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Abstract. We develop a perfectoid analog of projective geometry and explore how equip-
ping a perfectoid space with a map to a certain analog of projective space can be a powerful
tool to understand its geometric and arithmetic structure. In particular, we show that maps
from a perfectoid space X to the perfectoid analog of projective space correspond to line
bundles on X together with some extra data, reflecting the classical theory. We then use
this notion to compare the Picard group of a perfectoid space and its tilt. Along the way,
we give a complete classification of vector bundles on the perfectoid unit disk and compute
the Picard group of the perfectoid analog of projective space.

1. Introduction

This paper is inspired by the goal of understanding vector bundles on per-
fectoid spaces and how they behave under the so-called tilting correspondence
of Scholze [18]. To do so, we develop a perfectoid analog of projective geome-
try. We study the perfectoid analog of projective space defined in [18], which
we call projectivoid space and denote by Pn,perf, and we show that maps from
a perfectoid space X to Pn,perf correspond to line bundles on X together with
some extra data, giving an analog to the classical theory of maps to projec-
tive space. In particular, this gives us a direct and geometric way to compare
the Picard groups of a perfectoid space and its tilt by applying the tilting
equivalence to the corresponding maps to projectivoid space. We expect that
the projectivoid geometry as well as the local results studied in this article
will have applications in a variety of contexts. Theorem 1.3 below concerning
Picard groups is one such application. It should be noted that one can also
study line bundles on perfectoid spaces using cohomological methods; in par-
ticular, one can obtain a different proof of Theorem 1.3 using such methods.
This will be discussed in another article.

To begin, we must first understand the theory of line bundles on projectivoid
space itself. Das [5] worked toward computing the Picard group of the projec-
tivoid line, P1,perf , although Das’ proof assumed the existence of certain local
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trivializations of line bundles, requiring a perfectoid analog of the Quillen–
Suslin theorem. Therefore, in order to begin developing the theory of so-called
projectivoid geometry, we must first extend the Quillen–Suslin theorem to the
perfectoid setting. Explicitly, we must show that there are no nontrivial pro-
jective modules on the perfectoid Tate algebra K〈T 1/p∞〉, which is the ring of
convergent power series over a perfectoid field K (of residue characteristic p),
such that the indeterminates have all their p-power roots. We do this in Sec-
tion 2, deducing it from the case of the Tate algebra K〈T 〉 with a limiting
argument together with a theorem of Gabber and Romero [9] regarding the
behavior of projective modules with respect to completion on generic fibers of
henselian rings. The case of the Tate algebra, in turn, was deduced from the
polynomial case by Lütkebohmert [16]. This completes Das’ proof and lays
the groundwork to begin studying vector bundles on more general perfectoid
spaces

In Section 3, we develop the theory of line bundles on projectivoid space,
extending Das’ result for n = 1.

Theorem 1.1. PicPn,perf ∼= Z[1/p].

To prove this, we notice that Pn,perf has a natural integral model whose
special fiber is the scheme theoretic perfect closure of projective space over the
residue field. As it is easily deduced that the Picard group of the perfect closure
of projective space is Z[1/p], there remain two main steps: first that every line
bundle over the residue fields deforms uniquely to the integral model, and
second that every line bundle on Pn,perf has a unique integral model. Strictly
speaking, this is all done on the level of Čech cohomology with a standard cover
by perfectoid closed disks (analogous to the usual affine cover of projective
space). This cover also allows us to compute the cohomology of all line bundles
on projectivoid space, extending a computation of Bedi [2] for n = 2.

In Section 4, we compute the functor of points of projectivoid space, showing
that (much like in the classical theory) it is deeply connected to the theory of
line bundles on perfectoid spaces.

Theorem 1.2. Let X be a perfectoid space over a perfectoid field K. Mor-
phisms X → Pn,perf over K correspond to tuples (Li, s

(i)
j , ϕi), where the Li

are line bundles on X, {s
(i)
0 , . . . , s

(i)
n } are n + 1 global sections of Li which

generate Li, and ϕi : L
⊗p
i+1

∼−→ Li are isomorphisms under which (s
(i+1)
j )⊗p

maps to s
(i)
j .

We also provide refinements of this theorem in characteristic p and see how
it behaves under the tilting equivalence of Scholze.

In Section 5, we apply this formalism to compare the Picard groups of
a perfectoid space X and its tilt X♭. In particular, since the tilting equivalence
builds a correspondence between maps X → P

n,perf
K and maps X♭ → P

n,perf
K♭ ,

we can chain this together with the correspondence of line bundles and maps
to projectivoid space to compare line bundles on X and X♭, allowing us to
prove the following result.
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Theorem 1.3. Suppose X is a perfectoid space over a perfectoid field K,
let X♭ be the tilt of X, and let C be the completion of an algebraic closure
of K. Suppose that X♭ has a weakly ample line bundle (cp. Definition 5.12)
and that H0(XC ,OXC

) = C. Then there is a natural injection

θ : PicX♭ →֒ lim
←−

L 7→L p

PicX.

In particular, if PicX has no p-torsion, then composing with projection onto
the first coordinate gives an injection

θ0 : PicX♭ →֒ PicX.

This paper relies heavily on Huber’s theory of adic spaces developed in
[12, 11]. We do not develop the theory here and instead refer the reader to
Huber’s original papers or Wedhorn’s detailed notes [22]. A summary of the
theory with an emphasis on perfectoid spaces can be found in the author’s
doctoral dissertation [6, Sec. 2–4] or in Kedlaya’s detailed notes from the 2017
Arizona Winter School on the subject [14].

Notational conventions. Throughout the paper, we will fix a perfectoid
field K, with valuation ring K◦, and maximal ideal K◦◦. The residue field
will be denoted by k and has fixed prime characteristic p. If R is a complete
topologicalK-algebra, we denote its subring of power bounded elements by R◦,
the ideal of topologically nilpotent elements by R◦◦, and the residue ring by R̃.
If R is perfectoid, then we denote its tilt by R♭. We will denote by ♯ :R♭→R the
multiplicative map coming from composing projection onto the first coordinate
with the isomorphism (of monoids) R♭ ∼= lim

←−x 7→xp
R.

We also fix a topologically nilpotent unit ̟ ∈ K such that ̟p|p in K◦,
called a pseudouniformizer. As in [18, Rem. 3.5], we choose ̟ to be in the
image of ♯ :K♭→K so that it comes equipped with a complete set of p-power
roots. In this way, the symbol ̟d makes sense for every d ∈ Z[1/p].

2. The perfectoid Tate algebra

Algebraic geometry studies the polynomial ring and its various quotients
and localizations, allowing for commutative algebraic facts to be interpreted
geometrically and vice-versa. In the world of perfectoid algebras, a natural
analog is the perfectoid Tate algebra (defined below), whose commutative al-
gebra controls many of the geometric structures we study. We therefore begin
with a careful study of the algebraic object underlying most of this work.

Let K be a perfectoid field of residue characteristic p, with pseudouni-
formizer ̟. In particular, K is a nonarchimedean field, and so we can define
the Tate algebra Tn,K = K〈X1, . . . , Xn〉 of convergent power series over K.
The module theory of the Tate algebra is well understood, in no small part
due to Lütkebohmert, see [16]. Our main object of study in this section is the
following.
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Definition 2.1 (The perfectoid Tate algebra). The perfectoid Tate algebra
T perf
n,K = K〈X1/p∞

1 , . . . , X1/p∞

n 〉 is a ring of convergent power series over K,
whose indeterminates have all of their p-power roots. More precisely, it is the
̟-adic completion of the union of the Tate algebras over K in the variables
X1/pr

i as r varies and is therefore a completed colimit of Tate algebras.

K〈X1/p∞

1 , . . . , X1/p∞

n 〉 :=
(

⋃

r≥0

K〈X1/pr

1 , . . . , X1/pr

n 〉
)∧
∼=

(

lim
−→

Tn,K
)∧
.

Remark 2.2. The perfectoid Tate algebra consists of formal power series
over K which converge on the perfectoid unit disk. Explicitly, letting X =
(X1, . . . , Xn) be an n-tuple, we can write down the elements of this ring as
follows:

T perf
n,K =

{

∑

α∈(Z[1/p]≥0)n

aαX
α
∣

∣

∣
for all λ ∈ R>0, only finitely many|aα| ≥ λ

}

.

This ring inherits the Gauss norm, ‖
∑

α aαX
α‖ = sup{|aα|}.

(T perf
n,K )◦ is the subring {‖f‖ ≤ 1} of power-bounded elements of T perf

n,K and

consists of power series with coefficients in K◦. The ideal (T perf
n,K )◦◦ of topolog-

ically nilpotent elements consists of power series with coefficients in K◦◦. The
quotient is

T̃ perf
n,K := (T perf

n,K )◦/(T perf
n,K )◦◦ = k[X1/p∞

1 , . . . , X1/p∞

n ],

where k = K◦/K◦◦ is the residue field. Notice that every element in the quo-
tient ring is a polynomial because a power series in (T perf

n,K )◦ can only have
finitely many coefficients of norm 1.

When there will be no confusion, we omit K from the notation.

Remark 2.3 (A note on convergence). Suppose f =
∑

fαX
α ∈ T perf

n . Morally
speaking, saying that the sum converges should mean that evaluating f at any
point in the perfectoid disk should give an element ofK. Since the sums are not
taken over Zn≥0, but rather (Z[1/p]≥0)

n, we must be more careful in defining

what convergence means. Let us begin by studying f(1,1, . . . ,1) =
∑

fα. This
should converge, so we begin by defining partial sums

sm =
∑

α∈( Z

pm
)n|0≤αi≤m

fα.

If the sequence (sm) converges, we define the infinite sum to be the limit. Let
us check that the convergence of the power series f implies convergence of
∑

fα in this sense. Fixing some ε > 0, there are only finitely many fα with
|fα| ≥ ε. Therefore, there is some large N such that, for each such fα, we have

α = (α1, . . . , αn) ∈
(

Z

pN

)n
and 0 < αi < N . Therefore, fixing m ≥ r > N , the

differences sm − sr have no coefficients fα with absolute value larger than ε so
that, by the nonarchimedean property, |sm − sr| < ε. Thus the sum converges
to an element f(1) ∈ K.

Münster Journal of Mathematics Vol. 14 (2021), 445–484



Projective geometry for perfectoid spaces 449

We remark now that if |gα| ≤ 1, the same argument would show that
∑

fαgα
also converges. This should imply that f(x) converges to a point inK whenever
x is in the perfectoid unit disk, but we defer further discussion until after we
have the relevant definitions (see Remark 2.10).

We record a useful normalization trick for further use down the line.

Lemma 2.4 (Normalization). Let f ∈ T perf
n be nonzero. There is some λ ∈K

such that ‖λf‖ = 1.

Proof. Since only finitely many coefficients in f have absolute value above
‖f‖ − ε, the supremum of that absolute values of the coefficients is achieved
by some fα. Taking λ = f−1

α completes the proof. �

The group of units. As a first step towards understanding the perfectoid
Tate algebra, we compute its group of units.

Proposition 2.5. Let f ∈ T perf
n with ‖f‖ = 1. The following are equivalent.

(i) f is a unit in (T perf
n ).

(ii) f is a unit in (T perf
n )◦.

(iii) The image of f of f in T̃ perf
n is a nonzero constant λ ∈ k×.

(iv) |f(0)| = 1 and ‖f − f(0)‖ < 1.

Proof. (i) ⇔ (ii). An inverse to f must have absolute value 1 and therefore
would also lie in (T perf

n )◦.

(ii) ⇒ (iii). The map (T perf
n )◦ → T̃ perf

n must send units to units, and the

group of units of T̃ perf
n is precisely the nonzero constant polynomials. Indeed,

the inverse to any element of T̃ perf
n would also have to be a polynomial (in

X1/pm for some m), implying that they both must be constants.
(iii) ⇔ (iv). This is immediate.
(iv) ⇒ (i). If |f(0)| = 1, then f(0) ∈ K× ⊆ (T perf

n )×. Therefore, we have

1− f
f(0) ∈ T

perf
n and
∥

∥

∥

∥

1−
f

f(0)

∥

∥

∥

∥

= ‖f(0)‖ ·

∥

∥

∥

∥

1−
f

f(0)

∥

∥

∥

∥

= ‖f(0)− f‖ < 1.

