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Abstract 

Several advances in the field of neurodevelopmental diseases (NDDs) have been reported by 2022. Of course, 
NDDs comprise a diverse group of disorders, most of which with different aetiologies. However, owing to the 
development and consolidation of technological approaches, such as proteomics and RNA-sequencing, and to 
the improvement of brain organoids along with the introduction of artificial intelligence (AI) for biodata analysis, 
in 2022 new aetiological mechanisms for some NDDs have been proposed. Here, we present hints of some of 
these findings. For instance, centrioles regulate neuronal migration and could be behind the aetiology of 
periventricular heterotopia; also, the accumulation of misfolded proteins could explain the neurological effects 
in COVID-19 patients; and, autism spectrum disorders (ASD) could be the expression of altered cortical arealiza-
tion. We also cover other interesting aspects as the description of a new NDD characterized by deregulation of 
genes involved in stress granule (SG) assemblies, or the description of a newly discovered neural progenitor that 
explains the different phenotypes of tumours and cortical tubers in tuberous sclerosis complex (TSC) disease; 
and how it is possible to decipher the aetiology of sudden unexplained death in childhood (SUDC) or improve the 
diagnosis of cortical malformations using formalin-fixed paraffin-embedded samples. 
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Abbreviations 

AD – Alzheimer’s disease; ADHD - attention 
deficit/hyperactivity disorder; AI – artificial intelli-
gence; ASD - autism spectrum disorder; BCs – bal-
loon cells; CA – cornu ammonis; CD - cluster of dif-
ferentiation; CGE - caudal ganglionic eminence; CLIP 
- caudal late interneuron progenitor; CNS – central 
nervous system; DG – dentate gyrus; EGFR - epider-
mal growth factor receptor; EIF2 - Eukaryotic Initia-
tion Factor 2; FCD – focal cortical dysplasia; FFPE - 
formalin-fixed paraffin-embedded; FS - febrile sei-
zure; GCs - giant cells; GO – gene ontology; HAND – 
HIV-associated neurocognitive disorder; hCO - hu-
man cortical organoids; Het – heterozygous; HIV – 
human immunodeficiency virus; ID - intellectual dis-
ability; iPSCs - induced pluripotent stem cells; KO – 
knockout; LOH - loss of heterozygosity; MCDs – mal-
formations of cortical development; mTOR - mam-
malian target of rapamycin; NSC – neural stem cells; 
ORF – open reading frame; PH – periventricular het-
erotopia; PRPF6 - pre-mRNA processing factor 6; 
RNA-seq – RNA sequencing; SARS-CoV-2 - severe 
acute respiratory syndrome coronavirus 2; SGs - 
stress granules; SUDC - sudden unexplained death in 
childhood; SUDEP - sudden unexpected death in ep-
ilepsy; t-hCO – transplanted human cortical organ-
oids; TS – Timothy syndrome; TSC - tuberous sclero-
sis complex; WT - wild-type. 

Introduction 

For this new collection of the most relevant 
findings in neurodevelopmental disorders that ap-
peared in 2022, our selection tried to encompass a 
wide range of aspects that we think could be of in-
terest to neuropathologists. The topics chosen are: 

 Neurodevelopmental disorders and the proper 
space and time sequential events during brain 
neurodevelopment 

 Stress granule assemblies and neurodevelopmen-
tal disorders 

 CLIP, a newly discovered interneuron progenitor, 
explains the divergent phenotype in tuberous 
sclerosis complex disorder 

 Improving the diagnostic of malformations of cor-
tical development (MCDs) diseases by DNA meth-
ylation profile patterns 

 Deciphering the aetiology of sudden unexplained 
death in childhood (SUDC) by proteomics 

 Transcriptomic dysregulation in ASD occurs 
across the whole cerebral cortex and follows a re-
gional gradient 

 In vivo platform for the study of human neurode-
velopmental disorders 

 Mitochondria participate in the neuron-glia cross-
talk 

 Gaining insight on the role of HIV-1 in the CNS 

 Novel mechanisms explaining COVID-19 neuro-
logical anomalies 

Along these subject matters we aim to discuss 
advances in different NDDs, from brain malfor-
mations or classical neurodevelopmental conditions 
to more general aspects that a neuropathologist 
might face, such as paediatric neurological altera-
tions associated with COVID-19 or HIV-associated 
neurocognitive disorder (HAND) in children. We also 
selected relevant findings regarding how formalin-
fixed paraffin-embedded (FFPE) samples, the major 
form of stored brain samples, could be used for 
studying neurodevelopmental disorders, and how 
the use of artificial intelligence (AI) can improve the 
diagnosis of cortical malformations. Some of the se-
lected topics also provide new mechanistic insights, 
such as the newly discovered neural progenitor CLIP, 
which explains the divergent phenotypes in tuber-
ous sclerosis complex (TSC) pathology. 

Indeed, one of the most remarkable topics of 
2022, which has acquired increasing relevance in re-
cent years, is the importance of the spatial and tem-
poral regulation of brain development. The coordi-
nated and orchestrated series of cellular processes 
controlled by fine-tuned sets of genetic programs 
during neurodevelopment leads to immense cell di-
versity, with different features depending on their 
final fate, localisation, and properties distinctive 
from the cells from which they developed. Those 
cells will be part of circuits that are adjusted, read-
justed and refined by intrinsic and extrinsic signals 
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Figure 1. Schematic representation of some uses of human-derived organoids presented in this update. A) Cerebral organoids derived 
from iPSCs can be used for single-cell RNA-sequencing (scRNAseq) to determine expression patterns for the study of mechanisms driving 
neurodevelopmental disorders. Here presented in Neurodevelopmental diseases and the proper space and time sequential events during 
brain neurodevelopment; CLIP, a newly discovered interneuron progenitor, explains the divergent phenotype in tuberous sclerosis complex 
disorder; and in Transcriptomic dysregulation in ASD occurs across the whole cerebral cortex and follows a regional gradient. Also, cerebral 
organoids can be transplanted into a host brain circuit to study the functionality of human organoids, as introduced in the in vivo platform 
for the study of human neurodevelopmental diseases. B) New engineering organoids containing microglia have been developed last year 
to study novel mechanisms explaining COVID-19 neurological anomalies. 

