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Abstract. We prove the following two results. First, the isometry semigroup of a uni-
tal properly infinite nuclear C∗-algebra is right amenable. Second, the unitary group of
a unital simple monotracial C∗-algebra whose tracial GNS representation is hyperfinite is
skew-amenable in the weak topology. This answers in part a conjecture of Alekseev, Schmidt,

and Thom and a question of Pestov.

1. Introduction

We recall the cornerstone of the C∗-algebra theory that a C∗-algebra A is
nuclear (or amenable) if and only if the enveloping von Neumann algebra A∗∗

is hyperfinite [5, 7, 9], which is equivalent to amenability of U(A∗∗) in the ultra-
weak topology [11]. In turn, amenability property of the unitary group U(A) of
a unital C∗-algebra A has been drawing considerable attention of researchers.
Recall that a topological group G is said to be amenable (resp. skew-amenable)
if there is a left-invariant (resp. right-invariant) mean on the space of right uni-
formly continuous bounded functions on G. It is known that A is nuclear if
and only if U(A) is amenable in the weak topology [16], essentially because
U(A) is dense in U(A∗∗) in the ultraweak topology. On the other hand, it is
not clear when U(A) with the norm topology is amenable. Note that norm
amenability of U(A) implies, in addition to nuclearity [6], that A has the QTS
property (i.e., every nonzero quotient of A admits a tracial state). The con-
verse is believed to hold, probably under some regularity assumptions. See [1]
around this problem and the progress toward it. The purpose of this note is
to prove the following two results.
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Theorem 1.1. Let A be a unital properly infinite C∗-algebra. Then the isom-
etry semigroup I(A) of A is right amenable in the norm topology if and only
if A is nuclear.

Here right amenability of I(A) means existence of a right invariant mean
on the space of uniformly continuous bounded functions on I(A). We note
that the assumption on proper infiniteness cannot be removed. Indeed, if A
is finite, then amenability of I(A) = U(A) implies existence of a tracial state,
which is not always the case [22]. For the same reason, the conclusion of right
amenability cannot be replaced with left amenability because it also implies
existence of a tracial state (see Section 2).

We turn our attention to the finite case. For a unital C∗-algebra A, we
denote by T (A) the compact convex space of tracial states on A. The C∗-
algebra A is said to be monotracial if |T (A)| = 1. We write ‖a‖τ := τ(a∗a)1/2

for a ∈ A and τ ∈ T (A) and define the uniform 2-norm on A by

‖a‖T (A) := sup{‖a‖τ | τ ∈ T (A)}.

Theorem 1.2. Let A be a unital C∗-algebra with the QTS property and denote
by U(A) the unitary group of A. Consider the following conditions.
(i) U(A) is amenable in the uniform 2-norm topology.
(ii) U(A) is skew-amenable in the weak topology.
(iii) For every τ ∈ T (A), the von Neumann algebra πτ (A)

′′ generated by the
GNS representation πτ for τ is hyperfinite.

Then (i) ⇒ (ii) ⇒ (iii) holds. If A has only finitely many extremal tracial
states, then (iii) ⇒ (i) holds.

This partly confirms/refutes a conjecture raised in [1], where it is proved
that (ii) ⇒ (iii). We note that weak skew-amenability of U(A) implies the QTS
property of A (see [19, 1]). The following corollary answers in the negative
a question in [18, 12, 19] asking if skew-amenability implies amenability.

Corollary 1.3. Let A be a unital simple monotracial C∗-algebra and let πτ (A)
′′

be the II1-factor generated by the GNS representation πτ for the unique tracial
state τ on A. Then U(A) is skew-amenable in the weak topology if and only if
πτ (A)

′′ is hyperfinite.
In particular, the unitary group U(R) of the hyperfinite II1 factor R (of any

cardinality) is skew-amenable but not amenable in the weak topology.