Therefore, 1 − f
f(0) is topologically nilpotent so that the following geometric

series converges:

1

f/f(0)
=

1

1− (1− f/f(0))
=

∞
∑

k=0

(

1−
f

f(0)

)k

.

Hence f
f(0) is a unit. Since f(0) is too, we can conclude that f is a unit. �

Corollary 2.6. f =
∑

fαX
α ∈ (T perf

n )◦ is a unit if and only if |f0| = 1 and
|fα| < 1 for all α 6= 0.

Corollary 2.7. f =
∑

fαX
α ∈ T perf

n is a unit if and only if |fα| < |f0| for
all α 6= 0.
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Proof. Using our normalization trick, we know ‖λf‖ = 1 for some λ ∈ K×.
Then f is a unit if and only if λf is, if and only if |λfα| < 1 = |λf0| for all
α 6= 0. Canceling shows this holds if and only if |fα| < |f0| for all α 6= 0. �

Vector bundles on the perfectoid unit disk. In classical algebraic geom-
etry, the polynomial ring (and its various quotients) form the local building
blocks of most of the objects of study. Phrased geometrically, the prime spec-
trum of the polynomial ring of n variables is affine space An which covers or
contains many of the spaces of interest. Like schemes which are locally prime
spectra of rings, perfectoid spaces are build from perfectoid algebras using the
adic spectrum functor of Huber (see [12, 11, 13]). The perfectoid Tate algebra
plays the role of the polynomial ring, and the perfectoid unit disk (defined
below) plays the role of affine space.

Definition 2.8. The perfectoid unit disk is the adic space associated to the
perfectoid Tate algebra

D
n,perf = Spa(T perf

n , (T perf
n )◦).

Remark 2.9. The rigid unit disk is the adic spectrum associated to the Tate
algebra. Since the perfectoid Tate algebra is the completed union of Tate
algebras, using the tilde limit formalism of [20], we have

D
n,perf ∼ lim

←−
ϕ

D
n,ad,

where ϕ is the pth power map on coordinates. It is worth noting that the
tilde limit is not the categorical inverse limit (since these are not in general
unique in the category of adic spaces). Nevertheless, it should be thought of
affinoid locally as corresponding to the completed directed limit, and if such
a limit exists as a perfectoid space, it is unique among all perfectoid spaces
and satisfies the usual universal property (among perfectoid spaces). See [20,
Def. 2.4.1] and subsequent discussion.

Remark 2.10 (K-points of the perfectoid disk). Let us compute the K-points
of Dn,perfK and, in doing so, conclude the discussion of Remark 2.3. A K-point x
is a map of adic spaces x : Spa(K,K◦)→ D

n,perf
K , which is equivalent to a map

of Huber pairs εx : (T n,perfK , (T n,perfK )◦) → (K, K◦). This is a commutative
diagram of continuous K-algebra homomorphisms

K〈X1/p∞

1 , . . . , X1/p∞

n 〉 K

K◦〈X1/p∞

1 , . . . , X1/p∞

n 〉 K◦.

In particular, it is determined by the image of theX1/pk

i inK◦. Let λ= εx(Xi).

Then λ1 = εx(X
1/p
i ) must be a pth root of λ, and λ2 = εx(X

1/p2

i ) must be
a pth root of λ1. Continuing in this fashion, we see that choosing the image of
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the X1/pk

i as k varies is equivalent to fixing an element of lim
←−t7→tp

K◦ = K♭◦.

We have therefore computed the K-points of the perfectoid disk,

D
n,perf
K (K) = (K♭◦)n.

The evaluation function εx(f) = f(x) then amounts to plugging the coordinates
of x as an element of (K♭◦)n into f , which we saw in Remark 2.3 converges to
a point in K.

There is a well-known correspondence between finite projective modules over
a ring, and finite-dimensional (algebraic) vector bundles over the associated
affine scheme, and more generally, between vector bundles over a locally ringed
space and locally free sheaves on that space (see, for example, [10, Ex. 2.5.18]).
In [21], Serre conjectured that all finite projective modules over the polynomial
ring A= k[x1, . . . , xn] are free. This can be interpreted geometrically as saying
there are no nontrivial algebraic vector bundles over affine space An = SpecA.
In 1976, Quillen [17] and independently Suslin proved Serre’s conjecture, which
is now known as the Quillen–Suslin theorem. Lütkebohmert in [16] was shortly
after able to extend the result to the Tate algebraK〈X1, . . . ,Xn〉 of convergent
power series over a complete nonarchimedean field.

In what follows, we prove a perfectoid analog of the Quillen–Suslin theo-
rem. Specifically, we prove that all finite projective modules on the perfectoid
Tate algebra are trivial. This will imply that the perfectoid unit disk has no
nontrivial finite vector bundles. Along the way, we will show that both the
subring of integral elements (T perf

n )◦, and the residue ring T̃ perf
n also have no

nontrivial finite projective modules. Although these results are not necessary
to establish the result for the perfectoid Tate algebra, they will be important
in asserting the effectiveness of the Čech cohomology groups of certain sheaves
in Section 3.

Finite projective modules on the residue ring. Let us begin by proving
that finite projective modules are free over the residue ring

T̃ perf
n = k[X1/p∞

1 , . . . , X1/p∞

n ] =
⋃

m

k[X1/pm

1 , . . . , X1/pm

n ].

To see this, we first briefly review a (non-unique) correspondence between
projective modules and idempotent matrices.

Let R be a commutative ring, and fix a finite projective R-module P . Con-
sider a presentation π : Rn → P , as well as a section of this projection σ. The
composition σ ◦ π produces an idempotent matrix U ∈Mn(R).

Rn Rn Rn

P P

π

U

U

π

U

σ σ
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Conversely, the image of an idempotent matrix U is always projective, with
the section just given by the natural inclusion imU ⊆ Rn. In this way, we get
a (non-unique) correspondence between finite projective modules and idempo-
tent matrices over R.

Lemma 2.11. Suppose R = lim
−→i

Ri is a filtered colimit of commutative rings.

Then every finite projective R-module is the base extension of a finite projective
Ri-module.

Proof. To a finite projective R-module M , we may associate a projector ma-
trix U . Each entry in the matrix is defined over some Ri, and as the limit is
filtered, U is defined over Ri for some (perhaps larger) i. Its image as a map
from Rni to itself is therefore a projective Ri-module whose base extension
is M . �

Corollary 2.12. Let R = k[X
1/p∞

1 , . . . , X
1/p∞

r , X
±1/p∞

r+1 , . . . , X
±1/p∞

n ]. Every
R-module is free. In particular (letting r = n), every T̃ perf

n -module is free.

Proof. As R is the filtered colimit of (Laurent) polynomial rings, Lemma 2.11
implies that a finite projective R-module M is the base extension of some N
over a (Laurent) polynomial ring. By the Quillen–Suslin theorem, N is free,
so M is too. �

Finite projective modules on the subring of integral elements. We ex-
tend Corollary 2.12 to the subring of power-bounded elements of the perfectoid
Tate algebra (T perf

n )◦ using Nakayama’s lemma. We first fix some notation.

Notation 2.13. For a commutative ring R and an ideal I contained in the
Jacobson radical of R, we let R0 = R/I. For an R-module M , we will denote
by M0 the R0-module M/IM , and for a homomorphism φ of R-modules, we
denote by φ0 its reduction mod I. If m ∈M , then we denote by m its image
in M0.

Lemma 2.14. Let R be a commutative ring and I an ideal contained in the
Jacobson radical of R. If M and N are two projective R-modules such that
there exists an isomorphism φ : M0

∼−→ N0, then φ lifts to an isomorphism
ψ : M ∼−→ N .

Proof. We have the following commutative diagram:

M N

M0 N0.

π

ψ

ρ

φ

Indeed, a lift ψ exists because M is projective. Notice that ψ0 = φ. Indeed,

ψ0(m) = ψ(m) = ρψ(m) = φπ(m) = φ(m).

Since φ surjects, so does ψ by Nakayama’s lemma. Since N is projective, ψ has
a section σ which is necessarily injective. We claim that σ0 = φ−1. We can
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check this after applying φ.

φσ0(n) = φπσ(n) = ρψσ(n) = ρ(n) = n.

Therefore, σ0 surjects so that σ surjects by Nakayama’s lemma. Thus σ is an
isomorphism. �

Corollary 2.15. With the same set-up as Lemma 2.14, we let P be a projective
R-module. If P0 is a free R0-module, then P is free.

Proof. Suppose P0
∼= Rm0 . We also have (Rm)0 ∼= Rm0 so that, by Lemma 2.14,

P ∼= Rm. �

We now apply this to the case at hand.

Lemma 2.16. Let R be one of the following:

R = K◦〈X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n 〉,

R = K◦/̟d[X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n ].

The ideal of topologically nilpotent (resp. nilpotent) elements lies in the Jacob-
son radical of R.

Proof. If f is (topologically) nilpotent, then so is fg for all g. Thus the geo-
metric series for 1

1−fg converges to an inverse of 1 − fg so that it is a unit.

Since g was arbitrary, this shows that f is in the Jacobson radical. �

The desired result follows.

Corollary 2.17. Let R be as in Lemma 2.16. Every finite projective R-module
is free.

Proof. Notice that R0—the reduction of R modulo the ideal of (topologically)
nilpotent elements—is the ring of Corollary 2.12. Let P be a finite projective
R-module. Then P0 is a finite projective R0-module and therefore is free.
Therefore, by Corollary 2.15, it suffices to show that the kernel of the reduction
map is contained in the Jacobson radical, but this is Lemma 2.16. �

The Quillen–Suslin theorem for the perfectoid Tate algebra. We now
prove the main result of this section.

Theorem 2.18. Finite projective modules on the perfectoid Tate algebra are
free. Equivalently, all finite vector bundles on the perfectoid unit disk are free.

In fact, this will follow from something slightly more general.

Theorem 2.19. Let R be a perfectoid Laurent series algebra,

R = K〈X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n 〉.

Then every finite projective R-module is free.

A result of Gabber and Romero will do most of the heavy lifting; we state
the result here.
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Proposition 2.20 ([9, Cor. 5.4.42]). Let R be a commutative ring, t ∈ R

a nonzero divisor, and I ⊂ R an ideal. Let R̂ be the tI-adic completion of R,
and suppose (R, tI) form a Henselian pair. Then the base extension func-

tor R[t−1]−Mod→ R̂[t−1]−Mod induces a bijection between isomorphism

classes of finite projective R[t−1]-modules and finite projective R̂[t−1]-modules.

Let us describe the objects we will feed into this result. Playing the role
of R is

(1) R =
⋃

i

K◦〈X
1/pi

1 , . . . , X
1/pi

r , X
±1/pi

r+1 , . . . , X
±1/pi

n 〉 =:
⋃

i

Ri.

Playing the role of t, we have ̟, and I will be the unit ideal. Therefore,

R[1/̟] =
⋃

i

K〈X
1/pi

1 , . . . , X
1/pi

r , X
±1/pi

r+1 , . . . , X
±1/pi

n 〉.

Then R̂ is the ring of integral elements (cp. Lemma 2.16), and R̂[1/̟] is the
perfectoid Tate algebra (or Laurent series algebra), for which we are trying to
prove the Quillen–Suslin result. Theorem 2.19 will follow from the following
two lemmas.

Lemma 2.21. Finite projective modules on R[1/̟] are all free.

Proof. Applying Lemma 2.11, a finite projective R[1/̟]-moduleM is the base
extension of a finite projective module N over a rigid analytic Tate algebra (or
Laurent series algebra). But N is free due to the rigid analytic Quillen–Suslin
theorem [16, Satz 1], so we are done. �

Lemma 2.22. The pair (R, (̟)) is Henselian.