 

(Rubenstein and Rakic, 1999; Miyata et al., 2010; 
Kwan et al., 2012; Greig et al., 2013; Wamsley et al., 
2018; Di Bella et al., 2021; Bonnefont and 
Vanderhaeghen, 2021) in a precise spatial-temporal 
manner. Within this choreographic arrangement, a 
single out-of-tune event in time or space may repre-
sent the inception of a neurodevelopmental patho-
logical condition. 

Finally, human-derived organoids continue to 
be a promising in vitro tool for modelling human 
physiological and pathological development (Figure 
1). In the last year, those systems gained popularity 
thanks to specific improvements in successfully 

modelling neurodevelopmental disorders, allowing 
the study of human neuronal function in an in vivo 
context. 

1. Neurodevelopmental diseases and 
the proper space and time sequential 
events during brain neurodevelop-
ment 

Although it has been suggested that out-of-
tune events at specific time points or specific brain 
regions are crucial for understanding neurodevelop-
mental pathological conditions, few examples have 
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established a concrete cellular process in which such 
time- and place-specific effects could be disentan-
gled. O’Neill et al. reported time-dependent dysreg-
ulation of the centrosome interactome at specific 
neuronal differentiation stages, which allowed stud-
ying the aetiology of neurodevelopmental diseases 
(O’Neill et al., 2022). Centrosomes, as anchor struc-
tures for the cell cytoskeleton, are involved in a 
number of cell functions, including mitosis and cell 
migration (Wilsch-Bräuninger and Huttner, 2021; 
Gönczy and Hatzopoulos, 2019; Vineethakumari and 
Lüders, 2022; Delgehyr et al., 2005; Piel et al., 2000). 
To prove their time-dependent hypothesis, the au-
thors derived neural stem cells (NSC) [15 days in cul-
ture], and differentiated neurons [40 days in cul-
ture] to forebrain identity, using human induced plu-
ripotent stem cell (iPSC) lines. At these two stages, 
mass spectrometry (MS) of centrosome-associated 
proteins revealed large cell type-specificity, with 
around 60% of the neural centrosome proteins not 
being detected in the centrosome of other cell 
types. Gene Ontology (GO) categorization indicated 
that, as expected, NSC centrosome-associated pro-
teins are richer in proteins related to cell division, 
microtubule organization, and RNA splicing; 
whereas in later stages, neuronal centrosome in-
teractors are related to cytoskeleton and RNA-inter-
acting proteins. Interestingly, the neural centro-
some interactome is particularly enriched in RNA-in-
teracting proteins compared with other cell types. 
By overlaying the interactomes with published da-
tasets of neurodevelopmental diseases with de novo 
variants (DNV) in autism spectrum disorder (ASD), 
periventricular heterotopia (PH), intellectual disabil-
ity (ID), epileptic encephalopathy (EE) and polymi-
crogyria (PMG), the authors detected a clear disease 
association of the neural centrosome interactome. 
In ASD, a pathological association was found for all 
datasets analysed, suggesting pan-cellular involve-
ment of centrosome proteins in its aetiology. In PH, 
the authors identified the enrichment of the micro-
tubule-anchoring pre-mRNA processing factor 6 
(PRPF6). PRPF6 is more abundant in the centrosome 
of NSCs than of neurons. Mutated PRFF6 recapitu-
lated PH heterotopias in the periventricular cortex 
of early mouse embryos, along altered mRNA splic-
ing, that affected the centrosome associated Brsk2 
(Brain-Selective Kinase 2) protein, involved in micro-
tubule dynamic regulation and neural migration 

(Barnes et al., 2007; Kishi et al., 2005; Nakanishi et 
al., 2019). 

Indeed, RNA dynamics play an important func-
tion during brain development (Raj and Blencowe, 
2015). Panagiotakos and Pasca, in a perspective 
manuscript in Neuron, remark how critical the mo-
ment and place of the events during brain develop-
ment is for neurodevelopmental pathologies 
(Panagiotakos and Pasca, 2022). As an example, the 
temporal expression pattern of the voltage-gated 
sodium channels Nav1.1, Nav1.2, and Nav1.3 
isoforms explains developmental brain malfor-
mations. Mutations in SCN3A, encoding for Nav1.3, 
which is elevated in immature progenitors and foe-
tal brain neurons, can lead to abnormal neuronal mi-
gration and subsequent polymicrogyria (Smith et al., 
2018). Instead, mutations in SCN1A and SCN2A en-
coding for Nav1.1 and Nav1.2, respectively (Beckh et 
al., 1989; Smith et al., 2018), which are elevated in 
postnatal neurons, are commonly related to infan-
tile epilepsies (Meisler and Kearney, 2005). Interest-
ingly, these protein isoforms also display specific 
cell-type enrichment during brain development. 
Parvalbumin (PV) cortical interneurons predomi-
nantly express Nav1.1 channels during early life (Yu 
et al., 2006), so that SCN1A loss of function leads to 
postnatal epilepsy, which disappears in adulthood 
(Favero et al., 2018). Thus, it is relevant to differen-
tiate the initial mechanism that triggers disease on-
set, from those contributing to chronic disease 
states. In fact, the individual variability of neuropa-
thology onset or affectation may depend on the mo-
ment or place the alteration occurs. Therefore, in 
addition to the proteomic and genetic information, 
understanding of neuropathology requires the un-
derstanding of cell-specific alterations, gene regula-
tory networks and protein interactomes and how 
they evolve and are regulated during the nervous 
system formation. 

