is cut out transversely and consists of a single
curve. In fact, one notes that x0 lies on some contractible orbit, say γ, and
considering the equivariant lifts of the curves in M(Jα), γ as a point in the
orbit space is the image of the point 2 under the underlying base curve, and
this choice fixes the parameter λ ∈ C given in Lemma 3.2. Then the choice of
x0 ∈ γ and the quantity f(x0) fix the freedom over the equivariant meromorphic
section, which is due to the C∗-action on L.

Remark 4.3. The conditions on the point x0 are easily satisfied and play
a significant role in ruling out certain unpleasant configurations at the end of
the neck-stretching argument; see Lemma 4.7 and Lemma 4.10.

We consider the following exact symplectomorphism:

Φ : (R× L(p, q′), d(etα′)) → (R× L(p, q), d(esα)),(42)

(t, x) 7→ (t+ log f ◦ ϕ−1(x), ϕ−1(x)).
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Let Σ := Φ({0} × L(p, q′)) be the contact type hypersurface in R × L(p, q).
Then we have

N+ ∪N− := (R× L(p, q)) \ Σ,

where N+ is the upper and N− is the lower connected component. We fix
ε > 0 and put

U := Φ([−ε, ε]× L(p, q′)) ⊂ R× L(p, q).

We fix an open subset V ⊂ R× L(p, q) such that U ⊂ V . For later purposes,
we set

V + ⊔ V − := V \ U,

where V + and V − are the upper and lower components respectively. Let n be
a positive integer. Following [10], we construct the symplectic cobordism Wn

as follow. We remove Φ((−ε/2, ε/2)× L(p, q′)) from R× L(p, q), and we glue
[−ε− n, n+ ε]× L(p, q) in the middle via the following identifications:

(43)
[−ε− n,−n− ε/2]× L(p, q′) ∋ (t, x) ∼ Φ(t+ n, x) ∈ U,

[n+ ε/2, n+ ε]× L(p, q′) ∋ (t, x) ∼ Φ(t− n, x) ∈ U.

We consider a smooth function φn : [−ε− n, n+ ε] → [−ε, ε] such that
• φ′n > 0,
• φn(t) = t+ n for t ∈ [−ε− n,−ε/2− n],
• φn(t) = t− n for t ∈ [n+ ε/2, n+ ε],
• φn(0) = 0.
Such a function leads to a diffeomorphism

(44) Φn :Wn → R× L(p, q),

where Φn = id on (Φ((−ε/2, ε/2)× L(p, q)))c and

Φn(t, x) =
(

φn(t) + log f ◦ ϕ−1(x), ϕ−1(x)
)

on [−ε− n, n+ ε]× L(p, q′). For later purposes, we note that

Φn(0, ϕ(x0)) =
(

φn(0) + log f ◦ ϕ−1(ϕ(x0)), ϕ
−1(ϕ(x0))

)

(45)

=
(

log f(x0), x0
)

.

We consider the exact symplectic form

ωn := Φ∗
nd(e

sα) = d(Φ∗
n(e

sα))

on Wn, which reads as

ωn =

{

d(esα) on U c,

d(φnα
′) on [−ε− n, n+ ε]× L(p, q′).

We note that the standard almost complex structure Jα′ is compatible with
the symplectic form d(φnα

′). Next we consider an almost complex structure
Jn on R× L(p, q) with the following properties:
(Jn1) Jn = Jα on V c;
(Jn2) (dΦn)

−1 ◦ Jn ◦ dΦn = Jα′ on [−ε− n, n+ ε]× L(p, q′);
(Jn3) Jn is compatible with d(esα);

Münster Journal of Mathematics Vol. 15 (2022), 389–440



Holomorphic curves in the symplectizations of lens spaces 425

Figure 5. The construction of (W n, Jn).

(Jn4) any relevant simple5 Jn-holomorphic curve passing through the open
subset V + ⊔ V − and satisfying

(46) ev(u) ∈ {(log f(x0), x0)} ⊂ R× L(p, q)

is regular.
It is well-known that, in the space of almost complex structures that sat-

isfy (Jn1)–(Jn3), the almost complex structures that also satisfy (Jn4) for
curves with a fixed asymptotic profile form a dense subset. This statement
has a nature of a folklore fact in the study of holomorphic curves and may be
attributed to many authors in different settings of problems. For a clean expo-
sition of the case of curves with non-degenerate asymptotics, we refer to [23,
Thm. 7.2]. We note that the proof of [23, Thm. 7.2] applies to the Morse–Bott
setting once the functional analytic set-up is suitably modified since (Jn4) is
achieved by a generic perturbation away from the ends of the symplectization.
Moreover, via an argument similar to the one in [20, Lem. 2.5], one can show
that the universal moduli space with the condition (46) is smooth. We also note
that the curves relevant to us are the pair of pants with the asymptotics given
by (38) and (39) and simple curves that appear in the proof of Lemma 4.7. The
configurations that appear in the proof of Lemma 4.7 are finitely many and
a priori determined.6 Hence we have finitely many configurations of curves for
which we need regularity so that Jn can be chosen from a finite intersection of
dense sets.

