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Abstract 

Objective quantification of brain arteriolosclerosis remains an area of ongoing refinement in neuropathology, 
with current methods primarily utilizing semi-quantitative scales completed through manual histological  
examination. These approaches offer modest inter-rater reliability and do not provide precise quantitative  
metrics. To address this gap, we present a prototype end-to-end machine learning (ML)-based algorithm,  
Arteriolosclerosis Segmentation (ArtSeg), followed by Vascular Morphometry (VasMorph) – to assist persons in 
the morphometric analysis of arteriolosclerotic vessels on whole slide images (WSIs). We digitized hematoxylin 
and eosin-stained glass slides (13 participants, total 42 WSIs) of human brain frontal or occipital lobe cortical 
and/or periventricular white matter collected from three brain banks (University of California, Davis, Irvine,  
and Los Angeles Alzheimer’s Disease Research Centers). ArtSeg comprises three ML models for blood vessel  
detection, arteriolosclerosis classification, and segmentation of arteriolosclerotic vessel walls and lumens. For 
blood vessel detection, ArtSeg achieved area under the receiver operating characteristic curve (AUC-ROC) values 
of 0.79 (internal hold-out testing) and 0.77 (external testing), Dice scores of 0.56 (internal hold-out) and 0.74 
(external), and Hausdorff distances of 2.53 (internal hold-out) and 2.15 (external). Arteriolosclerosis classification 
demonstrated accuracies of 0.94 (mean, 3-fold cross-validation), 0.86 (internal hold-out), and 0.77 (external), 
alongside AUC-ROC values of 0.69 (mean, 3-fold cross-validation), 0.87 (internal hold-out), and 0.83 (external). 
For arteriolosclerotic vessel segmentation, ArtSeg yielded Dice scores of 0.68 (mean, 3-fold cross-validation), 
0.73 (internal hold-out), and 0.71 (external); Hausdorff distances of 7.63 (mean, 3-fold cross-validation), 6.93 
(internal hold-out), and 7.80 (external); and AUC-ROC values of 0.90 (mean, 3-fold cross-validation), 0.92  
(internal hold-out), and 0.87 (external). VasMorph successfully derived sclerotic indices, vessel wall thicknesses, 
and vessel wall to lumen area ratios from ArtSeg-segmented vessels, producing results comparable to expert 
assessment. This integrated approach shows promise as an assistive tool to enhance current neuropathological 
evaluation of brain arteriolosclerosis, offering potential for improved inter-rater reliability and quantification. 
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Introduction 

The study of vascular morphology pertains to 
several neurological disorders, including dementia, 
stroke, and cerebral vasculopathies. Vascular contri-
butions to cognitive impairment and dementia have 
emerged from decades of study, including the  
Honolulu Asia Aging Study,1 the Rotterdam Study,2 
and the Religious Orders Study and Memory and  
Aging Project.3,4 Vascular abnormalities can encom-
pass numerous entities, including brain arteriolo-
sclerosis. Arteriolosclerosis can be associated with 
an increased likelihood of microinfarcts5 and subse-
quently dementia, including Alzheimer disease 
(AD).6,7 

Currently, guidelines used in Vascular Cognitive 
Impairment Neuropathology Guidelines (VCING)8 
and the National Alzheimer’s Coordinating Center 
Neuropathology Data Set9 for assessing the severity 

of vascular pathology such as brain arteriolosclerosis 
(B-ASC) consists of a semi-quantitative scale that  
divides vascular pathologic change categorically into 
“none”, “mild”, “moderate”, and “severe”.10 Accord-
ing to VCING, occipital cortex white matter may be 
the optimal brain region for brain arteriolosclerosis 
assessment in terms of reliability and association 
with cognitive status.8 The semi-quantitative B-ASC 
scale showed “moderate” inter-rater reliability 
(Gwet’s AC2 coefficient 0.52) in the VCING study.8 
Alternative methods have been proposed for the 
analysis of arteriolosclerosis, including quantitative 
assessments such as the sclerotic index [1 - (internal 
diameter / external diameter)].11,12 However, imple-
menting these methods on a large scale may not be 
feasible. Scalable means for deep phenotyping of 
vascular pathology to assess morphological features 
such as vessel shape, wall thickness, and/or degree 
of hyaline change are needed. The demand for  
reproducible and high-resolution quantitative  
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metrics motivates the development of robust  
computational methods to segment vascular  
structures. 

Machine learning (ML) is a promising computa-
tional paradigm capable of delivering expert-level 
performance in complex visual recognition tasks,  
including the classification of amyloid plaques,13 
neurofibrillary tangles,14 and glial tauopathies.15  
Additional work has correlated machine learning 
generated quantitative findings with clinical,  
demographic, and pathological metrics.16 These ML 
models trained on whole slide image (WSI) datasets 
recognize features and patterns specific to target 
objects and demonstrate remarkable adaptability to 
variations generated by disparate institutional  
procedures in the production of WSIs. 

In addition to classification, ML models can  
perform semantic segmentation by which a class  
label is assigned to each pixel in an image,  
generating collections of pixels called segmentation 
masks that form distinct objects within an image. 
These masks may be used for downstream analysis 
of the shape, diameter, and/or other features of the 
segmented object. Generally, classification requires 
recognition of only a minimum number of object-
specific features to categorize images into the  
correct class, whereas segmentation demands 
recognition of all object-specific features to classify 
all pixels belonging to the target. 

Non-ML methods for segmentation and  
quantification of blood vessels have been explored, 
however, these methods were not extensively  
evaluated and compared to expert annotations.17 
Prior works have shown that ML models can  
segment non-arteriolosclerotic blood vessels in  
neoplastic tissue.18–22 We build upon these prior  
efforts and hypothesize that ML models could (1) 
detect and localize blood vessels in brain tissue, (2) 
classify arteriolosclerosis, (3) segment the walls  
and lumens of arteriolosclerotic vessels, and (4)  
facilitate morphometric analysis of vascular struc-
ture. As object occlusion has been shown to reduce 
model performance,23 we additionally hypothesized 
centering image patches onto the object of interest, 
the blood vessel in this study, mitigates  
occlusion and improves downstream segmentation 
performance. 

In this pilot study, we present a prototype  
end-to-end ML-based algorithm – Arteriolosclerosis 
Segmentation (ArtSeg), followed by Vascular  
Morphometry (VasMorph) – to assist persons in the 
morphometric analysis of arteriolosclerotic vessels 
on WSIs. While previous software for manual  
measurement of sclerotic index on digital histology 
images (VasCalc)24 has been described, VasMorph 
represents an automated method to measure  
sclerotic index, vessel wall thickness, and vessel wall 
to lumen area ratio from ArtSeg-segmented vessels. 
Furthermore, we describe a novel custom recursive 
wrapper algorithm – Object of interest Recursive 
Centering Algorithm (ORCA) – that can flexibly  
interface with any segmentation ML model to  
recursively generate patches centered on an object 
of interest. 

