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Abstract 

Multiple sclerosis (MS) is a complex immune-mediated disease that leads to neurological disability, with ongoing 
challenges in understanding its initiation, predicting progression, and optimizing personalized treatment. This 
review article summarizes key research findings from 2024, covering advances in diagnostic criteria,  
understanding of pathophysiology, and treatment strategies. New studies reinforce the strong link between  
Epstein-Barr virus (EBV) and MS, while recent data point towards a role of genetics in MS disease progression. 
The 2024 McDonald criteria revision enhances diagnostic specificity and includes novel MRI markers and  
facilitates measurement of cerebrospinal fluid biomarkers. Additionally, recent genetic discoveries, advanced 
imaging techniques, and emerging biomarkers are refining disease monitoring and prognosis. Finally, we  
highlight promising therapeutic developments, including Bruton Tyrosine Kinase (BTK) inhibitors and CAR T-cell 
therapies, with the former representing a paradigm shift in the potential of targeting MS progression beyond 
focal inflammation. 
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Introduction 

Multiple sclerosis (MS) is a complex immune-
mediated disease of the central nervous system and 
a leading cause of permanent neurological disability 
in young adults. Despite progress in reducing  

focal inflammatory activity through high-efficacy  
immunomodulatory treatments, major challenges 
remain in MS research. Our incomplete understand-
ing of disease initiation in susceptible individuals 
hinders the development of preventive treatments. 
Additionally, the variability in disease course makes 
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it difficult to predict outcomes and individualize 
therapy for optimal efficacy and minimal side effects 
("treat-to-target"). Effective monitoring of this  
heterogeneous disease and its treatment requires a 
personalized approach using reliable imaging and  
biomarkers that offer insight into individual disease 
biology. Furthermore, recent discoveries on myeloid 
and B cells in disease progression have driven the 
development of novel therapies. 

Based on these considerations, we have  
selected publications from 2024 that provide new 
insights into MS pathophysiology, evolving  
diagnostics, novel biomarkers, imaging techniques, 
and emerging treatment strategies (Fig. 1).  
Monozygotic twin studies revealed a heritability risk 
of approximately 25–30 %. So far, studies have  
identified up to 233 genetic variants linked to MS 
susceptibility, most expressed in immune cells1. In 

2023, the first study focused on MS severity and 
identified one significant risk allele and 11  
suggestive loci, all encoding for genes expressed in 
the CNS2. Further 2024 research has explored  
correlations between these SNPs and aspects of  
disease severity. 

A role of EBV in MS pathogenesis has long been 
suspected and several studies provide compelling 
evidence supporting this connection. Nearly all MS 
patients have prior EBV infection, and a landmark 
study showed EBV increases MS risk more than  
30-fold3. In 2024, research confirmed that pediatric-
onset MS is strongly associated with EBV,  
differentiating it from MOG antibody-associated  
disease (MOGAD). MS patients exhibit dysregulated  
immune responses to EBV, suggesting impaired  
control of latent infection, raising the potential for 
antiviral therapies. 

 

Figure 1: Schematic illustration depicting the MS disease course and established and explorative tools to diagnose MS and monitor or 
predict the disease course. 
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Accurate, early MS diagnosis remains crucial 
for improved long-term treatment outcomes. The 
2024 McDonald criteria revision aims at enhancing 
specificity while maintaining sensitivity. Key updates 
include recognizing optic nerve involvement as part 
of dissemination in space (DIS), incorporating MRI 
markers like the central vein sign (CVS) and  
paramagnetic rim lesions (PRL), and using kappa-
free light chains (kFLC) as an alternative to  
oligoclonal bands (OCBs) in cerebrospinal fluid  
analysis. Furthermore, accumulating evidence  
indicates that MS pathology begins long before  
clinical onset. Consequently, radiologically isolated 
syndrome (RIS), identified via incidental MRI  
findings, is now recognized as a preclinical MS stage 
allowing MS diagnosis even in the absence of clinical 
manifestation, with disease-modifying therapies 
shown to delay conversion to MS. We also highlight 
recent findings on the MS prodromal stage,  
characterized by early nonspecific symptoms such as 
fatigue, depression, and sleep disturbances. 

Biomarkers are essential for individual disease 
prognosis and prediction but remain underutilized in 
MS. Serum neurofilament light (NfL) is the most  
advanced biomarker, correlating with disease  
activity and long-term disability risk. Glial fibrillary 
acidic protein (GFAP) has emerged as a complemen-
tary biomarker, and findings from 2024 suggest  
their combination might help to distinguish  
inflammatory damage from neurodegeneration. 
Furthermore, promising new data point towards 
novel approaches to improve patient stratification 
and predict treatment responses. 

Novel imaging markers like CVS and PRL  
enhance specificity of MS diagnosis, and in  
particular PRLs are considered as novel biomarker  
of disease progression. Besides novel imaging  
approaches, the implementation of AI-driven  
analysis of imaging and clinical data facilitates both 
diagnosis and prognosis, potentially enabling earlier 
intervention and personalized therapy in the future. 

Recent findings challenge the traditional view 
that MS disability is primarily relapse-driven, as  
progression independent of relapse activity (PIRA) 
significantly contributes to long-term disability, 
even in early MS. Reflecting this conceptual shift, we 
discuss recent clinical trial outcomes on Bruton  

Tyrosine kinase (Btk) inhibitors as the most  
appreciated clinical highlight in MS research in 2024. 
Furthermore, we discuss novel cellular therapies 
such as CAR T cells, which target deep tissue B-cell 
depletion, offering a new frontier in MS treatment 
in the future. 