Now we consider the moduli space M0(Jn) of a Jn-holomorphic pair of
pants with the asymptotics given by (38) and (39), satisfying (46).

5A holomorphic curve u : (Σ \ Γ, j) → (R ×M,J) is said to be multiply covered if there
exists another holomorphic curve v : Σ′ \ Γ′ → R×M and a holomorphic branched covering
φ : (Σ, j)→ (Σ′, j′) such that u= v ◦ φ and deg(φ)> 1. We say a holomorphic curve is simple
if it is not multiply covered.

6See the moduli problems given by (47), (48), (49) and (50).
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Lemma 4.4. Any Jn-holomorphic pair of pants satisfying (38) and (39) is
simple.

Proof. We note that, since the negative end of a such a pair of pants u has
action 2π, it is a simple orbit unless, without loss of generality, it is pγ0.
Assume that u factors through a branched covering ψ and a simple curve v.
By the Riemann–Hurwitz formula, v is rational. Since p is prime, the degree
of ψ is p, and the negative end of v is γ0. It is clear that v has at most two
positive ends. Note that v cannot be a cylinder since the positive ends of u
are geometrically distinct. Hence v is also a pair of pants. In particular, ψ
maps punctures of u to punctures of v respectively. Hence the ramification
number of ψ at each puncture of u has to be p. In particular, p divides both
k0 and k∞. But this is not possible since k0 + k∞ = p+ 1. �

By the lemma above and (Jn4), we conclude that any curve in M0(Jn) is
regular and M0(Jn) is a 0-dimensional manifold. We know that same property
holds for M0(Jα). Now we choose a generic homotopy (Jt)t∈[0,1] of almost
complex structures, which connects Jα to Jn such that Jt = Jα on V c for all t,
and Jt is compatible with d(esα) for all t. Here the genericity means that, for
any t0 ∈ [0, 1], the index of a relevant simple Jt0-holomorphic curve with the
constraint (46) is at least −1. The existence of such a homotopy follows from
the parametric version of the geometric transversality statement used for Jn;
see [23, Rem. 7.4]. As in the choice of Jn, we also safely assume that (Jt)t∈[0,1]

is generic for simple curves that appear in the proof of Lemma 4.7.
We recall that Jα-holomorphic pair of pants we consider, and Lemma 4.4

applies to Jt. Hence the moduli space
⋃

t∈[0,1]

M0(Jt)

of a Jt-holomorphic pair of pants with asymptotics given by (38) and (39)
together with the evaluation condition is a 1-dimensional cobordism between
M0 and M0(Jn). We note that if the cobordism

⋃

M0(Jt) is compact, then
M0(Jn) is not empty since M0 consists of an odd number of points.

Compactness of the cobordism. Let t0 ∈ [0, 1], and let (un) be a sequence of
Jtn -holomorphic pairs of pants such that tn converges to t0. Then, by the SFT
compactness theorem, there is a subsequence, again denoted by (un), converg-
ing to a holomorphic building u∞. A priori, the holomorphic building u∞ is
a collection of curves that lie in R×L(p, q), which are either Jα-holomorphic or
Jt0 -holomorphic. These components fit together along their asymptotic ends
and lead to the level structure of the building; see [1, 2].

Since the complex structure on the domain of un’s is fixed, the components
of the building u∞ emerge only out of bubbling off. In particular, there is
a finite set P ⊂ CP 1 \ Γ such that, on CP 1 \ (Γ ∪ P ), the sequence (un) has
a uniform gradient bound. Hence there exists a component

u0 : CP 1 \ (Γ ∪ P ) → R× L(p, q)
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of u∞ such that one of the followings hold:
• u0 is Jα-holomorphic and un converges to u0 in C

∞
loc on CP 1 \ (Γ∪P ) after

a sequence of shifts in R-direction;
• u0 is Jt0 -holomorphic and un converges to u0 in C∞

loc on CP 1 \ (Γ ∪ P ).
We note that the signs of the punctures of u0 that are in Γ do not have
to match with the signs of the punctures of un’s, but the homotopy classes of
corresponding asymptotics do have to match. In particular, u0 is non-constant.
The remaining structure of the building is given by a so-called bubble tree.
Instead of describing the a priori structure of the bubble tree, we immediately
utilize a particular control over the components, which is due to the following
fact.

Proposition 4.5. Given any component of the limiting building, the total
action of its positive ends is greater than or equal to the total action of its
negative ends.

We note that, for the components of u∞ that lie in upper or lower translation
invariant levels, the above statement is trivial; see Section 2. The nontrivial
part of the statement is about Jt0 -holomorphic components, namely the ones
in the middle level, and the proof is given in Section 4.11.3.

The first implication of Proposition 4.5 is the absence of holomorphic planes.
We note that a holomorphic plane requires a positive end of action at least 2π.
Together with the action of the very bottom end of the building, a finite energy
plane forces the total action of the very top end of the building to be at least 4π.
But we know that the total action at the top is 2π(1 + 1/p).

