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Abstract. We define a notion of ideal for objects in the category of abstract unitary Cuntz
semigroups introduced in [3] and termed Cu™. We show that the set of ideals of a Cu™-
semigroup has a complete lattice structure. In fact, we prove that, for any C*-algebra
of stable rank one A, the assignment I — Cuj(I) defines a complete lattice isomorphism
between the set of ideals of A and the set of ideals of its unitary Cuntz semigroup Cuy(A).
Further, we introduce a notion of quotients and exactness for the (nonabelian) category Cu™.
We show that Cuy(A)/Cuq(I) ~ Cui(A/I) for any ideal I in A and that the functor Cu; is
exact. Finally, we link a Cu™-semigroup with the Cu-semigroup of its positive elements and
the abelian group of its maximal elements in a split-exact sequence. This result allows us to
extract additional information that lies within the unitary Cuntz semigroup of a C*-algebra
of stable rank one.

1. INTRODUCTION

In the last decade, the Cuntz semigroup has emerged as a suitable invari-
ant in the classification of non-simple C*-algebras. It is now well-established
that this positively ordered monoid is a continuous functor from the cate-
gory of C*-algebras to the category of abstract Cuntz semigroups, written Cu
(see [6, 1]). Moreover, an abstract notion of ideals and quotients in the cat-
egory Cu has been considered in [5], and it has been proved that the Cuntz
semigroup nicely captures the lattice of ideals of a C*-algebra A, that we write
Lat(A). In fact, for any C*-algebra, the assignment I — Cu([) defines a com-
plete lattice isomorphism between Lat(A) and the set of ideals of Cu(A), that
we write Lat(Cu(A)) (see [1, §5.1.6]). These results make the Cuntz semi-
group a valuable asset whenever considering non-simple C*-algebras. While
the Cuntz semigroup has already provided notable results for classification
(see e.g. ]9, 10]), one often has to restrict oneself to the case of trivial K;
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since the Cuntz semigroup fails to capture the K;-group information of a C*-
algebra. To address this issue, the author has introduced a unitary version of
the Cuntz semigroup for C*-algebras of stable rank one, written Cu; (see [3]).
This invariant, built from pairs of positive and unitary elements, resembles the
construction of the Cuntz semigroup and defines a continuous functor from
the category of C*-algebra of stable rank one to the category Cu™ of (not
necessarily positively) ordered monoids satisfying the order-theoretic axioms
(01)—(04) introduced in [6].

In this paper, we investigate further this new construction, and we affir-
matively answer the question whether this unitary version of the Cuntz semi-
group also captures the lattice of ideals of a C*-algebra of stable rank one.
We specify that the category Cu™ does not require the underlying monoids
to be positively ordered, which hinders the task to generalize notions intro-
duced in the category Cu. For instance, we cannot characterize a Cu™-ideal of
a countably based Cu™-semigroup by its largest element, as is done for count-
ably based Cu-semigroups, since such an element might not exist in general.
As a result, two axioms, respectively named (PD), for positively directed, and
(PC), for positively convex, appear as far as the definition of a Cu™-ideal is
concerned. Axiom (PD) has already been introduced in [3], where the author
has established that any positively directed Cu™-semigroup S either has max-
imal elements forming an absorbing abelian group, termed Sp,ax, or else has
no maximal elements. We finally point out that any Cu-semigroup S satis-
fies these axioms and that the generalization of a Cu™-ideal matches with the
usual definition of a Cu-ideal for any Cu-semigroup S. In the course of this
investigation, we also show that the functor Cu; satisfies expected properties
regarding ideals, quotients and exact sequences. These results help us to dig
in depth the functorial relations between Cu, Ky and Cu; found in [3, §5].

More concretely, this paper shows that the set of Cu™-ideals of such a Cu™-
semigroup S is a complete lattice naturally isomorphic to the complete lattice
of Cu-ideals of its positive cone S;. Furthermore, we prove the following
theorem.

Theorem 1.1. For any C*-algebra A of stable rank one, the unitary Cuntz
semigroup Cuy(A) is positively directed and positively convex. Moreover, the
assignment I — Cuy(I) defines a complete lattice isomorphism between Lat(A)
and Lat(Cuq(A)) that maps the sublattice Lats(A) of ideals in A that contain
a full, positive element onto the sublattice Laty(Cuq(A)) of ideals in Cuy(A)
that are singly generated by a positive element. In particular, I is simple if
and only if Cuy(I) is simple.

Theorem 1.2. Let A be a C*-algebra of stable rank one, and let I € Lat(A).
Consider the canonical short exact sequence 0 — I -3 A = A/T — 0. Then

(i) Cuy(w) induces a Cu”™-isomorphism Cuy(A)/Cuy(I) ~ Cuy(4/I).
(ii) The following sequence is short exact in Cu”™:

0 — Cuy(I) 5 Cuy(A) = Cuy(A/I) — 0.
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Theorem 1.3. Let S be a positively directed Cu™ -semigroup that has mazximal
elements. Then the following sequence in Cu™ is split-exact:

08 58 % S — 0
q

where i is the canonical injection, j(s) == s+eg,,,, and q(s) :=s.

max

The paper is organized as follows. In the first part, we define an abstract
notion of a Cu™-ideal for any positively directed Cu™-semigroup. We then see
that the smallest ideal containing an element might not always exist since the
intersection of two Cu™-ideals is not necessarily a Cu~-ideal. However, the
smallest ideal containing an element s of a positively directed and positively
convex Cu™-semigroup S, where the notion of positively convez is to be spec-
ified, always exists and is explicitly computed. We finally build a complete
lattice structure on the set of Cu™-ideals of a positively directed and posi-
tively convex Cu™-semigroup .S, relying on the natural set bijection between
Lat(S) ~ Lat(Sy), where S; € Cu is the positive cone of S.

We also study the notion of quotients and exactness in the category Cu”™.
Among others, we show that a quotient of a positively directed and positively
ordered Cu™-semigroup by an ideal is again a positively directed and posi-
tively ordered Cu™-semigroup. Moreover, the functor Cu; preserves quotients
and short exact sequence of ideals. We finally use the split-exact sequence
0— Sy =S — Smax — 0 described above to unravel commutative diagrams
with exact rows linking Cu, K; and Cu; of a separable C*-algebra with stable
rank one—and its ideals.

Note that this paper is the second part of a twofold work (following up [3])
and completes the properties of the unitary Cuntz semigroup established dur-
ing the author’s PhD thesis. We also mention that the unitary Cuntz semi-
group—through these results—will be used in a forthcoming paper to distin-
guish two non-simple unital separable C*-algebras with stable rank one, which
originally agree on K-Theory and the Cuntz semigroup; see [4].

2. PRELIMINARIES

We use Mon< to denote the category of ordered monoids, in contrast to the
category of positively ordered monoids, that we write PoM. We also use Cf,
to denote the full subcategory of C*-algebras of stable rank one.

We recall some definitions and properties on the Cuntz semigroup. More
details can be found in [1, 2, 6, 11].

