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Abstract

In recent years, Raman spectroscopy has been more and more frequently applied to address research questi-
ons in neuroscience. As a non-destructive technique based on inelastic scattering of photons, it can be used for
a wide spectrum of applications including neurooncological tumor diagnostics or analysis of misfolded protein
aggregates involved in neurodegenerative diseases. Progress in the technical development of this method al-
lows for an increasingly detailed analysis of biological samples and may therefore open new fields of applicati-
ons. The goal of our review is to provide an introduction into Raman scattering, its practical usage and also
commonly associated pitfalls. Furthermore, intraoperative assessment of tumor recurrence using Raman based
histology images as well as the search for non-invasive ways of diagnosis in neurodegenerative diseases are
discussed. Some of the applications mentioned here may serve as a basis and possibly set the course for a fu-
ture use of the technique in clinical practice. Covering a broad range of content, this overview can serve not
only as a quick and accessible reference tool but also provide more in-depth information on a specific subtopic
of interest.
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Introduction

As one special method of various vibrational
spectroscopic techniques, Raman spectroscopy
(RS) has been an integral part in neuroscience re-
search for some time now, be it in neuro-oncology
for tumor classification? or for the biochemical des-
cription of various protein aggregates in neurode-
generative diseases2. Currently it is making its way
towards a clinical implementation3. Looking at the
numerous advantages of RS, the reasons for an in-
creased use in research are obvious: it enables fast
and user-friendly (easy to apply) analysis for the
purpose of tissue identification (e.g., identification
of different brain regions in three mice strains?) by
observed changes in the vibrational level of the un-
derlying biochemical and molecular composition.
Compared to other advanced molecular techni-
qgues, reproducible results can be obtained with
few requirements regarding sample preparation.
The insensitivity to water molecules predestines
the technology for its use in a biomedical context.

To date, the vast majority of studies using Ra-
man spectroscopy examine unprocessed native, or
frozen tissue/cells - few publications make use of
formalin-fixed or paraffin-embedded (FFPE) tissue
because Raman measurements remain challenging
due to the strong contribution of paraffin wax to
spectral intensity, thin specimens, and a disruption
of the molecular integrity, which is related to the
preceding fixation process. The long-term archiva-
bility and the large number of available samples,
however, suggest use of RS FFPE tissue in patholo-
gy is desirable, e.g., for the analysis of tumor hete-
rogeneity, or identification of very small tumor
fragments, which could escape diagnostic high
throughput of histology samples. The following re-
view and perspective paper is divided into three
parts: a) the basics of RS and the most common
forms of its application in medical research are
presented, b) the use of RS in selected neuros-
cience disciplines is accentuated with the aim to
present different research questions — but even
more importantly — the most interesting findings
discovered with the help of RS, c) a future outlook
for potential application of RS in research but also
in the daily clinical work is provided. At this point,
the minireview by Payne et al.> needs to be men-
tioned; it describes in a clear way not only applica-
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tions of RS in neuroscience, but also sets a special
focus on the technical aspects and benefits of ad-
vanced spectroscopy-based techniques depending
on the particular use case.

By contrast, the following work places a speci-
al emphasis on topics that will inevitably become
relevant to the practicing spectroscopist at some
point, such as varying tissue sample requirements
in different clinical settings (surgery department/
pathology department) or common data proces-
sing methods, to name a few. Whenever it serves
expedient the attentive reader shall be referred to
additional more in-depth reading.

Search for relevant literature

A literature search (the search terms
“Raman”, “Raman spectroscopy” were each
combined alternately with the terms “brain”,
“neuro”, “neuroscience”, “brain tumor”, “tumor”,
“neurooncology”, “glioma”, “neurodegeneration”,
“neurodegenerative disease”, “Alzheimer’s
disease”, “Parkinson’s disease”, “Huntington”,
“amyotrophic lateral sclerosis”, “prion disease”,
"multiple sclerosis”, “myelin”, “demyelination”,
“stroke” “brain ischemia”, “brain injury”, “muscular
diseases”, “brain infections”, “meningitis”,
“psychiatry”) was performed, and online databases
PubMed Central® and Google Scholar® were
browsed for relevant reviews and original articles;
other types of literature, such as congress papers,
letters, comments e.g., were excluded. After search
results were identified, they were hand-screened
for eligibility (inclusion criteria: employment of RS
on brain/peripheral nervous/muscle tissue, RS on
extracellular components/cells of the nervous/
muscular system, or RS in relation to neurological/
oncological/psychological  disorders;  exclusion
criteria:  use of vibrational spectroscopic
techniques other than RS) based on title/abstract.
Within the responsibility of the authors, the final
selection of literature was conducted based on the
article full text. Finally, associated bibliographies of
selected publications were searched for additional
relevant sources that semantically met the search
criteria. Only English language literature was
considered — even though Japanese research
groups describe an employment of Raman
spectroscopy in rat brains, and human brains /
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brain tumors as early as the 90s%°. Although
references to historical developments are pointed
out whenever a contemplation of the historical
context seemed valuable special focus is set on
literature of the years 2021 and 2022, reflecting
ongoing research projects/groups - such as
spectroscopical examination of microglial changes
due to SARS-Cov-2 exposurel® - using RS in
neuroscience.