2. Stress granule assemblies and 
neurodevelopmental disorders 

Stress granules (SGs) are dynamic cytoplas-
matic membrane-less compartments that assemble 
under a variety of stress conditions (Anderson and 
Kedersha, 2009; Jain et al., 2016). A large number of 
SGs components and regulators have been de-
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scribed (Jain et al., 2016; Markmiller et al., 2018; 
Yang et al., 2020), but the mechanistic dynamics of 
these assemblies are still unknown. Accumulated 
data indicates that these cytoplasmatic compart-
ments play important roles in the regulation of gene 
expression (Buchan et al., 2008; Arimoto et al., 
2008; Takahara and Maeda, 2012; Decker and Par-
ker, 2012; Yang et al., 2020). SGs are detected where 
there are considerable pools of untranslated mes-
sengers and ribonucleoprotein particles (RNPs) (pro-
tein-coding mRNAs and non-protein-coding RNAs, 
and RNA-binding proteins) to shut down translation 
(Guillén-Boixet et al., 2020). Thus, they seem critical 
for gene expression homeostasis (Martin and 
Ephrussi, 2009; Wang et al., 2019), playing then rel-
evant functions during brain development. 

Last year, Jia et al. reported a new NDD charac-
terized by alterations in SG formation (Jia et al., 
2022). They detected disruptive variants of UBAP2L, 
an essential regulator of SG formation (Youn et al., 
2018; Cirillo et al., 2020), in patients with speech-
language problems, ID, motor delay, seizure, and 
with less prevalence in patients with ADHD, ASD, re-
petitive and aggressive behaviour, and anxiety, but 
without a defined NDD. The patients also presented 
morphological features such as facial dysmor-
phisms, visual impairment, hypotonia and hand and 
foot abnormalities. Using skin fibroblast cell cultures 
from two patients, they showed reduced levels of 
UBAP2L and fewer SGs under stressful conditions. 
The authors validated these observations in a cell 
line (HeLa) knockout (KO) for UBAP2L. Transfection 
of these KO cells with the UBAP2L mutants detected 
in patients also led to a reduction in SGs formation. 
Further experiments in Ubap2l KO mice showed in-
creased mortality in embryonic stages and reduced 
brain size compared with wild-type (WT) Ubap2l+/+, 
and heterozygous (Het) Ubap2l+/- littermates. KO 
mice showed anomalous neocortex lamination and 
reduction in neuronal progenitor proliferation pos-
sibly linked to altered SG dynamics during cortical 
neurogenesis. Moreover, Ubap2l+/- animals showed 
impaired social novelty ability, abnormal spatial 
working memory, and more anxiety-like behaviour. 

All these data prompted the authors to analyse 
the enrichment of SG genes from published datasets 
of proteomics and high-throughput genome-wide 
screenings in curated NDD gene datasets, including 

from SFARI (Simons Foundation Autism Research In-
itiative) and DDG2P database (Development Disor-
der Genotype - Phenotype Database). They detected 
significant enrichment of SG genes, particularly SG 
core genes and RNA-binding proteins. They also ex-
amined specific SG genes that could be related to 
NDD from previously reported de novo mutations 
(DNMs), detecting 3410 variants in the coding re-
gions of 843 SG genes. The statistical analysis 
showed enrichment of SG genes that clustered ac-
cording to their network function, STRING database 
for protein-protein interaction (PPI), with some of 
the enriched genes that had not been previously im-
plicated in NDDs. Although previous works have ev-
idenced that stress conditions during embryonic 
stages increase the risk of NDDs (Kinney et al., 2008; 
Babenko et al., 2015; Fitzgerald et al., 2020; Chui et 
al., 2020), this is the first study to identify alterations 
in SG assemblies as a common neuropathological 
feature of NDDs with no defined aetiology. 

3. CLIP, a newly discovered interneu-
ron progenitor, explains the divergent 
phenotype in tuberous sclerosis com-
plex disorder 

Tuberous sclerosis complex (TSC) is a rare ge-
netic condition that causes benign tumours in differ-
ent parts of the body mainly the brain, kidneys, 
heart, skin, lungs and eyes. In the brain, TSC-associ-
ated lesions include subependymal tumours at the 
lateral ventricle and cortical dysplastic lesions, 
namely cortical tubers. Both aberrant structures 
contain, among other cell types, giant cells (GCs), 
which are the histopathological hallmark of the dis-
ease (Ruppe et al., 2014; Gelot and Represa, 2020; 
Henske et al., 2016). These cells feature a large and 
central nucleus with peripheral chromatin and a 
prominent nucleolus, and Nissl substance and neu-
rofibrils in the cytoplasm (Mizuguchi, 2007). The ab-
normally large size of GCs strongly indicates dysreg-
ulation of cell size control TSC (Mizuguchi, 2007). Pa-
tients often develop TSC-associated neuropsychiat-
ric disorders (TAND) which include ID, attention def-
icit/hyperactivity disorder (ADHD), aggressiveness, 
difficulties with communication and social interac-
tion (ASD), epilepsy, seizures and psychiatric condi-
tions (Thiele, 2010).
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Figure 2. Illustration depicting the mechanism described by Eichmüller et al., 2022. The left shows normal development when neither of 
the two copies of TSC1/2 have mutations. On the right, when one copy of TSC1/2 is mutated, CLIP cells become sensitive to mTOR levels, 
resulting in aberrant growth and expansion. CLIP neurons that migrate to the cortex develop into cortical tubers, and the remaining CLIP 
cells, through the participation of other additional alterations lose the other allele producing tumours. 