Proof. Lemma 2.16 shows that ̟ is in the Jacobson radical of R. Suppose
f ∈ R[T ] is monic and that f = g0h0 ∈ (R/̟)[T ] with g0, h0 monic. In fact,
f ∈ Ri[T ] for some i (using the notation of equation (1) above). Perhaps
increasing i, we can take the factorization of f to take place in (Ri/̟)[T ].
As Ri is ̟-complete, (Ri, ̟) form a Henselian pair (see, for example, [24,
Tag 0ALJ]). Therefore, the factorization lifts to f = gh in Ri[T ] ⊂ R[T ], with
g and h monic. �

The main result now follows easily.

Proof of Theorem 2.19. Lemma 2.22 allows us to apply Proposition 2.20 and
conclude that each finite projective module over R̂[1/̟] is the base extension
of one on R[1/̟], which by Lemma 2.21 must be free. �

3. Line bundles and cohomology on projectivoid space

In classical algebraic geometry, the notion of projective geometry is a very
powerful tool to study properties of varieties and schemes. Indeed, one can
learn a lot about a scheme by understanding its maps to various projective
spaces, and this theory is intimately connected to the theory of line bundles on
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that space. In this and the following section, we develop an analogous theory
for perfectoid spaces. Let us begin by defining a perfectoid analog of projective
space.

Definition 3.1 (The projectivoid line). Analogously to the construction of
the Riemann sphere, we can build the perfectoid analog of the projective line
by gluing two copies of the perfectoid unit disk along the perfectoid unit circle.

Explicitly, the inclusion K〈T 1/p∞〉 → K〈T±1/p∞〉 corresponds to the open
immersion of the perfectoid unit circle into the perfectoid disk, S1,perf →֒D

1,perf .
The map K〈T−1/p∞〉 →K〈T±1/p∞〉 also corresponds to an open immersion of
the circle into the disk, where now the disk has coordinate T−1. Identifying
the circles on each of these disks and gluing produces the projectivoid line,
denoted P

1,perf
K .

Definition 3.2 (Projectivoid space). As with the projectivoid line, we can
define projectivoid n-space by gluing together n+1 perfectoid unit n-polydisks
along their boundaries as in Definition 3.1. This equips projectivoid space with
a cover by perfectoid unit disks which we will henceforth refer to as the standard
cover.

In [19, Sec. 7], Scholze showed that we could also define projectivoid space
in the following way. Let PnK be projective space over K, which can be viewed
as an adic space by first being viewed as a rigid space using the rigid analyti-
fication functor, and then as an adic space as in [11]. Let ϕ : PnK → PnK be the
morphism given by (T0 : · · · : Tn) 7→ (T p0 : · · · : T pn) in projective coordinates.
Then

P
n,perf
K ∼ lim

←−
ϕ

P
n
K .

As with the perfectoid disk, “∼ lim
←−

” is the “tilde limit” of [20] (cp. Remark 2.9).

Remark 3.3. Notice that all the finite intersections of the standard cover
will be the adic spectra associated to what we called perfectoid Laurent series
algebras in the previous section. In particular, Theorem 2.19 shows that all
their finite vector bundles are free.

Scholze showed in [18, Thm. 8.5] that the construction of projectivoid space
is compatible with the tilting functor. In this section, we begin our exploration
of so-called projectivoid geometry by developing the theory of line bundles on
projectivoid space. In particular, we compute the Picard group of Pn,perf , as
well as the sheaf cohomology of all line bundles. We continue developing the
theory in the following section, where we will show how an arbitrary perfectoid
space’s maps to projectivoid space are intimately connected to its theory of
line bundles, reflecting the situation in classical algebraic geometry, but with
an extra arithmetic twist.

The Picard group of projectivoid space. The main result of this section
follows.

Theorem 3.4. PicPn,perf ∼= Z[1/p].
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We outline the general strategy. We first need to define a few auxiliary
sheaves related to the structure sheaf of an adic space. Let X be an adic
space. We define the sheaf of integral functions O

+
X ⊆ OX by the rule

U 7→ {f ∈ OX(U) | |f(x)| ≤ 1 for all x ∈ U}.

It is a sheaf of rings, and we denote its unit group by O
+∗
X . Moreover, O

+
X has

an ideal sheaf O
++
X of topologically nilpotent functions, defined by the rule

U 7→ {f ∈ OX(U) | |f(x)| < 1 for all x ∈ U}.

We denote the quotient O
+
X/O

++
X by ÕX . We now outline our proof. We use

that, for any locally ringed space X , there is a natural isomorphism Pic(X) ∼=
H1(X,O∗

X) (see, for example, [10, Ex. III.4.5]). For the remainder of this
section, we let X = Pn,perf . There are three main steps to the proof.
(I) (Extension) The inclusion O

+∗
X →֒ O∗

X induces a map on cohomology

H1(X,O+∗
X )→ H1(X,O∗

X), which we show is an isomorphism in Proposi-
tion 3.6. Morally, this can be thought of as saying that line bundles on X
extend uniquely to an integral model.

(II) (Deformation) The projection O
+∗
X → Õ∗

X induces a map on cohomology

H1(X,O+∗
X )→ H1(X, Õ∗

X). We show that it is an isomorphism in Propo-
sition 3.9 by deforming invertible modules along the sheaves of algebras
O

+
X/̟

d for d ∈ Z[1/p]>0 which interpolate between O
+
X and ÕX . Morally,

this can be thought of as saying line bundles deform uniquely from the
special fiber to the integral model. This is the most involved step.

(III) (Comparison) By the first two steps, it suffices to compute H1(X, Õ∗
X).

We do this in Corollary 3.16 by showing that it is isomorphic to the Picard
group of the perfection of classical projective space over the residue field k.

We make frequent use of the fact that projectivoid space comes equipped with
a standard cover U = {Ui → X}, by n+ 1 open sets each isomorphic to a per-
fectoid unit disk, whose geometry we understand well due to the results of
Section 2. In particular, any line bundle on Pn,perf becomes trivial on the Ui
and their various finite intersections due to Theorem 2.19. We use Čech co-
homology with respect to the standard cover to accomplish the steps outlined
above, noting that the passage between Čech and sheaf cohomology is safe due
to the following lemma.

Lemma 3.5. There are natural isomorphisms
• H1(X,O∗

X) ∼= Ȟ1(U,O∗
X),

• H1(X,O+∗
X ) ∼= Ȟ1(U,O+∗

X ),

• H1(X, (O+
X/̟

d)∗) ∼= Ȟ1(U, (O+
X/̟

d)∗) for all d ∈ Z[1/p]>0,

• H1(X, Õ∗
X) ∼= Ȟ1(U, Õ∗

X).

Proof. Let R be one of the following sheaves of rings: OX ,O
+
X ,O

+
X/̟

d or ÕX ,

and let R∗ be the associated sheaf of units. The Čech-to-derived spectral
sequence [1, Exposé V Théorème 3.2] describes the following spectral sequence:

Ep,q2 : Ȟp(U,H q(R∗)) =⇒ Hp+q(X,R∗).
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Let U be a finite intersection of elements in the standard cover. Then either
Theorem 2.19, Corollary 2.17, or Corollary 2.12 implies that R(U) has no
nontrivial invertible modules. In particular, H 1(R∗)(U) = H1(U,R∗) = 0, as
such a cohomology class would construct an invertible R(U)-module. We may
conclude, therefore, that the sequence of low degree terms for the spectral
sequence degenerates to Ȟ1(U,R∗) ∼= H1(X,R∗). �

Extending line bundles to the integral model. We begin with the ex-
tension step, showing that it suffices to compute the cohomology of the sheaf
of integral units.

Proposition 3.6. The natural map Ȟi(U,O+∗
X ) → Ȟi(U,O∗

X) is an isomor-
phism for all i > 0. If i = 1, the isomorphism also holds for derived functor
cohomology.

Proof. Denote the intersection Ui1 ∩ · · · ∩Uit by Ui1···it . We have a short exact
sequence of chain complexes

0
∏

iO
+∗
X (Ui)

∏

iO
∗
X(Ui)

∏

i|K
∗| 0

0
∏

i,j O
+∗
X (Uij)

∏

i,j O∗
X(Uij)

∏

i,j |K
∗| 0

0
∏

i,j,k O
+∗
X (Uijk)

∏

i,j,k O∗
X(Uijk)

∏

i,j,k|K
∗| 0.

...
...

...

The left and middle complexes are the Čech complexes for O
+∗
X and O∗

X re-
spectively, and the map on the right is | · | which is plainly surjective. Also,
the right-hand complex has kernel |K∗| and is otherwise exact (arguing as in,
for example, [24, Tag 02UW]) so that the long exact sequence on cohomology
gives Ȟi(U,O+∗

X ) ∼= Ȟi(U,O∗
X) for all i > 0. Lemma 3.5 extends the result to

derived functor cohomology if i = 1. �

Deforming line bundles from the residue. We next take care of the de-
formation step. We will need the following lemma, whose proof we defer for
now (see Proposition 3.25 and Remark 3.27).

Lemma 3.7. Ȟi(U,O+
X) = 0 for all i > 0.

We will also need the following lemma of commutative algebra.

Lemma 3.8. Let π :R→ S be a surjection of rings whose kernel I is contained
in the Jacobson radical of R. Then the induced map on unit groups, R∗→ S∗,
remains surjective.
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Proof. As I is contained in the Jacobson radical of R, it is contained in each
maximal ideal of R. Therefore, the image in S of any maximal ideal of R
is a proper (and even maximal) ideal of S. This implies that if r ∈ R is not
a unit, then π(r) is contained in a proper ideal of S and is therefore not a unit
either. It follows that if s ∈ S∗, any element mapping to s must be a unit.
Such elements must exist since π was surjective to begin with. �

We enumerate a few useful exact sequences.

(2) 0→ O
++
X → O

+
X → ÕX → 0.

Because O
++
X consists of topologically nilpotent functions, it is contained in

the Jacobson radical of O
+
X so that, by Lemma 3.8, the right-hand map of the

sequence remains surjective on unit groups.

(3) 1→ 1 + O
++
X → O

+∗
X → Õ

∗
X → 1.

The goal for this section is to prove the following proposition.

Proposition 3.9. The map H1(X,O+∗
X )→H1(X, Õ∗

X) induced by sequence (3)
is an isomorphism.

We prove this by deforming along intermediate sheaves. One can consider
for every d ∈ Z[1/p]>0 the sheaf of principal ideals ̟d ⊆ O

++
X ⊆ O

+
X and define

a sheaf of algebras Ad via the following exact sequence:

(4) 0→ ̟d → O
+
X → Ad → 0.

As before, ̟d is contained in the Jacobson radical so that we also have

(5) 1→ 1 +̟d → O
+∗
X → A

∗
d → 1.

For every d′ > d > 0 in Z[1/p], the inclusion ̟d′ ⊆ ̟d gives a surjection
Ad′ ։ Ad whose kernel identifies with ̟d/̟d′ by the snake lemma. Pass-
ing to unit groups, for all such d′ > d > 0, we have the following morphisms of
short exact sequences:

(6)

0 1 +̟d′ O
+∗
X A ∗

d′ 0

0 1 +̟d O
+∗
X A ∗

d 0.

These transition maps make sequence (5) into both a directed and inverse
system, indexed by positive d ∈ Z[1/p]>0. We examine the direct and inverse
limits of this system (as d approaches 0 and ∞ respectively) to show that the

sheaves A ∗
d interpolate continuously between Õ∗

X and O
+∗
X .

Lemma 3.10. lim
−→

A ∗
d
∼= Õ∗

X and lim
←−

A ∗
d
∼= O

+∗
X .

Proof. To compute the direct limit, we first show that

(7) lim
−→

d∈Z[1/p]>0

(1 +̟d) = 1 + O
++
X .
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We interpret the colimit as a union, and notice equation (7) follows if

O
++
X =

⋃

d∈Z[1/p]>0

(̟d)

(or more precisely, if this equality holds evaluated on a basis of opens). To
see this, we fix an affinoid open U ⊆ X and a topologically nilpotent function
f ∈ O

++
X (U). Since f is topologically nilpotent, we can take large r so that

fp
r

lands in the ideal of O
+
X(U) generated by ̟ (as this ideal is an open

neighborhood of 0). We write fp
r

= g̟ for g ∈ O
+
X(U). Rephrasing, we see

(

f

̟1/pr

)pr

∈ O
+
X(U).