2.1. The Cuntz semigroup of a C*-algebra. Let A be a C*-algebra. We
denote by A, the set of positive elements. Let a and b be in A;. We say that
a is Cuntz subequivalent to b, and we write a Scy b, if there exists a sequence
(Zn)nen in A such that a =lim, ey x, bz’ After antisymmetrizing this relation,
we get an equivalence relation over A, , called Cuntz equivalence, denoted
by ~Cu-
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Let us write Cu(A) := (A ® K)+/~cu, that is, the set of Cuntz equivalence
classes of positive elements of A ® K. Given a € (A ® K)4, we write [a] for
the Cuntz class of a. The set Cu(A) is equipped with an addition as follows:
let v1 and vy be two isometries in the multiplier algebra of A ® I such that
010} +v205 = lpagk). Consider the *-isomorphism 1 : Ma(A® K) - A® K
given by (& 9) = viavy + vabv}, and we write a b := (2 9). For any [a], [b]
in Cu(A), we define [a] + [b] := [a ® b] and [a] < [b] whenever a Scy b. In this
way, Cu(A) is a partially ordered semigroup called the Cuntz semigroup of A.

For any *-homomorphism ¢ : A — B, one can define Cu(¢) : Cu(A) — Cu(B),
a semigroup map, by [a] — [(¢ ® idx)(a)]. Hence we get a functor from the
category of C*-algebras into a certain subcategory of PoM, called the category

Cu, that we describe next.

2.2. The category Cu. Let (S, <) be a positively ordered semigroup, and
let z,y in S. We say that z is way-below y, and we write x < y if, for all
increasing sequences (2, )nen in S that have a supremum, if sup, cy zn > ¥,
then there exists k such that zp > x. This is an auxiliary relation on S called
the way-below relation or the compact-containment relation. In particular,
r < y implies < y, and we say that x is a compact element whenever z < x.
We say that S is an abstract Cuntz semigroup, or a Cu-semigroup, if it
satisfies the following order-theoretic axioms.
(O1) Every increasing sequence of elements in S has a supremum.
(02) For any x € S, there exists a <-increasing sequence (zp)nen in S such
that sup, ey 2n = .
(03) Addition and the compact containment relation are compatible.
(0O4) Addition and suprema of increasing sequences are compatible.
A Cu-morphism between two Cu-semigroups S, T is a positively ordered mo-
noid morphism that preserves the compact containment relation and suprema
of increasing sequences.
The category of abstract Cuntz semigroups, written Cu, is the subcategory
of PoM whose objects are Cu-semigroups and morphisms are Cu-morphisms.

2.3. Countably based Cu-semigroups. Let S be a Cu-semigroup. We say
that S is countably based if there exists a countable subset B C S such that, for
any a,a’ € S such that a’ < a, then there exists b € B such that a’ <b < a. The
set B is often referred to as a basis. An element u € S is called an order-unit
of S if, for any x € S, there exists n € N such that z < nu, where N := N1 {co}.

Let S be a countably based Cu-semigroup. Then S has a maximal ele-
ment, or equivalently, it is singly generated. Let us also mention that if A
is a separable C*-algebra, then Cu(A) is countably based. In fact, its largest
element, that we write oo 4, can be explicitly constructed as follows. Let s4 be
any strictly positive element (or full positive) in A. Then oo = sup,,cyn[s4).
A fortiori, [sa] is an order-unit of Cu(A).

2.4. Lattice of ideals in Cu. Let S be a Cu-semigroup. An ideal of S is
a submonoid I that is closed under suprema of increasing sequences and such
that, for any z,y such that + <y and y € I, then x € I.
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It is shown in [1, § 5.1.6] that, for any I, J ideals of S, I N J is again an ideal.
Therefore, for any x € .S, the ideal generated by z, defined as the smallest ideal
of S containing z, and written I, is exactly the intersection of all ideals of S
containing z. An explicit computation gives us I, := {y € S | y < ooz}.

Moreover, it is shown that I + J:={z € S|z2<z+y,x €I,y € J}isalso an
ideal. Thus we write Lat(S) := {ideals of S}, which is a complete lattice under
the following operations: for any two I, J € Lat(S), we define IAJ:=1NJ
and IV J:=1+J.

Furthermore, for any C*-algebra A, we have that Cu(I) is an ideal of Cu(A)
for any I € Lat(A). In fact, we have a lattice isomorphism as follows:

Lat(A) = Lat(Cu(A))
I~ Cu(I)

Finally, whenever S is countably based, any ideal I of S is singly generated,
for instance by its largest element, that we also write co;. In particular, for
any C*-algebra A, any a,b € (A® K)4, if [a] < [b] in Cu(A), then I, C I, or
equivalently, Ij,) C Iy). (The converse is a priori not true: I, = Iy, for any
x € Cu(A), any k € N, but in general, x # kz.)

2.5. Quotients in Cu. Let S be a Cu-semigroup and I € Lat(S). Let z,y € S.
We write x <y y if there exists z € I such that < z +y. By antisymmetriz-
ing <;, we obtain an equivalence relation ~; on S. Define S/I := S/~;.
For x € S, write T := [z].,, and equip S/I with the following addition and
order. Let x,y € S. Then T4+ y:=x+y and T <7 if z <;y. These are
well-defined, and (S/I,+, <) is a Cu-semigroup, often referred to as the quo-
tient of S by I. Moreover, the canonical quotient map S — S/I is a surjective
Cu-morphism. Finally, for any C*-algebra A and any I € Lat(A), we have
Cu(A/I) ~ Cu(A)/Cu(I); see [5, Cor. 2].

We recall some definitions and properties on the unitary Cuntz semigroup.
More details can be found in [3].

2.6. The unitary Cuntz semigroup of a C*-algebra—The category
Cu”™. Let A be a C*-algebra of stable rank one, and let a,b € A} such that
a Scy b. Using the stable rank one hypothesis, there exist standard mor-
phisms Oqp : her(a)™ < her(b)™ such that [04(u)]k, does not depend on the
standard morphism chosen, for any unitary element u € her(a)~. That is,
there is a canonical way (up to homotopy equivalence) to extend unitary el-
ements of her(a)™ into unitary elements of her(b)~. Now, let w,v be uni-
tary elements of her(a)™, her(b)™ respectively. We say that (a,u) is unitarily
Cuntz subequivalent to (b,v), and we write (a,u) <1 (b,v), if @ Scy b and
Oap(u) ~p v. After antisymmetrizing this relation, we get an equivalence re-
lation on H(A) := {(a,u) |a € (AR K)+, u € U(her(a)™)}, called the unitary
Cuntz equivalence, denoted by ~1.
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Let us write Cu;(A) := H(A)/~1. The set Cuy(A) can be equipped with
a natural order given by [(a,u)] < [(b,v)] whenever (a,u) <1 (b,v), and we set
[(a,u)] + [(b,v)] := [(a @ b,u v)]. In this way, Cu;(A) is a semigroup called
the unitary Cuntz semigroup of A.

Any *-homomorphism ¢ : A — B naturally induces a semigroup morphism
Cuy(¢) : Cur(A) — Cuy(B), by sending [(a, u)] = [(¢ @ idx)(a), (¢ ®idk)™ (u)]-
Hence we get a functor from the category of C'*-algebras of stable rank one
into a certain subcategory of ordered monoids, denoted by Monc, called the
category Cu”™, that we describe in the sequel.