 

TSC is produced by the mutation of either TSC1 
or TSC2. These two genes encode for proteins that 
inhibit mTOR (mammalian target of rapamycin) sig-
nalling, which is the major regulator of cell growth. 
Loss of regulation of this signalling pathway leads to 
abnormal cell development and differentiation. Ex-
perimental data suggest that TSC is produced by a 
heterozygous germline mutation followed by so-
matic loss of heterozygosity (LOH) in the other allele, 
due to loss-of-function mutations (Crino, 2013; Feli-
ciano et al., 2011; Feliciano et al., 2012). However, 
patient tissue analyses show that LOH occurs only in 
tumours and not in dysplastic tubers (Henske et al., 
1996; Chan et al., 2004; Qin et al., 2010). Moreover, 
mouse models with LOH in either TSC1 or TSC2 can-
not recapitulate the full spectrum of brain aberra-
tions observed in patients. Last year, Eichmüller et 
al., solved the discrepancies owing to the discovery 

of a new interneuron progenitor (Eichmüller et al., 
2022). The authors found that cerebral organoids 
derived from patients with TSC2+/- reproduced both 
histopathological features using different culture 
conditions; that is, brain tumours when cultured in 
high-nutrient medium, and dysplastic cortical tubers 
when cultured in low-nutrient medium. The charac-
terization of the cellular composition by single-cell 
RNA-sequencing (scRNA-seq), along with exhaustive 
histological validation, allowed the authors to iden-
tify a specific interneuron progenitor population 
that gives rise to both the tumours and the cortical 
tuber lesions. Comparisons with human foetal brain 
data revealed that this interneuron progenitor is 
first detected in the caudal ganglionic eminence 
(CGE) during late mid-gestation, with manifest ex-
pansion and migration during late gestation. Given 
their origin and embryonic stage, the authors called 
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these interneuron progenitor cells CLIP, for “caudal 
late interneuron progenitor”. CLIP cells seem to be 
particularly sensitive to mTOR levels, being dis-
turbed upon loss of one copy of TSC1/2, which re-
sulted in the over-proliferation of these progenitor 
cells. The authors determined that the tubers are 
generated from migrated CLIP interneurons while 
the tumours grow in the CGE as a consequence of an 
additional aberration in the second allele, most 
probably produced by the over-proliferation of 
these CLIP cells and the contribution of other factors 
or cell types (Figure 2). Thus, although derived from 
the same altered progenitor CLIP, tuber cells do not 
show LOH as a mechanism of action, while the tu-
mour cells do show LOH. 

The manuscript shows how the same progeni-
tor cell type diverges into two histopathological dif-
ferential phenotypes. It also shows that CLIP cells 
depend on epidermal growth factor receptor (EGFR) 
signalling, and that the inhibition of EGFR regressed 
the organoid tumours, providing an alternative 
treatment therapy for this pathology. An interesting 
aspect of this manuscript is that the disease mecha-
nism described is human-specific. Indeed, human 
brain development encompasses the generation 
and/or expansion of cell types deriving large and gy-
rated cortices, which do not occur in small lissence-
phalic brains such as the rodent brain cortex. Even 
postnatally there is extensive migration of interneu-
rons from the CGE into the cortex in humans 
(Paredes et al., 2016; Hansen et al., 2013; Hodge et 
al., 2019), but not in mice (Raju et al., 2018). The use 
of human organoids was key for this discovery. How-
ever, although human organoids are a powerful 
model system, this technology is still in its infancy. 
For example, the current lack of standardized proto-
cols implies important variability among organoids 
from the same patient, which intrinsically puts the 
results in uncertainty. Thus, further studies are nec-
essary to validate CLIP cells and their functions. 

4. Improving the diagnostic of malfor-
mations of cortical development 
(MCDs) diseases by DNA methylation 
patterns 

Malformations of cortical development (MCDs) 
comprise various neurodevelopmental disorders 
that are a major cause of epilepsy (Leventer et al., 
1999), and medically stubborn childhood seizures 
(Kuzniecky, 1995). MCDs can be classified into three 
groups depending on their likely origin. In group I, 
derived from abnormal cell proliferation or apopto-
sis, there are hemi-megalencephaly, microcephaly, 
megalencephaly, and focal cortical dysplasia; in 
group II, related to abnormal cell migration, we find 
tubulinopathies, lissencephalies and heterotopies; 
and in group III polymicrogyria is produced by abnor-
mal post-migrational development (Desikan and 
Barkovich, 2016). This heterogeneity of causes and 
phenotypic presentations with a broad range of 
symptomatology including cognitive deficits, ID, and 
ASD (Barkovich et al., 2012; Guerrini and Dobyns, 
2014), challenges neuropathologists in providing an 
accurate diagnosis and, consequently, an on-target 
prognosis and management of the affectation. As 
such, biomarkers to identify the type of MCD more 
precisely are a growing subject of research. How-
ever, biomarkers are available only for focal cortical 
dysplasia (FCD) type II (D’Gama et al., 2015; Jansen 
et al., 2015; D’Gama et al., 2017; Baldassari et al., 
2019) and mild malformations of cortical develop-
ment with oligodendroglial hyperplasia (MOGHE) 
(Schurr et al., 2017; Bonduelle et al., 2021). 