But O
+
X(U) is integrally closed in OX(U), so this in turn implies that

f/̟1/pr ∈ O
+
X(U)

or, equivalently, that f is contained in the ideal of O
+
X(U) generated by ̟1/pr .

In particular, f is contained in the union of the ideals generated by the ̟d for
d ∈ Z[1/p]>0. This completes the verification of equation (7). Since colimits
of abelian sheaves are exact, equation (7) implies that taking the colimit over
all d ∈ Z[1/p]>0 of sequence (5) produces sequence (3), exhibiting the desired
isomorphism.

For the inverse limit, notice that lim
←−

(Ad) ∼= O
+
X since O

+
X is ̟-adically

complete. Since the unit group functor commutes with inverse limits (indeed,
it is right adjoint to the group ring functor), we are done. �

We next assert that sequences (2) through (5) induce long exact sequences
on Čech cohomology.

Lemma 3.11. Each of the sequences (2) through (5) remain exact when eval-
uated on any finite intersection of elements in the standard cover U. In par-
ticular, they each induce long exact sequences on Čech cohomology.

Proof. We need only check exactness on the right. For sequences (2) and (4),
these evaluate to

K◦〈X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n 〉

→ k[X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n ]

and

K◦〈X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n 〉

→ K◦/̟d[X1/p∞

1 , . . . , X1/p∞

r , X
±1/p∞

r+1 , . . . , X±1/p∞

n ]

which are plainly surjective. Sequences (3) and (5) come from applying the
unit group functor to surjections above. Lemma 2.16 says that the kernel of
each is contained in the Jacobson radical so that the maps remain surjective
on unit groups by Lemma 3.8. �
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Lemma 3.12. For all d ∈ Z[1/p]>0 and i > 0, Ȟi(U,Ad) = 0.

Proof. This follows from the long exact sequence on Čech cohomology asso-
ciated to sequence (4) and Lemma 3.7, noticing that ̟d ∼= O

+
X since it is

a principal ideal. �

Lemma 3.13. For all d ∈ Z[1/p]>0 and i > 0, the natural map

Hi(U,A ∗
2d)→ Hi(U,A ∗

d )

is an isomorphism. If i = 1, the isomorphism holds for derived functor coho-
mology as well.

Proof. Consider the following case of diagram (6):

0 1 +̟2d O
+∗
X A ∗

2d 0

0 1 +̟d O
+∗
X A ∗

d 0.

The snake lemma exhibits the exact sequence

(8) 1→ 1 +̟d/̟2d → A
∗
2d → A

∗
d → 1.

Notice that 1 + ̟d/̟2d has a natural Ad-module structure making it iso-
morphic to Ad, given locally by the map a 7→ 1 + a̟d. Indeed, the map is
well-defined because ̟d/̟2d is a square zero ideal, and the kernel is precisely
̟d (which is 0 in Ad), while surjectivity is clear. In particular, by Lemma 3.12,
1 +̟d/̟2d has no higher Čech cohomology, so the conclusion follows if there
is a long exact sequence on Čech cohomology associated sequence (8).

Let U be a finite intersection of elements of the standard cover. It remains to
show that sequence (8) remains exact when evaluated on U . By Lemma 3.11,

0 Γ(U, 1 +̟2d) Γ(U,O+∗
X ) Γ(U,A ∗

2d) 0

0 Γ(U, 1 +̟d) Γ(U,O+∗
X ) Γ(U,A ∗

d ) 0

has exact rows. The ring map A2d(U)→ Ad(U) is surjective with nilpotent
kernel so that, again applying Lemma 3.8, we see the vertical map on the right
is surjective. Thus the snake lemma exhibits sequence (8) evaluated at U as an
exact sequence, completing the proof. Lemma 3.5 extends the result to derived
functor cohomology if i = 1. �

Lemma 3.14. For all d′ > d > 0 in Z[1/p] and i > 0, the natural map

Hi(U,A ∗
d′)→ Hi(U,A ∗

d ),

is an isomorphism. If i = 1, the isomorphism also holds for derived functor
cohomology.
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Proof. By Lemma 3.13, replacing d with 2ld preserves the cohomology groups
in question, so we may assume d < d′ < 2d. Then we have the following com-
mutative diagram:

Hi(U,A ∗
2d) Hi(U,A ∗

d )

Hi(U,A ∗
2d′) Hi(U,A ∗

d′).

ψ

∼

∼

In particular, ψ is injective and surjective, hence an isomorphism. Lemma 3.5
extends the result to derived functor cohomology if i = 1. �

Now that we have this set-up, we can prove the main result of this section.

Proof of Proposition 3.9. We can factor the homomorphism in question into
the following chain:

H1(X,O+∗
X ) ∼= H1(X, lim

←−
A

∗
d )(9)

→ lim
←−

H1(X,A ∗
d )(10)

∼= H1(X,A ∗
d )(11)

∼= lim
−→

H1(X,A ∗
d )(12)

∼= H1(X, lim
−→

A
∗
d )(13)

∼= H1(X, Õ∗
X).(14)

Let us justify the isomorphisms. (9) is Lemma 3.10, (11) follows because the
transition maps of the inverse system are the isomorphisms from Lemma 3.14,
and similarly for (12). (13) is an isomorphism because colimits of abelian
sheaves are exact, and (14) is again Lemma 3.10. We therefore can make the
necessary identifications to view the composition as a homomorphism between
the following groups:

H1(X,O+∗
X )→ lim

←−
H1(X,A ∗

d ).

We can view the first group as isomorphism classes of invertible O
+
X -modules,

and the second as isomorphisms classes of inverse systems of invertible Ad-
modules. In particular, elements of the target can be represented by inverse
systems {Md}d∈Z[1/p]>0 of invertible Ad-modules such that, for every d′ > d,
the transition map Md′ →Md induces an isomorphism

Md′/̟
d
Md′

∼−→Md.

The map in question can be represented by sending an invertible O
+
X -module

L to the inverse system

{L /̟d
L }d∈Z[1/p]>0

.

Then we observe that this has an inverse given by taking an inverse system
{Md} of invertible Ad-modules to the isomorphism class of the inverse limit
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lim
←−

Md. It is not hard to see that these constructions are inverses to each
other. Indeed, there is a natural map

L → lim
←−

L /̟d
L .

Affinoid locally on Spa(R,R+), we associate L to an invertible R-module M ,
and this map becomes

M → lim
←−

M/̟dM ∼= M̂,

which is an isomorphism sinceM is already complete. Conversely, fix a system
{Md} of invertible Ad-modules. For e ∈ Z[1/p]>0, we consider the natural map
lim
←−

Md →Me. For every d
′ > d > e in Z[1/p], we have exact sequences

0 ̟eMd′ Md′ Me 0

0 ̟eMd Md Me 0.

Passing to the limit gives

0→ lim
←−

̟e
Md → lim

←−
Md →Me → lim

←−
(1)̟e

Md.

Since the map Md′ →Md is surjective, it remains so after scaling by ̟e. In
particular, {̟eMd}d∈Z[1/p]>e

is an ML-system of abelian sheaves, and so its
derived limits vanish. Therefore, lim

←−
Md →Me surjects. Since the kernel is

lim
←−

̟eMd = ̟e lim
←−

Md, we obtain an isomorphism of inverse systems

{lim
←−

Md/̟
e lim
←−

Md} ∼= {Md}.

This completes the proof. �

Comparison to the perfection of the special fiber. By Propositions 3.6
and 3.9, there is an isomorphism Pic(X) ∼= H1(X, Õ∗

X). To complete the proof
of Theorem 3.4, we compute the latter cohomology group explicitly. To do this,
we will show that this group is closely related to the Picard group of the special
fiber of X , which is the (scheme theoretic) perfection of projective space Pnk

over the residue field k (which is a perfect field of characteristic p). Denote the
latter by (Pnk )perf , where the subscript perf denotes scheme theoretic perfection,
given by taking the inverse limit along the Frobenius map.

Lemma 3.15. H1(X, Õ∗
X) ∼= Pic(Pnk )perf .

Proof. Let Vi =Speck
[

T0

Ti
, . . . , Tn

Ti

]

so thatV= {Vi→ Pnk} is the standard cover
of projective space over k. Taking (scheme theoretic) perfection and recalling
that the Frobenius map is a homeomorphism [24, Tag 0CC8], we obtain an
open cover Vperf = {(Vi)perf → (Pnk )perf} by affines of the form

Vi = Spec k

[(

T0
Ti

)1/p∞

, . . . ,

(

Tn
Ti

)1/p∞]

.
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In particular, we can identify Γ(Ui, ÕX) ∼= Γ(Vi,O(Pn
k
)perf

). The same can be
said for the various intersections, which correspond to inverting indetermi-
nates, and the restriction morphisms, which are just inclusions. Passing to
unit groups therefore gives identification of the Čech complexes for Õ∗

X and
O∗

(Pn
k
)perf

with respect to U andVperf respectively. After passing to cohomology,
we obtain isomorphisms

Ȟi(U, Õ∗
X) ∼= Ȟi(Vperf ,O

∗
(Pn

k
)perf

).

Letting i=1 and appealing to Lemma 3.5 identifies the source with H1(X, Õ∗
X).

A similar argument identifies the target with Pic(Pnk )perf . Indeed, due to Corol-
lary 2.12, every line bundle on the perfection of projective space trivializes on
the Vi and their various intersections, so the identification follows from the
Čech-to-derived spectral sequence by the same logic as in Lemma 3.5. �

Corollary 3.16. H1(X, Õ∗
X) ∼= Z[1/p].

Proof. This follows from Lemma 3.15, noting that Pic(Pnk )perf
∼= Z[1/p], which

follows, for example, from [4, Lem. 3.5]. This isomorphism is not hard to see
directly, so we include a sketch for completeness. Since (Pnk )perf is the inverse
limit of Pnk along affine transition morphisms, a globalization of Lemma 2.11
(cp. [24, Tag OB8W]) implies its Picard group is the colimit of PicPnk along
Frobenius pullback, which is the pth power map. �

We now complete the computation of the Picard group of projectivoid space.

Proof of Theorem 3.4. By Propositions 3.6 and 3.9, and Corollary 3.16, we
have

PicX ∼= H1(X,O∗
X) ∼= H1(X,O+∗

X ) ∼= H1(X, Õ∗
X) ∼= Z[1/p]. �

Twisting sheaves and integral twisting sheaves. Theorem 3.4 indexes
isomorphism classes of line bundles on Pn,perf by numbers d ∈ Z[1/p]. Before
moving on, we construct an explicit line bundle for each such d, which we will
call the twisting sheaf OX(d). Recall from Definition 3.2, Pn,perf ∼ lim

←−ϕ
Pn.

In particular, we have the following diagram:

(15) Pn,perf · · · Pn Pn · · · Pn.

πk+1

πk

π0

ϕ

Passing to Picard groups gives a map

lim
−→
ϕ∗

PicPn → PicPn,perf .

Since ϕ∗ is the p-power map on PicPn, the source is isomorphic to Z[1/p] so
that, by Theorem 3.4, the map is in fact an isomorphism. (Indeed, our tech-
nique of proof of Theorem 3.4 essentially consisted of deforming the analogous
map for scheme theoretic perfections over the residue field k.) This allows us
to make the following definition.
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Definition 3.17. Fix d = a/pk ∈ Z[1/p]; taking the notation of diagram (15),
we define the twisting sheaf

OX(d) = OX(a/pk) := π∗
kOPn(a).

We next evaluate OX(d) on the elements of the standard cover of X and
their various intersections, which sets us up for the cohomology computation
of the following section.

Proposition 3.18. Let A = K[T 1/p∞

0 , . . . , T 1/p∞

n ], and fix d ∈ Z[1/p]. Then

Γ(Ui1 ∩ · · · ∩ Uir ,OX(d)) ∼= (ATi1 ···Tir
)∧d ,

where the right side is given by inverting Ti1 through Tin in A, taking the
degree-d part, and then completing with respect to ̟.

Proof. Let B(k) =K[T 1/pk

0 , . . . ,T 1/pk

n ] and (B(k))◦ =K◦[T 1/pk

0 , . . . ,T 1/pk

n ]. The
standard (rigid analytic) cover of Pn by affinoid disks is W = {Wi}, where

Wi = Spa((B
(0)
Ti

)∧0 , ((B
(0))◦Ti

)∧0 ).