Principle of Raman scattering and ge-
neral spectrometer set up

The Raman effect is the process of inelastic
scattering of photons; this effect was first descri-
bed in 1928 by C.V. Raman, who examined the cha-
racteristics of scattered photons when applying a
light source on different liquids®.12, For his discove-
ry, the Indian physicist won the Nobel prize in
193013, but despite the discovery of the Raman
effect in the first half of the 21st century, it took un-
til late 1960s before it was first used in a biomedi-
cal context4-17,
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Figure 1. Occurring optical phenomena when irradiating a
biological sample with a photon source (laser).

Left: Vibrational states (v, v,, Vv,) involved in Rayleigh and
Raman scattering. In case of elastic scattering (Raleigh
scattering), incoming photons temporarily change the
vibrational state of a molecule - after this excitation, the
molecule returns back to the initial vibrational state (v,). In the
case of Stokes Raman scattering, a molecule gains energy due
to the excitation process and finally ends up in a higher
vibrational state (it rises from v, to v;) — the scattered photon
has lower energy than the incident light. In Anti-Stokes
scattering the molecule ends up on a lower vibrational state
after excitation compared to the ground state (it falls from v, to
v,) — therefore, the scattered photon gains energy.

Right: In contrast, the phenomenon of fluorescence occurs
when a molecule absorbs light and thus is temporarily
transferred to a higher electronic state (v'o, v';, V'5).
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The interaction of incident light with a mole-
cule leads to changes in the vibrational state, so
that the molecule falls into an excited virtual vibra-
tional state. When returning to the ground state,
the largest amount of the incident photons is ela-
stically scattered, which means that the energy of
the scattered photon is the same as that of the in-
cident photon (=Rayleigh scattering). Only a minor
part of the scattered light experiences a change in
its energy compared to the incident light; in fact
when the molecule ends up on a different state in
comparison to the ground state, the photon is in-
elastically scattered. Depending on the interaction
between the molecule and the photon, inelastically
scattered light can have a higher energy (anti-Sto-
kes effect) or a lower energy (Stokes effect) than
the incident light, whereas in practical application
mainly Stokes scatter is attributed to a resulting Ra-
man signal, due to its higher intensity.l® See
Figure 1 for a visualization of the vibrational states
transitions.

In order to be Raman-active as a molecule,
i.e., to emit inelastic Raman scattering, a change in
polarizability is required - this already shows a
difference to a related and often confused spec-
troscopic technique, infrared spectroscopy, in
which an absorbed photon leads to a change in the
dipole moment®. Another phenomenon, also ba-
sed on absorption and often observable as a dis-
ruptive factor in Raman measurements due to its
stronger signal is fluorescence; here the molecule,
excited by energy of absorbed photons, leaves the
ground electronic state and is transferred to a hig-
her electronic state - as soon as it returns to the
ground state, energy is re-emitted as fluorescence
light20,

The interaction of photons with their target
molecules resulting in an inelastic Raman scatte-
ring with a distinct energy difference reflects speci-
fic chemical bonds and constitutions. This spectral
fingerprint can indicate the identity of the target
molecule. A spectrum can therefore be defined as
a representation of the intensity values (based on
the degree of change in polarizability) and the
differing frequencies (Raman shift) in a functi-
on1820, The x-axis displays the Raman shift in the
unit wavenumber cm-l, thereby the wavenumber is
reciprocal to the wavelength and thus directly pro-
portional to photon energy?®. The conventional ex-
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perimental application of the process using the pu-
re Raman effect is so the called Spontaneous Ra-
man Scattering (SpRS). Additionally, there are
several derivative methods allowing, for example,
scattering with enhanced signal intensity or redu-
ced background noise, thus lending themselves to
different applications such as Raman Imaging (e.g.,
by coherent Raman spectroscopy). Table 1 gives an
overview of the technical background and advanta-
ges of commonly used variants of RS in neuros-
cience. For a more detailed insight into the
theoretical aspects of RS the interested reader may
refer to Cialla-May et al.?!, who provides a compre-
hensive overview in the book “Micro-Raman Spec-
troscopy: Theory and Application” by Popp et al.22.
Additionally, Hu et al.23, Shi et al.2* and Evans et al.
25 give a good overview about stimulated Raman
spectroscopy (SRS) and coherent anti-Stokes Ra-
man scattering (CARS); Zheng et al.26 wrote an in-
structive review about surface-enhanced Raman
scattering (SERS).

laser / excitation source '

rrayleigh

\ scattering diffraction

i (filtered out) grating

. CCD detector /
photographic plate

backscattered
photons

dichroic mirror

focus and collecting lens

optical data display and

biological sample processing / analysis

Figure 2. Schematic and simplified representation of a Raman
spectrometer set up.