Currently, the diagnosis of MCD pathologies is 
based only on histopathological criteria providing, 
generally, an imprecise diagnosis. As an example, in 
the case of FCD type II, two forms have been de-
scribed - FCDIIA and FCDIIB - (Blümcke et al., 2011), 
which differ in that only FCDIIB contains balloon cells 
(BCs). BCs are enlarged cytoplasm cells that resem-
ble gemistocytic astrocytes displaying multiple or 
convoluted nuclei without prominent nucleoli (Mi-
zuguchi, 2007). However, BCs histologically are very 
alike to GCs observed in TSC. FCDIIB and TSC are 
both pathologies associated with dysregulation of 
the mTOR pathway and display comparable histo-
pathological features, particularly FCDIIB and the 
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cortical tubers, which suggests a closely related 
origin, although they are clearly different neuropa-
thological entities (Taylor et al., 1971; Lee et al., 
2022). 

In an attempt to improve the diagnosis of MCD 
pathologies, Jabari et al. assayed a potential strategy 
based on DNA methylation (Jabari et al., 2022). DNA 
methylation can be a reliable biomarker because it 
is preserved and, therefore, can be detected in ar-
chival human brains stored in FFPE (Sahm et al., 
2017; Capper et al., 2018; Wefers et al., 2020). 
Moreover, the methylome manifests a combination 
of both the somatically acquired DNA methylation 
alterations, and the molecular memory marks in re-
sponse to environmental or pathogenic cues 
(Kobow and Blümcke, 2012; Kobow et al., 2013; 
Kiese et al., 2017; Kobow et al., 2019; Kobow et al., 
2020). Furthermore, DNA methylation profile is 
widely used to classify CNS tumours because of its 
reproducibility and sensitivity even in small samples 
(Sahm et al., 2017; Capper et al., 2018). Thus, the 
purpose of this study was to find DNA methylation 
patterns to accurately classify the different histo-
pathological entities. The authors used surgical sam-
ples from patients with MCD and with a confirmed 

histopathological classification included 265 sam-
ples across all age groups and sex that demonstrated 
different pathological levels of the 12 major sub-
types of MCD along with different controls. The au-
thors performed a genome-wide DNA methylation 
assay to correlate the DNA methylation patterns 
with the histopathological classification. They used 
three different approaches: pairwise comparison, 
machine learning, and deep learning algorithms. The 
deep learning algorithm allowed for the most accu-
rate discrimination providing a rationalized classifi-
cation of the pathologies. Then, they analysed the 
precision of the DNA methylation-based MCD classi-
fication using a new cohort from different epilepsy 
centres. This test cohort contained 43 surgical FFPE 
samples, among which some previously underwent 
multiple rounds of histopathological evaluation 
from expert neuropathologists because of the diffi-
culty of their classification. Using the algorithm, the 
authors were able to accurately classify all samples 
from the test cohort. Figure 3 depicts the flowchart 
the authors followed. Thus, they demonstrate that 
DNA methylation-based MCD classification is suita-
ble across major histopathological entities and could 
be used to establish an integrated diagnostic classi-
fication scheme for MCD neuropathology.

 

Figure 3. Flowchart of the process. Top, generation of the algorithm by artificial intelligence (AI) of the correlation of the DNA methylation 
profiles obtained from FFPE samples with confirmed histopathological MCDs classification. Bottom, validation of the algorithm to classify 
MCDs based on DNA methylation using a new set of FFPE samples. 
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5. Deciphering the aetiology of sudden 
unexplained death in childhood 
(SUDC) by proteomics 

Sudden unexplained death in childhood (SUDC) 
refers to the unexplainable death of children over 1 
year of age. It is called unexplained because, after a 
complete review of the clinical history and the au-
topsy including toxicologic, genetic, metabolic and 
microbiology analyses, to cite some of the comple-
mentary studies, the cause of death is not deter-
mined. Although the causes may be diverse, genetic 
variants are likely to be prone to SUDC risk (Crandal 
et al., 2020; Halvorsen et al., 2021; Harowitz et al., 
2021; Holm et al., 2012; Narula et al., 2015). For ex-
ample, among SUDC cases, there is a high preva-
lence of individual or familial febrile seizure (FS) his-
tory (Hefti et al., 2016; Hesdorffer et al., 2015; 
McGuone et al., 2020). SUDC shares some patholog-
ical similarities with sudden unexpected death in ep-
ilepsy (SUDEP) (Devinsky et al., 2016; Kinney et al., 
2016), suggesting that they may share some coinci-
dent mechanisms that result in premature death. 
Similar to SUDC, the causes of SUDEP may also be 
diverse including genetic risk factors. Since both 
pathological conditions show abnormalities in the 
hippocampus and cortex (Ackerman et al., 2016; 
Kinney et al., 2016; Kon et al., 2020; McGuone et al., 
2020), these brain regions, particularly the hippo-
campus, have attracted most SUDC studies. How-
ever, no conclusive results are available to date 
(Leitner et al., 2022a; Roy et al., 2020). In this sce-
nario, Leitner et al., have defined differential protein 
abundance in several brain areas of SUDC cases (19 
cases), including the frontal cortex, hippocampal 
dentate gyrus (DG), and cornu ammonis (CA1-3). 
The study compared cases with and without febrile 
seizure history (SUDC-FS and SUDC-noFS) and with-
out febrile seizure with control cases (n = 19) 
matched by age, sex, brain weight and post-mortem 
interval (Leitner et al., 2022b). 

