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Ping-pong in Hadamard manifolds

Subhadip Dey, Michael Kapovich, and Beibei Liu
(Communicated by Linus Kramer)

Abstract. In this paper, we prove a quantitative version of the Tits alternative for neg-
atively pinched manifolds X. Precisely, we prove that a nonelementary discrete isometry
subgroup of Isom(X) generated by two non-elliptic isometries g, f contains a free subgroup
of rank 2 generated by isometries fN,h of uniformly bounded word length. Furthermore,
we show that this free subgroup is convex-cocompact when f is hyperbolic.

1. INTRODUCTION

Let X be an n-dimensional negatively curved Hadamard manifold, with sec-
tional curvature ranging between —x? and —1, for some x > 1. The main result
of this note is the following quantitative version of the Tits alternative for X,
which answers a question asked by Filippo Cerocchi during the Oberwolfach
Workshop “Differentialgeometrie im Grossen”, 2017, see also [10].

Theorem 1.1. There exists a function L = L(n,k) such that the following
holds: Let f,g be non-elliptic isometries of X generating a monelementary
discrete subgroup I' of Isom(X). Then there exists an element h € ' whose
word length (with respect to the generators f,g) is < L and a number N < L
such that the subgroup of T' generated by fN,h is free of rank two.

One can regard this theorem as a quantitative version of the Tits alternative
for discrete subgroups of Isom(X). For other forms of the quantitative Tits
alternative, we refer to [2, 5, 6, 8.

After replacing g with the element ¢’ := gfg~!, and noticing that the sub-
group generated by f, ¢’ is still discrete and nonelementary, we reduce the
problem to the case when the isometries f and g are conjugate in Isom(X),
which we will assume from now on.
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The proof of Theorem 1.1 breaks into two cases which are handled by dif-
ferent arguments:

Case 1. f (and, hence, g) has translation length bounded below by some
positive number A\. We discuss this case in Section 4.

Case 2. f has translation length bounded above by some positive number A.
We discuss this case in Section 5.

Remark 1.2. (i) For the constant A, we take e(n, k)/10, where e(n, k) is
a positive lower bound for the Margulis constant of X.

(ii) We need to use a power of f only in Case 1, while in Case 2 we can
take N = 1.

We also note that if f is hyperbolic, the free group (fV,h) constructed in
our proof is convex-cocompact. See Proposition 3.22 and Corollary 4.9. One
can also show that this subgroup is geometrically finite if f is parabolic but
we will not prove it.

2. DEFINITIONS AND NOTATION

In a metric space (Y, d), we will be using the notation B(a, R) to denote the
open R-ball centered at a € Y, and the notation Nr(A) to denote the closed
R-neighborhood of a subset A C X. By

d(A, B) :=inf{d(a,b) : a € A,b € B},

we denote the minimal distance between subsets A, B C Y.

If (Y,d) is a geodesic d-hyperbolic metric space or a CAT(0) space, then
O0xo Y will denote the visual boundary equipped with the visual topology, and
we write Y := Y U d, Y. If Y is proper, then Y is a compactification of Y.
Given a pair of points z,y in (Y, d), we will use the notation zy to denote a
geodesic segment in Y connecting = to y. For general -hyperbolic spaces, this
segment is not unique, but, since any two such segments are within distance
0 from each other, this abuse of notation is harmless. We let |zy| = d(x,y)
denote the length of zy. Given points A, B,C € Y, we let AABC denote a
geodesic triangle in Y with vertices A, B, C. Similarly, if y € Y, £ € 0,,Y, then
y& will denote a geodesic ray emanating from y which is asymptotic to &.

A subset A of Y is called A-quasiconvex if every geodesic segment xy with
the end-points in A is contained in Ny (A).

A subset A in a metric space Y is called starlike with respect to a point
a € A if for every y € A, every geodesic segment ya is contained in A. More
generally, if Y is d-hyperbolic or a CAT(0) space, then A C Y is called starlike
with respect to a point £ € 0, Y if for every y € A, every geodesic ray y¢ is
contained in A.

Throughout the paper, X will denote an n-dimensional Hadamard manifold
with sectional curvature ranging between —x2 and —1, unless otherwise stated.
Let d denote the Riemannian distance function on X. We use 0, X to denote
the visual boundary of X, and X := X U 05X the visual compactification
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of X. Let Isom(X) denote the isometry group of X. We use ¢(n, k) to denote
a fixed positive lower bound on the Margulis constant for X; this number is
known to depend only on n and &, see, e.g., [1].

Given a pair of points p, g in X, we let H(p, q) denote the closed half-space
in X given by

H(p,q) ={z € X :d(z,p) < d(z,q)}.