Then Ui ∼ lim
←−

Wi, and the restriction of diagram (15) to these affinoid opens
corresponds to the following inclusions of rings:

(16) (ATi
)∧0 ← · · · ← (B

(k+1)
Ti

)∧0 ← (B
(k)
Ti

)∧0 ← · · · ← (B
(0)
Ti

)∧0 .

Identical considerations hold for the intersections of the Ui andWi by inverting
more indeterminates.

Fix an integer a ∈ Z, and consider OPn(a) ∈ Pic(Pn). Let Vi be the comple-
ment of the coordinate hyperplane V (Ti) in P

n. Then it is classical that there
is a natural identification

Γ(Vi1 ∩ · · · ∩ Vir ,O(a)) = (B
(0)
Ti1 ···Tir

)a

of the sections of O(a) at the intersection of the Vij with the degree-a part
of the polynomial ring after inverting the corresponding Tij . Restriction to
the affinoid open Wi1 ∩ · · · ∩Wir corresponds to the algebraic operation of
̟-adically completing so that

Γ(Wi1 ∩ · · · ∩Wir ,O(a)) = (B
(0)
Ti1 ···Tir

)∧a .

Now let d = a/pk, and consider OX(d) = π∗
kOPn(a). Identify Wi1 ∩ · · · ∩Wir

in the kth factor of the tower of diagram (15) with the adic space associated

to (B
(k)
Ti1 ···Tir

)0 as in diagram (16). Then we have

Γ(Wi1 ∩ · · · ∩Wir ,O(a)) ∼= (B
(k)
Ti1Ti2 ···Tir

)∧d .

Then (denoting the intersection Ui1 ∩ · · · ∩Uir by Ui1···ir and similarly for W )

Γ(Ui1···ir ,O(a/pk)) ∼= Γ(Wi1···ir ,O(a))⊗
(B

(k)
Ti1

···Tir
)∧0

(ATi1 ···Tir
)∧0

∼= ((B
(k)
Ti1Ti2 ···Tir

)d ⊗(B
(k)
Ti1

···Tir
)0
(ATi1 ···Tir

)0)
∧

∼= (ATi1 ···Tir
)∧d . �
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Notice that Proposition 3.18 gives explicit descent data for OX(d) with
respect to the standard cover. Indeed, OX(d)|Ui

is identified with the free
rank-1 OUi

-module

(ATi
)∧d = T di ·

(

K

〈(

T0
Ti

)1/p∞

, . . . ,

(

Tn
Ti

)1/p∞〉)

,

with gluing given by the identification

(ATiTj
)∧d = (ATjTi

)∧d .

This suggests a way of defining invertible O
+
X -modules for each d ∈ Z[1/p].

Definition 3.19. The integral twisting sheaf O
+
X(d) is defined via the following

descent data with respect to the natural cover. On Ui, we define

O
+
Ui
(d) := T di · O

+
Ui

and obtain O
+
X(d) by gluing along the OUi∩Uj

-module isomorphisms

O
+
Ui
(d)|Uj

∼= O
+
Uj
(d)|Ui

,

given by multiplying by T dj /T
d
i .

Remark 3.20. We record that (essentially by definition) an analog for Propo-
sition 3.18 holds for O

+
X(d), replacing A with A◦ =K◦[T 1/p∞

0 , . . . , T 1/p∞

n ], and

that O
+
X(d)⊗

O
+
X

OX
∼= OX(d). Finally, these form a group under tensor prod-

uct (over O
+
X), which due to Proposition 3.9 and Corollary 3.16 is isomorphic to

H1(X,O+∗
X ) ∼= Z[1/p].

Cohomology of line bundles. We now compute the cohomology of the
twisting sheaves and integral twisting sheaves defined above. There are partial
results in this direction due to Bedi [2] in the case n = 2. Our general strategy
is the following. Adopting the notation of the previous section, we let

A = K[T 1/p∞

0 , . . . , T 1/p∞

n ] and A◦ = K◦[T 1/p∞

0 , . . . , T 1/p∞

n ]

and build the following complexes:

C∗(A) : 0→

n+1
∏

i=0

ATi
→

∏

i<j

ATiTj
→ · · · → AT0···Tn

→ 0,

C∗(A◦) : 0→

n+1
∏

i=0

A◦
Ti
→

∏

i<j

A◦
TiTj
→ · · · → A◦

T0···Tn
→ 0.

The differentials are given by the alternating sums of the obvious inclusions on
the factors. These complexes are Z[1/p]-graded, and by Proposition 3.18, the
completion of the d-graded piece corresponds to the Čech complex of OX(d)
(respectively O

+
X(d)) on the standard cover. Therefore (up to a completion),

it will suffice to study the cohomology C∗(A) and C∗(A◦). To begin, we
record some facts that allow us to safely take completions while preserving
cohomological data.
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Lemma 3.21. Let M be a linearly topologized K◦-module, and give M ⊗K
the induced topology. Then M̂ ⊗K ∼= (M ⊗K)∧.

Proof. SinceM ⊗K is given the topology makingM open, the basis of 0 given
by the ̟nM is also a basis for the topology M ⊗K. �

We next record that completion of a complex of topological modules com-
mutes with taking cohomology, adapting the following lemma from [7].

Lemma 3.22 ([7, Lem. 5.9]). Let M∗ = M0 → M1 → · · · → Mn be a com-
plex of linearly topologized K◦-modules with countable systems of fundamental
neighborhoods of 0. Then the following isomorphisms hold:
(1) Hi(M∗)∧ ∼= Hi(M̂∗),
(2) Hi(M∗ ⊗K)∧ ∼= Hi((M∗ ⊗K)∧).

Proof. (1) is [24, Tag 0AS0]. To pass to the generic fiber, we use Lemma 3.21
and the fact that · ⊗K is an exact functor to establish the following chain of
isomorphisms:

(Hi(M∗ ⊗K))∧ ∼= (Hi(M∗)⊗K)∧

∼= Hi(M∗)∧ ⊗K

∼= Hi(M̂∗)⊗K

∼= Hi(M̂∗ ⊗K)

∼= Hi((M∗ ⊗K)∧). �

Since C∗(A) and C∗(A◦) are complexes of Z[1/p]-graded modules, we can
extract their d-graded pieces,

C∗(Ad) : 0→
∏

(ATi
)d →

∏

(ATiTj
)d → · · · → (AT0···Tn

)d → 0.

C∗(A◦
d) : 0→

∏

(A◦
Ti
)d →

∏

(A◦
TiTj

)d → · · · → (A◦
T0···Tn

)d → 0.

Cohomology respects direct sums (for example, by [23, Ex. 1.2.1]), so the
grading descends to a grading on cohomology

Hi(C∗(A)) ∼=
⊕

d∈Z[1/p]

Hi(C∗(Ad)), Hi(C∗(A◦)) ∼=
⊕

d∈Z[1/p]

Hi(C∗(A◦
d)).

If U is the standard cover of X , then Proposition 3.18 provides identifications

C∗(Ad)
∧ ∼= Č(U,OX(d)), C∗(A+

d )
∧ ∼= Č(U,O+

X(d)).

Putting this together, we arrive at our desired comparison.

Lemma 3.23. For each d ∈ Z[1/p] and i > 0, we have isomorphisms
• Hi(C∗(Ad))

∧ ∼= Ȟi(U,OX(d)),
• Hi(C∗(A◦

d))
∧ ∼= Ȟi(U,O+

X(d)).

Proof. Applying Lemma 3.22, we observe

Hi(C∗(Ad))
∧ ∼= Hi(C∗(Ad)

∧) ∼= Hi(Č∗(U,OX(d))) = Ȟi(U,OX(d)),

Hi(C∗(A◦
d))

∧ ∼= Hi(C∗(A◦
d)

∧) ∼= Hi(Č∗(U,O+
X(d))) = Ȟi(U,O+

X(d)). �
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Therefore, we have reduced to computing the cohomology of C∗(A), C∗(A◦)
as Z[1/p]-graded modules and considering the completions of the graded pieces.
We will work slightly more generally.

Proposition 3.24. Let R be a commutative domain, and let B be a “perfected”
polynomial ring over R: B = R[T 1/p∞

0 , . . . , T 1/p∞

n ]. Form the cochain complex

C∗(B) : 0→
∏

BTi
→

∏

BTiTj
→ · · · → BT0···Tn

→ 0.

Then

Hi(C∗(B)) =











B, i = 0,

0, i 6= 0, n,

〈Tα1
1 · · ·T

αn
n 〉αi∈Z[1/p]<0

, i = n.

Explicitly, the third case is the free R-module generated by monomials in the Ti,
all of whose exponents are negative elements of Z[1/p]. The Z[1/p]-grading is
given by the sums of the exponents.

Proof. We first compute H0, noting that an element (fi) ∈
∏

BTi
is in the

kernel of the first differential if and only if fi = fj for all i < j. In particular,
this allows us to identify the kernel with

H0(C∗(B)) =

n
⋂

i=0

BTi
= B.

We next turn our attention to Hn. Notice that BT0···Tn
is the free R-module

generated by monomials Tα0
0 · · ·T

αn
n for α ∈ Z[1/p]. The image of the (n− 1)st

differential is the free R-submodule generated by monomials where at least one
of the αi ≥ 0. Therefore, Hn(C∗(B)), which is the cokernel of this differential,
is the free R-module generated by monomials where each αi < 0.

To show that the remaining cohomology vanishes, we will exhibit C∗(B)
(in positive degrees) as a colimit of Koszul complexes. For all s ∈ Z[1/p]>0,
let T s = (T s0 , . . . , T

s
n). We claim that T s is a regular sequence. Indeed, write

s = a/pr, and observe that T 1/pr is a regular sequence for the polynomial ring
Br :=R[T 1/pr

0 , . . . ,T 1/pr

n ]. Therefore, so is T s (for example, by [24, Tag 07DV]).
Returning to B, suppose T si is a zero divisor in B/(T s1 , . . . , T

s
i−1). This would

mean that there are f, a1, . . . , ai−1 ∈ B with

f /∈ (T s1 , . . . , T
s
i−1) and fT si = a1T

s
1 + · · ·+ ai−1T

s
i−1.

But for r large enough, f, T s1 , . . . , T
s
i , a1, . . . , ai−1 ∈ Br, contradicting that

T s forms a regular sequence for Br, thereby establishing that T s is a regular
sequence for B. With this in hand, we consider the Koszul complex

K∗(T s) : 0 −−→ B
T s

−−→ Bn+1 ∧T s

−−→ Λ2Bn+1 −−→ · · · −−→ Λn+1Bn+1 −−→ 0.

Since T s is a B-regular sequence, we know by [8, Cor. 7.5] thatK∗(T s) is exact,
except at the very right (indeed, it is a free resolution of B/(T s0 , . . . , T

s
n)). In

particular, for all i < n+ 1,

(17) Hi(K∗(T s)) = 0.
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Before passing to the colimit as s goes to infinity, we record that, for any f ∈B,

lim
−→

(B
·f
−→ B

·f
−→ · · · ) ∼= Bf .

The isomorphism comes from mapping b in the rth coordinate of the directed
system to b/f r. This passes to a map from the colimit which is plainly sur-
jective. On the other hand, suppose that an element b maps to zero in the
localization. This says that fNb = 0 in B for N large enough so that, in fact,
b will map to 0 in the colimit as well, giving injectivity. With this in mind, we
fit K∗(T s) into the following diagram, taking the colimit as s goes to infinity:

...
...

...
...

0 B Bn+1 Λ2Bn+1 · · · Λn+1Bn+1 0

0 B Bn+1 Λ2Bn+1 · · · Λn+1Bn+1 0

...
...

...
...

0 B
∏

BTi

∏

BTiTj
· · · BT0···Tn

0.