We evaluated three ML models within ArtSeg 
that show promising performance for the detection 
of blood vessels, recognition of arteriolosclerosis, 
and segmentation of arteriolosclerotic vessel walls 
and lumens. To aid in reproducibility and open  
science, we provide our code, training, and testing 
data, and image processing methodology (see Data 
Availability and Code Availability). To the best  
of our knowledge, this study constitutes the first 
demonstration of an open-source means for  
ML-based morphometric analysis of arterioloscle-
rotic blood vessels in digital histology images of  
human brain. 

Methods 

Participant consent and ethics compliance 

Our investigation used de-identified human 
post-mortem tissues, which do not qualify as Human  
Subjects under federal law (45 CFR 46, Protection of 
Human Subjects). The University of California, Davis 
(UCD) Alzheimer’s Disease Research Center (ADRC), 
University of California Irvine (UCI) ADRC, and the 
former University of California Los Angeles (UCLA) 
ADRC programs obtained signed informed consent 
from all participants or legal representatives during 
the life of the participant. Procedures were  
completed in accordance with the ethical standards 
of the Helsinki Declaration. Operations of the UCD, 
UCI, and former UCLA ADRC were approved by the 
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Institutional Review Board (IRB) of UCD, UCI, and 
UCLA, respectively. All data were de-identified and 
shared through a randomly generated pseudo-iden-
tification number. The de-identified data does not 
contain personal health information such as  
addresses, phone numbers, names, date of birth, or 
social security numbers. 

Participant selection and case cohort 

All brain samples were retrieved from archives 
of UCD ADRC, UCI ADRC, and the former UCLA ADRC. 
Thirteen participants and 42 WSIs were included 
through three stages of selection. In the first stage, 
we chose 1 participant with mild arteriolosclerosis 
(global score) and 1 with severe arteriolosclerosis 
(global score) from UCI ADRC, each of whom had 
frontal and occipital lobe H&E-stained slides. We 
also chose 2 participants with mild arteriolosclerosis 
(global score) and 2 with severe arteriolosclerosis 
(global score) from UCD ADRC, each of whom  
had frontal, frontal-periventricular white matter,  
occipital, and occipital-periventricular white matter 
H&E-stained slides. In the second stage, we added 6 
additional participants from UCD ADRC (2 with no

arteriosclerosis, 1 with mild, 2 with moderate, and 1 
with severe arteriosclerosis, global score) to expand 
the distribution of arteriosclerosis and increase the  
sample size. In the third stage, we added 1  
participant from the former UCLA ADRC to create  
an external test set. Cortical and subcortical 
(periventricular white matter) regions were chosen 
due to implications in possible vascular contribu-
tions to cognitive impairment and dementia.7  
Samples studied consisted of 5–7 µm formalin-fixed 
paraffin-embedded sections of the frontal and  
occipital lobes mounted on glass slides and stained 
with hematoxylin and eosin (Figure 1). UCD ADRC 
digitized slides with a Zeiss Axioscan scanning at 
0.220 μm / pixel and x20 magnification. The former 
UCLA ADRC utilized an Aperio CS2 with the same pa-
rameters as UCD ADRC. UCI ADRC digitized slides 
with an Aperio Versa 200 scanner at 0.137 μm / pixel 
with a 40x objective. In total, our study included 8 
male and 5 female participants from 52 to 89+ years 
of age (mean 81, median 86). See Supplementary 
Table 1 for detailed specifications and participant 
demographics of each WSI utilized and Supplemen-
tary Figure 1 for example WSIs from respective 
brain regions. 

 

Figure 1: Overview of the process for sampling and digitization of slides. Samples were retrieved from the cortical and / or periventricular 
white matter regions of the frontal and occipital lobes from 13 participants. These samples were formalin-fixed paraffin-embedded and 
processed into glass slides, which subsequently were digitized into WSIs by a slide scanner. 
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Inclusion criteria for the selection of vessels 

Only vessels (1) within white matter and (2) cut 
in cross-section with the entire circumference of the 
vessel wall within view were included for training 
and evaluation of the ML algorithm. Because  
arteriolosclerosis is most common in cortical white 
matter, to optimize workflow, we chose to focus on 
only blood vessels located within white matter. We 
included the occipital lobe because the occipital  
cortex white matter may be the optimal brain region 
for brain arteriolosclerosis assessment in terms of 
reliability and association with cognitive status,  
according to VCING,8 Cross-sectional views of  
vessels were selected as the purpose of the ML  
algorithm is to automate the calculation of the  
sclerotic index,11,12 vessel wall thickness, and vessel 
wall to lumen area ratio, which require measure-
ments of the internal and external radius or  
diameter. 

Dataset 

All UCI and UCLA WSIs were stored in SVS file 
format. All UCD WSIs were stored in CZI file format. 
Due to the enormous gigapixel size of WSIs, it is  
generally computationally inefficient or intractable 
to input the entire WSI directly into ML algorithms 
for training or inference, and WSIs are typically  
divided into thousands of smaller image tiles. We 
performed WSI tiling utilizing the open-source  
libraries OpenSlide25 and czifile,26 generating (512 x 
512) pixel tiles. For arteriolosclerosis classification 
and segmentation, we divided our dataset (11  
participants, 34 WSIs) into three subsets: a training 
and validation subset, an internal hold-out test set, 
and an external test set (Supplementary Table 2). 
The training and validation set consisted of 28 WSIs 
from 8 participants (26 WSIs from 7 UCD partici-
pants and 2 WSIs from 1 UCI participant). We  
performed a 3-fold cross-validation procedure with 
on average 19 training and 9 validation WSIs  
(Supplementary Tables 3 and 4) and reported the 
mean performance metrics of the three folds. The 
internal hold-out testing subset consisted of 4 WSIs 
from 2 participants (2 WSIs from 1 UCD participant 
and 2 WSIs from 1 UCI participant; Supplementary 
Table 5). The external testing subset consisted of 2 

WSIs from an additional UCLA participant (Supple-
mentary Table 5). For vessel detection, the training 
and validation subsets had an additional 8 WSIs from 
2 UCD participants (Supplementary Table 6), who 
did not have arteriolosclerosis and therefore were 
not included in the dataset for arteriolosclerosis 
classification and segmentation. 