Pathogenesis of MS 

MS and genetics 

Based on family and twin studies, the  
heritability of MS is estimated to be approximately 
30 %4. HLA-DRB1*15:01 is the strongest MS risk  
factor, which increases the MS risk threefold in  
individuals carrying at least one copy of the allele4. 
Barrie and colleagues now demonstrated that the 
genetic risk of MS rose among the pastoralists in the 
Pontic steppe and was brought to Europe by the 
Yamnaya-related migration approximately 5000 
years ago. The authors analyzed datasets from the 
Mesolithic, medieval and post-medieval periods  
and found a positive selection of MS associated  
immunogenetic variant risk genes. Interestingly, 
most of the alleles under positive selection were  
associated with protective effects against specific 
pathogens and/or infectious diseases, suggesting 
that transmission of pathogens drove the selection 
of immune gene variants, which are now associated 
with an increased risk of autoimmune diseases4. 

In 2019, the International MS Genetic  
consortium provided a detailed genetic and genomic 
map of multiple sclerosis1. This study identified 200 
autosomal susceptibility variants outside the  
major histocompatibility complex (MHC), one  
chromosome X variant, and 32 within the extended 
MHC. These genes associated with MS susceptibility 
are implicated in multiple innate and adaptive  
pathways (e.g. TNFa, and type 1 interferons) and 
cells of the immune system including microglia, thus 
strongly supporting the immune-driven nature  
of disease onset. The authors of these studies  
estimated that their results could explain 48 % of MS 
heritability. However, only in 2023, the first SNP  
associated with disease severity (reflected by the 
age-related MS severity score) was identified in a  
genome-wide association study including data from 
12,584 cases and replicated in an additional study 
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comprising further 9,805 cases2. The authors found 
a significant association with rs10191329 in the 
DYSF–ZNF638 locus. DYSF is well known for its  
function in muscle membrane repair and calcium 
dependent membrane fusion, whereas ZNF638 is a 
transcriptional co-activator, which is involved in cell 
differentiation and proliferation5. Both genes are  
expressed by neurons and glia cells, suggesting that 
disease severity may be influenced by Central  
Nervous System (CNS) intrinsic mechanisms. The  
authors could also show that rs10191329 was linked 
to higher lesion load in brain stem and cortex in a 
large MS autopsy cohort, however the molecular 
pathways and relevant cell types mediating this  
phenotype are unknown2. Maybe as important  
than identifying gene variants associated with  
MS severity, the authors observed a significant  
heritability enrichment in CNS tissue, further  
suggesting that CNS resident cells determine  
severity and outcome of the disease2. 

Interestingly, in 2024, an independent imaging 
study including a discovery cohort of 748 and a  
replication study of 360 people with relapsing  
remitting MS observed an association with 28 % 
more brain atrophy per rs10191329*A allele, further 
corroborating its role in pathophysiological  
processes underlying disease progression. The  
authors therefore encourage stratification for 
rs10191329 in clinical trials6. In contrast, other  
studies were not able to detect a correlation  
between rs10191329 and longitudinal binary  
disease severity or other clinically relevant  
outcomes7,8. However, the sample size of the  
aforementioned studies was modest compared to 
the initial study and the estimated effect size of 
rs10191329 rather low, further strengthen the  
necessity for collaborative research approaches to 
maximize sample sizes to further disentangle the  
genetic background of MS. 

MS and EBV 

EBV has been implicated in the pathogenesis of 
MS for a long time as reviewed and summarized in a 
number of well-written and informative reviews9,10. 
Approximately 90 % of the population are infected 
by EBV within the first two decades in life; the virus 
is transmitted by saliva or infectious B cells. After  
infection, the virus establishes latency resulting  

in its lifelong persistence. Primary infection during  
childhood is usually asymptomatic, but the majority 
of individuals infected during adolescence or  
adulthood will develop infectious mononucleosis. A 
seminal longitudinal study published in Science 2022 
studying a cohort of more than 10 million young 
adults on active duty in the US military, among them 
955 who were diagnosed with MS during their  
period of service, demonstrated that EBV infection 
increases the risk to develop MS more than 30-fold3. 
In contrast, previous studies reported lower rates of 
EBV infection among children with pediatric onset of 
MS raising questions about whether EBV infection is 
indeed pre-requisite across the age spectrum11. 
However, those studies were conducted before 
MOG antibody tests were broadly available and 
therefore these studies could not differentiate  
reliably between pediatric onset-MS and MOG  
antibody-associated disease (MOGAD). In this line, a 
recent study differentiating between MOGAD and 
pediatric onset MS now demonstrated that 96 % of 
the children with pediatric onset MS had antibodies 
directed against the viral capsid of EBV and 90 % had 
antibodies directed against EBNA1 (a marker of a  
remote EBV infection) further supporting the notion 
that EBV infection is required to trigger MS across 
the whole age spectrum12. Interestingly, children 
with MOGAD had similar rates of EBV seropositivity 
as healthy children, indicating that EBV infection is 
not a risk factor for MOGAD. 