Let (S, <) be an ordered monoid. Recall the compact-containment relation
defined in Subsection 2.2. We say that S is a Cu™-semigroup if S satisfies ax-
ioms (01)-(04) and 0 < 0. We emphasize that we do not require the monoid to
be positively ordered. A Cu™ -morphism between two Cu™-semigroups S, T is
an ordered monoid morphism that preserves the compact-containment relation
and suprema of increasing sequences.

The category of abstract unitary Cuntz semigroups, written Cu™, is the
subcategory of Mon< whose objects are Cu™-semigroups and morphisms are
Cu™-morphisms. Actually, as shown in [3, Cor. 3.21], the functor Cu; from
the category C., to the category Cu™ is arbitrarily continuous.

2.7. Alternative picture of the Cu;-semigroup. We will sometimes use
an alternative picture described in [3, §4.1]. First, recall that, for a C*-alge-
bra A, Lats(A) is the sublattice of Lat(A) consisting of ideals that contain
a full, positive element. Also recall that {o-unital ideals of A} C Laty(A), and
if moreover A is separable, then the converse inclusion holds. Finally, for any
I € Lats(A), we define Cuy(I) := {x € Cu(A) | I, = Cu(l)} to be the set of
full elements in Cu([).

Let A be a C*-algebra of stable rank one such that Lats(A) = {o-unital
ideals of A}. Then Cu;(A) can be pictured as

L] Cur() x K1)

IELatf(A)

that we also write Cu;(A). The addition and order are defined as follows: for

any (z, k), (y,1) € Cuy(4),
(k) < (y,1) ifx<yanddr,(k)=1
( ) + (yv ) (33 + Y, 5lzlz+y (k) + 5IyIn:+y (l))

where 675 := K (I < J) for any I,.J € Lat¢(A) such that I C J.

Let A, B be C*-algebras of stable rank one, and let ¢ : A — B be a *-homo-
morphism. For any I € Latf(A), we write J := Bé(I)B, the smallest ideal
of B that contains ¢(I). Then J € Lats(B), and Cuy(¢) can be rewritten as
(Cu(9), {K1(#1)}reLat,(a)); where ¢y : I — J. Observe that we might write
a, ap, ag to denote Cuy(¢), Cu(p), Ki(¢|r) respectively.
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3. IDEAL STRUCTURE IN THE CATEGORY Cu”™

In this section, we define and study the notion of ideals in the category
Cu”™. Since the underlying monoid of a Cu™-semigroup might not be positively
ordered, definitions and results of the category Cu cannot be applied and some
extra work is needed. When it comes to a concrete Cu™-semigroup—that is,
coming from a C*-algebra of stable rank one A—we wish that a Cu™-ideal
satisfies natural properties, e.g. Cuj([) is an ideal of Cuy(A) or Lat(A) is
entirely captured by the set of Cu~-ideals of Cuy(A). For that matter, we
first have to study the set of maximal elements of a Cu™ -semigroup. We show
that, under additional axioms—satisfied by any Cu;(A)—mnamely axioms (PD)
and (PC), the set of maximal elements of a Cu™-semigroup forms, when not
empty, an absorbing abelian group. From there, we are able to define a suitable
notion of Cu™-ideal. We will also use concepts from Domain Theory that we
recall now (see [7]).

Finally, we say that a Cu™-semigroup S is countably based if there exists
a countable subset B C S such that, for any pair o’ < a, there exists b € B
such that ¢’ < b < a.

3.1. Definition of a Cu”™ ideal.

Definition 3.2 ([7, Def. I1.1.3]). Let S be a Cu™-semigroup. A subset O C S

is Scott-open if

(i) O is an upper set, that is, for any y € S, y > x € O implies y € O,

(ii) for any x € O, there exists 2’ < z such that 2’ € O. Equivalently, for any
increasing sequence of S whose supremum belongs to O, there exists an
element of the sequence also in O.

Dually, we say that F' C S is Scott-closed if S\ F' is Scott-open, that is, if it is

a lower set that is closed under suprema of increasing sequences.

Let us check the equivalence of (ii) in the above definition. Let O be an
upper set of S, and let € O. Suppose there exists 2’ < x such that 2’ € O.
Let (z,,)n be any increasing sequence whose supremum is z. By definition of
&, there exists x, > 2’; hence z,, is also in O. Conversely, using (02), there
exists a <-increasing sequence (x,), whose supremum is x. By hypothesis,
there exists n such that z,, € O, and by construction, z,, < x. This finishes
the proof.

Definition 3.3. Let S be a Cu™-semigroup. We define the following axioms.

(PD) We say that S is positively directed if, for any x € S, there exists p,, € S
such that x + p, > 0.

(PC) We say that S is positively convez if, for any x,y € S such that y > 0
and z <y, we have x +y > 0.

Axiom (PC) ensures that the only negative element of S is 0, while axiom
(PD) ensures that any non-positive element has a “symmetric” such that their
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sum is a positive element. Furthermore, the set of maximal elements of a pos-
itively directed Cu™-semigroup has an abelian group structure (see [3, §5.1]).
We first show that these axioms are satisfied by any concrete Cu™-semigroup.

Lemma 3.4. Let A be a C*-algebra of stable rank one. Then Cuy(A) is
positively directed and positively conver.

Proof. Let A be a C*-algebra of stable rank one, and consider [(a,u)] € Cu; (A),
where a € (A® K)1 and u € U(her(a)™). Observe that [(a,u)] + [(a, u*)] =
[(a®a,1)] >0, and so Cui(A) is positively directed. Now let [(b,1)] be a pos-
itive element in Cuy(A) such that [(a,u)] < [(b,1)]. Since [(a,u)] < [(b,1)], we
know that xap([u]) = [1]. Therefore, Xq(aap)([u]) = [1], and we deduce that
[(a,w)] + [(b,1)] = [(a ® b, 1)] is a positive element in Cuy(A), which finishes
the proof. O

Definition 3.5. Let S be a Cu™-semigroup. We define
Smax = {x € S |if y > x, then y = z}
the set of maximal elements of S.

Proposition 3.6 ([3, Prop. 5.4]). Let S be a positively directed Cu”™ -semigroup.
Then Smax @s either empty or an absorbing abelian group in S whose neutral
element eg___ is positive.

max

Remark 3.7. Whenever S is a positively directed Cu™-semigroup that has
maximal elements, then eg . is the only positive element of Syax or, equiv-
alently, the only positive maximal element of S. Also, we mention that any
countably based Cu™-semigroup has maximal elements.

Lemma 3.8. Let S be Cu™-semigroup that has maximal elements. Then the

following are equivalent.

(i) S is positively directed.

(il) For any x € S, there exists a unique py € Smax such that x + p, > 0.

(iii) Smax s an absorbing abelian group in S whose neutral element eg,,,. is
positive.

Proof. That (ii) implies (i) is clear, and that (i) implies (iii) is proved in [3,
Prop. 5.4].