T s

·T

·∧T s

·(T∧T ) ·T∧(n+1)

T s+1 ·∧T s+1

Since colimits of finite complexes commute with cohomology, equation (17)
implies that lim

−→
K∗(T s) is exact, except at the very right. Observe that there

is an obvious map

C∗(B)[1]→ lim
−→

K∗(T s),

which is an isomorphism in degrees 6=0. (Indeed, the source is just the “stupid”
truncation σ≥1 lim−→

K∗(T s).) Therefore, for all 0 < i < n, we have

Hi(C∗(B)) = Hi+1(C∗(B)[1]) = Hi+1(lim
−→

K∗(T s)) = 0. �

With Lemma 3.23 in mind, we may pass to the graded pieces and take
completions to obtain the desired cohomology computations.

Proposition 3.25. Let X = Pn,perf, and let U be the standard cover. Fix
d ∈ Z[1/p].
(i) If d ≥ 0, then Ȟ0(U,O+

X(d)) = (A◦)∧d .

(ii) If d < 0, then Hn(U,O+
X(d)) is the completion of the free K◦-module gen-

erated by monomials of degree d, where the degree of each indeterminate
is strictly negative, that is,

Ȟn(U,O+
X(d)) =

〈

Tα0
0 · · ·T

αn
n

∣

∣

∣
αi ∈ Z[1/p]<0 and

∑

αi = d
〉∧

.

(iii) In all other cases, Ȟr(U,O+
X(d)) = 0.
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Theorem 3.26. Let X = Pn,perf, and fix d ∈ Z[1/p].
(i) If d ≥ 0, then H0(X,OX(d)) = A∧

d .
(ii) If d < 0, then Hn(X,OX(d)) is the completion of the K-vector space gen-

erated by monomials of degree d, where the degree of each indeterminate
is strictly negative, that is,

Hn(X,OX(d)) =
〈

Tα0
0 · · ·T

αn
n

∣

∣

∣
αi ∈ Z[1/p]<0 and

∑

αi = d
〉∧

.

(iii) In all other cases, Hr(X,OX(d)) = 0.

Proof. Proposition 3.25 follows immediately from Lemma 3.23 and the com-
putation in Proposition 3.24, and for Theorem 3.26, one obtains the Čech co-
homology the same way. Thus the only thing we have not already established
is that

Ȟi(U,OX(d)) ∼= Hi(X,OX(d)).

For this, we again use the Čech-to-derived functor spectral sequence as in the
proof of Lemma 3.5,

Ep,q2 : Ȟp(U,H q(OX(d))) =⇒ Hp+q(X,OX(d)).

Let U be a finite intersection of elements of the standard cover. Then we have
OX |U ∼=OX(d)|U , and since U is affinoid perfectoid, Hi(U,OX) = 0 for all i > 0.
Therefore, the spectral sequence degenerates to our desired result. �

Remark 3.27. The last step of the proof does not immediately hold for in-
tegral line bundles because, a priori, O

+
X is only almost acyclic on affinoid

perfectoids. This is why Proposition 3.25 is only stated on the level of Čech
cohomology groups. Nevertheless, Čech cohomology is sufficient for the proof
of Lemma 3.7, which is now complete.

4. Maps to projectivoid space

Suppose S is a scheme over K. There is a well-known correspondence be-
tween maps from S → Pn over K and globally generated line bundles on S
together with a choice of n + 1 generating global sections (see, for example,
[10, Thm. II.7.1]). In this section, we will prove an analog of this correspon-
dence for perfectoid spaces.

Definition 4.1. To a perfectoid space X over K, we associate a groupoid
Ln(X) whose objects consist of tuples

(Li, s
(i)
j , αi) for i ≥ 0 and j = 0, . . . , n,

where Li are line bundles on X , s
(i)
0 , . . . , s

(i)
n ∈ Γ(X,Li) are generating global

sections, and αi : L
⊗p
i+1

∼−→ Li are isomorphisms mapping (s
(i+1)
j )⊗p 7→ s

(i)
j .

Morphisms are isomorphisms of line bundles which are compatible with the
global sections and isomorphisms αi.

If f :X→Y is aK-morphism, we get a pullback functor f∗ :Ln(Y )→Ln(X)
so that Ln is a category fibered in groupoids.
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Remark 4.2. Note that if some αi exists, it is unique. Indeed, for each i, the
global sections s

(i)
j generate Li so that an isomorphism L

⊗p
i+1→Li shows that

the global sections (σ
(i+1)
j )⊗p generate L

⊗p
i+1. In particular, the isomorphism

is completely determined by the images of these global sections.

Remark 4.3. For each i, the data (Li, s
(i)
j ) corresponds to a map to a projec-

tive space (as a rigid analytic variety) so that objects of the category Ln(X)
correspond to pth power root systems of maps to projective space.

The main result of this section is that the category Ln(X) parametrizes
K-morphisms X → P

n,perf . In particular, viewing Ln as a functor to sets,
we construct a natural isomorphism Hom(•, Pn,perf) ∼= Ln of functors from
perfectoid spaces over K to sets. First, we introduce a bit of notation.

Notation 4.4. We denote by mi : O(1/pi+1)⊗p ∼−→ O(1/pi) the isomorphism
of line bundles on Pn,perf coming from multiplying factors together.

We now state the main theorem of this section (compare to [10, Thm. II.7.1]).

Theorem 4.5. The natural transformation Hom(•,Pn,perf)→ Ln, which eval-

uated on X takes φ : X → Pn,perf to the tuple (φ∗O(1/pi), φ∗T 1/pi

j , φ∗mi) in
Ln(X), is an isomorphism of functors. In particular, Ln is represented by
projectivoid space.

Since {T 1/pi

j }nj=0 generates O(1/pi), we have that {φ∗(T 1/pi

j )}nj=0 gener-

ates φ∗(O(1/pi)). Since multiplication mi : O(1/pi+1)⊗p ∼−→ O(1/pi) sends

(T 1/pi+1

j )⊗p to T 1/pi

j , pulling back these isomorphisms along φ gives us an
element of Ln(X), and so the natural transformation is well-defined. We con-
struct an inverse to this transformation in Proposition 4.11 below, but first,
we will need a bit of set-up.

L -distinguished open sets. For this section, we let X be an adic space, L

a line bundle on X , and s1, . . . , sn global sections of L which generate it at
every point. Let D(si) = {x∈X | si|x generates Lx} be the does-not-vanish set
of the section si. Then the map OX →L determined by si is an isomorphism
on the stalks of every point of D(si) and therefore restricts to an isomorphism
on D(si). We suggestively denote the inverse by s 7→ s/si. Let us validate this
notation with the following lemma.

Lemma 4.6. On D(si) ∩D(sj), we have the following relation:
si
sj
·
sj
si

= 1.

Proof. We have two isomorphisms

Γ(D(si) ∩D(sj),OX) Γ(D(si) ∩D(sj),L ).
si

sj

Then we have
si
sj

= s−1
j ◦ si(1),

sj
si

= s−1
i ◦ sj(1).
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Since the maps s−1
i ◦ sj and s

−1
j ◦ si are inverses to each other, we win. �

For every x ∈ D(si), we can use the isomorphism s−1
i to get a valuation on

Γ(X,L ).

Γ(X,L ) Γ(D(si),L ) Γ(D(si),OX) Γx ∪ {0},

s |(s/si)(x)|.

res s−1
i x

With this in hand, we can define the following open subsets of D(si) for each i.

Definition 4.7. Let X be a perfectoid space, L a line bundle on X , and
s1, . . . , sn generating global sections of L . An open set of X is called an
L -distinguished open set if it is of the form

X

(

s1, . . . , sn
si

)

= {x ∈ D(si) | |(sj/si)(x)| ≤ 1 for all j}.

For the case of classical projective space, we can build a map to projec-
tive space along the does-not-vanish sets of the given sections and glue them
together. In the analytic topology, these are not affinoid, so we must use
these smaller L -distinguished open sets. Let us prove these smaller open sets
cover X . Indeed, our notation suggests that one of |(sj/si)(x)| or |(si/sj)(x)|
should be less than 1; let us check the details.

Lemma 4.8. The L -distinguished open sets Xi =X
(

s1,...,sn
si

)

for i = 1, . . . , n
are open and cover X.

Proof. The openness of Xi follows because it is in fact a rational open in the
adic space D(si), which is open in X . To show these cover X , fix some x ∈ X .
We already know the D(si) cover X because the si generate L . Therefore,
I = {i ∈ {1, . . . , n} | x ∈ D(si)} is nonempty and finite. Order the elements
of I via i ≤ j if |(si/sj)(x)| ≤ 1. Notice that, for any i, j ∈ I, we have i ≤ j or
j ≤ i. Indeed, applying Lemma 4.6 together with the multiplicativity of the
valuation given by x, we have either |(si/sj)(x)| ≤ 1 or |(sj/si)(x)| ≤ 1. Also,
if i ≤ j and j ≤ k, then

|(si/sk)(x)| = |(si/sj)(x)| · |(sj/sk)(x)| ≤ 1

so that i ≤ k. Finally, notice that if i ≤ j and j ≤ i, then we have

|(si/sj)(x)| = |(sj/si)(x)| = 1.

Therefore, we can choose (not necessarily uniquely) some r which is maximal
with respect to this ordering. Then |(si/sr)(x)| ≤ 1 for all i ∈ I. For all other i,
we have x /∈ D(si) so that |(si/sr)(x)| = 0 ≤ 1. Therefore, x ∈ Xr, completing
the proof. �

Example 4.9. The standard cover of Pn,perf by perfectoid unit disks consists
of the O(1)-distinguished open sets Pn,perf

(

T0,...,Tn

Ti

)

.
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The following lemma implies that if L ⊗p ∼= M and s and t are global sec-
tions of L and M respectively, with s⊗p = t, then D(s) =D(t). In particular,

using the notation of Definition 4.1, this implies that if the s
(i)
j generate Li,

then the s
(i+1)
j generate Li+1.

Lemma 4.10. Let (R,m) be a local ring and M,N invertible R-modules such
that M⊗r ∼= N for a positive integer r. Let f ∈M and g ∈ N such that, under
this identification, f⊗r = g. If g generates N , then f generates M .

Proof. We show the contrapositive. If f does not generate M , Nakayama’s
lemma implies that f ∈ mM . Thus f = a · s for some a ∈ m and s ∈M . But
then, under the appropriate identification,

g = f⊗r = (a · s)⊗r = ar · s⊗r ∈ m
rN ⊆ mN.

Therefore, g cannot generate N . �

Construction of the projectivoid morphism. We can now finish the proof
of Theorem 4.5 by constructing an inverse to the natural transformation from
the theorem. The result follows from the following proposition.

Proposition 4.11. Let X be a perfectoid space over K and

(Li, s
(i)
j , αi) ∈ Ln(X).

There is a unique K-morphism φ : X → Pn,perf such that
(

φ∗O(1/pi), φ∗T 1/pi

j , φ∗mi

)

∼= (Li, s
(i)
j , αi).

Proof. Let

Xj = X

(

s
(0)
0 , . . . , s

(0)
n

s
(0)
j

)

be the cover of X by L0-distinguished opens. Let

Uj = P
n,perf

(

T0, . . . , Tn
Tj

)

⊆ P
n,perf

be the standard cover by affinoids. The Ui are isomorphic to the perfectoid
unit polydisk and are naturally identified with

Spa

(

K

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉

,K◦

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉)

.

We build φ locally from maps φj :Xj→Uj . Since Uj is affinoid, it is equivalent
to build a map of Huber pairs,

(

K

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉

,K◦

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉)

γj
−→

(

OX(Xj),O
+
X(Xj)

)

.

That is, a ring map

K

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉

γj
−→ Γ(Xj ,OX),
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satisfying

γj

(

K◦

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉)

⊆ Γ(Xj ,O
+
X).

We define γj on generators by the rule

γj

((

Tr
Tj

)1/pi)

=
s
(i)
r

s
(i)
j

.

To make sure this is a ring homomorphism, we must check that

(

s
(i+1)
r

s
(i+1)
j

)p

=
s
(i)
r

s
(i)
j

.

First notice that, under the identification αi :L
⊗p
i+1
∼=Li, the following diagram

commutes (keeping in mind that the horizontal maps are not homomorphisms):

OX OX

Li+1 Li.

x 7→xp

s
(i+1)
j s

(i)
j

s7→s⊗p

Indeed, the commutativity of this diagram follows directly from the multi-

linearity of tensor product together with the identification (s
(i+1)
j )⊗p = s

(i)
j .