The authors micro-dissected the aforemen-
tioned brain regions from autopsy FFPE tissue to 
perform label-free quantitative proteomic analyses. 
The proteomic analyses revealed no differential hip-
pocampal neuropathology between SUDC-FC and 
SUDC-noFC. Instead, principal component analysis 
(PCA) revealed a significant separation between 

SUDC and controls in the frontal cortex, but not re-
garding FS history. Differential protein abundance 
analysis showed significant differences between 
SUDC and control cases in 660 proteins of the frontal 
cortex, while only 170 in the DG and 57 in CA1-3. 
Pathway analysis revealed 238 signalling pathways 
in the frontal cortex, mainly involved in the activa-
tion of oxidative phosphorylation, inhibition of EIF2 
(Eukaryotic Initiation Factor 2) signalling, and gluta-
mate receptor signalling. In the DG, they mainly 
found pathways involving activation of the acute 
phase response and inhibition of reelin signalling, 
while in hippocampal CA1-3, the only involved sig-
nalling pathway was in the acute phase response as-
sociated with cellular stress response (Liu and Qian, 
2014; Brace et al., 2016; Leitner et al., 2022b). The 
fact that they detected protein overlap in more than 
one signalling pathway supports the involvement of 
these signalling pathways. The authors also used 
weighted gene correlation network analysis 
(WGCNA) to correlate the proteomic results with 
the clinical history. In the frontal cortex there were 
common affected enriched signaling pathways in 
SUDC and SUDEP, some of which showed oppository 
effects in SUDC and SUDEP (e.g., oxidative phos-
phorylation and EIF2 signalling), while other proteo-
mic pathways were similar(e.g., mitochondrial en-
zyme COX6B1). 

As a corollary, besides the relevant information 
provided, one of the most remarkable findings is 
that while the frontal cortex is not a studied region 
in SUDC, it showed the most altered proteomic 
changes. Hence, the authors put forward the rele-
vance of the frontal cortex in this condition and the 
necessity of performing studies in this region to de-
tect possible neuropathological signs associated 
with SUDC to reduce and prevent the risk of this con-
dition. 

6. Transcriptomic dysregulation in 
ASD occurs across the whole cerebral 
cortex and follows a regional gradient 

ASD is a prototypical example of neuropathol-
ogy in which a definitive aetiology has not yet been 
determined. In the last years, comprehensive omics 
assessments have been conducted to determine risk 
genes (de la Torre-Ubieta et al., 2016) or differential 
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patterns of splicing or gene isoform expression in 
ASD (Wu et al., 2016; Sun et al., 2016; Gandal et al., 
2018). Despite the heterogeneity of factors that 
drive to ASD pathology, molecular profiling studies 
have found consistent patterns of transcriptomic 
and epigenetic dysregulation (Ramaswami et al., 
2020), involving upregulation of astrocytes, micro-
glia, and neural immune genes; and downregulation 
of synaptic, neurite morphogenesis, and neuronal 
energy pathway genes accompanied by attenuation 
of gene-expression gradients in cortical association 
regions (Voineagu et al., 2011; Wu et al., 2016; Parik-
shak et al., 2016; Gandal et al., 2018). 

The work of Gandal et al. explores whether 
these alterations are more widespread throughout 
the cortex and proposes that ASD pathology is the 
physiological manifestation of altered cortical areal-
ization (Gandal et al., 2022). To support this hypoth-
esis, they did bulk RNA-sequencing (RNA-seq) analy-
sis to identify altered genes and alternative spliced 
gene isoforms. They used threefold more samples 
than previous works (Voineagu et al., 2011; Parik-
shak et al., 2016), analysing 725 post-mortem brain 
samples spanning 11 cortical areas from 112 individ-
uals of both sexes and with ages ranging from 2 to 
68, totalling 49 subjects with idiopathic ASD and 54 
neurotypical controls. They found transcriptomic 
changes across the cortex of ASD patients with an 
anterior-to-posterior gradient, with the most re-
markable differences in the primary visual cortex. In 
agreement with previous reports (Walker et al., 
2019), the greater differential expression detected 
was related to alternative splicing and differential 
isoform expression. Thus, their findings indicate that 
molecular alterations, mainly in alternative splicing 
and isoform expression, in ASD transcriptome ex-
tend beyond the associative cortex to broadly in-
volve primary sensory regions. This may explain the 
altered sensory processing observed in individuals 
with ASD. An interesting aspect is that the differ-
ences in gene expression that account for demarcat-
ing the different cortical regions, because they de-
fine the cytoarchitecture, connectivity, and function 
of a particular region, were attenuated in ASD. This 
indicates that the cortical regions in ASD patients are 
molecularly more homogeneous, and therefore, less 
differentiated and specialised. Again, this attenu-
ated expression followed a gradient pattern, which 

was more particularly affected in the posterior re-
gions such as the primary visual cortex. The authors 
also determined whether the transcriptomic 
changes detected were reflected in the cell-specific 
type gene expression. By sn-RNA-seq and methyla-
tion profiles, they determined a substantial differen-
tial expression profile in excitatory neuron classes 
and glia cells, once more, with a regional gradient 
more prominent in occipital and parietal cell types 
than in prefrontal cortex (PFC). This reiterative re-
gional gradient may reflect a reminiscence of the 
buildout of the cortical cytoarchitecture, i.e., its pat-
terning and connectivity, which depend on both cell 
intrinsic factors genetic and epigenetic regulatory 
programmes, and extrinsic signals, –such as mor-
phogen gradients (Cadwell et al., 2019). The data 
suggests that this process is altered in ASD, indicat-
ing an early developmental alteration in cortical are-
alization, affecting local neuronal circuits, synaptic 
homeostasis, and leading to the ASD manifestations. 