2. Proof of Theorem 1.1

Definition 2.1. Given a unital C∗-algebra A, a finite sequence a= (a1, . . . ,an)
in A is called a column isometry if a∗a :=

∑

i a
∗
i ai =1, i.e., if a is an isometry in

Mn,1(A). We identify a finite sequence (a1, . . . , an) with (a1, . . . , an, 0, . . . , 0).
The set of isometries (resp. column isometries) of A is denoted by I(A) (resp.
CI(A)). For a ∈ CI(A) and s ∈ I(A), write as := (a1s, . . . , ans) ∈ CI(A).
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For a finite sequence a = (a1, . . . , an) in A, we put

‖a‖C :=
∥

∥

∥

∑

i

a∗i ai

∥

∥

∥

1/2

and ‖a‖RC :=
∥

∥

∥

∑

i

aia
∗
i

∥

∥

∥

1/2

+
∥

∥

∥

∑

i

a∗i ai

∥

∥

∥

1/2

.

We note that the distance ‖a − b‖C makes sense for any finite sequences a
and b, by padding them out with zeros as necessary.

The following theorem is proved in [14] and [24, Sec. 5], where it is proved
for E ⊂ U(A), but the proof works verbatim for E ⊂ I(A).

Theorem 2.2. A unital C∗-algebra A is nuclear if and only if, for every finite
subset E ⊂ I(A) and every ε > 0, there are a nonempty finite subset F ⊂ CI(A)
and permutations {ρs | s∈E} on F such that ‖as− ρs(a)‖C < ε for every s ∈E
and a ∈ F .

If A is moreover properly infinite, then one can take isometries s1, s2, . . .
with mutually orthogonal ranges and replace CI(A) with I(A) via the right
I(A)-equivariant isometric map

CI(A) ∋ (a1, . . . , an) 7→
∑

i

siai ∈ I(A).

By taking a limit point of the uniform probability measures on suitable F s,
one obtains a right invariant mean on I(A). This proves the “if” part of
Theorem 1.1. The proof of the “only if” part is standard [6]. Take a universal
representation A ⊂ B(H) and consider for each x ∈ B(H) and ξ, η ∈ H the
uniformly continuous bounded function

fx,ξ,η : I(A) ∋ s 7→ 〈s∗xsξ, η〉 ∈ C.

If I(A) admits a right invariant mean m, then by the Riesz representation
theorem, there is Φ(x) ∈ B(H) that satisfies m(fx,ξ,η) = 〈Φ(x)ξ, η〉 for every
ξ, η ∈ H. It is not hard to see that x 7→ Φ(x) is a conditional expectation from
B(H) onto A′. This implies that A∗∗ ∼= (A′)op is injective (hyperfinite) and
hence that A is nuclear [5, 7]. In passing, we observe that if I(A) admits a left
invariant mean m′, then for any unit vector ξ, the map x 7→ m′(fx,ξ,ξ) defines
a tracial state on A (in fact an A-central state on B(H)).

On the other hand, if A is moreover with the QTS property (as opposed to
proper infiniteness), then by Dixmier’s averaging [15, Thm. 1], there is a finite
sequence w1, . . . , wk ∈ U(A) that satisfies

∥

∥

∥
k−1

∑

i,j

wjaia
∗
iw

∗
j − 1

∥

∥

∥
< ε,

∥

∥

∥
k−1

∑

i,j

wj(ais− ρs(a)i)(ais− ρs(a)i)
∗w∗

j

∥

∥

∥
< ε

for every s ∈ E and a ∈ F . Thus, by replacing each a ∈ F with (k−1/2wjai)i,j
and retaining {ρs}, we obtain the following.
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Corollary 2.3. Let A be a unital nuclear C∗-algebra with the QTS property,
Then, for every finite subset E ⊂ U(A) and every ε > 0, there are a nonempty
finite subset F ⊂ CI(A) and permutations {ρu | u ∈ E} on F such that

∥

∥

∥

∑

i

aia
∗
i − 1

∥

∥

∥
< ε and ‖au− ρu(a)‖RC < ε

for every u ∈ E and a ∈ F .