The mechanisms underlying the increased MS 
risk associated with EBV infection are still poorly  
understood. Results from previous studies suggest 
that the EBV infection is less well controlled  
in people with MS13,14. This concept is further  
supported by a number of findings published during 
the last year: 1.) The EBV antibody response is not 
limited to EBNA1, suggesting a larger dysregulation 
of EBV-specific antibody responses than previously 
recognized in pwMS15. 2.) PwMS, but not individuals 
with other neuroinflammatory diseases including 
neuromyelitis optica, MOGAD or Susac’s syndrome 
display an aberrant MHC-I-restricted T cell response 
directed against EBV16 and 3.) the frequencies of 
CXCR3+ memory B cells are reduced in the blood of 
genetically identical twins with MS compared to 
their unaffected siblings. Based on the latter finding, 
the authors propose that these memory B cells  
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migrate into the CNS, mature into antibody  
secreting cells in the CNS and drive the disease17. 4.) 
Spontaneous lymphoblastoid cell lines (SLCLs)  
isolated from pwMS with active disease had higher 
EBV lytic gene expression than SLCLs from MS  
patients with stable disease or HCs. Furthermore, 
LCLs from patients with active disease displayed  
activation of selected inflammatory pathways and of 
genes associated with the lytic gene expression of 
EBV indicating that dysregulation of EBV gene  
expression by B cells drives a pro-inflammatory, 
pathogenic B cell phenotype18. Interestingly, the  
authors provide also evidence that antiviral  
approaches targeting EBV replication decreased  
cytokine production and autologous CD4+ T cell  
responses. The identification of EBV as an important 
contributing factor of MS raises the questions 
whether anti-viral treatment approaches could  
either prevent or slow down MS disease progression 
and first clinical trials are currently under way10,19. 

Novel insight into MS pathophysiology using new 
technologies 

There are ongoing efforts to characterize  
molecular signatures associated with MS lesion 
types, remyelination failure or neurodegeneration 
using modern sequencing technologies, such as 
sc/snRNA sequencing or spatial transcriptomics  
(ST) to identify new pharmacological treatment  
targets20–22. Spatial transcriptomics enables spatially 
resolved analysis of gene expression within intact 
tissue sections in contrast to bulk or single-cell  
RNA sequencing (scRNA-seq), which requires the  
dissociation of tissues and loses spatial context.  
Lerma-Martin and colleagues analyzed 12  
subcortical MS lesions from six donors and seven 
controls by combining spatial transcriptomics (10x 
Genomics Visium Spatial Gene Expression platform) 
with snRNA sequencing. The comparison between  
histologically annotated areas and unsupervised 
molecularly defined niches revealed a significant 
overlap both at the cluster and tissue section level 
validating the reliability of the method20. Alemsa 
and colleagues performed a similar study using two 
different spatial transcriptomic platforms (10x  
Genomics Visium Spatial Gene Expression platform, 
Nanostring GeoMX )21. Both publications provide 

further insights into potential cell-cell communica-
tion via receptor ligand interactions, which will  
contribute to the disentanglement of the  
dynamic cellular and molecular changes occurring in 
MS lesions. Furthermore, they compared the  
transcriptional profiles in perilesional WM and 
NAWM and observed lesion-type dependent  
alterations, further supporting the notion that  
perilesional white matter directly adjacent to a  
lesion differs from NAWM, which is in line with  
observations from histopathology and imaging 23–25. 
Together, these data suggest, that the inflammatory 
infiltrates in active and mixed active/inactive lesions 
affect the perilesional tissue environment. However, 
although spatial transcriptomics is a valuable new 
tool for the identification of disease associated  
molecular pathways in MS, the techniques used in 
the above mentioned manuscript do not reach  
single cell resolution. A new method, named in  
situ sequencing allows the identification of  
transcriptomic patterns with single cell resolution. 
Kukanja and colleagues used this method to  
disentangle molecular mechanisms underlying  
lesion formation in experimental autoimmune  
encephalitis, an animal model of MS26. They also 
identified disease-associated glia cells, which were 
detected outside of EAE lesions, and which were  
dynamically induced and resolved during the EAE 
course in line with the observation of disease  
associated changes also outside of MS lesions. The 
authors could also provide evidence that the 
method is suitable to analyze human MS tissue  
samples. A limitation of these techniques are the 
limited number of genes that can be analyzed (in this 
study 239 and 266 genes in mouse and human  
samples, respectively); however there are ongoing 
efforts to enable whole transcriptome single cell 
scale analysis in in formalin fixed paraffin embedded 
tissue sections27. 

Preclinical stages of MS – expanding the MS  
disease continuum 

Historically, MS diagnosis required a clinically 
defined event, but recent evidence indicates that 
disease processes begin well before symptoms 
emerge. MRI studies have shown that asymptomatic 
individuals can have lesions suggestive of inflamma-
tory demyelination, with some later developing 
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clinical MS – a condition termed radiologically  
isolated syndrome (RIS), first described by Okuda  
et al. in 200928. RIS is a condition in which  
asymptomatic individuals exhibit MRI lesions in 
characteristic locations that are highly suggestive for 
MS. In 2023, the RIS Consortium refined the  
diagnostic criteria for RIS: individuals with lesions in 
at least three key CNS locations (periventricular,  
juxtacortical, infratentorial, or spinal cord) fulfill RIS 
imaging criteria.29 Alternatively, those having lesions 
in only one or two of these areas but additionally  
exhibiting with two of the following criteria – spinal 
cord lesion, CSF-restricted oligoclonal bands, or new 
demyelinating lesions on follow-up MRI – fulfill the 
RIS definition. This revision improves prognostic 
stratification, as studies report conversion rates to 
clinical MS of 34 % at five years and 51 % at ten 
years. Additional risk factors for conversion into MS 
include younger age (< 37 years), elevated IgG index, 
detection of more than two CSF-restricted OCBs, the 
presence of infratentorial or spinal cord lesions, as 
well as contrast-enhancing lesions on a follow-up 
MRI. Notably, recent clinical trials performed in RIS 
have demonstrated that oral disease-modifying 
treatments such as dimethyl fumarate and  
teriflunomide can delay or prevent conversion to 
clinical MS, supporting the concept that effective  
intervention is possible prior to clinical onset.30 
Based on these considerations, some RIS constella-
tions now fulfill the new diagnostic criteria of MS, 
which are discussed below, which illustrates that  
biological rather than purely clinical considerations 
are now implemented in our current concept of MS 
diagnosis. 