Human annotations 

All annotators (VP, WY, JJL, HPW, KN) were 
blinded to WSI specifications and participant clinical 
information during annotation. VP and WY are  
attending neuropathologists; JJL is a neuropathol-
ogy fellow; HPW was a junior specialist; and KN was 
an under-graduate student. All annotations for  
the training and validation subsets, as well as the  
internal hold-out test subset, were completed by JJL, 
HPW, and/or KN. All annotations for the external 
test subset were completed by VP. Arteriolosclerosis 
was defined using criteria proposed by Skrobot et 
al.8,10 Segmentation masks for vessel walls and  
lumens were created by JJL, HPW, KN, and VP using 
ImageJ27 (detailed annotation protocol available in 
Supplementary Document 1). WY annotated vessel 
wall thicknesses (see section Vascular Morphometry 
or VasMorph) using ImageJ27 (detailed annotation  
protocol available in Supplementary Document 2). 

Data augmentation 

For all training tiles, color augmentation  
developed by Tellez et al.28 to simulate the spectrum 
of hues generated by different staining methods  
was performed through the open-source library  
HistomicsTK.29 Tensorflow’s Keras application  
programming interface30 produced morphological 
augmentations including random flip, random  
translation, and random rotation. Gray scale  
augmentation through the open-source library 
OpenCV31 assisted further in reducing neural  
network dependence on color. For datasets with 
class imbalance, minority class oversampling was 
performed. The optimized color-to-gray augmenta-
tion ratio for arteriolosclerotic vessel segmentation 
was 5:1. For arteriolosclerosis classification, the  
optimized ratio was 2:1. 
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Overview of end-to-end machine learning-based 
pipeline 

Our end-to-end ML-based pipeline consists of 
an ML component (Phase 1) and a post-ML quantifi-
cation module (Phase 2). The ML component,  
Arteriolosclerosis Segmentation (ArtSeg) receives 
WSIs as input and outputs segmentations of arteri-
olosclerotic blood vessel walls and lumens, which 
are in turn input into the post-ML module Vascular 
Morphometry (VasMorph), which outputs quantita-
tive metrics for the sclerotic index, vessel wall  
thickness, and vessel wall to lumen area ratio. 

Phase 1: Arteriolosclerosis Segmentation (ArtSeg) 

ArtSeg comprises four algorithms that com-
plete four sequential steps (Figure 2). After WSI til-
ing, the first step (Phase 1a) is to detect blood  
vessels and keep tiles that contain a blood vessel 
and discard those that do not. The second step 
(Phase 1b) is to recursively shift tiles until the  
detected blood vessel appears at the center of the 
tile. The third step (Phase 1c) is to keep tiles that 
contain a blood vessel with arteriolosclerosis and 
discard those that do not. The fourth step (Phase 1d) 
is to segment the walls and lumens of blood vessels 
with arteriolosclerosis. 

 

 

Figure 2: ArtSeg overview. The ML pipeline received WSIs of H&E-stained cortical and/or periventricular white matter brain tissue as 
input. Each WSI was tiled into tens of thousands of (512 x 512) pixel image tiles. (Phase 1a) The blood vessel detection ML model sorted 
tiles into those with blood vessels and those without. (Phase 1b) Object of interest: Recursive Centering Algorithm (ORCA) (see Figure 3) 
generated new tiles centered onto the detected blood vessels. (Phase 1c) An arteriolosclerosis classification model separated tiles with 
centered blood vessels into those with arteriolosclerosis and those without. (Phase 1d) A modified Attention U-Net segmented the  
arteriolosclerotic vessel walls and lumens to produce the final output. All models within ArtSeg take advantage of fixed ImageNet  
pretrained parameters from Google’s EfficientV2L to extract low-level features before learning vessel-specific features de novo. 
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Figure 3: Object of interest Recursive Centering Algorithm (ORCA).  

Starting at step (1), the algorithm inputs a raw (512 x 512) image tile through the embedded blood vessel detection model, which produces 
an output segmentation (2). (3) ORCA creates a new patch from the input WSI using modified shifted coordinates based on the previous 
segmentation. (4–6) Steps 1 through 3 are repeated until the vessel is centered. 

 

Phase 1a: Blood vessel detection 

The blood vessel detection neural network 
consisted of an Attention U-net architecture32 with 
an encoder composed of an EfficientNetV2L33  
backbone with five semi-trainable convolution  
layers followed by two fully trainable convolution 
layers and a decoder composed of seven trainable 
convolution layers generated through the concate-
nation of a 2D transpose convolution of the prior 
layer and an attention gate32 that filters features 
propagated from the skip connections. 

To evaluate the classification performance of 
the vessel detection model for separating patches 
with blood vessels from those without, the  
segmentation output of the model was converted to 
confidence scores by: (1) obtaining the softmax 
probability per pixel for background (class = 0) and 
vessel (class = 1), (2) for each pixel where the  

softmax probability for the vessel class is greater 
than that for background, saving the vessel softmax 
probabilities into one set, and (3) calculating the 
mean of the set (Supplementary Figure 2). 

Phase 1b: Blood vessel centering 

Blood vessel centering was achieved by a  
custom recursive algorithm – Object of interest  
Recursive Centering Algorithm (ORCA) – wrapping 
the blood vessel detection neural network  
(Figure 3). The wrapper algorithm inputs raw  
(512 x 512) tiles into the blood vessel detection  
neural network, which segments blood vessels.  
Subsequently, the wrapper algorithm generates a 
new (512 x 512) tile with shifted boundaries such 
that the detected blood vessel resides closer to the 
center of the tile. This process is repeated until the 
detected blood vessel lies in the center of the final 
output tile (Figure 3). ORCA detects when the patch 

https://doi.org/10.17879/freeneuropathology-2025-6387


Free Neuropathology 6:12 (2025) Lou et al 
DOI: https://doi.org/10.17879/freeneuropathology-2025-6387 page 8 of 23 
 
 

 

has been centered onto the blood vessel(s) by  
comparing the coordinates of the new patch with 
shifted boundaries to the original input patch; if the 
shift in boundaries is less than a preset threshold, 
then the patch is considered blood vessel(s)  
centered. The average runtime per WSI was  
approximately 37 minutes (see hardware section for 
further details). 

Phase 1c: Arteriolosclerosis classification 

The arteriolosclerosis classification neural  
network consisted of an EfficientNetV2L33 backbone 
with five semi-trainable convolution layers topped 
by two fully trainable convolution layers, followed 
by three dense layers. 

Phase 1d: Arteriolosclerotic vessel segmentation 

The arteriolosclerotic vessel segmentation  
network used the same architecture as the model 
for blood vessel detection. 

Implementation of ML models 

See Supplementary Figure 3 for detailed  
architecture and Supplementary Document 3 for 
detailed training hyperparameters of ML models in 
Phases 1a, 1b, 1c, and 1d. 