3. Proof of Theorem 1.2

Proof. We consider the following strengthening of condition (ii):
(ii)′ U(A) is skew-amenable in the skew-strong topology.
Here the skew-strong topology on A is given by the directed family of semi-
norms ‖ · ‖ϕ, ϕ ∈ A∗

+, where ‖a‖ϕ := ϕ(aa∗)1/2 for a ∈ A. Be aware that it
is not the more common ‖a‖ϕ = ϕ(a∗a)1/2. As A∗ is spanned by A∗

+, the
Cauchy–Schwarz inequality implies that the skew-strong topology is finer than
the weak topology. Thus (ii)′ ⇒ (ii) holds.

Let us assume (i) and prove (ii)′. By [25, Thm. 4.5], condition (i) means
that, for every finite subset E ⊂ U(A) and ε > 0, there are a nonempty finite
subset F ⊂ U(A) and permutations {ρu | u ∈ E} on F that satisfy

|F |−1
∑

v∈F

∑

u∈E

‖vu− ρu(v)‖2T (A) < ε.

Hence, by Dixmier’s averaging [15, Thm. 1], there is a finite sequence w1, . . . ,wk

in U(A) such that
∥

∥

∥

∥

k−1
k

∑

j=1

wj

(

|F |−1
∑

u∈E, v∈F

(vu− ρu(v))(vu − ρu(v))
∗
)

w∗
j

∥

∥

∥

∥

< ε.

It follows that, for every state ϕ on A, there is j such that

|F |−1
∑

u∈E, v∈F

‖wjvu− wjρu(v)‖2ϕ < ε.

Replacing F with {wjv | v ∈ F} and retaining {ρu}, one sees skew-amenability
of U(A) in ‖ · ‖ϕ. Since the semi-norms ‖ · ‖ϕ, ϕ ∈ A∗

+, are directed, this
proves (ii)′.

The implication (ii) ⇒ (iii) is [1, Prop. 4.4]. We prove (iii) ⇒ (i) assum-
ing that A has only finitely many extremal tracial states τ1, . . . , τk. We put
τ := k−1

∑k
j=1 τj ∈ T (A) and observe that ‖a‖2T (A) ≤ k‖a‖2τ for every a ∈ A.

By Kaplansky’s density theorem, U(A) is ‖ ·‖τ -dense in U(πτ (A)′′). The rest is
standard: amenability of U(πτ (A)′′) is inherited by the dense subgroup U(A).
We include the proof for completeness. Let a finite subset E ⊂ U(A) and ε > 0
be given. Since πτ (A)

′′ is hyperfinite, there is a finite-dimensional von Neu-
mann subalgebra B ⊂ πτ (A)

′′ such that distτ (u, U(B)) < ε for every u ∈ E,
i.e., for each u ∈ E, there is ũ ∈ U(B) with ‖ũ − u‖τ < ε. Since U(B) is
a compact group, there are a finite subset {ṽ1, . . . , ṽn} ⊂ U(B) and permuta-

tions {ρu | u ∈ E} on {1, . . . , n} such that ‖ṽiũ− ṽρu(i)‖τ < ε for every ũ ∈ Ẽ
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and i ∈ {1, . . . , n}. For each i, take vi ∈ U(A) with ‖vi − ṽi‖τ < ε and put
F := {v1, . . . , vn}. Since

‖viu− ṽiũ‖τ ≤ ‖(vi − ṽi)u‖τ + ‖ṽi(u− ũ)‖τ ≤ 2ε

(this is where the tracial property is indispensable), one has ‖viu− vρu(i)‖τ ≤ 4ε
for every u ∈ E and i. By adjusting ε > 0, we are done. �

Remark 3.1. Since every norm separable subset of R is contained in a sep-
arable simple monotracial C∗-subalgebra of R (see, e.g., [15, Lem. 9]), there
exists a unital separable simple monotracial non-exact [13] C∗-algebra A whose
unitary group U(A) is skew-amenable but not amenable in the weak topology.

4. Further results that may be useful in the future

The rest of this note handles the case of C∗-algebras with infinitely many
extremal tracial states. Exactness plays a crucial role, as it assures certain
commutativity of ultraproduct and tensor product [13]. We first collect some
useful facts about the free semi-circular systems.

