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Supplementary file 1 

Materials and methods 

Conventional neuropathological examination 

Brain tissue samples were fixed postmortem with 10% formaldehyde and embedded in paraffin. Ten-μm-
thick sections from the frontal, temporal, parietal, occipital, insular, and cingulate cortices, hippocampus, 
amygdala, basal ganglia, midbrain, pons, medulla oblongata, and cerebellum were prepared. In some cases, spi-
nal cord tissue was not obtained at autopsy. These sections were stained with hematoxylin-eosin, Klüver-Barrera, 
Gallyas silver, and modified Bielschowsky silver stains. 

Immunohistochemistry 

Six-μm-thick paraffin sections were immunostained by the immunoperoxidase method using 3, 3’-diamino-
benzidine tetrahydrochloride. Antibodies used were against tau phosphorylated at Ser 202 (AT8, mouse, mono-
clonal, 1:1000, Innogenetics, Ghent, Belgium), three repeat (3R) tau (RD3, mouse, monoclonal, 1:2000, Millipore, 
Temecula, CA, USA), 4R tau (anti-4R tau, rabbit, polyclonal, 1:2000, Cosmo Bio Co., Tokyo, Japan), phosphorylated 
TDP-43 (pS409/410-2, rabbit, polyclonal, 1:5000, Cosmo Bio), TDP-43 (10782-2-AP, rabbit, polyclonal, 1:2000, 
Proteintech, Rosemont, IL, USA), FUS (HPA008784, rabbit, polyclonal, 1:200, Sigma-Aldrich, St. Louis, MO, USA), 
phosphorylated neurofilament (SMI31, mouse, monoclonal, 1:1000, Sternberger, Lutherville, MD, USA), N-ter-
minus of p62 protein (p62-N, pig, 1:100, Progen Biotechnik GmbH, Heidelberg, Germany), C-terminus of p62 
protein (p62-C, guinea pig, polyclonal, 1:500, Progen Biotechnik GmbH), Aβ (11-28) (12B2, mouse, monoclonal, 
1:100, IBL, Fujioka, Fujioka, Japan), and phosphorylated α-synuclein (pSyn#64, mouse, monoclonal, 1:5000, Wako 
Co. Ltd., Osaka, Japan).  

Deparaffinized sections were incubated with 1% H2O2 in methanol for 20 min to eliminate endogenous 
peroxidase activity in the tissue. Sections were washed in phosphate-buffered saline (PBS, pH 7.4). After blocking 
with 10% normal serum, sections were incubated overnight at 4°C with one of the primary antibodies in 0.05 M 
Tris-HCl buffer, pH 7.2, containing 0.1% Tween and 15 mM NaN3. When using AT8, p62-N, p62-C, pSyn#64, 
pS409/410-2, 10782-2-AP, HPA008784, and SMI31, sections were autoclaved for 10 min in 10 mM sodium citrate 
buffer at 121°C for antigen retrieval. When using 12B2, RD3, and 4R-tau, sections were autoclaved for 10 min in 
10 mM sodium citrate buffer at 121°C and treated with 70% formic acid for 10 min. After three 10-min washes 
in PBS, sections were incubated in biotinylated anti-rabbit or anti-mouse or anti-pig secondary antibody for 1 h, 
and then in avidin-biotinylated horseradish peroxidase complex (ABC Elite kit, Vector, Burlingame, CA) for 1 h. 
The peroxidase labeling was visualized with diaminobenzidine-nickel as the chromogen. 