Now, a priori, there may be components of the building that are bubbled
off at points in P . But any collection of such components associated to a given
bubble point in P must contain a finite energy plane. Since such planes are
ruled out, we conclude that P = ∅. Next we consider the components that
are bubbled off at the punctures in Γ and note that any such component is
cylindrical since the domain of the building has arithmetic genus zero and
there are no holomorphic planes. Hence we have the essential component with
the puncture set Γ (possibly with different signs compared to un’s), and the
remaining components are cylindrical (possibly with two positive ends), which
can be grouped into collections associated to the punctures in Γ.

Concerning the signs of the punctures of components, we first note that
the puncture 1 has to stay negative since turning it into a positive puncture
requires a cylindrical component associated to the puncture 1, which has two
negative punctures. Consequently, only one of the punctures among 0 and
∞ may change sign. But it is easy to see that, by Proposition 4.5, such
a configuration is not possible. Hence the building consists of the essential
component u0, which is an honest pair of pants, and we have honest cylinders.

Concerning the level structure, we note the following. Since there is no
bubbling off at the marked point 2, we have C∞

loc-convergence of un to u0.
Combining this with the fact that un’s satisfy the evaluation condition (41),
we conclude that the u0 lies in the middle layer.
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Now we need to show that there are no nontrivial cylinders in upper and
lower levels. To this end, we let A± denote the total action of the positive/
negative ends in the middle layer. We note that the minimal action of a closed
Reeb orbit is 2π/p if the orbit is non-contractible and 2π if the orbit is con-
tractible. By Proposition 4.5, we have the following possibilities regarding A±:
(i) A+ = 2π(1 + 1/p) and A− = 2π,
(ii) A+ = 2π(1 + 1/p) and A− = 2π(1 + 1/p),
(iii) A+ = 2π and A− = 2π.
We first assume that A+ = 2π(1+ 1/p) and A− = 2π. In this case, any cylinder
in an upper or lower level has trivial dα-energy. Hence any such cylinder is
trivial. Now it remains to rule out the last two cases.

Lemma 4.6. The case of A+ = 2π(1 + 1/p) and A− = 2π(1 + 1/p) is not
possible.

Proof. In this case, there is no nontrivial cylinder in the upper levels, and
there has to be a nontrivial cylinder in a lower level. But such a cylinder has
to have a contractible positive end with action 2π(1 + 1/p), and this is not
possible. �

Lemma 4.7. The case of A+ = 2π and A− = 2π is not possible.

Proof. We note that there is no nontrivial component in the lower level and
there is only one nontrivial cylinder in the upper level since the minimal period
of Reeb orbits is 2π/p, and this is precisely the action difference between A+

and the total action at the top of the building.
Without loss of generality, we assume that the positive end of the nontrivial

cylinder is k0γ0. Then the negative end of the nontrivial cylinder is necessarily
(k0 − 1)γ∞, and the positive ends of u0 are given by (k0 − 1)γ∞ and k∞γ∞.
Note that the nontrivial cylinder and u0 are adjacent at a non-degenerate orbit
(k0 − 1)γ∞. Hence the indices of these curves must add up to 0. We note also
that the index of the nontrivial cylinder is 2, and therefore, the index of u0
is −2.

We first assume that u0 is simple. We consider the pair of pants with
asymptotics

(47) u(0) = (+∞, (k0 − 1)γ∞), u(∞) = (+∞, k∞γ∞), u(1) ∈ S1

and the constraint

(48) u(2) = (log f(x0), x0).

Note that there is no Jα-holomorphic pair of pants that satisfies (47) and (48).
In fact, any such curve is necessarily the multiple cover of a trivial cylinder over
γ∞, but such a cylinder misses the point (log f(x0), x0) by the definition of x0.
Hence any Jα-holomorphic pair of pants that satisfies (47) and (48) is regular
tautologically. By the choice of Jn, we assume that any simple Jn-holomorphic
pair of pants that satisfies (47) and (48) is regular. Hence we may assume that
(Jt)t∈[0,1] is a generic homotopy for a simple pair of pants satisfying (47) and
(48). In particular, the index of u0 is at least −1, and this is a contradiction.
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Figure 6. The case of u0 being multiply covered in Lemma 4.7.

Now we assume that u0 is multiply covered. Hence the negative end of u0
is either pγ0 or pγ∞. Now let

v0 : Σ \ Γ → R× L(p, q)

be the underlying simple curve and ψ : CP 1 →Σ the branched covering so that
u0 = v0 ◦ ψ and ψ−1(Γ) = {0, 1,∞}. Let N > 1 be the degree of ψ. By the
Riemann–Hurwitz formula, Σ is a sphere. Since u0 has only one negative end,
so does v0, and this negative end has multiplicity p/N . Since p is prime, we
get N = p. It is clear that v0 has at most two positive ends.

Suppose that v0 has two positive ends. In this case, the ramification number
of the points 0 and ∞ are both p. Hence p divides both k0 − 1 and k∞. But
this is not possible since k0 + k∞ − 1 = p.