We recall the free semi-circular system {si | i = 1, 2, . . .}. Let O∞ be the
Cuntz algebra generated by isometries li with mutually orthogonal ranges and
let si := li + l∗i . Then C := C∗({si | i= 1,2, . . .}) is ∗-isomorphic to the reduced
free product of the copies of C([−2, 2]) with respect to the Lebesgue measure
(see [26, Sec. 2.6]), and the corresponding tracial state τC coincides with the
restriction to C of the vacuum state on O∞. We note that the reduced free
group C∗-algebra C∗

rFd and the free semi-circular C∗-algebra C embed into each
other because C∗

rZ and C([−2, 2]) embed into each other. Also, the countable
free groups of rank at least two embed into each other as groups.

Theorem 4.1. Let Z denote the Jiang–Su algebra and Zω the ultrapower
with respect to a free ultrafilter on N. Then the free semi-circular C∗-algebra
C embeds into Zω.

Proof. Recall that the Jiang–Su algebra Z is a (unique) simple monotracial
C∗-algebra which arises as an inductive limit of some prime dimension drop
C∗-algebras

{f ∈ C([0, 1],Mp(n) ⊗Mq(n)) | f(0) ∈ Mp(n) ⊗ C1, f(1) ∈ C1⊗Mq(n)},
where (p(n), q(n)) are pairs of relatively prime numbers. We may assume
p(n) ≫ q(n). We take i.i.d. G.U.E. random matrices x1(n), x2(n) ∈ Mp(n) and
y1(n), y2(n) ∈Mq(n). Then, by [10, 4, 20] (or more advanced [2, 3] if we do not
want to assume p(n) ≫ q(n)), the tuple

(x1(n)⊗ 1q(n), x2(n)⊗ 1q(n), 1p(n) ⊗ y1(n), 1p(n) ⊗ y2(n))

strongly converges to (s1 ⊗ 1, s2 ⊗ 1, 1⊗ s1, 1⊗ s2) in C2 ⊗ C2, where C2 is the
C∗-algebra generated by the free semicircular system {s1, s2}; in other words,
there is an embedding

C2 ⊗ C2 →֒
(

∏

n

Mp(n) ⊗Mq(n)

)

/ω
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of C2 ⊗ C2 into the norm ultraproduct (
∏

n Mp(n) ⊗Mq(n))/ω. Since C([0, 1])
is exact, we may view by [13] that

C
(

[0, 1],
(

∏

n

Mp(n) ⊗Mq(n)

)

/ω
)

⊂
(

∏

n

C([0, 1],Mp(n) ⊗Mq(n))
)

/ω

and thus

B := {f ∈ C([0, 1], C2 ⊗ C2) | f(0) ∈ C2 ⊗ C1, f(1) ∈ C1⊗ C2} →֒ Zω.

For each i = 1, 2, we take hi = h∗i ∈ C∗({1, si}) such that the unitary element
ui := exp(

√
−1hi) satisfies τC2

(uni ) = 0 for all n 6= 0. Put ui(t) := exp(t
√
−1hi)

which connects ui(0) = 1 to ui(1) = ui. We define gi ∈ C([0, 1], C2 ⊗ C2) by

gi(t) =

{

ui(1)⊗ ui(2t) for t ∈ [0, 1/2],

ui(2− 2t)⊗ ui(1) for t ∈ [1/2, 1].

Then gi ∈B and, for each t, the pair {g1(t), g2(t)} is unitarily equivalent to the
standard generating pair of C∗

rF2 ⊗ C1, by Fell’s absorption principle. Thus,
{g1, g2} itself generates a copy of C∗

rF2 inside Zω. �

For every finite sequence a = (a1, . . . , an) in a C∗-algebra A, we write

s(a) :=
∑

i

si ⊗ ai ∈ C ⊗A,

where {si} is a free semi-circular system. We note that

s(a) =
∑

i

li ⊗ ai +
(

∑

i

li ⊗ a∗i

)∗

=: S + T ∗

in O∞ ⊗A and that S and T satisfy

S∗S = 1⊗
∑

i

a∗i ai and T ∗T = 1⊗
∑

i

aia
∗
i .