Beyond imaging, a range of nonspecific clinical 
symptoms – including depression, anxiety, fatigue, 
sleep disturbances, and headache – have been  
identified as part of the so-called MS prodrome31. 
Recently, studies in both children and adults confirm 
that these early signs, along with elevated serum 
neurofilament light chain levels up to nine years  
before clinical onset, support the concept that MS 
pathophysiology initiates long before overt clinical 
symptoms32–34. However, due to the unspecific  
nature of these symptoms and a high overlap with 
other immune-mediated diseases, it is currently not 
possible to provide a clear MS prodrome definition 

that may guide further diagnostic workup to  
facilitate early MS diagnosis. 

New diagnostic framework of MS 

Diagnosis of MS – the 2024 update of the  
McDonald criteria 

Diagnosing multiple sclerosis requires balanc-
ing early detection with minimizing misdiagnosis. 
Over two decades, diagnostic criteria have evolved 
with MRI and CSF biomarkers, enabling earlier and 
more accurate diagnosis. After the last revision of  
diagnostic criteria in 201735, another update has 
been proposed in 2024. This update is based on 
novel data highlighting the role of the optic nerve, 
the relevance of RIS, the necessity to differentiate 
MS from other autoimmune conditions like NMOSD 
and MOGAD, acknowledgement of the concept that 
disease progression is a key feature of relapsing MS, 
and finally, the diagnostic challenge of MS in older 
individuals and those with comorbidities. Based on 
these emerging concepts, the following changes 
have been presented at the ECTRIMS congress in 
2024 by X. Montalban on behalf of the International 
Advisory Committee on Clinical Trials in MS36,37, 
however the diagnostic criteria have not been  
published yet. First, the optic nerve is now included 
as a diagnostic region providing evidence for the  
dissemination in space (DIS), and besides clinical 
manifestation as optic neuritis, optic nerve  
involvement can be illustrated by optical coherence 
tomography, visual evoked potential and MRI.  
Second, MS diagnosis requires documentation of 
DIS in at least two of five CNS regions (optic nerve, 
cortical/juxtacortical, periventricular, infratentorial, 
spinal cord), if this is supplemented with either  
dissemination in time, or detection of oligoclonal 
bands or kappa free light chains in the CSF. Notably, 
the dissemination in time (DIT) is no longer  
mandatory for diagnosis, as this is not exclusive  
to MS and imaging variability can affect its  
interpretation. With regard to imaging, two new  
imaging criteria have newly been implemented that 
are not mandatory but may facilitate diagnosis 
based on their high specificity for MS: The central 
vein sign (CVS), caused by inflammatory lesions 
forming around central veins, can be visualized by  
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T2* MR imaging, and detection of at least 6 CVS can 
confirm MS in a situation when only two  
topographies are affected38. Paramagnetic rim  
lesions (PRL) indicate chronic active MS lesions and 
can be detected by susceptibility-weighted MRI  
sequences, which are sensitive for detection of iron 
accumulation in a rim of myeloid cells around 
chronic MS lesions38. These PRLs are not exclusively 
found in MS but display high specificity; therefore, 
detection of at least one PRL in the presence of  
either DIT or CSF positivity can now confirm MS in 
cases with so far only one topography affected. 

For CSF analysis in the context of MS workup, 
the kappa-free light chain (kFLC) index can now  
replace OCB detection, both reflecting intrathecal 
immunoglobulin production39. This may facilitate  
diagnostic procedures as this is a cost-effective and 
rater-independent method based on nephelometry 
or turbidimetry. Furthermore, as described in the 
previous section, evidence supports RIS as part of 
the MS continuum, with over half of RIS cases  
developing clinical MS within 10 years40. Therefore, 
the diagnostic criteria now allow for MS diagnosis in 
those RIS patients exhibiting lesions in at least two 
topographies plus DIT or CSF positivity. This  
represents a real conceptual change as this accepts 
MS as a biological diagnosis even in the absence of 
any clinical manifestation. Regarding the former 
separation of diagnostic criteria for relapsing versus 
progressive MS, the common biological mechanisms 
of these disease courses have been acknowledged, 
and therefore, the newly revised diagnostic criteria 
can be applied to both disease courses. Finally,  
criteria have been adapted in individuals over 50 or 
with comorbidities acknowledging the increased risk 
of MS misdiagnosis in these conditions due to small 
vessel disease, migraine or other inflammatory  
disorders, which can also present with T2 lesions. In 
these cases, additional criteria should be fulfilled, 
such as detection of at least one spinal cord lesion, 
positive CSF and/or detection of CVS. Together, this 
2024 revision of the MS diagnostic criteria aims to 
facilitate the diagnosis of MS in individuals based on 
biological considerations without compromising 
specificity, which will ultimately improve clinical 
outcomes of people with MS globally. 