Next we assume that v0 has one positive end, namely lγ∞. Let r0/∞ be

the ramification number of ψ at the point 0/∞. Then we get k0 − 1 = r0l and
k∞ = r∞l. Since k

0 − 1 + k∞ = r0 + r∞ = p, we get l = 1. By Proposition 4.5
and the fact that q 6≡ ±1, the negative end of v is also γ∞. Let z+ and z−

be the positive and negative punctures of v0. We have ψ(0) = ψ(∞) = z+ and
ψ(1) = z−. We put z0 := ψ(2) and get v0(z0) = (log f(x0), x0).

Now we consider parametrized cylinders

(49) v :CP 1 \ {0,∞}→R×L(p, q); v(0) = (−∞, γ∞), v(∞) = (+∞, γ∞)
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satisfying

(50) v(1) = (log f(x0), x0).

As noted above, a Jα-holomorphic cylinder satisfying (49) and (50) does not
exist. Hence we have a priori regularity. We may safely assume that a Jn-holo-
morphic cylinder with the above conditions is also regular since such a cylinder
is simple. Hence we may assume that (Jt)t∈[0,1] is a generic homotopy for the
moduli problem given by (49) and (50). But the index of this moduli problem
is −2. In fact, the index of parametrized cylinders without the constraint (50)
is 2. Since we have a point constraint in a 4-dimensional manifold, the index
with the constraint is −2. By genericity of the homotopy, we conclude that
there is no Jt0 -holomorphic parametrized cylinder satisfying (49) and (50). But
this is a contradiction since reparametrizing v0 such that ∞ 7→ z+, 0 7→ z− and
1 7→ z0 leads to such a cylinder. �

Hence we conclude that the only nontrivial component of the limiting build-
ing u∞ is a pair of pants u0 having the asymptotics of (un) and satisfying the
evaluation condition. This finishes the proof of the compactness of the cobor-
dism.

Stretching the neck. Knowing that the cobordism
⋃

t∈[0,1]M
0(Jt) is compact,

we get a Jn-holomorphic pair of pants un for each n. Now we look at the
limit of the sequence (un) as n → ∞. We know that a subsequence of (un),
again denoted by (un), converges to a holomorphic building u∞. A priori, the
limiting building has Jα-holomorphic components in upper and lower levels,
Jα′ -holomorphic components in middle levels and finally some components in
the upper and the lower connecting levels. The connecting levels have the
following description. Note that the hypersurface Σ = Φ({0} × L(p, q′)) di-
vides R × L(p, q) into two components N+ and N−, each admitting Σ as its
boundary. The upper connecting level can be seen as the manifold

W+ := N+ ∪ (−∞, ε)× L(p, q′),

where the neighborhood Φ([0, ε)×L(p, q′)) of Σ⊂N+ is identified with [0, ε)×
L(p, q′) via the symplectomorphism Φ that is given by (42). Moreover, W+ is
endowed with an almost complex structure J+ such that J+ = Jα on N+ \ V +

and J+ = Jα′ on (−∞, 0] × L(p, q′). Similarly, the lower connecting level is
given by

W− := N− ∪ (−ε,+∞)× L(p, q′)

together with the almost complex structure J− such that J− = Jα on N− \ V −

and J− = Jα′ on [0,+∞)× L(p, q′).
As before, since the domains of un’s are fixed, we have a bubble tree struc-

ture on the limiting building. We have an essential component u0 with domain
P \ (Γ ∪ P ), which in this case can be Jα-holomorphic or Jα′ -holomorphic or
J±-holomorphic. In order to rule out unpleasant components of the building,
we want to argue in terms of the actions of the asymptotic ends as before.
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Similar to Proposition 4.5, we have an a priori control over the actions of
asymptotic ends of J±-holomorphic components.

Proposition 4.8. For any component in (W±, J±), the total action at its
positive ends is greater than or equal to the total action at its negative ends.

We postpone the proof of this statement to Section 4.11 and continue with
the proof of the main statement. We note that, replacing Proposition 4.5 with
Proposition 4.8, the previous arguments apply to u∞ word by word since, in
L(p, q′), the minimal action of the Reeb orbits is 2π/p and the action of a con-
tractible orbit is 2π. Hence we have a pair of pants u0 and a bunch of cylinders
in the building. Moreover, un converges to u0 in C∞

loc near the marked point 2,
and in light of equation (45), u0 lies in a middle layer since un’s satisfy (46).
Note that, since the contactomorphism (37) induces an isomorphism on the
fundamental group, u0 has two positive non-contractible ends and one nega-
tive contractible end.

Due to the action window, u0 is the only nontrivial component in the middle
layer. We letA+ be the total action of the positive ends of u0, and A− the total
action of the negative end of u0. By Proposition 4.8, we have the following
possibilities regarding A±:
(i) A+ = 2π(1 + 1/p) and A− = 2π,
(ii) A+ = 2π(1 + 1/p) and A− = 2π(1 + 1/p),
(iii) A+ = 2π and A− = 2π.
We first discuss the unpleasant cases.

Lemma 4.9. The case of A+ = 2π(1 + 1/p) and A− = 2π(1 + 1/p) is not
possible.

Proof. Note that the negative end of u0 has action 2π(1 + 1/p), but such an
orbit cannot be contractible. �

Lemma 4.10. The case of A+ = 2π and A− = 2π is not possible.