Then Bis(p, ¢) = Bis(q,p) := H(p, q) N H(g,p) is the equidistant set of p, q.

We use the notation Hull(A) for the closed convex hull of a subset A C X
which is the intersection of all closed convex subsets of X containing A.

For each isometry g of X, we define its translation length 7(g) as

M) r(g) = inf d(z, 9(x)).

The isometries of X are classified in terms of their translation lengths, see
Section 3.7.

A discrete subgroup I' < Isom(X) is called elementary if either it fixes a
point in X or preserves a geodesic in X.

3. PRELIMINARY MATERIAL

3.1. Some CAT(—1) computations. Let X be a CAT(—1) space. Recall
that the hyperbolicity constant of X is < § = cosh™(v/2).

Lemma 3.2. Let AA1A3C be a triangle in X such that LA1CAy > m/2.
Then
|A1Az| = |A1C| + [A2C] — 26.

Proof. Let D € Ay Az be the point closest to C. Then at least one of the angles
ZA,CD, i =1,2,is > w/4. The CAT(—1) property and the dual cosine law
for the hyperbolic plane imply that

cosh(|CD|)sin(g) <1,
ie.,

|CD| < cosh™(V2) = 4.

The rest follows from the triangle inequalities. O

Corollary 3.3. Suppose that x,xy,%,x', are points in X which lie on a
common geodesic and appear on this geodesic in the given order. Assume that

d(&y,2') > d(z,24) +2cosh™ ! (V2).
Then H(xy,24) C H(x,2!,).
Proof. We observe that the CAT(—1) condition implies that for each z equidis-

tant from x4, 2, we have
42’x+i+ S 71'/27 42i+x+ S 71'/2

Hence,
Lrxyz>m)2, La' dyz>mw/2.
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Then the lemma and the triangle inequality implies that

d(z,z) < d(z2),
and thus

Bis(zy,#4) C H(z,2!,).

Since every geodesic connecting w € H(x4,&) to 2/, passes through some
point z € Bis(zy, 24 ), it follows that

d(z,w) < d(w, z,). O
3.4. Quasiconvex and starlike subsets.

Lemma 3.5. Starlike subsets in a d-hyperbolic space Y are §-quasiconver.

Proof. We prove this for subsets A C Y starlike with respect to a € A; the
proof in the case of starlike subsets with respect to £ € JxY is similar and is
left to the reader. Take z1, 29 € A. Then, by the §-hyperbolicity,

2129 C Ns(az1 Uazg) C Ns(A). O

Suppose now that X is a Hadamard manifold of negatively pinched curva-
ture as above. Then, according to [4, Proposition 2.5.4], there exists q = q(x, A)
such that for every A\-quasiconvex subset A C X, we have

Hull(A) C Ny(A).
In particular, the following proposition holds.

Proposition 3.6. For every starlike subset A in a Hadamard manifold X of

negatively pinched curvature, the closed convex hull Hull(A) is contained in the
q = q(k, d)-neighborhood of A.

In what follows, we will suppress the dependence of q on x and J, since these
are fixed for our space X.

3.7. Classification of isometries. Let X be a negatively curved Hadamard
manifold. The isometries of X are classified into three types according to their
translation lengths 7, see [1, 2].

(i) Anisometry g of X is hyperbolic if 7(g) > 0. Equivalently, the infimum
in (1) is attained and is positive. In this case, the infimum is attained
on a g-invariant geodesic, called the azis of g, and denoted by A,.

(ii) An isometry g of X is elliptic of 7(g) = 0 and the infimum in (1) is
attained; the set where the infimum is attained is a totally geodesic
submanifold of X fixed pointwise by g.

(iii) An isometry g of X is parabolic if the infimum in (1) is not attained.
In this case, the infimum is necessarily equal to zero.

Thus, only parabolic and elliptic isometries have zero translation lengths. For
any ¢ € Isom(X) and m € Z, we have

(2) 7(g™) = Im[7(g)-
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The following theorem provides an alternative characterization of types of
isometries of X, see [7].

Theorem 3.8. Suppose that g is an isometry of X. Then

(i) g is hyperbolic if and only if for some (equivalently, every) x € X, the
orbit map N — ¢z is a quasiisometric embedding Z — X ;
(i1) g is elliptic if and only if for some (equivalently, every) x € X, the
orbit map N — gNx, N € Z has bounded image;
(i) g is parabolic if and only if for some (equivalently, every) x € X, the

orbit map N — gNx, N € Z is proper and
- d(a, g ()
L

If f,g are hyperbolic isometries of X generating a discrete subgroup of
Isom(X), then either the ideal boundaries of the axes A, A, are disjoint or
Ay = Ay (see [3], the argument for negatively curved Hadamard manifolds is
similar).