The exact structure of a Raman spectrometer
differs depending on the manufacturer and the
technology used. Only general components and
their function are discussed below; additional com-
ponents such as an additional laser or a special Ra-
man substrate are commonly required in
spectrometer setups of advanced Raman techni-
ques (Table 1). With a focus lens, emitted photons
of a laser source are focused on the sample, and
after interaction with the sample both the elastic
and the inelastic scattered photons are collected
by a collecting lens. The reflected and elastically
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scattered light is then separated from the remai-
ning light, typically by a dichroic mirror. A prism or
diffraction grating spatially separates the light ac-
cording to wavelength, leading it to a detection
system - a photo paper was employed in the
classical setup - either simultaneously on a charge-
coupled device (CCD) or through a monochromator
on a photomultiplier tube (PMT) (Figure 2).

As excitation source, typically lasers, is used
where the manner of photon generation as well as
the wavelength differ. Commonly employed excita-
tion wavelengths within the biomedical field are
532nm, 785nm, 830nm, or 1064nm - for practical
application specific effects on the tissue type of in-
terest as well as potentially induced background si-
gnals must be considered individually and adapted
according to the experimental setup?’. Most em-
ployed lasers nowadays are diode lasers; with the
advantage of portability and favorable energy effi-
ciency, they have replaced the gas-based lasers
(helium neon laser, argon-ion laser) that were
often used in the past. The type of proton emission
can be divided into continuous-wave lasers and
pulsed lasers; the former being more common in
SpRS and the latter being necessary in SRS1828, |t is
necessary to bundle photons both in the suitable
focus on the sample (focus lens) and to collect the
scattered photons (collecting lens) after interaction
with the sample. Next, Raleigh scattered photons
are filtered by a dichroic mirror and separated ac-
cording to their wavelength using a diffraction gra-
ting; depending on the sampling aperture (exit slits/
pinholes) within the setup, a certain number of
photons are detected in a final step by the sensiti-
ve detection system. While the classical “scanning
spectrometer” employs a rotatable grid concen-
trating the photons on a narrow exit slit and a pho-
tomultiplier tube behind detecting RS, modern set
ups usually use a CCD detector. This multichannel
way of photon detection (a multichannel array chip
consisting of several pixels) allows for simultaneous
registration and display of all photons, i.e., the
whole Raman spectrald2829, Regular wavelength
calibration (process of transferring pixel hits on the
CCD detector to distinct displayed wavenumbers) is
recommended to receive reproducible spectra over
the entire duration of the experiment28.
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electronic transition of the examined sample, and
energy for transition to a higher state is gained
thereby.

technique background information characteristics
Spontaneous When irradiating a sample with a laser/pump - user friendly
Raman beam, (most commonly a diode laser with - inexpensive application
Spectroscopy continuous signaling), changes in the vibrational - weak signal
(SpRS)17:20:91,476 mode of a molecule lead to a loss (=Stokes effect) | - strong background

or a gain of the energy of the inelastically scattered | - long acquisition time

photons (=anti-Stokes effect). Elastically scattered

photons, which make up the largest part, have the

same energy as that of the laser source (= Rayleigh

scattering) and are filtered out.
Resonance Enhancement of Raman intensity values up to six - influenced by occurring
Raman scattering | orders in extent due to a “resonance effect” which fluorescence
(RRS)17:28477 occurs when the laser frequency coincides with an

Surface enhanced
Raman
spectroscopy
(SERS)20,23,4734181

By placing the sample on a metallic nanostructure
(preferably gold/silver), the Raman signal can be
amplified by up to 10°-10%°. This enhancement
arises from two components, which are both
involved to different degrees; firstly, an
electromagnetic enhancement (incoming photons
induce an excitation of surface plasmons and
therefore an enhanced electric field) and secondly,
a chemical enhancement (contact of substrate and
sample modifies the polarizability of the sample).

- long sample pre-processing

- need for suitable substrates,

- strong Raman signals

- reproducibility impaired by
variability of nanoparticles,

- possible interactions of sample
with metal substrate e.g.,
metal-protein interaction.