Proof. In this case, u0 has trivial dα-energy, and this is possible only if u0 is
a cover of a trivial cylinder. In this case, the negative end of u0 is either pγ′0
or pγ′∞. Without loss of generality, we assume that it is pγ′0. Then u0 is the
p-fold cover of the trivial cylinder over pγ′0. But this is not possible since the
image of u0 misses the point (0, ϕ(x0)) in R× L(p, q′) due to the choice of the
point x0; see Figure 7. �

Now consider the case A+ = 2π(1 + 1/p) and A− = 2π. In this case, u0
is a Jα′ -holomorphic pair of pants. Moreover, we have cylinders C1 and C2

in W+ such that C1 has the positive end k0γ0 and C2 has the positive end
k∞γ∞. Following the discussions given in the previous sections, we conclude
that u0 is a pair of pants with a base curve of degree 1. We have two possible
profiles for the positive ends of u0:
(i) u0(0) = (+∞, l0γ′0) and u0(∞) = (+∞, l∞γ′∞),
(ii) u0(0) = (+∞, l∞γ′∞) and u0(∞) = (+∞, l0γ′0).
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Figure 7. The case of u0 being multiply covered in Lemma 4.10.

In both cases, we have l0 + l∞ = p+ 1. Following Lemma 2.7, we have

l0 ≡ (1 − v′)−1 and l∞ ≡ (1− q′)−1

in the first case. Here the integer v′ is given by 1< v′ < p− 1 and v′q′ ≡ 1. Now
the negative end of C1 is l0γ′0, and the negative end of C2 is l∞γ′∞. We apply
Proposition 4.8 to C1 and C2 and use the fact that l0 + l∞ = k0 + k∞ = p+ 1
to conclude l0 = k0 and l∞ = k∞. We finally get

(1− v′)−1 ≡ l0 = k0 ≡ (1− v)−1 =⇒ v′ ≡ v =⇒ q′ ≡ q.

In the second case, we have

l0 ≡ (1− q′)−1 and l∞ ≡ (1− v′)−1.

Considering the cylinder C1 again, we get

(1 − q′)−1 ≡ l0 = k0 ≡ (1− v)−1 =⇒ q′ ≡ v =⇒ q′ ≡ q−1.

This concludes the proof the theorem.

4.11. Action control via 4-dimensional tools. In this section, we prove
Proposition 4.5 and Proposition 4.8. The method is to apply intersection
theory for closed holomorphic curves to the lifts of relevant punctured curves
in symplectic cobordisms associated to lens spaces. Once these curves are
lifted to the cobordisms associated to S3, we compactify these cobordisms and
extend the punctured curves to closed curves in order to apply the intersection
theory.

Münster Journal of Mathematics Vol. 15 (2022), 389–440



Holomorphic curves in the symplectizations of lens spaces 433

4.11.1. Basics of intersection theory. We briefly recall the basics of the inter-
section theory of closed holomorphic curves. For the details and proofs of the
following statements, we refer to [11, 13, 24].

Let W be a closed oriented 4-manifold, let Σ and Σ′ be closed oriented
surfaces, and let u : Σ → W , v : Σ′ → W be smooth maps. An intersection
u(z) = v(w) = p is transverse if du(TzΣ) ⊕ dv(TwΣ

′) = TpW . We say this
intersection is positive if the direct sum of the orientations of the surfaces
coincides with the orientation of W and say negative otherwise. We define the
local intersection index ı(u, z; v,w) as +1 if the intersection is positive and −1
otherwise. We note that if an intersection is transverse, then it is isolated.
Hence, if all intersections of u and v are transverse, there are finitely many of
them, and we can define the total intersection number

[u] · [v] =
∑

u(z)=v(w)

ı(u, z; v, w).

It turns out that [u] · [v] depends only on the homology classes [u], [v] ∈H2(W ).
Moreover, it defines a bilinear symmetric form on H2(W ), which is non-
degenerate.

If an intersection u(z) = v(w) = p is not transverse but still isolated, one
can still define a local intersection index as follows. One localizes the intersec-
tion via closed disks Dz and Dw around z and w. Then one picks C∞-small
perturbation uε of u so that, when restricted to Dz and Dw, uε and v have
only transverse intersections and uε(∂Dz) ∩ v(Dw) = ∅. Then one defines

ı(u, z; v, w) =
∑

uε(z′)=v(w′)

ı(uε, z
′; v, w′),

where the sum is taken for (z′, w′) ∈ Dz ×Dw.
Now we assume thatW is equipped with an almost complex structure J and

it is oriented via J . We also assume that Σ and Σ′ carry complex structures
j and j′ respectively, and they are oriented via j and j′. Finally, we assume
that u and v are closed J-holomorphic curves, that is, du ◦ j = J ◦ du and
dv ◦ j = J ◦ dv. A well-known fact is that any intersection u(z) = v(w) = p of
two such curves is either isolated or there are neighborhoods z ∈ U and w ∈ V
such that u(U) = v(V ). We note that this phenomenon is independent of the
dimension of W .

