Periods and L-functions

Guido Kings

Abstract

Already Euler computed the values $\zeta(2), \zeta(4), \zeta(6), \ldots$ of the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ to be $$
\zeta(2 k)=-\frac{(2 \pi i)^{2 k}}{2(2 k!)} B_{2 k}
$$ where $B_{2 k} \in \mathbb{Q}$ are the Bernoulli numbers. This formula can be seen as the easiest case of a vast conjecture by Deligne from 1977, which relates special values of L-functions of arithmetic varieties and their periods.

In this talk we want to give a non-technical introduction to the Deligne conjecture, aimed at general mathematical audience. In the end we discuss very recent developments, which lead to a complete proof in the case of Hecke L-functions.