3.9. Margulis cusps and tubes. Take g € Isom(X). For each ¢ > 7(g), we
define the following nonempty closed convex subset of X:

Te(g) = {x € X [ d(z,9(x)) < €}.
Of primary importance are subsets T. (g) for € < (n, k). For any two isometries
g,h of X, we have
3) T-(hgh™") = h(T:(9))-

In particular, if g, h commute, then h preserves T.(g).
For parabolic isometries g of X define the Margulis cusp

T(9)= |J T(¢)
i€Z—{0}

(The same definition works for elliptic isometries of X, except the above region
is not called a cusp.) This subset is (g)-invariant.

Suppose that g is a hyperbolic isometry of X. Define m, to be the (unique)
positive integer such that

(4) T(g™) <€/10, (g™ ) > €/10,

and set

T(9)= |J T(¢") C X

1<i<my

If 7(g) > £/10, then T.(g9) = 2.
Since the subgroup (g) is abelian, in view of (3), we obtain the following
lemma.

Lemma 3.10. The subgroup {(g) preserves T:(g) and, hence, also preserves

Hull(7z(g))-
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By the convexity of the distance function, for any isometry g € Isom(X),
T.(g) is convex. In particular, T:(g) is a starlike region with respect to any
fixed point p € X of g for general g, and with respect to any point on the axis
of g if g is hyperbolic. As a corollary to Lemma 3.5, one obtains the following
corollary.

Corollary 3.11. For every isometry g € Isom(X), the set T-(g) is d-quasi-
conver.

Proposition 3.6 then implies the following.

Corollary 3.12. For every isometry g € Isom(X),
Hull(7z(g9)) € Nq(7=(9)),

where q is as in Proposition 3.6.
For a more detailed discussion of the regions 7:(g), see [4, 14].

3.13. Displacement estimates. In this subsection, we let X be a CAT(—1)
geodesic metric space. For each pair of pointg_{l,B € H? and each circle
S C H? passing through these points, we let ABS denote the (hyperbolic)
length of the shorter arc into which A, B divide the circle S.

Lemma 3.14. If d(A, B) < D, then, for every circle S as above, the length ¢
of ABS satisfies the inequality:

dAB) << 27rtanth/4) .

1 —tanh*(D/4)
Proof. The first inequality is clear, so we verify the second. We want to max-
imize the length of ABS among all circles S passing through A, B. We claim
that the maximum is achieved on the circle S, whose center o is the midpoint
of AB. This follows fro/r_n\ the fagi that given any other circle S, we have the
radial projection from ABS° to AB? (with the center of the projection at o).
Since this radial projection is distance-decreasing (by convexity), the claim
follows. The rest of the proof amounts to a computation of the length of the
hyperbolic half-circle with the given diameter. |

Lemma 3.15. There exists a function ¢(D) so that the following holds: Con-
sider an isosceles triangle ABC in X with d(A,C) = d(B,C), d(A,B) < D,
and an isosceles subtriangle A'B'C" with A’ € AC, B’ € BC, d(A,A") =
d(B,B’") =7. Then
d(A',B") <c¢(D)e 7.

Proof. In view of the CAT(—1) assumption, it suffices to consider the case
when X = H?2. We will work with the unit disk model of the hyperbolic plane,
where C' is the center of the disk as in Figure 1. Let « denote the angle
Z(ACB). Set T := d(C,A) = d(C, B). For points Ay € CA, By € CB such
that d(C, A¢) = d(C,B;) = t, we let I, denote the hyperbolic length of the
(shorter) circular arc Z:B\t = @S‘ of the angular measure «, centered at C
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FIGURE 1

and connecting A; to B;. (Here Sy is the circle centered at C' and of hyperbolic
radius ¢.) Let R; denote the Euclidean distance between C' and A; (same for
By). Then

20[Rt

= —1*
t 1_Rt27

R, = tanh(¢/2).
Thus, for 7 =T — ¢,

l_t_ﬁl—R%<1—R%
lr  Rp1—R? — 1 - R?

col=Rr 1 tanh(T/2)

1—R: 1 — tanh(t/2)

_2et+1 el re

ST+l T e T4

< 4e 7.