Let us show now that (iii) implies (ii). Let x € S, and write e :=eg,,,.. Let
q := x + e. Note that ¢ belongs to Smax by (iii). Denote by p, the inverse of ¢
in Smax. We have x + e+ p, = e, and x + p, € Smax by assumption. Therefore,
T+ p,+e=z+p, =e>0. Now suppose there exists another r € S,.x such
that »r +x > 0. Then r + x + p, = p,. However, x + p, = e, hence r = p,,
which ends the proof. 0

Notice that, for a Cu-semigroup S, we have that Sy, is either empty or
the trivial group consisting of the largest element of S. Furthermore, axioms
(PD) and (PC) can be defined for ordered monoids, and all the proofs above
hold. We now define the notion of a positively stable submonoid for positively
directed Cu™-semigroup that will lead to the definition of a Cu™-ideal.
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Definition 3.9. Let S be a positively directed Cu™-semigroup. Let M be

a submonoid of S. We say M is positively stable if it satisfies the following.

(i) M is a positively directed ordered monoid.

(ii) For any x € S, if (x4 P,) N M # &, then z € M, where P, :={y € S |
x+y >0}

Axiom (PD) ensures that P, # @. In fact, P, is a Scott-open set in .S (so is
x + P.): P, is clearly an upper set, and using 0 <« 0 and (02), one can check
that P, satisfies Definition 3.2 (ii). In particular, S; = Py is Scott-open in S.

Definition 3.10. Let S be a positively directed Cu™-semigroup. We say that
I C S is an order-ideal (or ideal) of S if I is a Scott-closed, positively stable
submonoid of S.

We say that S is simple if it only contains the trivial ideals {0} and S.

It is for the reader to check that any ideal I of a (positively directed) Cu™-
semigroup S is a positively directed Cu™-semigroup. Moreover, if S is posi-
tively convex, then so is I. Finally, I continuously order-embeds into S (that
is, the canonical inclusion ¢ : I < S is a Scott-continuous order-embedding).

We naturally want to define the ideal generated by an element. However,
we cannot ensure that the intersection of ideals is still an ideal. In fact, being
positively directed is not preserved under intersection; thus we define the ideal
generated by an element abstractly as follows.

Definition 3.11. Given z € S, we define Idl(x) as the smallest ideal of S
containing x, that is, x € Idl(x), and for any J ideal of S containing x, we have
J D Idl(x). Note that this ideal might not exist.

Here, we offer an example of two ideals of a countably based positively
directed and positively convex Cu™-semigroup, whose intersection fails to be
positively directed, and hence fails to be an ideal.

Let S be the subset of N° x Z defined as follows:
S = {((71177127713),]6) c NB X 7 | k>0 ifnl =ng =0,
kZOif’nl:nQ:ng:O}.

We put on this set a component-wise sum, and we define for any two pairs
(g,k) < (h,1)if g < hin N’ and k = [ in Z. Notice that Sy = N x {0}. One
can check that (5,4, <) is a countably based positively directed and positively
convex Cu”-semigroup. o

Now consider I1 := (NxNx {0}) xZ)NS, [:= ({0} xNxN)xZ)nS.
Again, one can check that those are ideals of S as defined earlier. However,
IL NI, = ({0} x N, x {0}) x Z;) U {0s} is not positively directed. Indeed,
let « := ((0,7n,0),1) € I; N I5. Observe that any element y € I; N I is of the
form ((0,n,0), k) for some n € N and k > 0. Thus there is no y € I; N Iy such
that x + y > 0, and hence I1 N I5 is not positively directed.

Proposition 3.12. Let S be a positively directed and positively conver Cu”™ -
semigroup. Let x be a positive element of S. Then 1dl(z) exists, and we have
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the following:
Idl(z) = {y € S| there is y' € S with 0 <y +y" < oox}.

Proof. Let us define I, := {y € S| thereis y' € S with 0 < y+ 3/ < ocox}. We
want to prove that I, is the Cu™-ideal generated by .

First, we show that I, is a submonoid of S that contains z. Using (O1), we
know that cox := sup,,cyn is a positive element. Moreover, 0 <04 0 < ooz,
hence 0 € I,. We also know that, for any n,m in N, 0 < nz + ma < cox. So
we get that {nz |n € N} C I,.. Let y1,y2 in I,. Then one easily checks that
0 < (y1 +y2) + (v] + yb) < 2(coz) = comx; hence I is closed under addition.
This proves it is a submonoid of S that contains x.

Claim: ooz is a maximal positive element of I, (in fact, the unique maximal
positive element of I.). Let y € I, such that y > 0. There exists y’ € I, such
that 0 <y + 3’ < ocox. Since y > 0, we get that 3y’ <y +y’ < ocox. So, by axiom
(PC), we deduce that 0 < ¢y’ + cox. Now we add y on both sides to get that
y <y+y + ocox < 2(cox) = cox. Therefore, for any positive element y of I,
y < oox, which proves the claim.

Let us now prove that I, is closed under suprema of increasing sequences.
Let (yn)n be an increasing sequence in I, and let y be its supremum in S.
Let y{ be such that 0 < yo + y{, < ooz, where yo is the first term of (yn)n.
Observe that y{ belongs to I,. Since I, is closed under addition, for any
n € N, we have y, + y, € I,. Therefore, we can choose z, € I, such that
(0 <) yn, + Y4 + 2n < cozx. Finally, choose 2], € I, such that 0 < z, + 2], < coz.

Thus we have on the one hand that 0 <y, + y{ < (yn + ¥{) + (20 + z,,) and
on the other hand that (y, + y( + 2zn) + 2, < cox + 2/, for any n € N. Now,
since I, is submonoid of S that contains z and z/, € I, we get that cox + 2/,
is a positive element of I,. Now, since oox = 2(cox), we have (cox + z)) =
2(o0x) 4 2!, > ocox. By maximality of cox in I, we get that 0 < y,, + y{, < ooz
for any n € N. Using axioms (O3) and (O4), we pass to suprema, and we obtain
0 <y+y, < ooz, that is, y € I,. So I, is closed under suprema of increasing
sequences.

We also have to show that I, is positively stable. Take any z € S such that
there exists 2/ with 0 < z+ 2’ and (2 + 2’) € I,. We know there is a y € I,
such that 0 < z+ 2’ +y < cox. Hence z € I,.

Next, we check that I, is a lower set. Let z <y with y € I,. We know
that there exists y’ € I, such that 0 <y + ¢y’ < cox. Since z +vy' <y +y', we
deduce by axiom (PC) that 0 < z+ 9y +y+ 3y <2(y+y’) < oozx. Therefore,
z € I, that is, I, is a lower set, which ends the proof that I, is an ideal of .S
containing .

Lastly, let J be an ideal of S containing x. Then it contains cozx = e(y,),,..-
Thus, if y € I;, we know that there exists 3’ € I, such that 0 < y +¢' < oo,
and therefore y +y' € (y + Py) N J. Since J is positively stable, this implies
that y € J. We obtain J O I, which gives us that I, is the ideal generated
by x. O
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We mention that a notion of ideals has been defined in Definition 3.10
for positively directed Cu™-semigroups. However, the existence of an ideal
generated by a positive element requires axiom (PC). Thus, from now on, we
only consider positively directed and positively convex Cu™-semigroups (and
this will be specified).