The special features of the case dimW = 4 are as follows. It is clear that,
for any transverse intersection u(z) = v(w) = p, we have ı(u, z; v, w) = +1.
The nontrivial fact is that if an intersection is isolated, then ı(u, z; v, w) ≥ 1,
with equality if and only if the intersection is transverse. This phenomenon is
referred as local positivity of intersections and has the following global conse-
quence. By the principle of unique continuation, one can show that if u and
v have infinitely many intersections, then im(u) = im(v), that is, either one is
a reparametrization of the other or they are multiple covers of the same simple
curve. Hence, if im(u) 6= im(v), there are finitely many intersections, and we
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have

[u] · [v] ≥ #{(z, w) ∈ Σ× Σ′ | u(z) = v(w)},

with equality if and only if all the intersections are transverse. In particular,
[u] · [v] = 0 if and only if im(u) ∩ im(v) = ∅. We refer to this fact as global
positivity of intersections.

Finally, we want to address the question of self-intersections of a holomor-
phic curve. Let u : Σ→W be a closed J-holomorphic curve. If u is not simple,
then it is clear that it has infinitely many double points. But if u is simple,
one has only finitely many self-intersections. For a simple curve u, one defines
the integer

δ(u) =
1

2

∑

u(z)=u(w), z 6=w

ı(u, z;u,w) +
∑

du(z)=0

δ(u, z),

where δ(u, z) is the local singularity index of u at a “critical point” z; see [24]
for the definition. It turns out that the local singularity index is the right cor-
rection term for the count of self-intersections, and consequently, δ(u) depends
only on the homology class [u] via the adjunction formula

[u] · [u] = 2δ + cN (u),

where the normal Chern number cN (u) is defined as cN (u) = c1([u]) − χ(Σ).
We note that cN (u) = c1(Nu) when u is immersed, where Nu is the normal
bundle of u. Moreover, the positivity of intersections phenomenon manifests
itself by the fact that

δ(u) ≥ 0 and δ(u) = 0 if and only if u is embedded.

4.11.2. Intersections in the completions of the symplectizations and symplectic
cobordisms. We recall the biholomorphic identification between (R × S3, J0)
and L∗, where the latter space is the total space of the tautological line bundle
without its zero section. Let

u : Σ \ (Γ+ ∪ Γ−) → R× S3 ∼= L∗

be a finite energy J0-holomorphic curve, where k+i ’s/k
−
j ’s are the multiplicities

of positive/negative ends of u. We recall from the previous sections that

c := π ◦ u : Σ \ (Γ+ ∪ Γ−) → CP 1

extends to a closed curve c : Σ → CP 1 with degree d, and u is identified with
a meromorphic section of the bundle c∗L→Σ, zeros corresponding the negative
ends and poles corresponding to the positive ends, with

#zeros−#poles = −d.

In particular,
∑

i k
+
i −

∑

j k
−
j = d ≥ 0. We note that this inequality holds for

any punctured curve in R×S3 that is holomorphic with respect to a translation

Münster Journal of Mathematics Vol. 15 (2022), 389–440



Holomorphic curves in the symplectizations of lens spaces 435

invariant almost complex structure induced by α0 due to the nonnegativity of
dα-energy. Namely, one has

∑

i

2πk+i −
∑

j

2πk−j ≥ 0.

Now we want to interpret this property in terms of positivity of intersections so
that it generalizes to the settings with almost complex structures that coincide
with J0 near the ends.

We now consider the completion L̂ of L, where we compactify each fiber
of L by turning it into CP 1. We get the complex manifold L̂ with the complex
structure Ĵ0 that extends J0. In fact, L̂ is nothing but CP 2 blown up at one
point, but we do not need this description in what follows, so we stick with
our notation. Note that L̂ is a sphere bundle over CP 1 such that each fiber is

holomorphic. Moreover, L̂ contains two holomorphically embedded spheres S0

and S∞, the first being the zero section of L and the second being “the section
at infinity”. It is easy to see that

H2(L̂,Z) = Z · [S0]⊕ Z · [S∞].

We observe that [S0] · [S0] = c1(N0) =−1. Here N0 is the normal bundle of S0,
and it can be identified with the bundle L. Similarly, [S∞] · [S∞] = c1(N∞) = 1
since the normal bundle N∞ of S∞ can be identified with the dual bundle of L.
It is also clear that [S0] · [S∞] = 0.

Now we extend u to L̂ by extending the corresponding meromorphic section
over the zeros and poles using the local holomorphic coordinates. We note
that the extension is unique, and we end up with a closed curve, denoted by û

in L̂. We observe that [û] · [S0] =K− and [û] · [S∞] =K+, where K− :=
∑

k−j
and K+ :=

∑

k+i . In fact, if u has a negative end with multiplicity k at
a puncture z and c has the ramification number r at z, then one can locally
write u(z) = (zr, zk). In order to compute the intersection number with [S0]
at z, one needs to compute the local intersection number between u and v(w) =
(w, 0). Since the intersection at 0 is not transverse, we perturb u and put
uε(z) = (zr, zk + ε). We see that an intersection (z, w) is a solution of the
system (zr, zk + ε) = (w, 0), and the second coordinates produce k-distinct
roots z1, . . . , zk of −ε, and for each zi, we have wi = zri . We note that v′(wi) =

(1, 0), and u′(zi) = (zri , kz
k−1
i ) has a non-vanishing second coordinate, and

hence the intersections are transversal. Applying the same argument at each
isolated intersection that appears at each negative end leads to the claim. Note
that the same argument applies to the positive ends.