In other words,
d(As, By) <l < 4e "lp.
Combining this inequality with Lemma 3.14, we obtain
I, < de 27 tanhgd(A, B)/4) <4 27 tanth/Zl) .
1 —tanh“(d(A, B)/4) 1 —tanh*(D/4)
Lastly, setting A’ = A;, B’ = B;, A= Ay, B = By, we get
27 tanh(D/4)
1 — tanh?(D/4)

d(A',B) <4 e T =c¢(D)e 7. O

Corollary 3.16. There exists a function t(e) such that for any hyperbolic
isometry h € Isom(X) with translation length 7(h) =1 < €/10, if A € X
satisfies d(A, h(A)) = €, then there exists B € X such that d(B,h(B)) = ¢/3,

d(A,B) <t =t(e) and B lies on the shortest geodesic segment connecting A
to the axis A of h.
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FIGURE 2

Proof. Let C' € A, be the closest point to A in A. By the convexity of the
distance function, there exists a point B € AC such that d(B,h(B)) = ¢/3.
Suppose that d(A, B) = d(h(A), h(B)) =t and d(4,C) = d(h(A),h(C))) =T,
as shown in Figure 2. Then d(C,h(A)) < T +1 < T 4 ¢/10. There exist
points D, E in the segment h(A)C such that d(C,D) = d(C,B) = T —t,
d(h(A),E) =t and d(A’,C) =d(A,C) =T.

Then d(A, A’) <e+1<11¢/10. By Lemma 3.15, ¢(11e/10) (defined in that
lemma) satisfies

d(B,D) < c(d(A,A"))e " < c(11g/10)e™ "

Similarly, by taking the point A” € h(A)C satisfying d(A”,h(A)) = T and
d(h(C), A"”) < 2l, considering the isosceles triangle Ah(C)A”h(A) and its sub-
triangle Ah(B)Eh(A), we obtain

d(h(B),E) < ¢(20)e'~T.

Since I < e/10 and d(B, h(B)) = €/3, the convexity of the distance function
implies that T'—t > t. Thus,

/3 =d(B,h(B)) <d(B,D)+d(D,E) + d(E, h(B))
< c(11e/10)e ™t + 1+ c(20)et~T
< e(11e/10)e™" + f—o +e(e/5)e 7,
which simplifies to
3—705 < (e(11e/10) + c(e/5))e ",
and consequently

d(A. B) = t < x(c) := log[e(11/10) + c(6/5)]3—706_1). 0
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3.17. Local-to-global principle for quasigeodesics in X. For a piecewise-
geodesic path consisting of alternating ‘long’ arcs and ‘short’ segments such
that adjacent geodesic segments meet at angles > /2, we construct a quasi-
geodesic in X by making the long segments sufficiently long, given a lower
bound on the lengths of the short arcs. More precisely, according to [14,
Proposition 7.3], we have the following result.

Proposition 3.18. There are functions A = A(e) > 1l,a = ae) > 0 and
L = L(e) > € > 0 such that the following holds. Suppose that v = ---~vy_1 %79 *
Y1k k Y, oo C© X s a precewise geodesic path such that:

(1) FEach geodesic arc «y; has length either at least € or at least L.

(i) If v; has length < L, then the adjacent geodesic arcs vj—1 and vjt1

have lengths at least L.

(iii) All adjacent geodesic segments meet at angles > w/2.
Then v is a (A, a)-quasigeodesic in X .
3.19. Ping-pong.

Proposition 3.20. Suppose that g, h € Isom(X) are parabolic/hyperbolic ele-
ments with equal translation lengths < £/10, and

d(Hull(7:(g)), Hull(7z(h))) > L,
where L = L(e/10) is as in Proposition 3.18. Then ® := (g, h) < Isom(X) is

a free subgroup of rank 2.

Proof. To simplify the notation, for a non-elliptic element f € Isom(X), we

denote Hull(7Z(f)) by 7-(f).
Using Lemma 3.10, (3), and the definition of 7z, we obtain

d(T:(g), ¢"T:(h)) = d(T:(9), T-(h)) > Lk € Z

Our goal is to show that every nonempty word w(g, h) represents a nontrivial
element of Isom(X). It suffices to consider cyclically reduced words w which
are not powers of g, h.

We will consider a cyclically reduced word

w = w(g, h) — gmk hmk—lgmk—thk—S . nghml,
words with the last letter g are treated by relabeling. Since w is cyclically
reduced and is not a power of g, h, the number k is > 2 and all of the m;’s in
this equation are nonzero.

For each N > 1, we define the r-suffiz of w¥ as the following sub-word
of wh:

g re1gMmr_2pr=3 ... gM2 M1 even,
Wy = {hmrgmrl Bme—z L gmzhml’ r Odd,
where, of course, m; = m; modulo N. Since w is reduced, each w, is reduced
as well.
We will prove that the map

Z—X, Nw—uwVa,
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Y Y Y Y, Y, Ys

FIGURE 3

is a quasiisometric embedding. This will imply that w(g, k) is nontrivial. In
fact, this will also show that w(g, h) is hyperbolic, see Theorem 3.8.