Tip-enhanced

As a technique based on SERS (electromagnetic

- three-dimensional resolution

485

them is commonly pulsed), which allows
enhancement of the Stoke signal once the laser
frequencies are set in a certain correspondence to
the frequency of molecular vibration. More
precisely: The difference in the laser frequencies
need to match the difference between two
vibrational states and an enhancement of
inelastically scattered photons can be detected.

Raman and chemical enhancement), the combination with | - high resolution analysis

spectroscopy a scanning probe microscope (for example atomic (Raman signal enhancement)

(TERS)20:28:44,259 force microscope) allows not only for imaging but | - interference of specific Raman
also enhancement of Raman scattering via a bands (e.g., Amid band ) with
metallic tip focusing the laser on the substrate. electric field

Stimulated Multiphoton technique consisting of two lasers (a - spectra occurs just in case of

Raman scattering | usual pump beam and a Stokes beam — due to an the coincidence with a

(SRS)17:20:2391:482= | anhanced efficiency in nonlinear optics one of vibrational state

- high intensity values

- negligible no resonant
background noise

- fast data acquisition even in
living systems

- large experimental setup

Coherent anti-
Stokes Raman
scattering
(CARs)l'/,ZO,Q 1,486,487

Another well-established multiphoton technique,
that includes (mostly) two lasers, pump bean and
Stokes beam. Photon illumination on the sample is
used to excite it to a virtual vibration level. By
returning to the ground state, the enhanced anti-
Stokes effect is measured and Raman peaks not
dependent on the laser frequency occur.

- high intensity

- high quality imaging,

- nonresonant background may
affect signals

Table 1. Summary of commonly used Raman techniques, their physical background and the associated
advantages and disadvantages.
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Raman spectra can be employed in various
ways. In addition to the possibility of using them as
raw spectra primarily for the identification of bio-
chemical components of a sample, methods called
Raman microscopy/imaging use the assignment of
colors to Raman bands (only a limited number of
wavenumbers is acquired or analyzed)3® over a
scanned sample to generate contrast. When exten-
ded to focusing through the depth of the sample,
three-dimensional Raman images can be built1é.
Raman microscopy/imaging techniques3132 and
computational image generation algorithms have
been advanced to generate Raman images of va-
rious brain pathologies, e.g., gliomas, stroke and
demyelination?> or to image metabolism in the
brain33-35, Using this approach of data visualization,
it is possible to obtain a similar look to traditional
H&E-stained slides on unstained specimen, which
enables histopathological diagnosis3¢. In Raman
mapping, the whole Raman spectrum for each
point of the desired area of the specimen is acqui-
red (either point by point or with an excitation la-
ser forming a line on the sample and measuring
simultaneously); using computational analysis
afterwards, a visualization of differences in the
spectral properties of data points is achieved3°.

Peak assignment

Raman peaks may occur at first sight in va-
rious forms with different characteristics. In additi-
on to certain single peaks that appear narrow and
can be assigned to exactly one corresponding func-
tional group, an additive effect of several adjacent
Raman active molecules in the sample can also re-
sult in broad peaks. Furthermore, the presence of
several contributing components, and thus neigh-
bor dependent changes in the vibrational mode in
one specimen, may affect the actual peak in com-
parison to an isolated measurement20. The applica-
tion of RS in the biomedical context often pays
special attention of the regions within the wave-
numbers 400-2000cm and 2700-3500cm1. These
regions, often referred to as "biological fingerprint
regions" in the literature, are characterized by a
high proportion of Raman peaks arriving from
functional groups of a typical biological speci-
men28. An introduction to the use of RS for identifi-
cation of different molecular functional groups can
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be found in Pezzotti et al.37 (RS and cell biology) ,
Czamara et al.38 (RS and lipids), Rygula et al.3® (RS
and proteins) and Wiercigroch et al.4% (RS and car-
bohydrates).

By using RS on biomolecules such as proteins,
it is not only possible to identify molecular functio-
nal groups i.e., differentiate between different ami-
no acids/proteins, but also spatial confirmations
can be detected since the Raman signal is influ-
enced by aromatic/non-aromatic side chains and
the backbone of a protein. Distinct vibrations result
in certain amide bands (Amide band A, B, I-VII)*;
for example carbonyl stretching modes, N-H ben-
ding or C—N stretching results in the widely used
Amid | (1600-1690 cm-1), Amid Il (1480-1580 cm-1)
and Amid Il peaks (1230-1300 cm-1). They allow
further examination of the peptide secondary
structure. In larger unordered protein measure-
ments a precise peak attribution may not be possi-
ble due its large number of contributors1839.42-44,