In the context of Proposition 3.12, observe that I, defined in the proof
is equal to Idl(z), and from now on, we denote by I, the ideal generated
by a positive element x. Also observe that I, is positively directed and has
maximal elements. Thus, by Proposition 3.6, we know that (I;)max is an
absorbing abelian group whose neutral element is cox corresponding to the
unique maximal positive element of I,.

Corollary 3.13. Let S be a positively directed and positively conver Cu™ -
semigroup. Let I be an ideal of S. Then I has maximal elements if and only if
I is singly generated by a positive element, for instance by its (unique) mazimal
positive element ey

max *

Proof. If I has maximal elements, then by Proposition 3.6, we know that
Imax is an absorbing abelian group whose neutral element ey, is the unique
maximal positive element of I. Thus I,  exists. Obviously, I, CI. Now
let x € I. Using Lemma 3.8, we can find y € Iihax such that v +y =eg .
Since I is positively stable, we deduce that x € I,  and that I, =1.

Conversely, if I is singly generated by a positive element z, then from the
proof of Proposition 3.12, we know that cox € I,.x, which ends the proof. [

3.14. Complete lattice of ideals. We now study the set of ideals of a posi-
tively directed and positively convex Cu™-semigroup S, that we denote Lat(.S).
We in fact show that Lat(S) has a natural structure of complete lattice and
that, moreover, we have a lattice isomorphism between Lat(A), Lat(Cui(A))
for any C*-algebra A of stable rank one. The sublattice Lats(S) consisting of
ideals singly generated by a positive element (or equivalently, ideals that have
maximal elements) will also be of an interest since the latter isomorphism maps
Lat¢(A) onto Lat¢(Cuy (A)) for any C*-algebra A of stable rank one.

3.15. Let A be a C*-algebra of stable rank one. Using the alternative picture of
the unitary Cuntz semigroup of Subsection 2.7, it is almost immediate that an
element (x,k) € Cui(A) belongs to Cuy (1) if and only if x € Cu([). This allows
us to prove in a similar fashion to the Cuntz semigroup (see [1, Sec. 5.1]) that,
for any I € Lat(A), the inclusion map ¢ : [ — A induces an order-embedding
Cuy (i) : Cuy(I) — Cuy(A) and that Cuy(I) is in fact a Scott-closed positively
directed submonoid of Cuj(A). The fact that Cuy(I) is positively stable in
Cu;(A) is also trivial and left to the reader. We conclude that Cuy(I) is an
ideal of Cuy(A) for any I € Lat(A).

We recall that, for a C*-algebra A, we let Lat(A) denote the complete lattice
of ideals of A, and we let Lat;(A) denote the sublattice of ideals in A that
contain a full, positive element. Also, for a positively directed and positively
convex Cu™-semigroup S, we let Lat(S) denote the set of ideals of S, and we
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let Lat;(S) denote the set of ideals in S that are singly generated by a positive
element. (We might just write singly generated, for notation purposes.)

Proposition 3.16. Let A be C*-algebra of stable rank one. Then the map

® : Lat(A) — Lat(Cuy(A))
I— Cul(I)

is an isomorphism of complete lattices that maps Laty(A) onto Laty(Cuq(A)).
In particular, A is simple if and only if Cuq(A) is simple.

Proof. Since (z, k) € Cuy(A) belongs to Cuy(I) if and only if 2 € Cu(I), the
proof of [1, Prop. 5.1.10] remains valid in our context. For the sake of com-
pleteness, we explicitly write the inverse map

U : Lat(Cuy(A4)) — Lat(A)
J—={ze Al ([zz*],0) € Jy+}

where J is the Cu-semigroup formed by the positive elements of J. 0

Remark 3.17. (i) We explicitly compute the lattice structure on Cu;(A) for
any C*-algebra A of stable rank one. Let I, J € Lat(A); then

Cu1(I) ACuy(J) =Cuy(INJ) and Cui(I)V Cui(J)=Cui({ +J).

(ii) For a Cu™-semigroup S, Lat(5) ~ Lat(S;) and Lat¢(S) ~ Lat¢(Sy).
(iii) If S is a countably based Cu™-semigroup, then Lat(S) = Lat(S).

3.18. Link with Cu and Kj. It has been shown in [3] that the functor Cu
and the functor K; can be seen as the positive cone and the maximal ele-
ments of Cuj respectively, through natural isomorphisms using the functors
vy Cu™ — Cu and vy 0 Cu™ — AbGp. We now investigate further, ap-
plying these results at level of ideals and morphisms, in order to unravel the
information contained within the functor Cuy, about the lattice of ideals of
C*-algebras of stable rank one and their morphisms.

Lemma 3.19. Let S,T be positively directed and positively conver Cu”™ -semi-
groups. Let a: S — T be a Cu™-morphism, and let I,I' € Latf(S) be such that
ICI'. Then J:=Iu(e,,, ) and J' = Iye, ) are the smallest ideals of T that

contain o(I) and a(I") respectively. Moreover, J and J' belong to Lats(T) and
J C J'. Thus the following square is commutative:

I —*sr

aul lozu/

JﬁJ’

where i stands for canonical inclusions and o : I — J is the restriction of «
that has codomain J, respectively oy : 1" — J'.
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Proof. Since « is order-preserving, o ; and « ;. are well-defined. Besides, we
know that, for any y € I, there exists ¢’ such that 0 <y +y' <ey,,..; hence we
have 0 < a(y) + a(y’) < oco.aler,,, ). Therefore, a(y) € J, and we obtain that
a(I) € J, respectively a(I') € J'. Since I C I', we deduce that er,, <ep
and hence af(er,,,) < a(er, ). Thus J C J’, which proves that the square is
commutative. O

In the sequel, when we speak of the restriction of a Cu™-morphism to a singly
generated ideal, we will always refer, unless stated otherwise, to the map de-
fined above. That is, we also restrict the codomain to the smallest singly gen-
erated containing the image of the latter ideal. Using notations of Lemma 3.19,
notice that aj7(er,,..) = €/

Proposition 3.20 ([3, Prop. 5.5]). Let a: .S — T be a Cu™-morphism between
positively directed Cu”™-semigroups S, T that have maximal elements. Then
Omax ‘= Q|50 T €Thax 18 an AbGp-morphism from Smax to Tmax. Thus we
obtain a functor

Vmax : Cu™ — AbGp
S — Shax

O — Omax

In order to be well-defined as a functor, vyax should have the full subcat-
egory of positively directed Cu™-semigroups that have maximal elements as
domain, that we also denote by Cu™. Observe that Cui(Cy, ) belongs to
the latter full subcategory, where CJ  , is the full subcategory of separable
C*-algebras of stable rank one.

In the next theorem, we use the picture of the Cu;-semigroup described in
Subsection 2.7.

Theorem 3.21 ([3, Thm. 5.7]). Let A be either a separable or a simple o-unital
C*-algebra of stable rank one. We have the following natural isomorphisms in
Cu and AbGp respectively:

Cu;(A4)4+ =~ Cu(4) Cu(A)max ~ K1 (4)
(x,0) =z (004, k) — k

In fact, we have the natural isomorphisms vy o Cu; ~ Cu and vpax © Cu; ~ Kj.