Let I = yz be the unique shortest geodesic segment connecting points in
7:(g) and T.(h), where y € T.(g) and z € To(h). For r > 0, we denote w,L,
wyy and w,z by I, y, and z,, respectively. In particular, yo = y, zo = z and
lop=1.

Since [ is the shortest segment between 't(g),'ﬁ(h) and these are convex
subsets of X, for every y' € Tz(g) (vesp. 2’ € T.(h))

(5) Zy'yz > 7w/2  (resp. Lyzz' > 7/2).

Since g and h have equal translation lengths, h is parabolic (resp. hyper-
bolic) if and only if g is parabolic (resp. hyperbolic). When both of them are
hyperbolic, since y and z are not in the interior of 7¢(g) and T-(h), respectively,
d(y,g'y),d(z,hiz) > € for all 1 <i < mg, 1 < j < my. Also, when i > my,
j > mp, it follows from (2) and (4) that

min(d(y,giy),d(z,hjz)) > liO
Moreover, when both g and h are parabolic, d(y, g'y),d(z,hiz) > ¢ for all
1 <4, 1 < j. Therefore, in the general case,

(6) min(d(y,giy),d(z, hjz)) > 16—0 for all i > 1, and all j > 1.
Let s, be the segment

YrYr+1, when r is odd,
Sp = .
ZrZr41, When r is even.

See the arrangement of the points and segments in Figure 3.

Let l~N be the concatenation of the segments [,.’s and s;,.’s as shown in Fig-
ure 3, 0 < r < kN. According to (6), the length of each segment s, is at
least /10, while by assumption, the length of each [, is > L = L(g/10).
Moreover, according to (5), the angle between any two consecutive segments
in [y is at least 7 /2. Using Proposition 3.18, we conclude that Iy is a (A, «)-
quasigeodesic.
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Consequently,

| /RN kL

N

(7) d(w x,x)>X<;|si|+NkL)—a>TN—a.

From this inequality it follows that the map Z — X, N — w™z is a quasiiso-
metric embedding. O

Remark 3.21. In fact, this proof also shows that every nontrivial element of
the subgroup ® < Isom(X) is either conjugate to one of the generators or is
hyperbolic.

For the next proposition and the subsequent remark, one needs the notions
of convez-cocompact and geometrically finite subgroups of Isom(X). We refer
to [4] for several equivalent definitions, see also [13, Section 1]. For now,
it suffices to say that a subgroup I' in Isom(X) is convez-cocompact if it is
finitely generated and for some (equivalently, every) z € X, the orbit map
I' = 'z C X is a quasiisometric embedding, where I' is equipped with a word
metric.

Proposition 3.22. Let g, h € Isom(X) be hyperbolic isometries satisfying the
hypothesis of Proposition 3.20. Then the subgroup ® = (g,h) < Isom(X) is
convex-cocompact.

Proof. We equip the free group Fy on two generators (denoted g, h) with the
word metric corresponding to this free generating set. Since g, h are hyperbolic,
by (2), the lengths of the segments s,’s in the proof of Proposition 3.20 are
> 7|my41]|, where

T =1(9) = 7(h).
Then, for N =1, r = k, and a reduced but not necessarily cyclically reduced
word w, the inequality (7) becomes

k—1
1 T
dw.p) > 5 (L) = o> Tlul o
1=0

where |w| > |m1|+ |ma| + - - + |myg] is the (word) length of w. Therefore, the
orbit map Fe — ®y C X is a quasiisometric embedding. O

Remark 3.23. One can also show that if g, h are parabolic, then the subgroup
® is geometrically finite. We will not prove it in this paper, since a proof
requires further geometric background material on geometrically finite groups.

4. CASE 1: DISPLACEMENT BOUNDED BELOW

In this section we consider discrete nonelementary subgroups of Isom(X)
generated by two hyperbolic elements g, h whose translation lengths are equal
to 7 > A. Our goal is to show that in this case the subgroup (g%, h") is free
of rank 2 provided that N is greater than some constant depending only on
the Margulis constant of X and on A. The strategy is to bound from above
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FIGURE 4

how ‘long’ the axes Ay, Ay, of g and h can stay ‘close to each other’ in terms of
the constant A. Once we get such an estimate, we find a uniform upper bound
on N such that the Dirichlet domains for (g™V), (h'V) (based at some points on
Ay, Ap) have disjoint complements. This implies that g/¥, h?V generate a free
subgroup of rank two by a classical ping-pong argument.