Lipids are ubiquitous in biological specimen,
as they form the membranes of cells and organel-
les. Depending on the literature, spectral proper-
ties resulting mainly from the hydrocarbon chain
and partly from the polar head group can be assi-
gned to the regions 1050-1200cm (C-C stret-
ching), 1250-1300cm-! and 1400-1600cm-! (CH,,
CH; group activity) or also to the regions below
600cm! and between 1000-1150 cm (opposite
motion of carbon atoms of the hydrocarbon chain).
Consistently, an area within the high wavenumber
region 2700-3500cm-? (sometimes solely the range
between 2800-3100cm is considered in the litera-
ture) is reported and attributed in a large part to
stretching of C-H groups. In-depth analyzes of peak
intensity and distribution in the high wavenumber
region allow conclusions to be drawn about the sa-
turation status of fatty acids and the aliphatic/aro-
matic components of steroids!8384546.  An
interesting contribution at this point may come
from Krafft et al.45, who in 2005 measured and cha-
racterized twelve brain lipids and further related
occurring peaks to their functional groups and Pez-
zotti et al.4’, who employed RS to visualize single
(phospho-)lipids in neuronal cells.

Carbohydrates and underlying C-C and C-H
structures give rise to bonds in various areas within
the Raman spectrum?®. For a long time, minor
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attention was paid to the investigation of carbohy-
drates. Although specific peak assignment is possi-
ble, in comparison to protein and lipids it remains
less specific40.

About 30 Raman peaks of nucleotides, distri-
buted over several areas within the spectrum, are
mostly attributed due to purine/pyrimidine ring
modes and phosphate groups (especially peaks
next to 800cm-! and 1100cm-1). They are useful for
characterization of inter alia DNA, tRNA, and
nucleic acid-protein complexes84s,

Spectroscopic examination not only allows for
examination of these specific functional groups
enumerated above, but also to display their inter-
actions, such as protein-protein / protein-lipid in-
teraction. Their changes in spectral property under
different conditions can also be measured!’. On
that note, Lee et al.*®* have even managed to use
SRS as a tool in neurophysiology when examining
the spectral properties of neuronal membrane po-
tential.

Although specific Raman peaks have been de-
scribed for various molecules3%-56, one should be
cautious when actually assigning peaks to one's
own sample. While peaks may be characteristic for
a certain biochemical compound, they can also ari-
se from different sources; viz they are not specific.
In order to correctly assign peaks / detect them wi-
thin a spectrum, it is essential to reduce potential
confounders within the sample or the experimen-
tal set-up pre/post-experimentally. A potential way
to assign distinct peaks with high evidence is direct
observation: Targeted manipulation of a sample
can help to confirm the source of a peak.

The vibrational spectroscopic experi-
mental setup

RS is a fast, non-destructive, user friendly, and
easy to apply on tool providing molecular informa-
tion with minimal sample preparation require-
ments in a reproducible manner. However, a
routine use of RS-based tools in neuroscience has
not yet been established. Regardless of the nume-
rous advantages certain limitations have to be con-
sidered not only pre-experimentally, but also
during implementation of an experiment and after-
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wards when visualizing and processing the obtai-
ned data.

The occurrence of the physically related phe-
nomenon of (auto-)fluorescence (photons of the
pump beam are absorbed by molecules of the
sample which are raised to another energy level -
when returning to the basic energy level a photon
is emitted, see also Figure 1) is regularly observed
and the expected intensity in this case is well abo-
ve the intensity of the Raman signals. To reduce
wavelength- dependent autofluorescence, a dis-
tinct wavelength of the excitation source can be
selected, or SERS can be used>7:58. Although in con-
trast to other sophisticated laboratory techniques
(e.g., genetic/epigenetic testing) there are less re-
quirements for a correctly prepared Raman sam-
ple. A few things need to be considered in order to
avoid the occurrence of spectral background noise
and spectral contamination: Samples must be pla-
ced on a robust Raman substrate so that the selec-
ted measuring point and the focus remain stable.
Depending on the experimental question as well as
the expected background noise and the costs, va-
rious Raman substrates are available. In addition to
gold or aluminum-coated glass slides (as a function
of the excitation wavelength glass alone exhibits a
strong and broad fluorescence background signal
in the “biological fingerprint region”), special slides
(low-e slides, CaF, slides, quartz slides) can be con-
sidered?8. These are characterized by a low spectral
background or single peak attribution. Fullwood et
al.>® and Kerr et al.6® examined the effect of sub-
strate choice for spectral histopathology in more
detail. It has been shown that CaF, slides (exclusive
peak at 321cm or 322cm! respectively, depen-
ding on the literature)s! have the least influence on
the spectral background in comparison to low-E sli-
des and Spectrosil slides. The single background
peak can either be ignored due to its irrelevant oc-
currence out of the important range of biological
components within the Raman spectrum, or can be
subtracted via computational analysis afterwards.
As a low-cost alternative aluminum foil can be
used, which itself does not generate any significant
background noise62-64,