Thus, in particular (see Definition 2.1 for ‖ · ‖RC), ‖s(a)‖ ≤ ‖a‖RC.

Lemma 4.2. For every ε > 0, there is δ > 0 that satisfies the following. For
every finite sequence a in a C∗-algebra A with T (A) 6= ∅, if ‖∑i a

∗
i ai − 1‖< δ

and ‖∑i aia
∗
i − 1‖ < δ, then

‖1[0,δ)(|s(a)|)‖T (C⊗A) < ε.

Here 1[0,δ)(|s(a)|) ∈ (C ⊗A)∗∗ is the spectral projection for |s(a)| corresponding
to [0, δ).

Proof. Note that T (C ⊗A) = {τC ⊗ τA | τA ∈ T (A)}. Suppose that the conclu-
sion were false. Then there is ε > 0 such that, for every n, there are a finite
sequence an in An and τn ∈ T (An) that satisfy

∥

∥

∥

∑

i

a∗n,ian,i − 1
∥

∥

∥
< 1/n,

∥

∥

∥

∑

i

an,ia
∗
n,i − 1

∥

∥

∥
< 1/n,

and (τC ⊗ τAn
)(1[0,1/n)(|s(an)|)) ≥ ε. We define a continuous function f by

f = 1 on [0, 1/n], f = 0 on [1/(n− 1),∞), and linear on [1/n, 1/(n− 1)]. Let
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ψ denote the vacuum state on O∞ that extends τC and put ϕn := ψ ⊗ τAn
on

O∞ ⊗An. Then Sn :=
∑

i li ⊗ an,i, Tn :=
∑

i li ⊗ a∗n,i satisfy ‖S∗
nSn − 1‖< 1/n,

‖T ∗
nTn − 1‖ < 1/n, ϕn(TnT

∗
n) = 0, and ϕn(fm(|Sn + T ∗

n |)) ≥ ε for all n and m
with n ≥ m. Thus, by passing to an ultralimit, one obtains isometries S, T
and a state ϕ such that ϕ(TT ∗) = 0 and ϕ(fm(|S + T ∗|)) ≥ ε for all m. By
the GNS construction, we may assume that ϕ is the vector state associated
with a unit vector ξ. Then limm ϕ(fm(|S + T ∗|)) = ‖Pξ‖2, where P is the
orthogonal projection onto the kernel of S + T ∗. Since S and T are isometries,
(S + T ∗)η = 0 is equivalent to −TSη = η. Hence P is a WOT-limit point of
(k−1

∑k
j=1(−TS)j)k. However, since ‖T ∗ξ‖2 = ϕ(TT ∗) = 0, this implies that

Pξ = 0, contradicting ‖Pξ‖2 ≥ ε. �

In particular, if
∑

i a
∗
i ai = 1=

∑

i aia
∗
i , then ‖1{0}(|s(a)|)‖T (C⊗A) = 0. How-

ever, s(a) = S + T ∗ is not invertible since S and T are proper isometries (in
which case −1 is an approximate eigenvalue of TS). The author does not
know whether ‖1{0}(|s(a)|)‖T (C⊗A) = 0 holds as soon as ‖∑i a

∗
i ai − 1‖ < 1/2

and ‖
∑

i aia
∗
i − 1‖ < 1/2.

Theorem 4.3. Let A be a unital simple finite nuclear Z-stable C∗-algebra.
Then, for every finite subset E ⊂ U(A) and ε > 0, there are a nonempty finite
subset F ⊂ U(A) and permutations {ρu | u ∈ E} on F such that

‖vu− ρu(v)‖T (A) < ε

for every u ∈ E and v ∈ F . In particular, U(A) is amenable in the uniform
2-norm topology.

Proof. Let a finite subset E ⊂ U(A) and ε > 0 be given. We may assume
that A = Z ⊗ A0, A0

∼= A, and E ⊂ C1 ⊗ A0. We embed Z ⊗ A0 into the
norm ultrapower (Z ⊗A0)

ω. We take an embedding of the free semi-circular
C∗-algebra C into Zω and view (by exactness of A0)

C ⊗A0 ⊂ Zω ⊗A0 ⊂ (Z ⊗A0)
ω.