We write the homology class [û] = m[S0] + n[S∞] for some m, n ∈ Z and
compute

K− = [û] · [S0] = (m[S0] + n[S∞]) · [S0] = m[S0] · [S0] + n[S∞] · [S0] = −m,

K+ = [û] · [S∞] = (m[S0] + n[S∞]) · [S∞] = m[S0] · [S∞] + n[S∞] · [S∞] = n.
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Hence we get

(51) [û] = −K−[S0] +K+[S∞],

and therefore,

[û] · [û] = (−K−)2[S0] · [S0] + (K+)2[S∞] · [S∞] = (K+)2 − (K−)2.

We also note that

c1([S∞]) = [S∞] · [S∞] + χ(S∞) = 1 + 2 = 3,

c1([S0]) = [S0] · [S0] + χ(S0) = −1 + 2 = 1.

Hence we get

c1([û]) = −K−c1([S0]) +K+c1([S∞]) = 3K+ −K−.

Next we assume that u is simple. In this case, û is simple as well, and by the
adjunction formula, we get

(K+)2 − (K−)2 = 2δ(û) + 3K+ −K− − (2− 2g),

where g is the genus of Σ. In particular,

(K+)2 − (K−)2 − 3K+ +K− + 2 = 2δ(û) + 2g ≥ 0.

We note thatK+ ≥ 1. This is due to the fact that the almost complex structure
is tamed by an exact symplectic form, and therefore, a curve without positive
ends cannot exist. Consequently, −K+ ≥ −3K+ + 2 and

(K+ −K−)(K+ +K− − 1) = (K+)2 − (K−)2 −K+ +K− ≥ 0.

Hence if K+ +K− > 1, then K+ ≥ K−, and if K+ +K− = 1, then K− = 0
and K+ ≥ K−.

Now if u is not simple and say v is the underlying simple curve with L+/L−

being the total multiplicity of its positive/negative ends, then the above argu-
ment says that L+ ≥ L−. It is easy to see that K+ = NL+ and K− = NL−,
where N is the degree of the underlying branched covering. Hence we get
K+ ≥ K−.

We claim that the above discussion applies if one considers an almost com-
plex structure with cylindrical ends. In fact, if J is an almost complex structure
on R× S3 which coincides with J0 outside of a compact set, then it extends to
an almost complex structure Ĵ on L̂, and we have embedded Ĵ-holomorphic
spheres S0 and S∞ with the properties that [S0] · [S0] = −1, [S∞] · [S∞] = 1
and [S0] · [S∞] = 0. Now let u be a finite energy J-holomorphic curve and z
a negative puncture with the asymptotic end of multiplicity k. Note that the
projection L→ CP 1 is not anymore J-holomorphic. Nevertheless, we consider
a punctured disk neighborhood D∗ of z in Σ and consider u : D∗ → L∗. This
map is J0-holomorphic and leads to a holomorphic map c :D∗ →CP 1. Since u
has finite energy, c extends over the origin, and one gets a section f :D∗ → c∗L.
Clearly, the section f is holomorphic and with an isolated zero of order k at
the origin due to the asymptotic behavior of u. A similar argument applies
to the positive punctures, and we conclude that u extends to a closed curve û
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in (L̂, Ĵ). Moreover, near the intersection points, the local models of û and
S0/∞ are as before, and we get [û] · [S∞] = K+ and [û] · [S0] = K−, where
K+/K− is the sum of the multiplicities of the positive/negative ends. Conse-
quently, (51) holds, and the rest of the above computation goes through.

4.11.3. Proofs of Proposition 4.5 and Proposition 4.8. We want to apply the
above discussion to the lifts of curves that are given in Proposition 4.5 and
Proposition 4.8. To this end, we need to specify coverings of the cobordisms
at hand. We fix an equivariant lift ϕ̃ : S3 → S3 of the contactomorphism (37).

We put β0 := f̃α0 = ϕ̃∗α0. Here f̃ = f ◦ p : S3 → (0,+∞) is the lift of (40).
We let

Φ̃ : R× S3 → R× S3

be the corresponding lift of (42). Here the actions of σ and σ′ are extended to
be invariant under the translation along R-directions, and Φ̃ is also equivariant.
We put Σ̃ := Φ̃({0} × S3). We note that, for any n, the construction of Wn

given by (43) lifts via Φ̃. Namely, we have the covering space W̃n →Wn, where
the group of Deck transformations is Zp, and for each n, we have an equivariant
diffeomorphism

Φ̃n : W̃n → R× S3

that lifts (44). Consequently, Jn lifts to an invariant almost complex structure

J̃n on W̃n. Looking at the picture on the other side, J̃n is a σ-invariant almost
complex structure on R × S3, and we have a homotopy of invariant almost
complex structures (J̃t)t∈[0,1] on R × S3, which connects J0 and J̃n and lifts
the path (Jt)t∈[0,1].