Pathological diagnoses and semiquantitative assessment of granular fuzzy astrocytes (GFAs) 

The Braak neurofibrillary stage [1,2], Braak pretangle stage [3], Thal Aβ phase [4], the Consortium to Estab-
lish a Registry for Alzheimer's Disease (CERAD) neuritic plaque score [5], Alzheimer's Disease (AD) [6], primary 
age-related tauopathy (PART) [7], Lewy body disease [8], Braak Parkinson’s disease stage [9], Saito argyrophilic 
grain disease (AGD) stage [10], progressive supranuclear palsy (PSP) [11], corticobasal degeneration (CBD) [12], 
TAR DNA-binding protein 43 (TDP-43) pathology histological subtype and distribution [13–17], limbic-predomi-
nant age-related TDP-43 encephalopathy (LATE) neuropathologic change stage [18], and tau-positive astrocytic 
lesions (tufted astrocytes, astrocytic plaques, and granular fuzzy astrocytes (GFAs)) [19] were evaluated in all 
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subjects using established criteria, respectively. The diagnoses of PSP [11] and CBD[12] were routinely deter-
mined except when regions of interest were not available. 

Double staining by Gallyas method and AT8 immunohistochemistry 

To examine whether argyrophilic grains occur in association with GFAs, double staining using the Gallyas 
method and AT8 immunohistochemistry was done in representative AGD cases. Sections were first stained by 
the Gallyas method, followed by immunostaining with AT8. The peroxidase labeling was visualized with Vector 
Blue Alkaline Phosphatase Substrate (Vector Laboratories, Inc.) as the chromogen. Sections were lightly counter-
stained with hematoxylin. 

Statistical analysis 

The Mann-Whitney U test was used to compare the variables between two groups. Kruskal-Wallis and Steel-
Dwass tests were used when comparing the ordinal variables and continuous variables between four groups (i.e., 
amygdala GFA stage 0, stage 1, stage 2, and stage 3 groups). When comparing the categorical variables between 
the four groups, chi-square (χ2) tests and residual analyses were used. Spearman rankorder correlation analysis 
was applied to determine correlations between two variables. Binomial logistic regression analysis was used to 
assess the effects of predictor variables (age at death, Braak stage, Thal phase, frontal lobe GFA stage, caudate 
nucleus GFA stage, putamen GFA stage, or amygdala GFA stage) on the occurrence of AGD. The effects were 
described as odds ratios and 95% confidence interval (CI). A P value <0.05 was accepted as significant. Statistical 
analysis was performed using Bell Curve for Excel 2.15 (Social Survey Research Information Co., Ltd., Tokyo, Ja-
pan). 
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Supplementary file 2 

Table 2. Pathological features in our case series after stratification by amygdala GFAs and AGD 

 Status of amygdala GFAs and AGD  

 Amygdala GFA-/AGD- Amygdala GFA+/AGD- Amygdala GFA+/AGD+ P valuea) 

N [female (%)] 127 (39.3) 72 (29.0) 40 (44.7) 0.1844b) 

Age at death (y, mean ± SD) 65.2±14.8 72.7±9.8 78.6±8.6 <0.001c) 

Brain weight (g, mean ± SD) 1,187.5±227.3 1,223.0±174.7 1,168.5±165.1 0.3855d) 

Braak NFT stage     

 Median (25-75th percentiles) 2 (1-5) 2 (2-3) 2 (2-4) 0.1186d) 

Thal phase     

 Median (25-75th percentiles) 1 (0-4) 1 (0-3) 1 (0-3) 0.7960d) 

LBD     

 Diffuse neocortical type [N (%)] 9 (7.1) 7 (9.7) 2 (5.0)  

 Limbic type [N (%)] 9 (7.1) 3 (4.2) 4 (10.0)  

 Brain stem-predominant type [N (%)] 3 (2.4) 9 (12.5) 2 (5.0)  

 Amygdala-predominant type [N (%)] 6 (4.7) 0 (0.0) 0 (0.0)  

 Olfactory Lewy bodies only [N (%)] 0 (0.0) 1 (1.4) 0 (0.0)  

 All LBD cases [N (%)] 27 (21.3) 20 (27.8) 8 (20.0) 0.0510e) 

TDP-43 proteinopathy     

 LATE-NC stage 3 [N (%)] 0 (0.0) 0 (0.0) 0 (0.0)  

 LATE-NC stage 2 [N (%)] 14 (11.0) 5 (6.9) 3 (7.7)  