7. In vivo platform for understanding 
the neuropathology of human neuro-
developmental diseases 

Some years ago, several studies showed that it 
was possible to transplant human neurons into the 
rodent cortex that were able to establish connec-
tions with the rodent cells (Espuny-Camacho et al., 
2013; Mansour et al., 2018; Real et al., 2018; Linaro 
et al., 2019; Kitahara et al., 2020; Xiong et al., 2021), 
thus providing an in vivo platform to study human 
developmental disorders. Although the hope was 
that those tools would allow uncovering circuit-level 
phenotypes from patient-derived cells and test ther-
apeutic strategies, they had some problems. Part of 
those have now been solved in the work of Revah et 
al. (Revah et al., 2022). To facilitate integration of 
the transplant they transplanted 3D human cortical 
organoids (hCO) into the somatosensory cortex of 
immunodeficient rats, at early postnatal stage, in 
which corticocortical and thalamocortical innerva-
tion have not yet been completed, thus minimising 
the endogenous circuitry alteration (Kichula and 
Huntley, 2008). The novelty of this work is thus that 
they transplanted intact organoids, rather than a 
dissociated cell suspension; and at very early post-
natal stages, rather than in adult rats. This strategy 
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al-lows better synaptic and axonal integration of the 
human cells. Hence, the transplanted hCOs (t-hCO) 
displayed more mature properties compared to not 
transplanted same-age hCOs. The t-hCO showed 
vascularization and the presence of microglia. 
SnRNA-seq revealed the canonical expression pat-
tern of major cortical cell classes, even though t-hCO 
did not present anatomical lamination. Trans-
planted neurons showed a more mature morpho-
logical phenotype, i.e., larger somas, more den-
drites, larger processes, and higher dendritic spine 
density, and more mature electrophysiological 
properties. The authors traced t-hCO innervation 
with retrograde rabies showing integration of t-hCO 
neurons in the rat brain's circuitry. Fibre photome-
try, two-photon calcium imaging, electrophysiology, 
and sensory stimuli by deflecting the rat’s whiskers 
revealed the functionality of the integration, as t-
hCO stimulation evoked response in rat neurons in-
dicating functional innervation. Finally, by in vivo 
optogenetics they showed that activation of t-hCO 
could modify the rats’ behavioural response. The au-
thors used this system for studying Timothy Syn-
drome (TS), a severe genetic disorder caused by the 
mutation in the L-type voltage-sensitive calcium 
channel CaV1.2 (Ebert and Greenberg, 2013). They 
compared the evolution of t-hCO derived from con-
trol individuals and patients with TS with their non-
transplanted counterparts (hCO). TS t-hCO neurons 
showed altered dendritic morphology with an ex-
tensive number of primary dendrites but with an 
overall reduction in the mean and total dendritic 
size. Also, these neurons displayed increased synap-
tic spine density that impaired their electrophysio-
logical properties. These phenotypes could only be 
detected in TS t-hCO but not in non-transplanted or-
ganoids with the same differentiation stage, thus in-
dicating that organoid transplantation allowed for 
better recapitulation of the disease phenotype that 
was elusive in non-transplanted organoids. 

8. Mitochondria participate in the 
neuron-glia crosstalk 

Mitochondria play crucial roles in the regula-
tion of cellular energy and metabolism; therefore, it 
is not surprising that this organelle is involved in all 
developmental stages with important functions in 

neuronal differentiation. For this reason, several mi-
tochondrial disorders present an abnormal neuronal 
and neurological development (Son and Han, 2018). 
Mitochondrial dysfunction has been widely associ-
ated with neurological and psychiatric diseases such 
as schizophrenia, bipolar depression, ASD and Rett 
syndrome (Son and Han, 2018). One example is 
Leigh syndrome, which is caused by a mutation in 
mitochondrial DNA, leading to dysfunctional mito-
chondrial complexes. The disorder usually manifests 
within the first year of life and leads to rapid degen-
eration of physical and mental abilities, ultimately 
leading to death within 2-3 years (Murphy and Craig, 
1975). 

However, this close relationship between the 
mitochondria and the CNS is not only applicable to 
neurons. In fact, it is astrocytic’ mitochondria that 
support neuronal development and function. In 
cases of neuronal damage, such as in brain ischemia, 
astrocytes release functional mitochondria into the 
extracellular medium via a mechanism that involves 
the activation of the cluster of differentiation 38 
(CD38) and cyclic adenosine diphosphate (ADP)-ri-
bose signalling (Hayakawa et al., 2016; English et al., 
2020). This process facilitates neuronal recovery. At 
the same time, damaged neurons expel damaged 
mitochondria, which are in turn absorbed by the sur-
rounding astrocytes to be recycled. In a paper pub-
lished last year, Gao et al. showed that the release 
of mitochondria might function as a signalling ele-
ment between neurons and glial cells (Gao et al., 
2022). They also proved that, under physiological 
conditions, neurons release mitochondria into the 
extracellular medium. Then, they tested different 
pathological conditions in vitro, such as acidosis, hy-
drogen peroxide or high levels of NMDA (N-methyl 
D-aspartate) or glutamate, simulating brain ische-
mia. They detected a significant increase in the num-
ber of released damaged mitochondria by the neu-
rons (Gao et al., 2022), and proved that astrocytes 
uptake these mitochondria and trigger the rescuing 
response. Hence, they speculate that, under stress 
conditions, mitochondria could serve as a “help-me” 
signal. If replicated, this discovery would represent 
a huge step forward in understanding the mecha-
nisms behind neuronal stress response that could 
shed light on common neurodevelopmental/neuro-
degenerative disorders. 
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9. Gaining insight on the role of HIV-1 
in the CNS 