Chasing this diagram, we see that

(

s
(i+1)
r

s
(i+1)
j

)p

=
(

(s
(i+1)
j )−1(s(i+1)

r )
)p

= (s
(i)
j )−1(s(i)r ) =

s
(i)
r

s
(i)
j

,

as desired. Therefore, γj is a homomorphism. Finally, the definition of Xj

implies that, for all x ∈ Xj ,

∣

∣

∣

∣

γj

(

Ti
Tj

)

(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

s
(0)
i

s
(0)
k

(x)

∣

∣

∣

∣

≤ 1

so that

γj

(

Ti
Tj

)

∈ Γ(Xj,O
+
X).

The multiplicativity of the valuation associated to x shows the same holds for
all pth power roots so that

γj

(

K◦

〈(

T0
Tj

)1/p∞

, . . . ,

(

Tn
Tj

)1/p∞〉)

⊆ Γ(Xj ,O
+
X).

Therefore, we get a morphism φj :Xj→Uj ⊆P
n,perf for each j. Notice also that

s
(i)
r /s

(i)
j is a pith root of s

(0)
r /s

(0)
j , as desired.
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Finally, we check that these morphisms glue to a map φ :X → Pn,perf . This
amounts to showing that the restrictions of γj and γk are equal as maps from
Γ(Uj ∩ Uk,OP

n,perf )→ Γ(Xj ∩Xk,OX). That is, that

γj

((

Tk
Tj

)1/pi)

= γk

((

Tj
Tk

)1/pi)−1

.

With our notation, this boils down to

s
(i)
k

s
(i)
j

·
s
(i)
j

s
(i)
k

= 1.

But this is just Lemma 4.6.
The rest is immediate from the construction. Since OPnperf (d) is generated

by the monomials of degree d, the construction shows that φ∗O(1/pi) =Li and
φ∗(T 1/pi

j ) = s
(i)
j . Furthermore, any map ψ : X → Pn,perf with these properties

is by definition given affinoid locally on the standard cover of the target by the

ring map (Tj/Tk)
1/pi 7→ s

(i)
j /s

(i)
k . That is, ψ|Xi

= φi so that ψ = φ. �

The positive characteristic case. If X is a perfectoid space of characteris-
tic p, then the Frobenius morphism Frob :Gm→Gm, x 7→ xp is an isomorphism.
Therefore, the pth power map on PicX is an isomorphism as well since it is
H1(X,Frob). This means that, given (Li, s

(i)
j , αi) ∈ Ln(X), the Li for i > 0

are uniquely determined by L0. Similarly, since X is perfect, the map γi con-
structed in the proof of Proposition 4.11 is completely determined by where
Tr/Ti goes for each r 6= j because the pth roots of the image are unique. We
summarize this in the following corollary.

Corollary 4.12. If X is a perfectoid space over a perfectoid field K of char-
acteristic p, a map X → Pn,perf is equivalent to a line bundle L on X and
global sections s0, . . . , sn that generate L or, equivalently, to a map to classical
projective space Pn (as a rigid analytic variety).

We can now leverage the tilting equivalence to say that maps to X→ Pn,perf

in any characteristic are governed by a single line bundle on X♭. Indeed, by
the tilting equivalence, we have that Hom(X,Pn,perfK ) =Hom(X♭,Pn,perfK♭ ). This
implies the following corollary to Theorem 4.5.

Corollary 4.13. If X is a perfectoid space over K of any characteristic, a map
X → P

n,perf
K is equivalent to a single line bundle L on X♭ together with n+ 1

global sections generating L .

Using this corollary as an intermediary, we get a natural and geometric
correspondence between certain inverse systems of line bundles onX and single
line bundles on X♭.

Corollary 4.14.An element of Ln(X) is equivalent to a line bundle L ∈PicX♭

together with n+ 1 generating global sections.

This will be a useful tool in understanding the relationship between PicX
and PicX♭.
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5. Untilting line bundles

Recall that one of our motivations was to understand the behavior of vec-
tor bundles under the tilting equivalence. In this section, we use the tools of
projectivoid geometry developed in Section 4 to compare the Picard groups of
a perfectoid space X and its tilt X♭. Indeed, the theory of maps to projectivoid
space allows us to pass between line bundles on X and X♭ by choosing (com-
patible) generating sections, constructing the associated map to projectivoid
space, and then using the tilting equivalence to pass across characteristics. We
remark that the theory of pro-étale cohomology on perfectoid spaces allows us
to make this comparison cohomologically, but the theory we developed in the
previous section gives us a firm geometric grasp.

Cohomological untilting. In [3], Bhatt and Scholze introduce the pro-étale
site for schemes and perfectoid spaces. We review the definition here.

Definition 5.1. A map f : Y = Spa(S, S+) → X = Spa(R, R+) of affinoid
perfectoid spaces is called affinoid pro-étale if it can be written as a cofiltered
limit of étale maps Yi = Spa(Si, S

+
i )→ X of affinoid perfectoid spaces. More

generally, a map f : Y → X of perfectoid spaces is pro-étale if it is locally on
the source and target affinoid pro-étale.

The (small) pro-étale site of X is the Grothendieck topology on the cate-
gory of perfectoid spaces f : Y → X pro-étale over X on which a collection
{fi : Yi → X}i∈I is a covering if, for each quasicompact open U ⊆ X , there
exist a finite subset J ⊆ I and quasicompact open subsets Vi ⊆ Yi for i ∈ J
such that U =

⋃

i∈J fi(Vi).
If F is a pro-étale sheaf on X (that is a sheaf on the pro-étale site of X),

the pro-étale cohomology groups Hi(Xpro-ét,F ) are the derived functor sheaf
cohomology groups on the pro-étale site.

Let X be a perfectoid space over K. The pro-étale sheaf Gm,X maps U
to Γ(U,OU )

∗. We have the following theorem.

Proposition 5.2. H1(Xpro-ét,Gm) ∼= PicX.

Proof. For any site S, the cohomology group H1(XS ,Gm) parametrizes iso-
morphism classes of line bundles on X with respect to the topology of S. Due
to [15, Thm. 3.5.8], vector bundles (of any finite rank) on a perfectoid space
with respect to the pro-étale, étale, and analytic topologies coincide. �

We use the equivalence of the pro-étale topologies of X and X♭ to construct
the tilt of Gm as a pro-étale sheaf on X ,

G
♭
m,X : U 7→ (Γ(U,OU )

♭)∗ = Γ(U ♭,OU♭)∗ = Γ(U ♭,Gm,X♭).

The equivalence of the étale topologies on X andX♭ shows that G♭m,X is indeed

a sheaf. Better yet, the effectiveness of Čech cohomology on the pro-étale site
shows that

Hi(Xpro-ét,G
♭
m,X) ∼= Hi(X♭

pro-ét,Gm,X♭).
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In particular, H1(Xpro-ét,G
♭
m,X)∼=PicX♭. Now consider the Kummer sequence

for various powers of p,

0→ µpn → Gm,X → Gm,X → 0.

This is an exact sequence of sheaves on the pro-étale site of X . Indeed, this
can be checked on the stalks, which on the pro-étale site are strictly Henselian
local rings. Therefore, we can form an inverse system of exact sequences

0 µp Gm,X Gm,X 0

...
...

...

0 µpn Gm,X Gm,X 0

0 µpn+1 Gm,X Gm,X 0,

...
...

...

where the vertical maps on the left and middle sides are x 7→ xp. Taking this
limit gives the following sequence:

0→ Zp(1)→ G
♭
m,X

♯
−→ Gm,X .

The middle term is G♭m,X essentially by definition. Indeed, the construction

of the tilt of a perfectoid algebra R (cp. [18, Lem. 3.4]) induces a map of
multiplicative monoids

R♭ ∼= lim
←−
x 7→xp

R,

which restricts to the desired isomorphism on unit groups. Finally, exactness
on the right can be checked explicitly in the pro-étale topology. Indeed, ad-
joining a pth power root is an étale cover so that adjoining all the missing
p-power roots gives a pro-étale cover on which ♯ is surjective. Therefore, we
have a short exact sequence of pro-étale sheaves

0→ Zp(1)→ G
♭
m,X

♯
−→ Gm,X → 0.

Remark 5.3. If R is a perfectoid algebra, we always have a map of monoids
♯ : R♭ → R given by projection onto the first coordinate. Although it is not
a ring homomorphism unless R already had characteristic p, its restriction
to unit groups (R♭)∗ → R∗ is a group homomorphism. This construction is
another way of building the map ♯ : G♭m,X → Gm,X . The advantage of the

above construction is that it explicitly exhibits the Tate module Zp(1) as the
kernel.
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Taking long exact sequences in cohomology gives us the following diagram,
where the rows are exact:

...
...

...
...

H1(Xpro-ét,µpn) PicX PicX H2(Xpro-ét,µpn)

H1(Xpro-ét,µpn+1) PicX PicX H2(Xpro-ét,µpn+1)

...
...

...
...

H1(Xpro-ét,Zp(1)) PicX♭ PicX H2(Xpro-ét,Zp(1)).

L 7→L
⊗p

θ0

θn+1

θn

Taking the inverse limit of the θn gives a homomorphism of groups,

(18) θ : PicX♭ → lim
←−

L 7→L ⊗p

PicX,

and θ0 is this map composed with the projection onto the first coordinate.

Remark 5.4. In Corollary 4.14, we established that inverse systems of pth
roots of line bundles (with generating sections) on X correspond to individual
line bundles (with generating sections) on X♭. This seems to suggest that θ
could be an isomorphism in cases where we have nice maps to projective space.

Untilting via maps to projectivoid space. We now give a geometric inter-
pretation of θ and θ0 in terms of maps to projectivoid space. Given a globally
generated invertible sheaf L ∈ PicX♭, one can choose n sections which gener-
ate L . Corollary 4.12 associates to this data a unique morphism

φ♭ : X♭ → P
n,perf
K♭ ,

which is the tilt of a unique morphism φ : X → P
n,perf
K . Let Li = φ∗(O(1/pi)).

This gives a system of (L0,L1, . . .) ∈ lim
←−

PicX . It turns out that the sheaves
Li do not depend on the choices of global sections of L .

Proposition 5.5. The construction in the previous paragraph is well-defined,
and (L0,L1, . . .) = θ(L ), where θ is the cohomological map defined in equa-
tion (18) above.

Proof. Let u :Gm,Pn,perf
K

→ φ∗Gm,X be the unit of the adjunction of φ∗ and φ∗.
Then, passing to cohomology and composing with the natural map, we can
exhibit φ∗ : PicPn,perf → PicX as the composition

H1(Pn,perf ,Gm,Pn,perf )→ H1(Pn,perf , φ∗Gm,X)→ H1(X,Gm,X).
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Pulling u back along the pth power map gives φ♭∗ the same way. Since the
pth power map commutes with pullback, we get the following commutative
diagram:

PicPn,perfK♭ PicX♭

lim
←−

PicPn,perfK lim
←−

PicX.

φ♭∗

θPn,perf θX

φ∗

Since

L = φ♭∗OP
n,perf

K♭
(1) and Li = φ∗OP

n,perf
K

(1/pi),

we have reduced to proving the proposition for P
n,perf
K . Explicitly, we must

show θPn,perf (O(1)) = (O(1),O(1/p),O(1/p2), . . .). Since PicPn,perf = Z[1/p],
and is therefore uniquely p-divisible, it is enough to show that

θ0,Pn,perfO(1) = O(1).

θ0 is obtained from ♯ : G♭m → Gm by passing to cohomology. Scholze showed
in [18, Prop. 5.20] that this map on the perfectoid Tate algebra takes Ti 7→ Ti.
View θ0 as a map on Čech cohomology with respect to the standard affine
covers, and view H1(Pn,perf ,Gm) as descent data for building a line bundle
(and similarly for the tilt). Then we see that ♯ sends descent data for O(1)
(which are monomials of degree one), to monomials of degree one, which build
O(1) on P

n,perf
K .