 LATE-NC stage 1 [N (%)] 4 (3.1) 3 (4.2) 3 (7.7)  

 All LATE-NC cases [N (%)] 18 (14.2) 8 (11.1) 6 (15.4) 0.7870e) 

 ALS-TDP cases [N (%)] 23 (18.1) 11 (15.3) 6 (15.4) 0.8317e) 

 FTLD-TDP cases [N (%)] 4 (3.1) 2 (2.8) 0 (0.0) 0.5318e) 

GFA (N, GFA stage)     

 Frontal cortex [N (%)] 6 (4.7) 18 (25.0)  22 (55.5)  

  [Median (25-75th percen-

tiles)] 

0 (0-0) 0 (0-0.5) 1 (0-1) <0.001f) 

 Caudate nucleus [N (%)] 10 (7.9) 12 (16.7) 19 (47.5)  

  [Median (25-75th percen-

tiles)] 

0 (0-0) 0 (0-0) 0 (0-1) <0.001g) 

 Putamen [N (%)] 18 (14.2) 11 (15.3)  22 (55.0)  

  [Median (25-75th percen-

tiles)] 

0 (0-0) 0 (0-0) 1 (0-1) <0.001h) 

 Amygdala [N (%)] 0 (0.0) 72 (100.0)  40 (100.0)  

  [Median (25-75th percen-

tiles)] 

0 (0-0) 1 (1-1) 2 (1-3) <0.0001i) 

GFA: granular fuzzy astrocyte, AGD: argyrophilic grain disease, N: number of cases, NFT: neurofibrillary tangles, LBD: Lewy body disease, 
LATE-NC: Limbic-predominant age-related TDP-43 encephalopathy neuropathological change, ALS-TDP: amyotrophic lateral sclerosis with 
TDP-43-positive inclusions, FTLD-TDP: frontotemporal lobar degeneration with TDP-43-positive inclusions. a) All data except for the amyg-
dala GFA data were compared between the three groups. The amygdala GFA stage was compared between amygdala GFA+/AGD- and 
amygdala GFA+/AGD+ groups. b) The sex ratio was not significantly different between the three groups (chi-square (χ2) test). c) The age 
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at death in the amygdala GFA-/AGD- group was significantly lower than those in amygdala GFA+/AGD- and amygdala GFA+/AGD groups 
(p<0.001, respectively), and the age at death in the amygdala GFA+/AGD- group was significantly lower than that in the amygdala 
GFA+/AGD+ group (p=0.0035) (Kruskal-Wallis and Steel-Dwass tests). d) The brain weight, Braak stage, and Thal phase did not significantly 
differ between the three groups, respectively (Kruskal-Wallis test). e) The proportions of all LBD, all LATE, ALS-TDP, and FTLD-TDP cases 
did not significantly differ between the three groups (χ2 test). f) The frontal lobe GFA stage in the amygdala GFA+/AGD+ group was 
significantly higher than those in the amygdala GFA+/AGD- and amygdala GFA-/AGD- groups (p=0.0030 and <0.0001, respectively, Kruskal-
Wallis and Steel-Dwass tests), and the frontal lobe GFA stage in an amygdala GFA+/AGD- group was significantly higher than that in the 
amygdala GFA-/AGD- group (p<0.0001, respectively, Kruskal-Wallis and Steel-Dwass tests). g) The caudate nucleus GFA stage in the amyg-
dala GFA+/AGD+ group was significantly higher than those in the amygdala GFA+/AGD- and amygdala GFA-/AGD- groups (p=0.0016 and 
<0.001, respectively, Kruskal-Wallis and Steel-Dwass tests). h) The putamen GFA stage in the amygdala GFA+/AGD+ group was significantly 
higher than those in the other two groups (p<0.0001, respectively, Kruskal-Wallis and Steel-Dwass tests). i) The amygdala GFA stage in 
the amygdala GFA+/AGD+ group was significantly higher than that in the amygdala GFA+/AGD- group (p<0.0001, Mann-Whitney U test). 
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