Phase 2: Vascular Morphometry (VasMorph) 

For each blood vessel analyzed, VasMorph  
outputs the sclerotic index, vessel wall thickness, 
and vessel wall to lumen area ratio, which have  
previously been used as an indicator of the degree 
of vascular stenosis.17 The final sclerotic index and 
vessel wall thickness outputs include the median, 
mean, standard deviation, minimum, and maximum 
of sclerotic indices and vessel wall thicknesses  
calculated in a 360-degree rotation around the  
center of the blood vessel lumen. 

Sclerotic index 

To calculate the vessel sclerotic index, we first 

defined the sclerotic index at an angle theta (SIθ), 
given the internal diameter (Di(θ)) and external  
diameter (De(θ)) of the vessel at that angle, using  
the following formula: SIθ = 1 – (Di(θ) / De(θ)).11,12,24 
VasMorph then measures the internal diameter 
(Di(θ)) and external diameter (De(θ)) of the vessel to 
calculate the sclerotic index (SIθ) at each degree  
angle over a 180-degree rotation in a half circle 
around the centroid34 of the lumen segmentation to 
obtain a set of sclerotic indices (Figure 4). The  
output of VasMorph is the median, mean, standard 
deviation, minimum, and maximum of this set of 
vessel sclerotic indices. 

Vessel wall thickness: Tangent line-based method 

To calculate the vessel wall thickness, we 
first defined vessel wall thickness at point alpha (Tα) 
on the curve lumen contour as the distance between 
a line tangent to point alpha (Lα) and the external  
contour of the vessel (E): Tα = E – Lα (Figure 5). 
VasMorph then measures the vessel wall thickness 
at 100 equally spaced points in the lumen contour to 
obtain a set of thicknesses (Figure 5). The output of 
VasMorph is the median, mean, standard deviation, 
minimum, and maximum of this set of vessel wall 
thicknesses. 

Vessel wall thickness: Radii-based method 

We also considered an alternative definition of  
vessel wall thickness at angle theta (Tθ) relative to 
the lumen center as the difference between the  
external radius at theta (Re(θ)) and the internal radius 
at theta (Ri(θ)): Tθ = Re(θ) – Ri(θ) (Figure 6). VasMorph 
then measures the internal radius (Ri(θ)) and external 
radius (Re(θ)) of the vessel to calculate the sclerotic 
index (SIθ) at each degree angle over a full  
360-degree rotation around the centroid34 of the  
lumen segmentation to obtain a set of thicknesses 
(Figure 6). VasMorph outputs the median, mean, 
standard deviation, minimum, and maximum of this 
set of vessel wall thicknesses based on this  
alternative definition. 
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Figure 4: Sclerotic index calculation. An image patch (a) centered onto an arteriolosclerotic blood vessel is input into the segmentation 
model of ArtSeg, which outputs the vessel wall and lumen segmentation (b). VasMorph measures the internal diameter (Di(θ)) and external 
diameter (De(θ)) of the vessel to calculate the sclerotic index (SIθ) at each degree angle over a 180-degree rotation in a half circle around 
the centroid34 of the lumen segmentation to obtain a set of sclerotic indices (b and c). The output of VasMorph is the median, mean, 
standard deviation, minimum, and maximum of this set of vessel wall thicknesses. VasMorph finds the center of the lumen segmentation. 

 

Figure 5: Vessel wall thickness based on a line tangent to every pint on the lumen contour. An image patch (a) centered onto an arteri-
olosclerotic blood vessel is input into the segmentation model of ArtSeg, which outputs the vessel wall and lumen segmentation (b). 
VasMorph measures the vessel wall thickness at each point in the lumen contour to obtain a set of thicknesses, where thickness at point 
alpha (Tα) is defined as the distance between a line tangent to point alpha (Lα) on the curve of the lumen contour and the external contour 
of the vessel (E): Tα = E – Lα (b and c). VasMorph then outputs the median, mean, standard deviation, minimum, and maximum of this set 
of vessel wall thicknesses. 
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Figure 6: Vessel wall thickness based on difference between internal and external radii. An image patch (a) centered onto an  
arteriolosclerotic blood vessel is input into the segmentation model of ArtSeg, which outputs the vessel wall and lumen segmentation (b). 
VasMorph measures the internal radius (Ri(θ)) and external radius (Re(θ)) of the vessel to calculate the sclerotic index (SIθ) at each degree 
angle over a full 360-degree rotation around the centroid34 of the lumen segmentation to obtain a set of thicknesses, where thickness at 
angle theta (Tθ) relative to the lumen center is defined as the difference between the external radius at theta (Re(θ)) and the internal radius 
at theta (Ri(θ)): Tθ = Re(θ) – Ri(θ) (b and c). VasMorph then outputs the median, mean, standard deviation, minimum, and maximum of this 
set of vessel wall thicknesses. 

Vessel wall area to lumen area ratio 

We calculated the vessel wall area to lumen 
area ratio by counting the number of pixels in the 
vessel wall segmentation and the lumen segmenta-
tion, then converting from pixels to µm2 using the 
conversion factor 0.0484 µm2 / pixel, where the 
length and height of each pixel is 0.220 µm, and  
finally dividing to obtain the ratio. By coincidence, 
the 62 vessels that fulfilled inclusion criteria were 
derived from UCD WSIs, which were scanned at 
0.220 µm per pixel. The setting for the length and 
height of each pixel may be adjusted to match the 
WSI resolution. 

Hardware 

All scripts and python 3 modules for this  
project were run on the compute environment  
provided by the Center for Artificial Intelligence in 
Diagnostic Medicine at UCI which includes a high-
end cluster of 88 NVIDIA GPU hardware accelerators 
composed of A100 (80 GB x16), A40 (40 GB x8), RTX 
Titan (24 GB x12), GTX Titan (16 GB x4), and GeForce 
RTX 2080 Ti (11 GB x48) graphics cards. WSIs and 
other data components were stored on a total  
of four CPU-optimized cluster nodes and three  
dedicated 0.24 PB file servers that are all inter- 

connected on a high-speed 25 Gbps local fiber optic 
network. 

Results 

Our internal hold-out test set contains WSIs 
from the same institutions (UCI and UCD) and anno-
tators (JJL, HPW, and KN) as WSIs used for model 
training and test internal deployment of ArtSeg. The 
external test set contains WSIs from a different in-
stitution (UCLA) and annnotator (VP) from WSIs 
used for model training and tests external deploy-
ment of ArtSeg. Hausdorff distance is converted 
from pixels to µm using a conversion factor of 0.220 
µm / pixel (Supplementary Table 1). 