Let «, 8 be complete geodesics in the Hadamard manifold X. These geo-
desics eventually will be the axes of g and h, hence we assume that these
geodesics do not share ideal end-points. Let _z denote the (nearest point)
projection of 8 to o and let y_y4 denote the projection of x_xz4 to 8. Let =
and y denote the mid-points of z_x; and y_y4 respectively. Then

Lg=d(y-,y+) < La == d(z—,24).

Fix some T' > 0, and let 2_2& and §_g denote the subsegments of a and
B containing x_x, and y_y4, respectively, such that

(8) dxe,21) =T, dys, 9+)="T.

We let Us and Vi denote the ‘half-spaces’ in X equal to H(Z4,z+) and
H(§+,y+), respectively. See Figure 4.
The following is proven in [2, Appendix].

Lemma 4.1. If T > 5, then the sets Uy, Vi are pairwise disjoint.

Suppose now that g, h are hyperbolic isometries of X with the axes «, 3,
respectively, and equal translation length 7(¢9) = 7(h) = 7 > A > 0. We
let ' = (g,h) < Isom(X) denote the, necessarily nonelementary (but not
necessarily discrete), subgroup of isometries of X generated by g and h.

As an application of the above lemma, as in [2, Appendix], we obtain the
following lemma.
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Lemma 4.2. If NT > L, + 5+ 25, then the half-spaces H(g™Nz,z) and
H(h*Ny, ) are pairwise disjoint.

Proof. The inequality
N7 >Lo+5+26>Lg+5+20.
implies that the quadruples
(2,24, 84,9 (), (20—, 3, 97N (@), (U, 54,54, 2™ ), (W, y—, 5, 0N ()

satisfy the assumptions of Corollary 3.3, where 1 and ¢+ are given by taking
T =5 in (8). Therefore, according to this corollary, we have

H(g*N(x),2) cU*, H((K*N(y),y) c V=
Now, the assertion of the lemma follows from Lemma 4.1. O

Corollary 4.3. If
(9) N7 > Lo+ 5+ 294,
then the subgroup I'y < T' generated by g™, h is free with the basis g™V, hN .
Proof. We have
gN(H( N (y),y) UH(WN (y),y)) € H(g* Nz, 2)
and
RN (H (g™ (@), 2) U H (g (2),2)) € H(W Ny, ).

Thus, the conditions of the standard ping-pong lemma (see, e.g., [9, 11]) are
satisfied and, hence, I'y is free with the basis g, h™V. O

Let n = d(a, 8) denote the minimal distance between «, f and pick some
no > 0 (we will eventually take no = 0.01e(n, k)). Let By = 2229 C S be the
(possibly empty!) maximal closed subinterval such that the distance from the
end-points of By to a is < ng. Thus, By C Ny, ().

Remark 4.4. Note that 5y = @ if and only if ny < 7.

Let ap = 2% 29 denote the projection of By to «, let 2L, denote the length
of ag. Hence, the intervals ag, Sy are within Hausdorff distance 7 from each
other.

Furthermore, Z3(—00)2%2% > /2 and ZB(—00)292Y > 7/2; see Figure 5.
Hence, according to [14, Corollary 3.7], for
1

Li= sinh*l(m),

we have

d(x*7x0—)§Lla d(er,ng_) SLl
Thus, the interval x_z; breaks into the union of two subintervals of length
< Ly = Ly(no) and the interval ag of length 2Ly. In other words, L, =
2(Lo + Ly).
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Q

FIGURE 5

Most of our discussion below deals with the case when the interval Sy is
nonempty.

Our goal is to bound from above L, in terms of A, 79 and the Margulis
constant e(n, k) of X, provided that 179 = 0.01e(n, k) and I" is discrete.

Lemma 4.5. Let S C I' be the subset consisting of elements of word-length
< 4 with respect to the generating set g,h. Let P_P, C «ap be the middle
subinterval of oy whose length is %LO, Assume that T < d(P—, Py). Then for
each vy € S, the interval v(P_ Py) is contained in the 3ng-neighborhood of ay.

Proof. The proof is a straight-forward application of the triangle inequalities
taking into account the fact that the Hausdorff distance between g and Sy
is < no. g

Then, arguing as in the proof of [12, Theorem 10.24]!, we obtain that each
of the commutators

[gzl:l h:l:l] [hzl:l g:tl]
moves each point of P_ P, by at most
28 x 319 < 10079.

Therefore, by applying the Margulis Lemma as in the proof of [12, Theo-
rem 10.24], we obtain the following corollary.
Corollary 4.6. IfT' is discrete and n9 = 0.01e(n, K), then
2 1
> —Lo= —(Ly —2Ly).