Therefore, untilting line bundles via maps to projectivoid space is a well-
defined process, as it agrees with the cohomological method which does not
depend on the choice of sections. �

For the remainder of this paper, we use the techniques of Section 4 to study
the injectivity of θ. We outline our general strategy. Let L ,M ∈ Pic(X♭)
be globally generated. Choose generating global sections of each, and untilt
the associated maps to projectivoid space to obtain maps φ : X → P

n,perf
K and

ψ : X → P
r,perf
K . If φ∗(O(1/pi)) ∼= ψ∗(O(1/pi)) =: Li for all i, we would like to

conclude that L ∼= M . We do so by considering the tuples

(Li, s
(i)
j , αi) ∈ Ln(X) and (Li, t

(i)
j , βi) ∈ Lr(X)

associated to φ and ψ respectively. We begin by settling the case where
αi = βi by pulling back OP

n,perf

K♭
(1) along the tilt of the map associated to

(Li, {s
(i)
j , t

(i)
k }, αi) ∈ Ln+r+1(X), and observing that it is isomorphic to both

L and M .

Proposition 5.6. Let X be a perfectoid space over K. Suppose

(Li, s
(i)
j , αi) ∈ Ln(X) and (Li, t

(i)
j , αi) ∈ Lr(X)

correspond to maps φ : X → P
n,perf
K and ψ : X → P

r,perf
K respectively. Then

φ♭∗OP
n,perf

K♭
(1) ∼= ψ♭∗OP

r,perf

K♭
(1).
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The rest of this section is devoted to the proof of Proposition 5.6. Fix
(Li, s

(i)
j , αi) corresponding to a map φ : X → P

n,perf
K . As a first step, we show

that we can add one global section to each Li that are compatible with the αi
without changing the line bundle we get over X♭. Suppose ti ∈ Γ(X,Li) is

a global section such that αi(t
⊗p
i+1) = ti. For every

λ = (λ0, λ1, . . .) ∈ lim
←−

K∗ = K♭∗,

we let ψλ :X→P
n+1,perf
K be the projectivoid map corresponding to adding λiti,

that is, corresponding to (Li, {s
(i)
j , λiti}, αi). We hope to fit φ and ψλ in a

commutative diagram. To do so, we must develop an analog of rational maps
in this analytic context.

We would like the data (O(1/pi), {T 1/pi

0 , . . . , T 1/pi

n }, mi) to define a mor-
phism Pn+1,perf → Pn,perf , but this is not defined wherever |Tn+1/Ti| > 1 for
all i since these points will not be contained in any of the O(1)-distinguished
opens for the given sections. In particular, it is only defined on the open set

U =
⋃

j 6=n+1

P
n+1,perf
K

(

T0, . . . , Tn+1

Tj

)

.

This is the projectivoid analog of projecting away from the point at infinity
where all of T0, . . . , Tn vanish (here we are projecting away from a perfectoid
disk at the “north pole”). Unfortunately, the image of ψλ does not a priori lie

in U because there may be points x where |(λ0t0/s
(0)
j )(x)| > 1 for all i so that

|(Tn+1/Ti)(ψλ(x))| > 1. But by restricting to the open set

Vλ =
⋃

j

X

(

s
(0)
0 , . . . , s

(0)
n , λ0t0

s
(0)
j

)

,

we force the image of ψλ to lie in U . Thus we have the following commutative
diagram for every λ:

P
n,perf
K

X Vλ U

P
n+1,perf
K .

φ

ψλ

ψλ

π

Lemma 5.7. The sets V(̟♭)r form an open cover of X. As a consequence,

the sets V ♭(̟♭)r cover X♭.

Proof. Notice (̟♭)r = (̟r, ̟r/p, . . .). Fix x ∈ X . There is some j such that

x ∈ X

(

s
(0)
0 , . . . , s

(0)
n

s
(0)
j

)

.
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Furthermore, since ̟ is topologically nilpotent, there is some r such that

|(̟rt0/s
(0)
j )(x)| = |̟r| · |(t0/s

(0)
j )(x)| < 1,

proving the first statement. The second is an immediate consequence of the
tilting equivalence. �

Lemma 5.8. For any λ ∈ K♭∗,

(φ♭∗OP
n,perf

K♭
(1))|V ♭

λ

∼= ψ♭∗λ (OP
n+1,perf

K♭
(1)|U♭) ∼= (ψ♭∗λ OP

n+1,perf

K♭
(1))|V ♭

λ
.

Proof. This follows from the commutativity of the tilt of the diagram above,
reproduced below, together with the fact that π♭ is given by the line bundle
OP

n+1,perf

K♭
(1)|U together with the sections T0, . . . , Tn:

P
n,perf
K♭

X♭ V ♭λ U ♭

P
n+1,perf
K♭ .

φ♭

ψ♭
λ

ψ♭
λ

π♭

�

Lemma 5.9. Fix any λ, ξ ∈ lim
←−

K∗ = K♭∗. Then

ψ♭∗λ OP
n+1,perf

K♭
(1) ∼= ψ♭∗ξ OP

n+1,perf

K♭
(1).

Proof. Let τ : Pn+1,perf
K → P

n+1,perf
K be the map associated to the data

(

O(1/pi),

{

T
1/pi

0 , . . . , T 1/pi

n ,
λi
ξi
T

1/pi

n+1

}

,mi

)

.

Then τ is an isomorphism. Indeed, τ−1 corresponds to
(

O(1/pi),

{

T
1/pi

0 , . . . , T 1/pi

n ,
ξi
λi
T

1/pi

n+1

}

,mi

)

.

Observe also that τ ♭ is the map determined by O(1) and T0, . . . , Tn,
λ
ξ Tn+1. We

have the following two commutative diagrams, the right-hand diagram being
the tilt of the left:

P
n+1,perf
K P

n+1,perf
K♭

X X♭

P
n+1,perf
K , P

n+1,perf
K♭ .

τ τ♭

ψλ

ψξ

ψ♭
λ

ψ♭
ξ

Since τ ♭∗O(1) = O(1), we are done. �
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Putting these three lemmas together, we conclude that

φ♭∗OP
n,perf

K♭
(1) ∼= ψ♭∗1 OP

n+1,perf

K♭
(1).

Indeed, the pullback of O(1) along ψ♭1 agrees with the pullback along ψ(̟♭)r ,

for any r, but this agrees with the restriction of φ♭∗OP
n,perf

K♭
(1) to V ♭(̟♭)r for

any r. Since these sets cover X♭, we are done.
In summary, we have proved the following proposition.

Proposition 5.10. Let (Li, s
(i)
j , αi) ∈ Ln(X) define a map φ : X → P

n,perf
K .

Suppose that ti ∈ Γ(X,Li) is a global section such that αi(t
⊗p
i+1) = ti, and let

ψ : X → P
n+1
K be the map associated to (Li, {s

(i)
j , ti}, αi) ∈ Ln+1(X). Then

φ♭∗OP
n,perf

K♭
(1) ∼= ψ♭∗OP

n+1,perf

K♭
(1).

Adding sections one at a time by induction completes the proof of Proposi-
tion 5.6.

Injectivity of θ. With these tools in hand, we can prove the injectivity of θ
for certain perfectoid spaces X . We will first need one more lemma.

Lemma 5.11. Let (Li, s
(i)
j , αi) ∈ Ln(X) define a map φ : X → P

n,perf
K . Fix

λ = (λ0, λ1, . . .) ∈ Γ(X,O♭∗
X ),

that is, λpi+1 = λi, so that (Li, λis
(i)
0 , λiαi) ∈ Ln(X) corresponds to a map

ψ : X → P
n,perf
K . Then φ = ψ.

Proof. Multiplication by λi for each i defines an isomorphism

(Li, s
(i)
j , αi)

∼−→ (Li, λis
(i)
0 , λiαi)

in Ln(X). Then we are done by Theorem 4.5. �

Before we state the main theorem, we make the following definition.

Definition 5.12. A line bundle L on a perfectoid space X is said to be weakly
ample if, for any other line bundle M , there is some N ≫ 0 such that, for all
r > N , we have M ⊗L r globally generated.

Theorem 5.13. Suppose X is a perfectoid space over a perfectoid field K,
let X♭ be the tilt of X, and let C be the completion of an algebraic closure of K.
Suppose that X♭ has a weakly ample line bundle and that H0(XC ,OXC

) = C.
Then there is a natural injection

θ : PicX♭ →֒ lim
←−

L 7→L p

PicX.

In particular, if PicX has no p-torsion, then composing with projection onto
the first coordinate gives an injection

θ0 : PicX♭ →֒ PicX.
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Proof. Fix L ,M ∈PicX♭ with θ(L ) = θ(M ). We first reduce to the case that
L ,M are globally generated. Indeed, letting F be a weakly ample line bundle,
we have θ(L ⊗FN ) = θ(M ⊗FN ). If the result holds for globally generated
line bundles, for large enough N , we conclude that L ⊗FN ∼= M ⊗FN so
that L ∼= M .

Next we prove it for the case where K contains all pth power roots for all
its elements. Choose generating sections s0, . . . , sn for L and t0, . . . , tr of M ,
which give us maps

φ♭ : X♭ → P
n,perf
K♭ and ψ♭ : X♭ → P

r,perf
K♭

respectively. These untilt to

φ : X → P
n,perf
K and ψ : X → P

r,perf
K ,

which in turn correspond to tuples

(Li, s
(i)
j , αi) ∈ Ln(X) and (Li, t

(i)
j , βi) ∈ Lr(X).

Notice that αi and βi differ by an element

λi ∈ Isom(Li,Li) = Γ(X,O∗
X) = K∗.

That is, αi = λiβi. Choose pth power roots λ1/p
j

i for each i, j (these exist by
assumption), and for all j, make the following definitions:

t̃
(0)
j = t

(0)
j

t̃
(1)
j = λ−1/p

0 t
(1)
j

t̃
(2)
j = λ−1/p

1 λ−1/p2

0 t
(2)
j

...

t̃
(i+1)
j = λ−1/p

i λ
−1/p2

i−1 · · ·λ−1/pi+1

0 t
(i+1)
j

...

Then

αi((t̃
(i+1)
j )⊗p) = λiβi

(

(λ−1/p
i λ

−1/p2

i−1 · · ·λ−1/pi+1

0 t
(i+1)
j )⊗p

)

= λiλ
−1
i λ1/pi−1 · · ·λ

1/pi

0 β
(

(t
(i+1)
j )⊗p

)

= λ1/pi−1 · · ·λ
1/pi

0 t
(i)
j

= t̃
(i)
j .

Therefore, the tuple (Li, t̃
(i)
j , αi) ∈ Ln(X), and it also corresponds to ψ by

Lemma 5.11. Furthermore, the isomorphisms corresponding to this data are
now αi in both cases so that, by Proposition 5.6,

L = φ♭∗OP
n,perf

K♭
(1) ∼= ψ♭∗OP

n,perf

K♭
(1) = M .
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For the general case, we let L/K be the extension given by adjoining all pth
power roots of all elements of K. We have the following diagram:

PicX♭
L lim

←−
PicXL

PicX♭ lim
←−

PicX.

θL

θ

θL injects by the argument we just made. Furthermore, since X♭
L → X♭ is

a pro-étale cover of pth power degree, the kernel of PicX♭ → PicX♭
L is pth

power torsion. Since X♭ is perfect, PicX♭ has no pth power torsion, so the
map injects. Therefore, θ injects. �

Example 5.14. Let X0 →֒ PnK be a geometrically connected projective variety
over a perfectoid field of characteristic p. Then if we pull back along the
map P

n,perf
K → Pn, we get X∞ := X0 ×P

n
K
P
n,perf
K which is Zariski closed in

a perfectoid space and is therefore perfectoid. Furthermore, the pullback of
O(n) to X∞ will be weakly ample for any positive n. Therefore, if K♯ is
any untilt of K and X♯

∞ is the untilt of X∞ over K♯, we may conclude that
Pic(X∞) →֒ lim

←−
PicX♯

∞.

Remark 5.15. One can also study the map θ from Theorem 5.13 using ho-
mological methods by analyzing derived limits in the pro-étale site. Indeed, as
part of forthcoming work, the author shows that θ is an isomorphism without
appealing to a weakly ample line bundle to pass through maps to projectivoid
space. We nevertheless include this proof here as it has a more geometric flavor
and demonstrates an interesting application of the projectivoid theory.
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