Phase 1a: Detection of blood vessels on WSIs 
(ArtSeg) 

The initial blood vessel detection model serves 
as a preprocessing step, providing coarse segmenta-
tion to localize and center patches containing blood 
vessels. The marginally lower Dice score observed is 
consistent with the annotation quality at this stage 
and is adequate for the intended purpose of blood 
vessel detection. Fine segmentation is achieved at a 
later stage (Phase 1d) during the segmentation of 
arteriolosclerotic blood vessel walls and lumens. 
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Internal hold-out testing 

After converting the segmentation output of 
the model into classification confidence scores, the 
area under the receiver operating characteristic 
curve (AUC-ROC) of the model is 0.79 (Figure 7). The 
vessel detection segmentation model achieved a 
dice score of 0.56 and a Hausdorff distance of 0.56 
µm on the hold-out test (Table 1). 

External stress testing 

After converting the segmentation output of 
the model (obtained by running inferences on an  
external cohort) into classification confidence 
scores, the area under the receiver operating  
characteristic curve (AUC-ROC) of the model is 0.77 
(Figure 7). The vessel detection segmentation 

model achieved a dice score of 0.74 and a Hausdorff 
distance of 0.47 µm on the external test (Table 1). 

Phase 1b: Object of interest centering through  
recursive segmentation and boundary migration 
(ORCA) 

Segmentation CNNs such as U-Net operate 
most effectively when the object of interest (OI) is 
fully visible and not cropped. The process of WSI  
tiling occurs irrespective of the positions of OIs,  
frequently creating cropped OIs that appear on the 
edge of the tile (Figure 8). We hypothesized that 
cropping of blood vessels reduced segmentation 
performance and that centering tiles onto blood 
vessels would improve performance. 

 

Figure 7: ROC curves of hold-out and external tests for the vessel detection. As expected, the model performs slightly worse for the 
external test. Vessel detection model acts as a screening tool to quickly remove patches without vessels while retaining patches with 
vessels or objects suspicious of vessels. 

 

Figure 8: Results of vessel centering by ORCA. (a) WSI tiling generates tiles that often contain blood vessel(s) at the tile edge, with some 
vessel cropped (arrow). (b) ORCA generates new tiles with the detected blood vessel(s) located in the center. 
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Table 1: Results of vessel detection segmentation internal hold-out and external testing 

Dataset Dice score Hausdorff distance (µm) 

Hold-out 0.56 0.56 

External Test 0.74 0.47 

Table 2: Results of arteriolosclerosis classification 3-fold cross-validation 

K Specificity Sensitivity (recall) Precision Accuracy F1 AUC-ROC 

0 1.00 0.19 0.68 0.96 0.29 0.59 

1 0.95 0.52 0.23 0.94 0.32 0.73 

2 0.97 0.51 0.67 0.91 0.58 0.74 

Mean 0.97 0.37 0.47 0.94 0.38 0.68 

Table 3: Results of arteriolosclerosis classification internal hold-out and external testing 

Dataset Specificity Sensitivity (recall) Precision Accuracy F1 AUC-ROC 

Hold-out 0.856 0.89 0.13 0.86 0.23 0.87 

External Test 0.752 0.92 0.26 0.77 0.41 0.83 

 

To achieve OI centering, we designed a custom 
recursive algorithm – Object of Interest Recursive 
Centering Algorithm (ORCA) – wrapping our blood 
vessel identification neural network. From 16 WSIs, 
ORCA generated 401 tiles with arteriolosclerotic 
blood vessels and 7066 tiles with non-arterioloscle-
rotic blood vessels or without vessels. Arterioloscle-
rosis was defined using criteria proposed by  
Skrobot et al.8,10 Visualization of tiles demonstrated  
centering onto blood vessels (Figure 8). These  
vessel-centered tiles were utilized to train, validate, 
and test the arteriolosclerosis classification and  
arteriolosclerotic vessel segmentation ML models. 

Phase 1c: Arteriolosclerosis classification is  
feasible, albeit challenging (ArtSeg) 

3-fold cross validation 

For the classification of arteriolosclerosis, our 
model achieved a mean validation set performance 
of 0.94 accuracy and 0.68 AUC-ROC (Table 2). 

Internal hold-out testing 

Our internal hold-out test set, which was not 
seen by the model during training, consisted of 4 
cases from 2 participants, 1 each from UCD and UCI, 
respectively, labeled by novice annotators JJL, HPW, 
and KN, who also labeled the training data set. For 
the classification of arteriolosclerosis, our model 
achieved an accuracy of 0.86 and an AUC-ROC of 
0.87 (Table 3). 

External stress testing 

 Our external stress test set, which was not 
seen by the model during training, consisted of 2 
cases from 2 participants, both from UCLA, labeled 
by expert annotator VP, who did not label the train-
ing data set. For the classification of arteriolosclero-
sis, our model achieved an accuracy of 0.77 and an 
AUC-ROC of 0.83 (Table 3). 
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Phase 1d: Attention U-Net effectively  
segments the arteriolosclerotic vessel walls and  
lumen (ArtSeg) 

3-fold cross validation 

For the segmentation of vessel walls and lu-
mens (Figures 9–12), our model achieved a mean 
validation set performance of 0.68 Dice score, 1.68 
µm Hausdorff distance, and 0.90 AUC-ROC (Table 4). 
For the segmentation of vessel walls only, our model 
achieved validation set performance of 0.69 Dice 
score, 1.41 µm Hausdorff distance, and 0.86  
AUC-ROC (Table 5). For the segmentation of the  
vessel lumen only, our model achieved validation set 
performance of 0.63 Dice score, 0.99 µm Hausdorff 
distance, and 0.86 AUC-ROC (Table 6). 

Internal hold-out testing 

Our internal hold-out test set, which was not 
seen by the model during training, consisted of 4 
cases from 2 participants, 1 each from UCD and UCI, 
respectively, labeled by novice annotators JJL, HPW, 
and KN, who also labeled the training data set. For 
the segmentation of vessel walls and lumen, our 
model achieved a 0.73 Dice score, 1.52 µm 
Hausdorff distance, and 0.92 AUC-ROC (Table 7). For 
the segmentation of vessel walls only, our model 
achieved a 0.73 Dice score, 1.30 µm Hausdorff  
distance, and 0.88 AUC-ROC (Table 8). For the  
segmentation of the vessel lumen only, our model 
achieved a 0.71 Dice score, 0.88 µm Hausdorff  
distance, and 0.90 AUC-ROC (Table 9). 