2 glo =5l 1)
Corollary 4.7. If T is discrete and 7 > X, then the subgroup (g™ ,h") =
I'n < T is free of rank 2 whenever one of the following holds:

n fact, the argument there is a variation on a proof due to Culler-Shalen—-Morgan and
Bestvina, Paulin
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(i) either Lo, < 3Ly and

N> 5420+ 3L,

)\ b
(ii) or Lo > 3L1 and

N > 27+ M
Ly
Proof. In view of Corollary 4.3, it suffices to ensure that inequality (9) holds.
(i) Suppose first that L, < 3L;, hence Lg < 3L;. Then, in view of the
inequality 7 > A > 0, inequality (9) will follow from

N> 5420+ 3Ly .
- A
(ii) Suppose now that L, > 3L;. The function
9(t + 5+ 29)
t—21,
attains its maximum on the interval [3L1,00) at t = 3L;. Therefore,
9(La + 5 +29) <or 4 9(5—1—25).
L, —2L4 Ly
Thus, the inequality
S L, —2L4
.
- 9
implies that for any
N > 27 + M’
Ly
we have N7 > L, + 5+ 26. O

Consider now the remaining case when for 9 := t35¢(n, &), the subinterval
Bo is empty, ie., n > gy = Wloe(n,m). Then, as above, the length L, of
the segment x_xy is at most 2L;. Therefore, similarly to the case (i) of

Corollary 4.7, in order for N to satisfy inequality (9), it suffices to get
5+25+3L

—

Theorem 4.8. Suppose that g, h are hyperbolic isometries of X generating a

discrete nonelementary subgroup, whose translation lengths are equal to some
7> A>0. Let L1 be such that

N>

sinh(Ll)sinh(l—(l)Oe) =1,

where € = €(n, k). Then for every

5425+ 3L, 9(5 + 26)
N T )

the group generated by g™, h’v is free of rank 2.

(10) N > max(
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We note that proving that (some powers of) g and h generate a free sub-
semigroup is easier, see [2] and [6, section 11].

Corollary 4.9. Given g, h as in Theorem 4.8, and any N satisfying (10), the
free group T'n = (g™, hN) is convex-cocompact.

Proof. Let U* = H(g* Nz, z) and V* = H(h*Vy,y). Observe that

g XN\UT) cur
and

REN (X \ VF) c V=,
We let D v, Dp~ denote the closures in X of the domains

X\ U uut), x\(v uvh,
respectively, and set
@ = ggN N :DhN .

It is easy to see (cp. [15]) that this intersection is a fundamental domain for the
action of I'y on the complement X \ A to its limit set A. Therefore, (X \A)/T'n
is compact. Hence, I'y is convex-cocompact (see [4]). O

Remark 4.10. It is also not hard to see directly that the orbit maps I'ny —
I'yvz C X are quasiisometric embeddings by following the proofs in [14, Sec-
tion 7] and counting the number of bisectors crossed by geodesics connecting
points in I'z.

5. CASE 2: DISPLACEMENT BOUNDED ABOVE

The strategy in this case is to find an element ¢’ conjugate to g (by some
uniformly bounded power of f) such that the Margulis regions of g,g’ are
sufficiently far apart, i.e., are at distance > L, where L is given by the local-
to-global principle for piecewise-geodesic paths in X, see Proposition 3.20.

Proposition 5.1. There exists a function
£: [0,00) x (0,e] = N,

for 0 < e < &(n, k), with the following property: Let g1, ..., gk be nonelliptic
isometries of the same type (hyperbolic or parabolic) with translation lengths
<¢e/10 and

k>¢(L,e).
Suppose that (g;, g;) are nonelementary discrete subgroups for all i # j. Then
there exists a pair of indices i,j € {1,...,k}, i # j, such that

d(Hull(7: (g;)), Hull (T2 (g5))) > L.
Proof. If all the isometries g; are parabolic, then the proposition is established
in [14, Proposition 8.3]. Therefore, we only consider the case when all these

isometries are hyperbolic. Our proof follows closely the proof of [14, Proposi-
tion 8.3].
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Since for all ¢ # j the subgroup (g;, g;) is discrete and nonelementary, and
e < e(n, k), we have

Te(9i) NTe(g;) = @.
Given L > 0, suppose that

d(Hull(7z(g:)), Hull(7z(g;))) < L for all 4,5 € {1,...,k}.

Our goal is to get a uniform upper bound of k.