Take δ > 0 as in Lemma 4.2 and take F ⊂ CI(A0) and {ρu | u ∈ E} as in
Corollary 2.3 for E and κ (instead of ε there), where κ > 0 is a sufficiently
small number which is specified later. Hence ‖1[0,δ)(|s(a)∗|)‖T (C⊗A0) < ε for
every a ∈ F . Further, s(a) ∈ C ⊗A0 satisfies, for every u ∈ E and a ∈ F , that

‖s(a)‖ ≤ ‖a‖RC ≤ 3 and ‖s(a)u − s(ρu(a))‖ ≤ ‖au− ρu(a)‖RC < κ.

Consider the polar decomposition s(a) = |s(a)∗|w(a) of s(a)∗. Note that w(a) ∈
(C ⊗A0)

∗∗ may not belong to C ⊗ A0, but they satisfy w(au) = w(a)u. Since
A0 is simple, finite, and Z-stable, C ⊗A0 has stable rank one by [23, Thm. 6.7].
Hence, s(a) ∈ GL(C ⊗A0), and by [17, 21], there is a unitary element v(a) in
C ⊗A0 such that

1[δ,∞)(|s(a)∗|)v(a) = 1[δ,∞)(|s(a)∗|)w(a).
Let g(t) = min{δ−1t,1} be the continuous function on [0,∞). We may assume
that κ > 0 is small enough so that ‖g(|x∗|)w(x) − g(|y∗|)w(y)‖ < ε whenever

Münster Journal of Mathematics Vol. — (—), 199–199
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x = |x∗|w(x) and y = |y∗|w(y) (polar decompositions) satisfy ‖x‖,‖y‖ ≤ 3 and
‖x − y‖ < κ. We write x ≈γ y if ‖x− y‖T (C⊗A0) < γ. Since s(au) = s(a)u =
|s(a)∗|w(a)u, s(ρu(a)) = |s(ρu(a))∗|w(s(ρu(a))), and ‖s(au) − s(ρu(a))‖ < κ,
one has

v(a)u ≈2ε g(|s(a)∗|)w(a)u ≈ε g(|s(ρu(a))∗|)w(ρu(a)) ≈2ε v(ρu(a)),

or equivalently

‖v(a)u− v(ρu(a))‖T (C⊗A0) < 5ε

for every u ∈ E and a ∈ F .
Recall that C ⊗A0 ⊂ (Z ⊗A0)

ω and write v(a) = (vn(a))n→ω ∈ (Z ⊗A0)
ω ,

where vn(a) ∈ U(Z ⊗A0) = U(A) for every a ∈ F and n ∈ N. For every u ∈ E
and a ∈ F , one has

{n ∈ N | ‖vn(a)u − vn(ρu(a))‖T (A) < 5ε} ∈ ω,

for otherwise {n∈N | ‖vn(a)u− vn(ρu(a))‖τn ≥ 5ε}∈ω for some (τn)n ∈ T (A)N,
which implies ‖v(a)u− v(ρu(a))‖τω ≥ 5ε for the ultraproduct tracial state τω of
(τn)n. It follows that there is n∈N that satisfies ‖vn(a)u− vn(ρu(a))‖T (A)< 5ε
simultaneously for all u ∈ E and a ∈ F . �

The simplicity assumption in lieu of the QTS property is used in the above
proof only to have stable rank one. This begs the question (vaguely related
to [8]): is it true that s(a) ∈ GL(C ⊗A) for every finite sequence a in a C∗-
algebra with the QTS property? Incidentally, it seems that one can push the
above proof and replace the simplicity assumption with the QTS property, by
manipulating on a large matrix algebraMn(C ⊗A0) and by suitably embedding
C0((0, 1],Mn(C ⊗ A0)) into Z ⊗ C ⊗ A0, without much affecting the uniform
2-norm.
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