Table 4: Results of arteriolosclerotic vessel segmentation 
3-fold cross-validation for vessel walls and lumens 

K Dice score Hausdorff distance (µm) 

0 0.72 1.56 

1 0.70 1.63 

2 0.63 1.87 

Mean 0.68 1.68 

Table 5: Results of arteriolosclerotic vessel segmentation 
3-fold cross-validation for vessel walls only 

K Dice score Hausdorff distance (µm) 

0 0.71 1.36 

1 0.71 1.34 

2 0.65 1.54 

Mean 0.69 1.41 

Table 6: Results of arteriolosclerotic vessel segmentation 
3-fold cross-validation for vessel lumen only 

K Dice score Hausdorff distance (µm) 

0 0.72 0.97 

1 0.63 0.95 

2 0.54 1.06 

Mean 0.63 0.99 

External stress testing 

Our external stress test set, which was not seen 
by the model during training, consisted of 2 cases 
from 2 participants, both from UCLA, labeled by 
expert annotator VP, who did not label the training 
data set. For the segmentation of vessel walls and 
lumen, our model achieved a 0.71 Dice score, 
1.72 µm Hausdorff distance, and 0.87 AUC-ROC  
(Table 7). For the segmentation of vessel walls only, 
our model achieved a 0.70 Dice score, 1.36 
Hausdorff distance, and 0.83 AUC-ROC (Table 8). For 
the segmentation of the vessel lumen only, our 
model achieved a 0.65 Dice score, 1.03 µm 
Hausdorff distance, and 0.80 AUC-ROC (Table 9). 

Phase 2: Vascular Morphometry (VasMorph) 

Sclerotic index calculation 

The mean and median of the sclerotic indices 
of 62 vessels in the test set calculated by VasMorph 
were 0.53 and 0.53, respectively. The standard devi-
ation of the sclerotic indices was 0.05. The minimum 
was 0.43 and the maximum was 0.60.  
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Vessel wall thickness 

The vessel wall thickness metrics (mean, me-
dian, standard deviation, minimum, and maximum) 
for the manual measurements, tangent line-based 
method, and radii-based method are outlined in  
Table 10. In this preliminary comparison of the two 
methods, the tangent line-based method  

appears to generate metrics with greater proximity 
to manual measurements. 

Vessel wall to lumen area ratio 

The mean vessel wall area, lumen area, and 
vessel wall to lumen area ratio of 62 vessels in the 
test set, calculated by VasMorph, were 84.79 µm2, 
286.8 µm2, 3.38 µm2, respectively. 

Table 7: Results of arteriolosclerotic vessel segmentation internal hold-out and external testing for vessel walls and lumens 

Dataset Dice score Hausdorff distance (µm) 

Hold-out 0.73 1.52 

External Test 0.71 1.72 

Table 8: Results of arteriolosclerotic vessel segmentation internal hold-out and external testing for vessel walls only 

Dataset Dice score Hausdorff distance (µm) 

Hold-out 0.73 1.30 

External Test 0.70 1.36 

Table 9: Results of arteriolosclerotic vessel segmentation internal hold-out and external testing for vessels' lumens only 

Dataset Dice score Hausdorff distance (µm) 

Hold-out 0.71 0.88 

External Test 0.65 1.03 

Table 10: Comparison of the tangent line-based method and the radii-based method to manual measurements 

Vessel Wall Thickness 
Metrics 

Manual 
Measurement 

Tangent Line-Based 
Method 

Radii-Based 
Method 

Mean 24.71 23.97 52.59 

Median 23.13 22.57 49.16 

Standard Deviation 8.37 6.89 12.97 

Minimum 17.00 14.41 36.74 

Maximum 35.60 45.38 80.31 
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Figure 9: Example segmentation results for blood vessels with mild arteriolosclerosis as classified by a neuropathology fellow (JL) and 
annotated by non-experts (KN, HSW, JL). Six example instances with input image, human annotation mask, model segmentation output, 
and an overlap image of input image and model segmentation are shown here. The blood vessels shown here were classified as having 
arteriolosclerosis by a human annotator. (a, b) Example instances of good model performance. (c, d) Example instances of intermediate 
model performance. (e, f) Example instances of poor model performance. 

 
Figure 10: Example segmentation results for blood vessels with moderate arteriolosclerosis as classified by a neuropathology fellow 
(JL) and annotated by non-experts (KN, HSW, JL). Six example instances with input image, human annotation mask, model segmentation 
output, and an overlap image of input image and model segmentation are shown here. The blood vessels shown here were classified as 
having arteriolosclerosis by a human annotator. (a, b) Example instances of good model performance. (c, d) Example instances of inter-
mediate model performance. (e, f) Example instances of poor model performance. 
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Figure 11: Example segmentation results for blood vessels with severe arteriolosclerosis as classified by a neuropathology fellow (JL) 
and annotated by non-experts (KN, HSW, JL). Six example instances with input image, human annotation mask, model segmentation 
output, and an overlap image of input image and model segmentation are shown here. The blood vessels shown here were classified as 
having arteriolosclerosis by a human annotator. (a, b) Example instances of good model performance. (c, d) Example instances of inter-
mediate model performance. (e, f) Example instances of poor model performance. 

 

Figure 12: Example segmentation results for challenging instances as classified by a neuropathology fellow (JL) and annotated by non-
experts (KN, HSW, JL). Six example instances with input image, human annotation mask, model segmentation output, and an overlap 
image of input image and model segmentation are shown here. The blood vessels shown here were classified as having arteriolosclerosis 
by a human annotator. (a) A corpora amylacea was mistaken for a vessel lumen by ArtSeg. (b) ArtSeg misidentified a non-arteriolosclerotic 
vessel as having arteriolosclerosis and a target for segmentation. (c) Conversely, a vessel with arteriolosclerosis is misidentified as a non-
arteriolosclerotic vessel and omitted for segmentation. (d) ArtSeg fails to identify moderate hyaline vessel wall thickening and lumen 
stenosis. (e) Image tiles with clusters of blood vessels present a particular challenge to ArtSeg and VasMorph. (f) Vessels within the lep-
tomeninges are mistakenly segmented by ArtSeg. 
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Discussion 

In this study, we present a novel proof of  
concept ML pipeline (ArtSeg) capable of automati-
cally detecting blood vessels, classifying blood  
vessels by presence or absence of arteriolosclerosis, 
and segmenting arteriolosclerotic blood vessel walls 
and lumens. Furthermore we introduce a wrapper 
algorithm (ORCA) that centers tiles onto objects of 
interest; and a custom algorithm (VasMorph) that 
calculates the sclerotic index, vessel wall thickness, 
and vessel wall to lumen area ratio from arteriolo-
sclerotic blood vessel segmentations. 