Monitoring of disease activity 

Biomarkers and their use for personalized  
medicine – where do we stand? 

Biomarkers are key to advancing personalized 
medicine by enabling precise diagnosis, risk  
stratification, and guidance in treatment responses. 
In oncology, the use of biomarkers for personalized 
medicine approaches is already firmly established 
due to the unique genetic and molecular profiles  
of a patient’s tumor. In autoimmune diseases,  
personalized medicine based on biomarkers is still in 
its infancy, primarily due to the complexity of their 
pathophysiology and the heterogeneity in clinical 
presentation. 

In the field of MS, recent publications illustrate 
both advances and limitations in this area of  
research. Besides MRI, serum neurofilament light 
chain (NfL) levels represent the most advanced  
biomarker for facilitating the assessment of a  
patient’s individual prognosis41. Although NfL is a 
non-specific marker of neuronal injury and  
therefore not limited to MS, elevated serum NfL 
(sNfL) levels have been associated with acute  
relapse activity and responses to highly active treat-
ments42. Recently, the relevance of NfL in predicting 
disability accumulation has been further explored, 
demonstrating that elevated sNfL levels after a first 
demyelinating event are associated with an  
increased risk of future disability accumulation43. 

Furthermore, glial fibrillary acidic protein 
(GFAP) has emerged as another serum biomarker in 
MS. One study proposed that the combined assess-
ment of GFAP and NfL may help distinguish between 
acute focal inflammatory damage – reflected by NfL 
elevation – and relapse-independent progression, as 
indicated by GFAP elevation44. In contrast, a more 
recent study by Monreal and colleagues suggested 
that higher NfL levels were associated with an  
increased risk of both relapse-associated worsening 
(RAW) and PIRA, confirming its prognostic value at 
disease onset. Higher GFAP levels were linked only 
to a higher risk of reaching an EDSS score of 3, but 
not to RAW or PIRA. However, in a subset of patients 
with low NfL levels, GFAP was also associated with  
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PIRA. In individuals with low levels of both markers, 
the risk for all outcomes was lowest. These findings 
suggest that GFAP may indicate progression only in  
a subset of patients, potentially driven by a distinct 
pathophysiology, and that combining both markers 
may enhance prediction accuracy45. 

Additional experimental approaches have been 
published, highlighting the potential of more patho-
physiology-driven biomarkers to improve patient 
stratification in MS. One study, based on the  
concept that MS has a strong genetic component, 
used a genetic risk score (GRS) in individuals  
with optic neuritis (ON) to predict the future  
development of MS46. The study demonstrated that  
combining genetic data with demographic factors  
significantly improved the prediction of MS in  
individuals with undifferentiated ON, with results 
replicated in an independent cohort. Another study 
analyzed whole-proteome autoantibody profiles in 
individuals both before and after MS onset. Notably, 
around 10 % of MS patients displayed a unique  
signature that could already be detected several 
years before disease onset47. In line with other  
evidence pointing toward the relevance of certain 
virus-immune interactions as prerequisites for MS 
development in susceptible individuals, this anti-
body signature included a common motif observed 
in several human infectious pathogens, including 
EBV. Although present in only a smaller subset of MS 
patients, these findings raise the possibility that at 
least a fraction of individuals at high risk of  
developing MS could be identified before clinical  
disease onset, potentially facilitating the implemen-
tation of preventive strategies in the future. 

A German study employed high-dimensional 
immunological profiling of peripheral blood in  
untreated early MS patients to identify subgroups 
based on distinct immunological characteristics47. 
This approach enabled the identification of three 
distinct subgroups with unique immune patterns – 
one associated with high inflammatory activity 
based on clinical and imaging measures, and  
another characterized by early signs of tissue  
destruction and neurodegeneration. Notably, these 
subgroups not only exhibited differences in clinical 
disease trajectories but also in response to immune 
treatments, highlighting that a better characteriza-
tion of distinct immunobiological patterns may help 

predict individual treatment responses in the future. 
Similarly, analyzing the so far largest MS brain tissue 
collection comprising normal appearing white  
matter as well as grey and white matter lesions  
revealed different cellular compositions between 
the lesions but surprisingly similar cell-type gene  
expression patterns both within and across patients, 
suggesting patient-dependent global changes. 
Based on these observations, the authors stratified 
the patients into different molecular subgroups  
suggesting that different molecular mechanisms 
may drive pathophysiology and predict response  
to treatments targeting CNS intrinsic disease  
mechanism. However, the correlation of these  
molecular subtypes with pathological or clinical  
disease trajectories has not yet been established22. 

Novel advances in imaging to detect disease  
progression 

Conventional MRI detects focal lesions with 
great sensitivity, but it does not perform well in  
detecting the diffuse pathology responsible for 
PIRA. The imminent need of treatments for slowing 
down disease progression in MS has prompted wide 
interest in the application of advanced imaging 
methods to better understand and assess the  
progression-promoting pathological processes 
within the CNS. A number of comprehensive review 
articles on imaging of focal and diffuse compart-
mentalized inflammatory and neurodegenerative 
processes were published in 202448–53. Potential  
imaging biomarkers of MS progression include  
detection of paramagnetic lesions (PRLs) using  
iron-sensitive MRI sequences, identification of  
cortical lesions using double inversion recovery 
(DIR), assessment of grey matter damage, and  
measurement of choroid plexus volume. 