Furthermore, the sample condition (most
commonly native/frozen or formalin-fixed) needs
to be considered pre-experimentally. Although
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fresh tissue samples allow for a straightforward
attribution of Raman peaks to underlying bioche-
mical components, they must be processed and
analyzed within a certain time window and cannot
be stored for a longer period of time. When wor-
king with fresh tissue, dehydration and associated
denaturation of functional biochemical groups
need to be prevented e.g., by keeping the speci-
men hydrated!965. As an alternative, Raman mea-
surements of frozen biological samples allow
longer storage and at the same time still give an in-
sight in the biochemical composition of the biologi-
cal sample. Nevertheless, it should be noted that a
reduction in certain peak intensities and significant
alteration of Raman signal in comparison to native

tissue were described when using frozen sections
66,67,

The handling of formalin-fixed, methanol-fi-
xed, or FFPE samples is routine during the patholo-
gical workflow; even though samples allow long
archivability and are broadly available, this way of
fixation damages the biological Raman spectrum to
a certain degree since the tissue undergoes an ag-
gressive chemical procedure®®-72, Both formalin
and methanol fixation reproducibly alter spectral
tissue properties and affect Raman bands assigned
to lipids, proteins, and nucleic acids’3. Despite for-
malin-induced biochemical changes such as forma-
tion of cross-links in the structure of the amino
acids, spectroscopic assessment and classification
of formalin-fixed biological tissue is possible®®; in
contrast, methanol-fixation was reported to poten-

tially hamper the detection of tissue malignan-
cy72,74.

The prominent spectrum of bound paraffin
wax is reflected in certain points at 1063, 1133,
1296 and 1441cm-?, which make a manual or digi-
tal dewaxing process necessary and require a care-
ful interpretation of the obtained spectra’s. Several
conditions (aggressive chemical processing, requi-
red choice of special substrate and the fineness of
the tissue) hamper spectroscopic examination
when employing RS on FFPE tissue in the pathology
department, although spatial orientation on the
sample and proper identification of certain areas
are a potential advantage.

In the literature different approaches used RS
on processed tissue; in any case they all face simi-
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lar difficulties. Huang et al.68 described the effects
of formalin fixation on RS of cancerous human
bronchial tissue, whereas Draux et al.”* described
the influence of formalin and air drying on single
cancer cells and attributed spectral changes to
affection of nucleic acids and proteins. Even
though not only a loss of the original chemical
composition but also potential contamination due
to the process of formalin-fixation in murine brain
tissue was determined by Hackett et al.’6, several
studies proposed formalin fixation as a sufficient
and favorable method for subsequent spectrosco-
pic diagnostic’7.78, As a proof of concept, Stefanakis
et al.7”® demonstrated the feasibility of vibrational
spectroscopy on formalin-fixed malignant brain tis-
sue. Employing vibrational spectroscopy on FFPE
tissue, an effect on the lipid content due to the de-
waxing process was reported; nevertheless, Raman
bands related to cellular and extracellular proteins
were successfully measureds?. Gaifulina and collea-
gues81 examined large intestine FFPE tissue from
rats and analyzed biochemical signals obtained
with label-free RS in the processed tissue. Other
groups examined FFPE tissue of rectal cancer to
predict radiotherapy response8?, to map/analyze
cervical tissues384, or employed RS on healthy and
malignhant breast85-88/ovarian8®/prostatic9 tissue in
various fixation states. For a good overview on the
influence of tissue processing on biological Raman
spectra the reader may refer to the work from
Faolain et al.¢®,

During spectroscopic examination, back-
ground noise due to a nearby photon source (e.g.,
room light) should be considered and reduced by
performing the Raman measurement in a darkened
area or with dimmed operating room light®1-94, Ad-
ditional methods of spectra quality control during
intraoperative measurement have also been pro-
posed®:%, By ensuring that the laser settings (wa-
velength and power, duration of acquisition) are
optimized for the examined sample, the best si-
gnal-to-noise ratio can be determined, and thermal
tissue decomposition can be prevented. This form
of sample destruction can be detected by a burned
area where the former focus area of the laser is lo-
cated, as well as by the presence of an additional
carbon band at approx. 1500cm! in the Raman
spectrum2s,
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Data processing and computational
analysis