ArtSeg performs four sequential steps: (1) 
blood vessel detection, (2) blood vessel centering, 
(3) arteriolosclerosis classification, and (4) arteriolo-
sclerotic vessel segmentation (see Figure 2 for  
overview). First, we trained an Attention Unet-
based neural network to segment and identify blood 
vessels(s) within patches produced by WSI tiling. 
Second, patches containing non-centered blood  
vessel(s) are then fed into ORCA to produce new 
patches centered onto the detected blood vessel(s). 
Third, a binary classification model was trained to 
separate patches with arteriolosclerotic blood  
vessel(s) from those without. Fourth, we trained an 
ML model to segment walls and lumens of arteriolo-
sclerotic blood vessels. The segmentation outputs of 
ArtSeg are input into VasMorph to obtain the  
sclerotic index, vessel wall thickness, and vessel wall 
to lumen area ratio of each arteriolosclerotic blood 
vessel. 

As a component of ArtSeg, we developed 
 a novel object of interest recursive centering  
algorithm (ORCA), which may be applied to any  
object of interest and not just blood vessels. ORCA 
wraps a segmentation model, which may be  
customized to fit the target task. ORCA first inputs 
raw image tiles generated by WSI tiling into the  
segmentation model, which segments the object of 
interest. Based on this segmentation output, ORCA 
generates a new image patch with boundaries 
shifted such that the detected object of interest  
resides closer to the center of the tile. This process 
is repeated until the detected object of interest lies 
in the center of the final output tile (Figure 3). 

When building VasMorph, we encountered a 
dearth of literature on the mathematical definition 
of blood vessel wall thickness. We utilized the  
following definition: the distance between the inner 
boundary of the vessel endothelium and the outer 
boundary of the tunica adventitia along a line  
perpendicular to the wall’s “backbone” or minimum 
skeleton – the arc equidistant from the outer and  
inner wall boundaries, which equates to the sum of 
the widths of the endothelium, tunica intima, tunica 
media, and tunica adventitia.35 Because we cannot 
calculate the equation for the minimum skeleton, 
and local fluctuations make estimates of its slope 
unreliable, indirect methods to approximate the 
wall thickness have been described.35 While using 
the difference between the outer vessel radius and 
the inner vessel radius has been described, our 
method of finding the line perpendicular to a line 
tangent to each point along the lumen contour  
(tangent line-based method) has not been previ-
ously proposed to the best of our knowledge. In our 
preliminary study, we find that our tangent line-
based method produces metrics comparable to  
expert annotations. 

There are several notable areas for improve-
ment in VasMorph. First, the tangent line-based 
method for calculating vessel wall thickness  
mishandles lumens with highly convoluted and  
irregular contours (Figure 13). Second, the current 
version of VasMorph can only accept image tiles  
containing only one vessel. Image tiles with more 
than one vessel cannot yet be analyzed by 
VasMorph (Figure 14) because such image tiles  
Often contain multiple vessels with contiguous  
vessel walls. Finally, VasMorph currently does not 
correct for eccentricity of blood vessels due to the 
angle of sectioning through the vessel. 

The method to calculate vessel wall thickness 
using a tangent line tends to mishandle irregular  
lumens. Rare blood vessels with lumens that contain 
an involution in the lumen contour (Figure 13) pose 
a significant challenge to the current version of 
VasMorph. Because the thickness measurement line 
is extrapolated from the lumen contour, these  
involutions cause the thickness measurement line to 
point towards the lumen center and to traverse  
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Figure 13: Involutions in the lumen contour produce inaccurate thickness measurement lines when using the tangent line-based 
method. Because the thickness measurement line is extrapolated from the lumen contour, these involutions cause the thickness  
measurement line to point towards the lumen center and to traverse across it. 

 

Figure 14: Images with multiple contiguous vessels pose a particular challenge to the current version of VasMorph. ArtSeg is unable to 
discern the border between the two blood vessels. The sclerotic index calculation depends upon having the complete circumference of 
the blood vessel's external contour to serve as an outer bound for the external diameter. 
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across it (Figure 13). The simplest solution for future 
implementations of VasMorph would be to exclude 
any thickness measurement line that points towards 
the center of the lumen. 

VasMorph cannot process multi-vessel images 
because the segmentation output of ArtSeg does 
not currently distinguish between two blood vessels 
with contiguous vessel walls (Figure 14). ArtSeg is 
unable to discern the border between the two blood 
vessels. The sclerotic index calculation depends 
upon having the complete circumference of the 
blood vessel's external contour to serve as an outer 
bound for the external diameter. Similarly, both 
methods for calculating vessel wall thickness also  
require the complete circumference of the blood 
vessel external contour to serve as the outer bound 
for the external radius (radii-based method) and the 
thickness measurement line (tangent line-based 
method). Several solutions are possible: (1) teach 
ArtSeg to differentiate between two vessels with 
contiguous vessel walls by labeling each vessel as a 
separate object, or (2) exclude measurements that 
require external contour at the region of vessel wall 
contiguity. 

VasMorph may be improved by adding a  
correction for eccentric sectioning of blood vessels. 
A section through a cylindrical vessel at angle θ will 
result in an ellipsis with a short (ds) and long (dl)  
diameter. The ratio of ds and dl equals the cosine of 
θ, which can be used as a correction factor. The  
current version of VasMorph presented in this paper 
has yet to implement this type of correction. 

To the best of our knowledge, ArtSeg is the first 
open-source ML-based pipeline for the classification 
of arteriolosclerosis in blood vessels and the  
segmentation of arteriolosclerotic blood vessel walls 
and lumens in WSIs of the brain. ORCA is the first 
ML-based algorithm capable of generating image 
patches centered on objects of interest in human 
post-mortem brain tissue. And VasMorph is the  
first algorithm for automated calculation of  
sclerotic index, vessel wall thickness, and vessel  
wall to lumen area ratio using blood vessel  
segmentations. All three frameworks represent  
scalable prototype methodologies to achieve their 
respective goals and serve as blueprints for further 
refinement and improvement. Notably, ArtSeg is 

model-agnostic, meaning ML models contained 
within the algorithm may be replaced and  
updated as novel state-of-the-art architectures are  
discovered. 

