### Prof. Dr. Mark Groves (Universität des Saarlandes) Three-dimensional water waves

##### Wednesday, 21.01.2015 14:00 im Raum M5

The existence of solitary-wave solutions to the three-dimensional water-wave problem with is predicted by the Kadomtsev-Petviashvili (KP) equation for strong surface tension and Davey-Stewartson (DS) equation for weak surface tension. The term "solitary wave" describes any solution which has a pulse-like profile in its direction of propagation, and these model equations admit three types of solitary waves. A "line solitary wave" is spatially homogeneous in the direction transverse to its direction of propagation, while a "periodically modulated solitary wave" is periodic in the transverse direction. A "fully localised solitary wave" on the other hand decays to zero in all spatial directions. In this talk I outline mathematical results which confirm the existence of all three types of solitary wave for the full gravity-capillary water-wave problem in its usual formulation as a free-boundary problem for the Euler equations. Both strong and weak surface tension are treated. The line solitary waves are found by establishing the existence of a low-dimensional invariant manifold containing homoclinic orbits. The periodically modulated solitary waves are created when a line solitary wave undergoes a dimension-breaking bifurcation in which it spontaneously loses its spatial homogeneit in the transverse direction; an infinite-dimensional version of the Lyapunov centre theorem is the main ingredient in the existence theorem. The fully localised solitary waves are obtained by finding critical points of a variational functional.

Angelegt am 15.12.2014 von Carolin Gietz

Geändert am 16.01.2015 von Carolin Gietz

[Edit | Vorlage]

Angewandte Mathematik Münster

Oberseminar Angewandte Mathematik