Corollary 3.22. Let A be either a separable or a simple o-unital C*-algebra of
stable rank one. Let I € Laty(A) be an ideal of A that contains a full positive
element, and let ¢ : A — B be a *-homomorphism. Write o := Cuy(¢) and
J = B¢(I)B € Latys(B). Let us use the notations of Subsection 2.7, that is,
a = (o, {ar}rcLat,; (). Then

(1) vi(ajcu (1)) = ao|cury and Vmax(r) = 7.
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(i) Let I' € Latg(A) such that I' O I. Then the following squares are com-
mutative in their respective categories:

Cu(l) —— Cu(l’) K, (1) —2 Ky (')
Qo) Cu(I)J/ lam Cu(I’) OHJ/ l‘lﬂ
Cu(J) —— Cu(J) Ki(J) —— Ki(J)

where the maps i stand for the natural inclusions in Cu.

Proof. (i) Using the isomorphisms of complete lattices of Proposition 3.16,
we get that Cui(J) belongs to Lats(Cui(B)) and is the smallest ideal of
Cu;(B) that contains a(Cuy(I)). Hence oy, () defined in Lemma 3.19 has
codomain Cuy(J). We deduce that vy () cu, (1)) = Q0| cuy(1)- Again, we write
oo for the maximal element of Cu(J). Finally, observe that vmax (o r)(x, k) =

(ao(x), o (k)) + (004,0) = (004, ar(k)).
(ii) Apply v+ and vpax to the square of Lemma 3.19, combined with the
natural isomorphisms of Theorem 3.21 and condition (i) above to get the result.
U

Observe that (ii) follows trivially from functoriality of Cu and K; and also
for any I, 1’ € Lat(A) such that I C I', but we illustrate here how it can also be
derived from our methods. Furthermore, in order to be thorough, one would
have to write K1(¢; : I — J) instead of ay since the latter map has only been
defined for I € Lats(A).

4. QUOTIENTS IN THE CATEGORY Cu”™ AND
EXACTNESS OF THE FUNCTOR Cuy

4.1. Quotients. We first study quotients of positively directed and positively
convex Cu™-semigroups, to then show that the functor Cu; preserves quotients.
In other words, we prove that Cuy (A)/Cuy(I) =~ Cu;y(A/I) for any I € Lat(A).

Definition 4.2. Let S be a positively directed and positively convex Cu™-
semigroup. Let I be an ideal of S. We define the following preorder on S: = <;
y if there exists z € I such that x < z + y. By antisymmetrizing this preorder,
we get an equivalence relation on S, denoted ~;. We denote T := [z]~,.

Lemma 4.3. Let S be a positively directed and positively convexr Cu”™ -semi-
group. Let I be an ideal of S. We canonically define

+y:=x+y
<Y ifx<s
S/ == (S/~1,+,2).

Then S/I is a positively directed and positively convexr Cu”™ -semigroup. Also,
S — S/I is a surjective Cu™ -morphism.

3]
] tﬁl

g

and
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Proof. Let x,y be in S. It is not hard to check that the sum and order
considered are well-defined, that is, they do not depend on the representative
chosen. Let us show that S/I equipped with this sum and order belongs to
Mon<. Let 1,22 and y1,y2 be elements in S such that 27 <73 and 71 < ¥s.
There exist 21,22 in I such that &1 +y1 < @2 + 21 + Y2 + 22, that is, z1 + 31 <
o + y2. Also notice that the quotient map S — S/I is naturally a surjective
Mon<-morphism.

In order to show that (S/I,+, <) satisfies axioms (01)-(04), and that
S — S/I is a Cu”~-morphism, we proceed in a similar way to [1, Sec. 5.1] for
quotients in the category Cu, and we will not get into too many details. This
is based on the following two facts.

(1) For any T <7 in S/I, there exist representatives x,y in S such that z < y.
Indeed, we know that there are representatives z,y; in S and some z € I such
that x <1 + 2. Since y := (y1 + 2) ~1 y1, the claim is proved.

(2) For any increasing sequence (Tx)r in S/I, we can find an increasing se-

quence of representatives (xy) in S.

This uses (1) and the fact that I satisfies (O1). Then z := sup, en(d>p_o 2k),
where zj, are the elements obtained from (1), is an element of I. We refer the
reader to [1, §5.1.2] for more details.

Let T € S/I, and let  be a representative of T in S. We know there exists
ps in S such that z + p, > 0. Since 0 € I, we get that T + p, > 0, that is, S/T
is positively directed.

Lastly, let T,7 € S/I such that T <7 and 0 <7g. Let x be a representative
of T and y a representative of 7 in S. Then there are elements z,w € I such
that * <y + 2 and 0 <y + w. Since I is positively directed, there exists
2z € I such that 2 + 2’ > 0. Now observe that z + w+ 2’ <y+z+w+2' =
(y+w)+ (24 2') with y + w+ z 4+ 2’ > 0. By assumption, S is positively
convex; hence we have © + w+ 2/ +y+w+ z 4+ 2/ > 0, and thus, in S/I, we
obtain T+ 7 > 0, as desired. O

A priori, (S/1,+,<) is not positively ordered either. Indeed, one could take
for example an algebra that has a nontrivial ideal I with no K;-obstructions
and such that K;(A4) is not trivial. Then Cu;(A)/Cu;(I) would not be posi-
tively ordered.

Lemma 4.4. Let S,T be positively directed and positively convexr Cu”™ -semi-
groups. Let a: S — T be a Cu™-morphism. For any I € Lat(S) such that
I Ca t({0r}), there exists a unique Cu™-morphism @ : S/I — T such that
the following diagram is commutative:

S ——— T

\ b
,
L
- _
// o

As a matter of fact, we have &(T) := a(x), where x € S is any representative
of T. Moreover, @ is surjective if and only if o is surjective.
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Proof. By assumption, «(I) = {0}. Let us first prove that, for any z1,25 € S
such that T1 < T3 in S/1, we have that a(z1) < a(xs2). Let x1,29 € S be such
that 1 <; 2. Then we know that there exists z € I such that 1 < z + x».
Since «(z) = 0, we obtain that a(z1) < a(xs). We deduce that « is constant
on the classes of S/I. Hence we can define @: S/I — T by @(T) := a(x) for any
x € S. By construction, the diagram is commutative. We only have to check
that @ is a Cu™-morphism. Using facts (1) and (2) of the proof of Lemma 4.3,
one can check that, for any Z,5 € S/I such that T <7 (resp. <), there exist
representatives x,y in S such that z <y (resp. <). Thus we easily obtain that
@ is a Cu~-morphism, which ends the first part of the proof. Surjectivity is
clear and left to the reader. ]

In the next theorem, we use the picture of the Cuj-semigroup described in
Subsection 2.7.

Theorem 4.5. Let A be a C*-algebra of stable rank one such that Laty(A) =
{o-unital ideals of A}. Let I € Lat(A). Let m: A — A/I be the quotient map.
Write 7* := Cuy (w) : Cui(A) — Cuy(A/I).

