Moment asymptotics for branching random walks in random environment

WOLFGANG KÖNIG

We consider the long-time behaviour of a branching random walk in random environment on the *d*-dimensional lattice. The migration of particles proceeds according to simple random walk in continuous time, while the medium is given as a random potential of spatially dependent killing/branching rates. The main objects of our interest are the annealed moments $\langle m_n^p(t,0) \rangle$, i.e., the *p*-th moments over the medium of the *n*-th moment over the migration and killing/branching, of the population size at time *t*. For n = 1, this is well-understood, as m_1 is closely connected with the parabolic Anderson model. For some special distribution, Albeverio *et al* (2000) extended this to $n \geq 2$, but only as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac formula for $m_n(t, 0)$.

We derive also the second term of the asymptotics, for a much larger class of distributions. In particular, we show that $\langle m_n^p \rangle$ and $\langle m_1^{np} \rangle$ are asymptotically equal, up to an error $E^{o(t)}$. The cornerstone of our method is a direct Feynman-Kac-type formula for $m_n(t,0)$, which we establish using the spine techniques developed recently by Harris and Roberts.

(joint work with Gün and Sekulovic (Berlin).)