Let Jt0 be the almost complex structure on R × L(p, q) given in Proposi-
tion 4.5, and let u : CP 1 \ Γ → R× L(p, q) be a Jt0-holomorphic curve. First
we assume that u has a non-contractible end and the asymptotic profile of u
is as follows:
• positive ends:

– non-contractible ones: k0,+i γ0, where k
0,+
i 6≡ 0 for i = 1, . . . , n+

0 , and
k∞,+
i γ∞, where k∞,+

i 6≡ 0 for i = 1, . . . , n+
∞,

– contractible ones: in the orbit spaces S+
k+
i
of action 2πk+i , i= 1, . . . , n+

c ,
• negative ends:

– non-contractible ones: k0,−i γ0, where k
0,−
i 6≡ 0 for i = 1, . . . , n−

0 , and
k∞,−
i γ∞, where k∞,−

i 6≡ 0 for i = 1, . . . , n−
∞,

– contractible ones: in the orbit spaces S−
k−
i
of action 2πk−i , i= 1, . . . , n−

c .
Then, using the scheme given in previous section, which is purely topological,
after precomposing it with a suitable p-fold covering p : Σ \ Γ̃ → CP 1 \ Γ, we
get a lifted J̃t0 -holomorphic curve u : Σ \ Γ̃ → R × S3. Recall that, once p is
extended over the punctures, the punctures in Γ with non-contractible ends are
precisely the branch points of p, and each of these branch points has a unique
preimage in Γ̃. Hence, at each such preimage, the ramification number is p.
On the other hand, the punctures in Γ with contractible ends are all regular
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Figure 8. Intersections after lifting and extending.

points; hence each such puncture has precisely p preimages. As a result, the
asymptotics of u are given as follows:
• positive ends:

– k0,+i γ0 for i = 1, . . . , n+
0 , and k

∞,+
i γ∞ for i = 1, . . . , n+

∞,
– for each i ∈ {1, . . . , n+

c }, p positive ends in the orbit space S+
k+
i

of
multiplicity k+i .

• negative ends:
– k0,−i γ0 for i = 1, . . . , n−

0 , and k
∞,−
i γ∞ for i = 1, . . . , n−

∞,
– for each i ∈ {1, . . . , n−

c }, p negative ends in the orbit space S+
k−
i

of
multiplicity k−i .

Since J̃t0 coincides with J0 near the ends, the discussion above applies to u,
and we get

(52)

n+
0

∑

i=1

k0,+i +

n+
∞

∑

i=1

k∞,+
i + p

n+
c

∑

i=1

k+i ≥

n−

0
∑

i=1

k0,−i +

n−
∞

∑

i=1

k∞,−
i + p

n−
c

∑

i=1

k−i .

Recall that the action of the orbit γ0/∞ is given by 2π/p. Hence dividing both
sides of (52) by p and multiplying with 2π shows that the total action at the
positive ends of u is not less than the total action at its negative ends. Now if
u does not have any non-contractible end, it lifts without being pre-composed
with a covering, and the result again follows. This concludes the proof of
Proposition 4.5.

For Proposition 4.8, we repeat the same reasoning for the lifts of correspond-
ing curves. More precisely, we let W̃+ →W+ denote the covering space, which
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is determined by the lifting scheme given above, and let J̃+ be the lift of J+.
Let u be a given J+-holomorphic component in W+. Then the asymptotic
ends of u are given as above, where, for the negative non-contractible ends,
γ0/∞’s are replaced with γ′0/∞’s. Since the contactomorphism ϕ induces an
isomorphism on the fundamental groups, γ′0/∞’s also generate the fundamen-
tal group of W+ and our lifting scheme applies the covering W̃+ → W+ as
well. Consequently, we have a J̃+-holomorphic lift u : Σ \ Γ̃ → W̃+ with the
asymptotics given as before.

Now we extend u to a closed curve as follows. Topologically, we view W̃+

as the upper connected component Ñ+ of (R × S3) \ Σ̃. We compactify W̃+

by collapsing its positive end, namely S3, to the 2-sphere S∞ via the Reeb
flow of α0 and by collapsing its negative end, namely Σ̃, to the 2-sphere S0

via the Reeb flow of β0. When we view W̃+ as an almost complex manifold
equipped with J̃+, the negative end is given by S3, and it is collapsed via the
Reeb flow of α0 since J̃+ coincides with J0 near the negative end. We denote
the resulting almost complex manifold by (Ŵ+, Ĵ+). It is not hard to see that
H2(Ŵ

+) is generated again by two spherical classes [S0] and [S∞], and clearly,
the representatives S0 and S∞ are Ĵ+-holomorphic. Since Ĵ+ coincides with Ĵ0
also on a tubular neighborhood of S∞ in Ŵ+, we get the same intersection
properties of S0 and S∞, and due to the asymptotic behavior of u, equation
(51) holds, and the rest of the computation goes through. Hence the total
multiplicities of the positive ends of u are greater than or equal to the total
multiplicities of the negative ends of u. Relating this inequality to total actions
of positive and negative ends of u leads to the claim.

We note that the same argument applies to the components in (W−, J−),
and this finishes the proof of Proposition 4.8.
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