Then 7 ((x,k)) < 7*((y,1)) if and only if (x,k) <cu, ) (y,1). Moreover, T*
s a surjective Cu™ -morphism. Thus, this induces a Cu”™ -isomorphism

Cul(A)/Cul(I) ~ Cul(A/I)

Proof. Let us start with the surjectivity of 7*. Let [(ar,ur)] € Cui(A/I), where
ar € ((A/I)® K)4+ and uy is a unitary element of (heray)™. As 7 is surjective,
we know there exists a € A ® K4 such that w(a) = ay. Moreover, her a has
stable rank one; hence unitary elements of (her(ay))™ =7~ (her(a)™) lift. Thus
we can find a unitary element u in her(a)™ such that 7™~ (u) = ur. One can
then check that 7*([(a, uw)]) = [(ar, ur)]-

Let us show the first equivalence of the theorem. Noticing that 7*(Cuy (1)) =
{0cu,(a/n} and that 7* is order-preserving, one easily gets the converse im-
plication.

Now let (z, k) and (y,!) be elements of Cu;(A) such that 7*((x, k)) <
7 ((91)). We write (z,F) i= * (2, k) = (5 (), w2 (k) and (7,1)i= 7 (5, )) —
(75 (y), 7, (1)). Thus we have T <7 in Cu(A/I). By Subsection 2.5, we know
that Cu(A/I) ~ Cu(A)/Cu(I), where the isomorphism is induced by the natu-
ral quotient map 7 : A — A/I. Therefore, there exists z € Cu(l) such that
x <y+ z in Cu(A). Write ¥’ :=y + 2. Now, by Corollary 3.22 and [8,
Prop. 4 (ii)], we obtain the following exact commutative diagram:

¢
TrIm

51m1y, o

Kl(Iz) —_— Kl(Iy/) T Kl(—[i) — 0

)
11, "

Thus we get on the one hand that Ki(fy)/dr.1,(Ki(l.)) ~ Ki(I7) and on
the other hand w;y, 04y, I, = 1) IrI; © 77}1. Moreover, by hypothesis, we have
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S1.1,(k) = 1. So one finally gets that or,1,, (k) =6r,1,() +6r.1,(l') for some
I' € Ky (I.). That is, there exists (z,1') € Cuy (I) such that (z,k) < (y,1) + (2,1).
This ends the proof of the equivalence.

Finally, we already know Cuy(I) is an ideal of Cuj(A) and 7* : Cuy(A4) —
Cuy(A/I) is constant on classes of Cuj(A)/Cui(I). By Lemma 4.4, 7* in-
duces a surjective Cu™-morphism 7* : Cuy(A4)/Cuy(I) — Cui(A/I). Further-
more, the equivalence that we have just proved states that 7* is also an order-
embedding. Thus we get a Cu”~-isomorphism Cu;(A)/Cuy(I) ~ Cu; (A/I). O

4.6. Exact sequences. We study the notion of exactness in the nonabelian
category Cu”™. From this, we show that Cuy preserves short exact sequences
of ideals, and we exhibit a split-exact sequence in Cu™ that links a positively
ordered Cu™-semigroup that has maximal elements with its positive cone and
its maximal elements.

Definition 4.7. Let S, T,V be positively directed Cu™~-semigroups. Let f :
S — T be a Cu~-morphism. We define

im f := {(t1,t2) € T x T | there exists s € S, t1 < f(s) + t2},
ker f :={(s1,52) € S x S| f(s1) < f(s2)}.
Now consider g : T'— V a Cu™-morphism. We say that a sequence

s shrsy

is exact at T if ker g =im f. We say that it is short-ezact if 0 — S Lrsyv o
is exact everywhere. Finally, we say that a short-exact sequence is split if there
exists a Cu~-morphism ¢g : V' — S such that g o ¢ = idy.

Proposition 4.8. Let S LT %V bea sequence in Cu™ as in Definition 4.7.

Then

(i) f is an order-embedding if and only if 0 — S Ly 7 is exact.

(ii) If g is surjective, then T %V — 0 is exact. If moreover g(T) € Lat(V),
then the converse is true.

Proof. We recall that, for 0 % S, im0 = {(s1,82) € S? | 51 < s3} and that, for
T 0, ker0 = T2. Let us consider a sequence S < T % V in Cu™.

(i) f is an order-embedding if and only if [s1 < s2 < f(s1) < f(s2)], that is,
if and only if im0 = ker f.

(ii) Suppose g is surjective, and let v, vs be elements in V. Since V is
positively directed, we know that there exists an element p,e of V' such that
0 < vy + py. Thus we have vy < vg + p, + v1. By surjectivity, there exists t € T’
such that ¢(t) = p, + v1. Hence, for any vy, vy in V, there exists ¢t € T such
that v < g(t) + ve, that is, ker 0 = V2 = im g.

Suppose now that 7% V' — 0 is exact and that g(T) is an ideal of V.
We know that, for any vy, vs, there exists t € T' such that v; < g(t) + ve. In
particular, for vo = 0, we get that, for any v € V, there exists ¢t € T such that
v < g(t). Moreover, g(T) is order-hereditary, and thus v € g(T), which ends
the proof. O
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Lemma 4.9. Let S LT %V be a sequence in Cu™. Assume that f(S) is
an ideal of T such that f(S) C g~ 1({0v}). By Lemma 4.4, we can consider
g:T/f(S)—= V. Ifg is a Cu” -isomorphism, then S LT % v 50 s exact.
If moreover g(T) is an ideal of V', then the converse is true.

Proof. Suppose T/ f(S) L V. Since g is an isomorphism, we know that ¢ is
surjective. Thus, by Proposition 4.8, we get exactness at V. Let us show
exactness at 7. We have the following equivalences: (t1,t2) € kerg if and only
if g(t1) < g(t2)—Dby definition—if and only if g(¢1) < g(t2)—since g is constant
on classes of T'/ f(S)—if and only if #; < #5—since g is an order-embedding—if
and only if t; < f(s) + t2 for some s € S—by definition—that is, if and only if
(tl,tg) S 1mf O

Theorem 4.10. Let A be a C*-algebra of stable rank one such that Lats(A) =
{o-unital ideals of A}. Let I € Lat(A). Consider the canonical short exact
sequence 0 — I = A5 A/T — 0.

Then the following sequence is short exact in Cu™:
0 — Cuy (1) 5 Cuy(A) = Cug(A/) — 0.

Proof. We know that Cuy (/) is an ideal of Cuj(A) and that ¢* is an order-
embedding. Hence, by Proposition 4.8 (i), the sequence is exact at Cuy(I). By
Theorem 4.5, we also know that 7* is constant on classes of Cuy(A)/Cuy(])
and that 7 : Cuy(A)/Cuy(I) =~ Cuy(A/I) is an isomorphism. Thus, using
Lemma 4.9, the result follows. O

Corollary 4.11. Let A be a C*-algebra of stable rank one such that Laty(A) =
{o-unital ideals of A}. Consider the canonical exact sequence

0 A5 A" 5 AY/A~C —0.
Then there is a short exact sequence
0 — Cuy(A) 5 Cuy(A™) =5 N x {0} — 0.

Now that we have numerous tools regarding ideals and exact sequences
in Cu™, we will relate ideals, maximal elements, and positive cones through
exact sequences. Recall that, for any positively directed Cu™-semigroup S
that has maximal elements, we have that S € Cu and that Sy,.x € AbGp; see
Proposition 3.6.