In advanced clinical imaging, PRLs, slowly  
expanding lesions (SELs) and TSPO-rim-active lesions 
are considered to represent chronic active lesions 
(CALs) (also termed mixed active/inactive lesions)50, 
which are characterized by a hypocellular lesion  
center and a rim of macrophages/microglia (Fig. 2). 
However, which of these different methods is the 
best predictor of disease progression has yet to be 
determined. Notably, recent work suggests that 
there is only partial overlap in CAL-detection using 
these imaging methods. Here, numbers of SELs were 
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shown to be higher than those of PRLs (616 vs 80), 
and the correlation between lesion counts was quite 
moderate (ρ = 0.28, p = 0.03)54. This suggests that 
SEL and PRL may capture distinct pathophysiological 
features of chronic active lesions. Similarly, based  
on a recent publication, TSPO-PET has a higher  
sensitivity to detect more CALs compared to  
susceptibility weighted MRI, although there was a 
correlation between the number of 11C-PBR28 active 
lesions and PRLs in 7T phase images55. Moreover, 
this study found that TSPO-PET whole active lesion 
volume had the strongest association with the EDSS 
score in a cohort of 30 study patients including equal 
numbers of patients with RRMS and SPMS55. PRLs 
have been particularly widely studied during the 
past years and are now considered a predictive  
imaging biomarker for greater disease severity and 

progression and correlates with brain and spinal 
cord atrophy53. A consensus statement developed 
by the North American Imaging in Multiple Sclerosis 
(NAIMS) Cooperative published in 2024 provides 
guidance for the definition and measurement of 
PRLs to promote their clinical translation51. This also 
prompted their inclusion in the new diagnostic  
criteria for MS as described above. 

Following this line, several articles published in 
2024 provided further evidence regarding the  
association of PRLs with disease progression:  
1) Patients with PIRA had significantly more PRLs, 
also when analysis was restricted to patients with 
RRMS56. 2) PRLs associated with PIRA over the 2 
years after study entry demonstrating their  
predictive power for PIRA 38. 3) A longitudinal study

 

Figure 2: Histological and imaging detection of chronic active lesions. Histological characterization of a chronic active lesions (= mixed 
active/inactive lesions) (a to d). The lesion is completely demyelinated and has a sharp border to the adjacent normal appearing white 
matter (Luxol-fast blue staining) (a). Chronic active lesions are characterized by a rim of myeloid cells expressing CD68 and TSPO  
(b and c). A subset of chronic active lesions displays a dense rim of myeloid cells with cytoplasmic iron depositions (Turnbull staining)  
(d). Different imaging techniques, such as TSPO-PET and quantitative susceptibility mapping (QSM) are currently used to identify this 
lesion type in individuals with MS (e to g). The red circle in indicates a hypointense T1 lesions (e), that displays a TSPO positive rim in TSPO 
PET (RAL: rim active lesion) (f) and a paramagnetic rim in QSM (PRL: paramagnetic rim lesion) (g). 
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with median follow-up time of 5.6 years showed 
that the appearance of new PRLs was associated 
with increased rates of PIRA. On the other hand, PRL 
disappearance was associated with reduced rates of 
confirmed disability progression, suggesting the 
need of additional studies to understand the  
predictive value of these dynamic changes57. 

Imaging tools to assess neurodegeneration are 
another approach to predict disease progression. 
Higher baseline cortical lesion load, but not white 
matter lesion load or new cortical lesions during  
the observation period of three years, predicted  
disability worsening suggesting that cortical lesions 
to disability progression rather than new cortical  
lesions58. However, an alternative explanation could 
be that the detrimental effects of cortical lesions on 
disease progression require time to manifest  
clinically. Thalamic atrophy is well-known to be  
associated with disease progression. The study by 
Cagol and colleagues now provides further insight 
into the underlying mechanisms of thalamic  
atrophy. Using advanced quantitative MRI, they 
demonstrated that microstructural thalamic 
changes linked to demyelination, neuroaxonal loss, 
and disturbances in iron homeostasis correlated 
well with clinical disability, cognitive impairment, 
and MRI measures of disease burden59. Interest-
ingly, a recent longitudinal study provided further 
evidence about the gradual increase of choroid 
plexus volume (1.4 % per year) and its association 
with brain atrophy60. In this study from Sydney,  
57 patients with RRMS underwent annual MRI  
scans during a minimum follow-up of four years.  
Interestingly, they showed that the annual change in 
choroid plexus volume correlated with chronic  
lesion expansion (r = 0.46, p < 0.001), further  
supporting the notion that plexus enlargement is at 
least partly induced by cellular or molecular  
inflammatory mediators. An association between 
choroid plexus volume, cognitive impairment, and 
fatigue was also recently demonstrated61. 

There are also several other advanced imaging 
methods that have shown promise for identification 
of disease progression, such as the diffusion MRI 
based neurite orientation dispersion and density  
imaging (NODDI) that provides specific measures of 
tissue microstructure, soma and neurite density  
imaging (SANDI), and leptomeningeal enhancement 

that can be visualized using delayed post-contrast 
FLAIR, demonstrating meningeal B cell aggregates53. 