Since its discovery, the human immunodefi-
ciency virus (HIV) has been associated with several 
neurological conditions. HIV-1 infection has long 
been known to have an impact on the nervous sys-
tem, culminating in HIV-associated neurocognitive 
disorder (HAND) (Clifford and Ances, 2013), as the 
brain, along with the bone marrow, is known to be a 
reservoir for the virus. An interesting aspect is how 
HIV-1 infection affects neurodevelopment. In the 
era of antiretroviral therapy (ART), this question 
translates to how maternal infection affects off-
spring development. Properly treated mothers give 
birth to uninfected children in almost 99% of cases 
(Wedderburn et al., 2022). However, HIV-exposed 
children generally show a slower development of 
some neurological functions. In particular, a poorer 
expressive language and gross motor function com-
pared to their HIV-unexposed counterparts (Wed-
derburn et al., 2022). However, the mechanisms un-
derlying this phaenomenon remain unclear. One hy-
pothesis states that the virus could directly affect 
the development of the foetus, while other re-
searchers think that it is the chronic systemic inflam-
mation of the mother due to the infection what 
could affect the offspring. However, research has 
been hindered by the lack of a satisfactory model, 
owing to the complexity derived from the involve-
ment of both the nervous and immune systems. For 
this reason, researchers have long been searching 
for a novel model to study this phenomenon. Brain 
organoids, in fact, could provide an insight on neu-
ronal development and in recent years, protocols for 
microglia-containing brain organoids have been de-
veloped, hence allowing for this technology to be 
applied to HIV research field (Ormel et al., 2018). To 
prove so, a study in 2022 by Gumbs et al. showed 
that the cluster of differentiation 4 (CD4) and Cyste-
ine-Cysteine chemokine receptor 5 (CCR5)– express-
ing microglia were susceptible to HIV-1 infection in 
a human brain organoid model (Gumbs et al., 2022). 
They tested this infection model on both microglia-
containing organoids and organoid-derived micro-
glia (oMG), with positive results in both cases. Albeit 
the obvious limitations of the organoid model, the 
results of this study represent a significant advance-
ment in the HIV research field, as these organoids 

could help elucidate the mechanisms behind the ef-
fects of the virus on the brain and test novel thera-
pies. 

10. Novel mechanisms explaining 
COVID-19 neurological anomalies 

The severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) pandemic has had a huge im-
pact on everyone's lives, causing millions of deaths 
worldwide and changing perpetually our society. 
Although the disease was initially known to be haz-
ardous to the respiratory system, soon several 
comorbidities with long-lasting effects were associ-
ated with the virus. It was soon discovered that the 
infection could lead to several significant neurologi-
cal complications (Chen et al., 2022). These effects 
vary largely from patient to patient, depending on 
factors such as age, weight, health status and pre-
existing conditions. However, both short- and long-
lasting neurological effects have been reported in all 
populations, from children to adults. 

Regarding the effects of COVID-19 on children, 
we should distinguish between the effects due to 
the pandemic and those due to the direct effects of 
the virus. A meta-analysis study by Hessami et al. 
highlighted that infants born or raised during the 
pandemic showed a higher rate of communication 
impairment than the pre-pandemic cohort (Hessami 
et al., 2022). Given the nature of the study and the 
lack of other significant neurodevelopmental im-
pairments in the general paediatric population, we 
can speculate that this communication impairment 
was an effect of the lack of social stimuli because of 
the lockdown rather than the virus itself. 

However, the direct neurological conse-
quences of COVID-19 infection have also been re-
ported in both children and adults. These effects 
range from temporary anosmia and ageusia to 
memory loss, meningitis, stroke, and neurodegener-
ation (Ledford, 2022). Data on the possible long-
term neurological effects of SARS-CoV-2 coronavirus 
are inconclusive. Several studies have found associ-
ations with Alzheimer’s disease (AD) risk, cardiovas-
cular damage, or neurological sequelae. An analysis 
in the UK found a slight overall reduction of grey 
matter in the brains of recovered individuals. Also, 
that the virus infects brain support cells and induces 
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inflammation similar to Parkinson’s or AD, and that 
severe COVID-19 causes detectable brain ageing 
(Douaud et al., 2022). Despite the significant 
amount of research conducted on and the neuro-
tropic nature of the virus, the molecular mecha-
nisms linking COVID-19 to these neurological symp-
toms are still unclear. A study published in 2022 by 
Charnley et al. showed that some viral open reading 
frame (ORF) proteins can assemble into amyloid-like 
aggregates and cause neurotoxicity (Charnley et al., 
2022). Using an algorithm, they pinpointed two 
short regions of ORF6 and ORF10 as those responsi-
ble for the assembly. They then tested the peptides 
corresponding to these regions and showed that 
they self-assembles into amyloid-like structures. Fi-
nally, these peptides were tested on neuroblastoma 
SH-SY5Y cells, proving to be neurotoxic (Charnley et 
al., 2022). We can presume that some of the neuro-
logical consequences of a COVID-19 infection not 
only share symptomatology with some common 
neurodegenerative disorders (e.g., AD), but also 
share an accumulated misfolding protein-driven 
pathogenesis. It will be now important to test these 
mechanisms during development. 
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