After the measurement, the large amount of
data®? should be sorted and stored in a structured
manner (data annotation) to address the research
guestion properly. It is good practice to start the
data processing with an initial visualization of the
data. In this way clear deviations from an expected
result such as strong contamination or cosmic ray
artifacts (randomly occurring electromagnetic ra-
diation) and hot pixels (overresponse of a pixel on
the CCD detector to an incoming photon) can be
recognized and corrected?898%, For a more detai-
led reading on potential anomalies and artifacts
that may occur, see Bowie et al.100,

During data preprocessing, a baseline correc-
tion can be applied to the data to minimalize resi-
dual background signal and autofluorescencel01.102;
a common way to model and subtract the back-
ground noise to obtain the intrinsic sample spec-
trum103,104  Additionally, a common way to further
reduce the noise in the data is a smoothing techni-
que, such as Savitzky-Golay filtering?8.105106, Both
of the above-mentioned methods must not be
used without proper caution as there is always the
risk of producing artifacts, as well as equalizing si-
gnificant data points. In order to correct confoun-
ders that result from the experiment setup itself
(e.g., slightly different dryness or thickness of the
specimens) data normalization methods, such as
min-max normalization or z-normalization, usually
precede the actual data analysisl0’. Specialized
spectroscopy software are commercially available
and enable even the inexperienced spectroscopist
to use the acquired data in a structured and com-
prehensive manner1os,

Due to the large amount of data, several data
reduction methods are used for quick explorative
purposes, above all PCA (principal component ana-
lysis) is widely employed. This unsupervised cluste-
ring technique can be used to determine principal
components in a big data set, which explains a si-

gnificant part of the variance and reduces noi-
Se41,109.

In the last step of computational analysis,
classification algorithms and machine learning
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techniques!10.111 gre commonly used to classify the
spectral data either according to pre-experimental
defined groups (supervised clustering) or according
to new groups based on similarities in spectral pro-
perties (unsupervised clustering)!12,

A widely used technique in unsupervised clus-
tering is hierarchical cluster analysis (HCA), in
which the data is transferred to a higher-dimensio-
nal space, cluster in a certain proximity to one ano-
ther based on similar properties. A number of
cluster variables can be specified individually,
which forms the selected number of similar clus-
ters103, Unsupervised clustering is beneficial for ex-
ploratory research questions since no prior
knowledge of possible group properties is requi-
red2s.

Common methods used for supervised cluste-
ring are trees/random forest classifications (several
decision trees in a row) or support vector machines
(search for a hyperplane to distinguish between
classes)?t. The groups determined a priori are re-
ferred to as "classes" and the gold standard histo-
pathology often serves as ground truth. In general,
the algorithm is trained with a training data set and
tested with an external validation data set after-
wards. To avoid overfitting (capability of good diffe-
rentiation only on the specific training data set) a
validation of performance e.g., k-fold cross validati-
on or holdout validation is performed, and metri-
ces of algorithm performance (e.g., sensitivity,
specificity, f1-score, accuracy, AUROC/AUPR value)
are calculated afterwards based on its output!i3,
Ralbovsky and colleagues provided an overview of
machine learning algorithms and their functions in
Raman based cancer detection!12,

RS in Neurooncology

With a growing number of publications in the
last years (Zhang et al.114 and Banerjee et al.l15 de-
scribed a change in spectroscopic properties of
glioma cells in comparison to astrocytes already in
the mid-2000s), the neuro-oncological field is one
of the largest areas of research on RS, in which the
therapeutical balancing act between maximum re-
section of normal-brain-resembling tumorous resi-
dues and minimal surgical disruption of healthy
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brain functions proves particularly difficult.

On the subject of RS in (neuro)oncology re-
views by Auner et al.20 and Hollon et al.117 give a
comprehensive introduction to the respective to-
pic; for further reading on implications and current
progress of RS in oncology see also Santos et al.117,

At first sight, use of this spectroscopic techni-
gue mainly apply to two main research focuses: on
the one hand a spectroscopic detection of mali-
gnancy!18119 which in a next steps allows precise,
accurate diagnosis of the tumor entity intraopera-
tively without having to wait for further traditional
tissue processing (pathological diagnosis on frozen
sections)120121 and on the other hand real time
surgery guidance i.e., live feedback intraoperative-
ly122123 giming for maximal tumor resection24-126,
Both topics merge and evolve at a certain point;
this may result in new research questions, e.g.,
when aiming to determine tumor infiltration zone /
resection margin or when aiming for detection of
tumor genetics on various states of tumor tissue.
Moreover, also basic research questions in oncolo-
gy can be addressed with this vibrational spectros-
copic technique e.g., monitoring lipotoxicity in
glioblastoma cells!?7, observing cell response of
U251 glioblastoma cells after induced apoptosis!?s,
examining the glycosylation pattern of proteins in
medulloblastomal?9, or observation of redox state
of mitochondrial cytochromes!3?, just to name a
few. Most research groups use SpRS20 as an easy
to apply, label free method. More advanced Raman
techniques in neurooncology!3! are used predomi-
nantly in animal models132-134 — where Surface en-
hanced resonant Raman spectroscopy (SERRS)
detection of tumor margins!3> has shown progno-
stic benefits!36, or CARS was employed for detecti-
on of different human brain tumors in a mouse
model137,