Use of AI 

The potential of artificial intelligence (AI) and 
machine learning continues to be explored in the 
context of MS as reviewed by Collorone et al62. AI 
has been used in explorative studies to guide MS  
diagnosis, prediction, lesion segmentation, and  
investigation of disease mechanisms. The authors 
conclude that although there are several challenges 
regarding the quality of input data and ethical  
issues, the use of AI has made significant progress  
in recent years in the MS field. However, the  
reproducibility and validation of the results, which is 
important for the integration of AI based methods 
into clinical practice, warrants further studies. 

In 2024, Noteboom et al63 studied how  
various machine learning models were capable of  
determining clinical impairment at baseline and of 
predicting future clinical worsening in two cohorts 
(n = 123 and 330, respectively). Support vector  
machine classifier was the best AI tool to identify 
higher disability (EDSS ≥ 4) and impaired cognition 
(SDMT Z-score ≤ −1.5) when clinical factors and 
global or regional MRI volumes were used as input. 
However, the machine learning models were not 
able to predict clinical worsening after two or five 
years. On the other hand, Andorra et al showed that 
Random Forest algorithms predicted NEDA (no  
evidence of disease activity) with AUC 0.80 and  
confirmed disability accumulation with AUCs  
0.62, 0,63 and 0.61 for EDSS, SDMT and 9HPT,  
respectively64. Algorithms were first tested using a 
prospective multi-centric cohort including 322  
patients with MS and 98 healthy controls, and then 
using a prospective cohort of 271 patients with MS. 
Their findings suggest, that combining clinical, and 
imaging and in some instances also omics data with 
machine learning may help identifying MS patients 
at risk of disability worsening. 

Proper identification of focal MS lesions is the 
basis for successful diagnosis, treatment and disease 
monitoring. Furthermore, reliable identification of 
chronic active lesions gives valuable information on 
the risk of later progression as described above. 
Manual lesion segmentation is time-consuming, but 
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thus far it has proven more reliable than existing  
automated lesion segmentation methods. This is 
now being challenged by recent lesion-detection 
work using deep learning models. Pasquale De Rosa 
et al applied a consensus-based framework, which 
combines five publicly available deep learning  
models, to improve lesion segmentation65. They 
used two datasets, including 131 and 30 patients 
with MS to compare it with lesions masks  
segmented manually. Their method showed good 
agreement with the volume and numbers of lesions 
identified through manual segmentation (ρ = 0.92 
and ρ = 0.97, and ρ = 0.83 and ρ = 0.94 for datasets I 
and II, respectively). Automated methods for PRL  
assessment are also urgently needed. Now the 
NAIMS Cooperative have tested an Automated  
Paramagnetic Rim Lesion (APRL) algorithm in a 
multi-center setting and reported that this  
automated segmentation method successfully  
captured 115 (78 %) of manually identified PRLs 66. 
This gives promise for facilitated PRL-detection in 
large datasets; an improvement that could enable 
routine PRL detection in clinical settings and in the 
context of treatment trials. 

Rethinking MS Progression and Treat-
ment Strategies 

The concept of progression independent from  
relapse activity and emerging treatments target-
ing the pathophysiology of progression 

While it has long been accepted that  
disability accrual in MS is primarily driven by focal  
inflammation as the pathophysiological correlate of 
relapses, recent research has identified significant 
disease progression independent of relapse activity, 
termed PIRA. Identification of PIRA became  
possible through careful re-evaluation of clinical trial  
data from high-efficacy treatments – particularly  
ocrelizumab – where progression was observed  
despite an almost complete absence of relapses67. In 
2023, data from a large CIS / early MS cohort  
revealed that PIRA can occur even in early relapsing 
MS and is associated with an unfavorable long-term 
prognosis68. Although several studies have shown 
that current treatments partially influence PIRA69, 
none of the approved therapies are sufficient to  
control it, and its exact pathophysiology remains 

elusive, hampering the development of targeted 
treatments. 

In this context, a novel class of drugs – Bruton’s 
tyrosine kinase (BTK) inhibitors – has gained  
attention in MS treatment. BTK inhibitors block BTK, 
an enzyme essential for intracellular signaling during 
B cell receptor activation and for activating myeloid 
cells, without directly affecting T cells70. Several  
BTK inhibitors have already been approved  
for hematologic malignancies such as chronic  
lymphocytic leukemia and mantle cell lymphoma; 
their dual action on B cells and myeloid cells has 
sparked interest for autoimmune diseases70. BTK  
inhibition modulates both adaptive and innate  
immune responses by suppressing proinflammatory 
cytokine production, antigen presentation, and cell 
survival71. The recognized role of B cells in MS  
pathophysiology, along with the contribution of  
myeloid cells to chronic lesion formation and  
progression, has led to multiple trials in both relaps-
ing and progressive MS70. Data from several recent 
trials investigating evobrutinib and tolebrutinib have 
been presented in 2024. Notably, evobrutinib failed 
to demonstrate superiority over teriflunomide 
(which interferes with lymphocyte proliferation and 
metabolic activity) in controlling focal inflammatory 
activity and confirmed accumulation of disability72, 
whereas tolebrutinib showed efficacy in reducing 
confirmed disability progression in three clinical  
trials studying its efficacy in people with RRMS and 
SPMS (GEMINI I and II and HERCULES trials)73,74.  
Recently, new data have been presented  
demonstrating that the effect of tolebrutinib on  
disability progression was only seen in patients with 
PRLs at baseline75. This is particularly remarkable as 
tolebrutinib exerted only modest effects on markers 
of acute focal inflammation, therefore providing 
first evidence that progression-related pathology 
can be modulated independently of acute focal  
activity and this is centered around modulation of B 
cells and/or myeloid cells73,74. 