Consider the L/2-neighborhoods Ny, jo(Hull(7z(g;))). They are convex in X
and have nonempty pairwise intersections. Thus, by [14, Proposition 8.2], there
exists a point z € X such that

d(z,Te(g;)) <Ry :=nd+ L/2+q, i=1,...,k,
where § is the hyperbolicity constant of X and q is as in Proposition 3.6. Then
Te(g) N B(x,Ry) # 2, i=1,....k

For each i = 1,...,k, we take a point z; € Tz(¢;) N B(z, R1) satistying
d(xi, gV (z;)) = € for some 0 < p; < myg,. Since the translation lengths of the
elements g;* are < ¢/10, by Corollary 3.16, there exist points y; € X such that

d(yi, 97" (vi)) = €/3,  d(wi,yi) <(e).
Consider the £/3-balls B(y;,e/3). Then B(y;,e/3) C Tc(g:), since
d(z, 97" (2)) < d(z, i) + d(yi, 97" (vi) + d(g7" (i), 97" (2)) < €

for any point z € B(y;,¢/3). Thus, the balls B(y;,c/3) are pairwise disjoint.
Observe that B(y;,e/3) C B(z, R2), where Re = Ry + t(e) +¢/3.

Let V (r,n) denote the volume of the r-ball in H"”. Then for eachi =1,...,k,
Vol(B(yi,e/3)) is at least V(e/3,n), see [4, Proposition 1.1.12]. Moreover, the
volume of B(z, Ry) is at most V(kRa,n)/k"™, see [4, Proposition 1.2.4]. Let

_ V(kRg,n)/k"
t(L,e) = TVEBn)

Then k < #(L,€), because otherwise we would obtain

+ 1.

k
V01< U B(yi,s/?))) > Vol(B(z, Ry)),

i=1
where the union of the balls on the left side of this inequality is contained in

B(z, Ry), which is a contradiction.
Therefore, whenever k > ¢(L, ¢), there exist a pair of indices ¢, j such that

A(Hull(T: (g:)), Hull(T2 (4;))) > L. 0

Remark 5.2. Proposition 5.1 also holds for isometries of mixed types (i.e.,
some g;’s are parabolic and some are hyperbolic). The proof is similar to the
one given above.
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Theorem 5.3. For every nonelementary discrete subgroup I' = (g,h) <
Isom(X), with g, h nonelliptic isometries satisfying

7(g9) <€/10 < e(n, k)/10,

there exists i, 1 < i < €(L(g/10),¢), such that (g,high™") is a free subgroup
of rank 2, where ¢ is the function given by Proposition 5.1 and L(e/10) is the
constant tn Proposition 3.18.

Proof. Consider the isometries g; := high™* i > 1. We first claim that no pair
9i,gj, © # J, generates an elementary subgroup of Isom(X). There are two
cases to consider:

(i) Suppose that g is parabolic with the fixed point p € 0,,X. We claim
that for all i # j, hi(p) # h’(p). Otherwise, h/~%(p) = p, and p would be a
fixed point of h. But this would imply that I" is elementary, contradicting our
hypothesis.

(ii) The proof in the case when g is hyperbolic is similar. The axis of g;
equals hi(A,). If the hyperbolic isometries g;,g;, i # j, generate a discrete
elementary subgroup of I', then they have to share the axis, and we would
obtain h'(Ay) = h/(A,). Then /=% (A;) = A,. Since h'~% is nonelliptic, it
cannot swap the fixed points of g, hence it fixes both of these points. Therefore,
g, h have common axis, contradicting the hypothesis that I" is nonelementary.

All the isometries g; have equal translation lengths < £/10. Therefore, by
Proposition 5.1, there exists a pair of natural numbers ¢, j < ¢(L(g/10),¢) such
that

d(Hull(Tz(h'gh™")), Hull(Tz(h? gh™7))) > L(g/10),
where €(L(g/10), €) is the function as in Proposition 5.1. It follows that
d(Hull(7z(h'~"gh'~7)), Hull(Tz(g))) > L(=/10).

Setting f := h?~%gh’~J, and applying Proposition 3.20 to the isometries f, g,
we conclude that the subgroup (f,g) < I is free of rank 2. The word length
of fis at most 2|j —i| + 1 < 2¢(L(¢/10),¢) + 1. O

6. CONCLUSION

Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We set X := €/10, where ¢ = &(n, ) is the Margulis
constant. Let g, h be non-elliptic isometries of X generating a discrete nonele-
mentary subgroup of Isom(X) such that 7(¢) = 7(h) = 7.

If 7 > A, then, by Theorem 4.8, the subgroup I'y < I' generated by g, h™"
is free of rank 2, where

N := | max 5+25+3L1,27+9(5+25) .
A Ly

Here § = cosh™!(v/2), and

1
_ anh— 1
L1 =sinh (sinh(a/lOO))'
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If 7 < A, then, by Theorem 5.3, there exists ¢ € [1,¢(L()),e)] such that

(g, high™% is free of rank 2, where £(L(\),¢) is a constant as in Theorem 5.3.
The proof is complete. U
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