Also, a Cu-semigroup (respectively a Cu-morphism) can be trivially seen as
a Cu”~-semigroup since Cu C Cu™. The same can be done for an abelian group
(respectively an AbGp-morphism)—a fortiori, for the abelian group Spax and
the AbGp-morphism ap,.x—given G € AbGp, define g; < go if and only if
g1 = g2. From this, it follows that also ¢ < g2 if and only if g; = g2. This
defines a functor AbGp — Cu”™ which allows us to see the category AbGp as
a subcategory of Cu.
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Therefore, in what follows, we consider v, and vny.x as functors with co-
domain Cu™. Finally, note that all of the proofs will be done in an abstract
setting. Further, by Theorem 3.21, we will be able to directly apply those
results to Cu(A) and K;(A), also seen as Cu™-semigroups.

Definition 4.12. Let S be a positively directed Cu™'-semigroup that has max-
imal elements. Let us define two Cu™-morphisms that link S to S; on the one
hand and to Spax on the other hand, as follows:

i:5, S j:S > Smax
S S s—s+eg

max

Theorem 4.13. Let S be a positively directed Cu™ -semigroup that has maxi-
mal elements. Consider the Cu™ -morphisms defined in Definition 4.12. Then i
is an order-embedding and j is surjective. Moreover, the following sequence in
Cu”™ is split-exact:

08 8% S — 0

q
where the split morphism is defined by q(s) := s.

Proof. 1t is trivial to check that ¢ is a well-defined order-embedding Cu™-
morphism. We now need to check whether j is a well-defined additive map.
From Lemma 3.8, we know that s+ eg,,,, € Smax for any s € S. Also, because
2es. . =eg we get that j is additive. Further, whenever s < s’, we know

that s +eg,,, <s +es Since s+ eg,,,, € Smax, we deduce that j(s) = j(s’)

whenever s < ¢’. Further, j(0) = eg,, ... Thus j is a surjective Cu™~-morphism.

By Proposition 4.8, we get exactness of the sequence at S, and Spax. Now
let us check that the sequence is exact at S. Let (s1,s2) € ker j. Hence
j(s1) = j(s2), that is, s1 + es,,,. = S2 + €s,....- Since eg,,.. € S+, we easily get
that s1 < s1+eg,,,. = S2+eg which proves that ker j C im¢. Conversely,
let (s1,82) € imj. Then we know that there exists a positive element s € St
such that s; < s+ so. Since eg,_,, is the maximal positive element of S, we
can take s = eg,, . Then we easily get that j(s1) < j(s2)—in fact, they are
equal. Thus we conclude that im ¢ = ker j, which ends the proof. O

max

max ?

Note that we could not have used Lemma 4.9 here since S, is not a Cu™
ideal of S. Indeed, the smallest ideal containing Sy is S itself. We now give
a functorial version of the latter split-exact sequence and also a likewise analog
for ideals.

Corollary 4.14. Let S, T be positively directed Cu™-semigroups that have
maximal elements. Let a: S — T be a Cu™ morphism. Viewing the functors
Vi and Vpax with codomain Cu”™, we obtain the following commutative diagram
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with exact rows in Cu™ :

0 Sy —5 8 T G —— 0
a+l Oél J/Oé[nax
0 T+ P T j Tmax — 0

Furthermore, if a is a Cu™ -isomorphism, then a4 is a Cu-isomorphism and
Qmax 1S an abelian group isomorphism.

Proof. We know from Theorem 4.13 that the row sequences are split-exact.
Besides, oy = o ; hence the left square is commutative. Now take any s € S.
We have

Omax © ]S(S) = amax(s + eSmax) = a(s) + 2eTmax = a(s) + eTmax = ]T © a(8)7

which proves that the right square is commutative.

Assume that « is an isomorphism. By functoriality, we obtain that a. is
a Cu-isomorphism whose inverse is (a™!); and that amax is an abelian group
isomorphism whose inverse is (@ ™!)pax- O

Corollary 4.15. Let S, T and « be as in Corollary 4.14. Assume also that S,T
are positively convex. Let I be a singly generated ideal of S and J := Iy, ),
the smallest (singly generated) ideal of T containing a(I) (see Lemma 3.19).
We obtain the following commutative diagram with exact rows:

0 Ii — T 2 Le —— 0
(MI)J{ O‘“l l(all)max
0 Ty —= J = Jiax — 0

Furthermore, if a is a Cu™-isomorphism, then o(I) = J and o)y : I — J is
a Cu™-isomorphism. A fortiori, we also have (o) : I+ — Jy is a Cu-iso-
morphism and (Oéu)max * Imax = Jmax 1S an abelian group isomorphism.

Proof. We only have to check that, whenever « is an isomorphism, then J =
a(I) and that oy : I — J defined as in Lemma 3.19 is an isomorphism. Then
the conclusion will follow applying Corollary 4.14 to «;. Suppose that « is
a Cu”-isomorphism. We know that «|; : I — J sends any element x € I to
a(z) € J. Since « is an order-embedding, so is ;. By Lemma 3.19, we know
that a(l) C J and that a(er,,,) = €j,... Now, since « is an isomorphism,
we obtain that a=1(ey,,. ) = er,... That is, by Lemma 3.19, a=!(J) C I. We
deduce that a(I) = J and that a; is a Cu™-isomorphism. O

We now transport the results obtained to concrete Cu™-semigroups, using
Theorem 3.21.

Theorem 4.16. Let A, B be separable or simple o-unital C*-algebras of stable
rank one. Let ¢ : A — B be a *-homomorphism. Then the following diagram
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is commutative with exact rows:
0 —— Cu(A) —— Cuy(A) —L— K (4) —— 0
Cu(¢)l Cu1(¢)l Ki(¢)

0 —— Cu(B) —— Cuy(B) —2— K{(B) —— 0

Furthermore, if Cuy(¢) is a Cu™-isomorphism, then Cu(¢) is a Cu-isomor-
phism and K1(¢) is an AbGp-isomorphism.

Let I € Lat(A). Write J := Bo(I)B, the smallest ideal of B containing ¢(I),
and o := Cuy(¢). We denote o= (o, {ar}rerat(a)) as in Subsection 2.7. Then
the following diagram is commutative with exact rows:

0 —— Cu(l) —— Cuy(I) —— Ky (I) —— 0

o cll(z)l o] Cul(I)J/ lou

0 —— Cu(J) —— Cuy(J) —— Ky(J) —— 0

Furthermore, if « is a Cu™-isomorphism, then we have a(Cuy(I)) = Cuy(J)
and o|cy, (1) : Cur(l) — Cuy(J) is a Cu™-isomorphism. A fortiori, we also
have ag| cucry : Cu(l) — Cu(J) is a Cu-isomorphism and oy : Ki(I) — Ky (J)
is an AbGp-isomorphism.

Proof. Combine Corollary 4.14 and Corollary 4.15 with Lemma 3.19. ]
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