Emerging cellular therapies – CAR T cells 

In other autoimmune diseases, novel cellular 
therapies are increasingly being explored for their 
potential applications. One of the most promising 
candidates already in clinical use in oncology are  
chimeric antigen receptor (CAR) T cells76. These are 
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T cells that have been genetically modified to  
express a construct enabling high-affinity antigen 
recognition and downstream signaling, thereby  
conferring proliferative capacity, effector function, 
and persistence in the recipient for a durable  
therapeutic effect77. Importantly, the CAR T receptor 
is not restricted by MHC for antigen recognition. In 
most cases, this is done autologously – T cells are 
obtained from the patient, engineered ex vivo with 
CAR constructs, expanded, and then reinfused.  
The concept currently under evaluation in  
neuroimmunology, including MS, involves CAR T 
cells targeting B cells (via CD19 or BCMA) to achieve 
thorough B cell depletion even in tissues, as  
these cells have demonstrated good deep tissue  
penetration, including the CNS78,79. Indeed, several 
case series have recently been published illustrating 
profound effects of this therapeutic approach in  
several patients with refractory myasthenia gravis 
and stiff person syndrome, however results from 
clinical trials are not yet available78,80,81. 

Our current understanding of MS progression 
centers on a compartmentalized inflammatory  
process that limits the efficacy of primarily  
peripherally acting DMTs and CAR T cells may  
represent an emerging technology to tackle this 
treatment challenge. Published 2024 data from two 
progressive MS patients treated with a single dose 
of fully humanized second-generation CD19 CAR T 
cells showed persistence of CAR T cells in both the 
peripheral blood and CSF82. Notably, CAR T cell  
treatment resulted in peripheral B cell depletion and 
a sustained reduction of CSF oligoclonal bands in 
one patient, providing indirect evidence of effective 
CNS plasma cell depletion. Although this small case 
series with a limited observation time precludes  
definitive efficacy evaluation, the treatment was 
well tolerated, with only mild cytokine release  
syndrome and no ICANS. Several clinical trials in  
relapsing and progressive MS are underway to  
further explore this promising approach and  
assess potential side effects, including secondary  
malignancies, which would strongly limit use of this 
approach in the context of autoimmunity. 

 

Preclinical studies 

The search for neuroprotective and re- 
myelination promoting therapies continues, but is 
hampered by the limited understanding of the  
molecular and cellular mechanisms driving neuro-
degeneration and remyelination failure in MS.  
Oligodendrocytes and neurons are not passive  
targets of the immune response, as extensive  
previous research suggest that oligodendrocytes as 
well as neurons can launch an inflammatory  
response83–87. The group led by Manuel Friese  
discovered, in detailed and elaborate in vitro and in 
vivo studies, the stimulator of interferon genes 
(STING) as an important regulator in neurons,  
which is essential for the homeostasis of the  
neuronal red-ox system and inflammation-induced  
ferroptosis. STING is upregulated in neurons in EAE 
and in people with MS and most interesting both, 
pharmacological and genetic ablation of STING  
protected against inflammation-induced neuro-
degeneration in EAE mice. Sting1-cKO EAE mice  
displayed ameliorated EAE disease course and  
increased numbers of surviving neurons, but no  
differences in the extent of inflammatory infiltrates 
suggesting that pharmacological targeting of STING 
may represent a direct neuroprotective treatment 
approach88. 

Another focus in preclinical MS research is to 
unravel the underlying molecular mechanism for  
remyelination failure. Current concepts suggest that 
not only a differentiation block of OPC into mature 
myelinating oligodendrocytes but also an impaired 
myelin sheath formation by mature oligodendro-
cytes may contribute to remyelination failure in 
MS89. A potential explanation for the latter might be 
that mature oligodendrocytes are epigenetically  
silenced, as suggested by the work of Liu  
and colleagues90. They screened an epigenetic  
compound library and identified the small molecule 
ESI1 that promoted the maturation and/or in vitro  
myelination of primary mouse and human iPSC  
derived oligodendrocytes, promoted remyelination 
in different animal models and improved clinical 
signs in the EAE model. In summary, this study   
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identifies epigenetic silencing of mature oligoden-
drocytes as a new pathomechanism contributing to 
remyelination failure in MS and provides evidence 
that targeting the epigenetic machinery might be a 
promising new pharmacological target to overcome 
remyelination failure in MS. 

Summary 

Conceptually, the identification of the first SNP 
associated with disease severity represents a  
major breakthrough, since it suggests a genetic  
component in the pathophysiology of disease  
progression independent from the immune system. 
The accumulating evidence of EBV as important  
trigger of MS disease onset raises the fascinating 
possibility of an anti-viral treatment which may  
either stop or prevent MS. The new diagnostic 
framework of MS establishes MS as a disease  
continuum and allows diagnosis based on purely  
biologic considerations in the absence of any clinical 
manifestation and new imaging and biomarkers as 
well as AI approaches may facilitate the prediction 
of the disease course and treatment responses in  
individual pwMS in the not too far future. 

A conceptual game changer from a therapeutic 
perspective are the results from the tolebrutinib 
study program, as they demonstrate for the first 
time that tackling clinical outcomes of disease  
progression is feasible beyond targeting focal  
inflammation. The ultimate challenge for the future 
will be the translation of our continuously increasing 
understanding of MS pathophysiology into new 
treatment approaches to successfully stop or  
prevent MS. 
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