Several caveats merit mention. First is the small 
sample size of only 13 participants included in this 
proof-of-concept study. Blood vessel morphology 
may vary from individual to individual, and scaling 
up ArtSeg will likely require further training with 
WSIs from hundreds to thousands of disparate  
participants. Although small, the external validation 
cohort offers preliminary support for the algorithm’s 
performance. These promising pilot results warrant 
further validation with larger cohorts and additional 
WSIs. We do want to acknowledge obtaining high-
quality annotated datasets is labor-intensive and 
time-consuming. Second, only three brain banks (UC 
Davis, UCI, and UCLA) within California were  
involved in this study, which may not represent the 
diversity of cerebrovascular pathology, staining 
methods, and slide digitization protocols seen  
in brain banks across the United States. More  
diverse datasets spanning multiple institutions will  
provide a more robust and generalizable ML-based  
algorithm. Third, all WSIs were derived from only 
two brain regions, the frontal lobe or the occipital 
lobe. We only examined blood vessels within the 
white matter. A broader sampling of brain regions 
will provide more representative datasets spanning 
the entire brain. Fourth, only 2 of the 13 participants 
in our cohort lacked arteriolosclerosis. The addition 
of more normal controls would strengthen the  
evaluation of the specificity and negative predictive 
value of the algorithm. Fifth, our preliminary testing 
of the two methods for vessel wall thickness  
calculation includes measurements made by a single 
neuropathologist; a robust test set would include 
multiple experts. Sixth, the current version of ArtSeg 
does not differentiate and is unable to discern the 
border between multiple contiguous blood vessels 
within the same image tile. This presents a signifi-
cant limitation when calculating the sclerotic index, 
vessel wall thickness, and vessel wall to lumen  
area ratio, which require accurate contours of each 
blood vessel wall and lumen within the analyzed im-
age tile. Seventh, we were only able to annotate 
each image tile once, and so we were unable to  
conduct a study on the inter-rater reliability of our 
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annotations. Eighth, we did not explicitly examine 
the internal elastic lamina to differentiate arterioles 
from venules, although we applied criteria from 
Skrobot et al.8,10 to define arteriolosclerosis and  
referenced Figure 3 in their paper as a guide for  
categorizing no, mild, moderate, and severe arteri-
olosclerosis. Our prototype algorithm analyzes only 
H&E-stained sections; the addition of protein-spe-
cific stains such as CD31 immunohistochemistry or 
Verhoeff–Van Gieson histochemistry may enhance 
visualization of specific vascular structures, includ-
ing endothelial cells and the internal elastic lamina. 
And lastly, the ML models contained within the  
current version of ArtSeg have not had hyperparam-
eters exhaustively optimized for peak performance. 
The prototype ArtSeg published here serves as a 
proof of concept to demonstrate the promising po-
tential of our method, which provides a scalable 
blueprint for further refinement. Furthermore, the 
blood vessel detection model currently uses an  
EfficientNetV2L-based Attention U-net, which may 
be computationally expensive in comparison to 
YOLOv7,36 one of the most computationally efficient 
and accurate object detection models for computer 
vision tasks. 

We specifically designed our training, internal 
hold-out, and external test sets to model real-world 
situations where the model may be deployed at an 
institution that did not contribute to its training  
dataset and evaluated by domain experts who did 
not participate in annotating the training dataset. 
The training and internal hold-out dataset consisted 
of WSIs from UCI and UCD labeled by annotators JJL, 
HPW, KN, whereas the external test set consisted of 
WSIs from UCLA annotated by attending neuropa-
thologist VP, who did not see images in the training 
dataset. Our study demonstrates that ArtSeg  
performs slightly worse when applied to an external 
institution and evaluated by an external domain  
expert, but overall exhibits considerable resilience 
to these variables. 

In the future, we anticipate collecting datasets 
from multiple sources annotated by multiple brain 
arteriolosclerosis experts to build a more robust and 
reliable ML pipeline. Another next step in algorithm 
validation would be to examine the correlation  
between the algorithm-derived sclerotic index and 

established semi-quantitative scales. Learning from 
our pilot experience, we will ask annotators to  
differentiate between multiple blood vessels within 
an image tile, especially contiguous vessels. We may 
validate our tangent line-based method of calculat-
ing vessel wall thickness through a more rigorous 
test set annotated by multiple brain arteriolo- 
sclerosis experts. ArtSeg may be further optimized 
by testing YOLOv7 for blood vessel detection as  
well as novel segmentation and classification  
architectures such as Segment Anything Model,37 
SegFormer,38 EfficientViT,39 or CoCa.40 Another  
consideration is to expand ArtSeg to distinguish  
arteriolosclerosis from cerebral amyloid angiopathy 
on H&E-stained slides. To improve the ML-based 
tool, we plan to incorporate a quality assurance  
'human-in-the-loop' step, allowing users to correct 
suboptimal segmentation outputs. We will assess  
its impact by comparing segmentation metrics  
before and after user supervision. During our label-
ing process, our annotators anecdotally observed 
subjectivity when applying the Skrobot et al.  
arteriolosclerosis criteria to vessels with mild  
arteriolosclerosis from those without, which war-
rants a dedicated follow-up study on the inter- or  
intra-rater variability of arteriolosclerosis classifica-
tion. Future versions of ArtSeg and VasMorph may  
potentially mitigate this variability by introducing 
quantitative thresholds – such as sclerotic index, 
vessel wall thickness, and vessel wall-to-lumen area 
ratio – to define arteriolosclerosis. Finally, we plan 
to combine ArtSeg with another ML pipeline that 
screens for microinfarcts41 to create a comprehen-
sive ML-based tool capable of analyzing the  
relationship between vascular morphology and  
microinfarcts. 

Conclusion 

Taken together, the present study demonstra-
tes a pilot ML approach to assist persons in the  
morphometrical analysis of blood vessels in histo-
pathological images. Our ML pipeline showed  
promising capabilities for inference on unseen WSIs 
from a disparate institution and annotator, which 
would be encountered in real-world deployment of 
such a tool. Within our pipeline, we present a  
generalizable novel algorithm capable of centering 
image tiles onto an object of interest. Furthermore, 
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we propose a novel method to calculate vessel wall 
thickness and present preliminary data showing this 
method agrees with human interpretations of vessel 
wall thickness. Our pipeline is flexible as the ML 
models contained in the pipeline can be updated as 
novel state-of-the-art architectures are discovered 
by the artificial intelligence community. Further-
more, our approach provides preliminary evidence 
that breaking a complex task into multiple steps, 
each addressed by a separate machine learning 
model, may be the optimal path for the segmenta-
tion of pathological features of interest. We hope 
this proof of concept inspires further work in this 
field. We provide the code and dataset for our  
pipeline openly available to the community (see 
Data Availability and Code Availability). 

Data availability 

All available data are located in Zenodo records 
listed within the GitHub repository (https:// 
github.com/jerryjlou/ArtSeg-VasMorph). All WSIs 
used in this study are available in their raw,  
de-identified form. Preprocessing, training, and 
evaluation can be carried out using the codes listed 
in this manuscript. 

Code availability 

All code for ArtSeg and VasMorph can be found 
in the GitHub repository (https:// github.com/ 
jerryjlou/ArtSeg-VasMorph), which contains the full 

end-to-end pipeline. No outside code is necessary to  
reproduce the study results. 
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