Isoperimetry, Littlewood functions, and unitarisability of groups

Let Γ be a discrete group. A group Γ is called *unitarisable* if for any Hilbert space H and any uniformly bounded representation $\pi:\Gamma\to B(H)$ of Γ on H there exists an operator $S:H\to H$ such that $S^{-1}\pi(g)S$ is a unitary representation for any $g\in\Gamma$. It is well known that amenable groups are unitarisable. It has been open ever since whether amenability characterises unitarisability of groups.

Dixmier: Are all unitarisable groups amenable?

One of the approaches to study unitarisability is related to the space of Littlewood functions $T_1(\Gamma)$. We define the **Littlewood exponent** Lit(Γ) of a group Γ :

$$Lit(\Gamma) = \inf \{ p : T_1(\Gamma) \subseteq \ell^p(\Gamma) \}.$$

We will show that, on the one hand, $\mathrm{Lit}(\Gamma)$ is related to unitarisability and amenability and, on the other hand, it is related to some geometry of Γ .

We believe that the most natural way to study groups with $\operatorname{Lit}(\Gamma) \leq p$ is to consider not only the actions on Hilbert spaces, but also the actions on a wider classes of spaces, for example, on p-spaces. We will define p-isometrisability of groups and discuss some results and open questions.