RS for detection of tumor group, ge-
netic alteration and histomorphology

RS can distinguish between grey and white
matter and (partly) other brain regions such as ce-
rebellum, striatum, basal forebrain - both macros-
copically and on cellular resolution4138-146,147
Interestingly, one analysis of the mouse brain using
SERS revealed a different spectral fingerprint and
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thus also different biochemical composition bet-
ween left and right hemispherel48, Spectroscopi-
cally feasible discrimination between glioma tissue
and brain tissue was reported in several studies3.149-
153 as well as between dura mater and meningio-
ma, which was demonstrated to be based in part
on peaks corresponding to collagen and on the hig-
her lipid content within tumorous tissue!54-156, Be-
side these binary classification models, several
studies showed the potential of RS aiming for a
multiclass classification to differentiate various tu-
mor entities within one classifier!19,157-166 or to de-
termine the primary site of metastasis167.168,

Using Raman mapping/imaging for brain tu-
mor visualization116.169 even special morphological
features of tumors (e.g., necrosis in glioblastoma,
cell density or individual cell nuclei) could be iden-
tified170-172, Even though areas of tumor necrosis
are typically characterized by an increased pre-
sence of proteins such as phenylalanine (around
1032cm1, among others) as well as cholesterol es-
ters (1739cm1)171173 one group proposed two dis-
tinct spectral properties within the necrosis of
glioblastoma cells: “highly necrotic”, showing an in-
crease in plasma proteins and “peri-necrotic”, exhi-
biting a higher  lipid contentl’4.  The
histopathological heterogeneity of tumor tissue
samples was addressed in fresh and frozen brain
sections, although possible confusion between
different tumor components (i.e., tumor hemor-
rhage and necrosis) is described36173, The genomic
heterogeneity in glioblastoma has also been suc-
cessfully addressed’s. Other approaches make use
of an alternative advanced Raman technique na-
med Stimulated Raman histology76-179 (SRH), whe-
re distinct wavenumbers are used for image
acquisition and virtual H&E-like images are genera-
ted after computational processing. With this ap-
proach in combination with deep convolutional
neural networks, amongst others Hollon et al. as-
sessed (pediatricl89) brain tumors intraoperative-
ly1181182 |n the scope of this imaging approach,
also a traditional pathological diagnosis based on

digital Raman histology slides seems feasiblel83-
185

RS could be used to identify brain edema?ss,
tumor recurrence!8’ or tumor margins!88-194 put al-
so tumor infiltration zones.1951% |n general, infiltra-
tive glioma cells showed significant spectral
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differences in the regions of phenylalanine and
Amide IIl (around 1030cm! and 1230-1300cm™1),
as well as the region assigned to C-C stretching li-
pids and nucleotides (around 1050-1100cm-) —
just to list a few wavenumbers of interest exempla-
rily197. Ji et al.196 report the cellularity within a sam-
ple as well as the density of axons and the ratio of
lipid and protein contents as the basis for the diffe-
rence in spectral properties. Even single tumor
cells198 were detectable using RS, something alter-
native imaging methods struggle with. RS was also
applied to observe glioblastoma tumor evoluti-
on!%, to determine the molecular subtype of glio-
blastoma2®, and to give insight in glioma
biochemistry201,

RS was shown to be superior in differentiation
of brain tumor and glioblastoma in comparison to
5-ALA-induced fluorescence202203, and capable to
detect IDH mutations in gliomas — inter alia chan-
ges in the spectral protein profile are consistently
reported in case of IDH mutation204-206_ |t also sho-
wed diagnostic value in tumor discrimination when
measuring small extracellular vesicles2?, or poten-
tial when tracking/detecting metabolic changes208-
210 jn brain tumors/cancer cells, as well as drug de-
livery mechanisms?1l and post-therapeutic chan-
ges?12 in glioblastoma cells.

Spectroscopic classification of different grades
of brain tumors is possible213, Zhou et al.214 distin-
guished between different WHO grades of gliomas
using Raman bands of tryptophane (around
1588cm-!, among others) and carotenoids
(1008cm-1, 1157cm-1, 1521cm-1, 2320cm-!, and
2667cm-1) as well as the peak intensity ratio bet-
ween proteins and lipids in the high wavenumber
region (2934cm-1/2885cm-1). The group of Morais
et al.2’> and Lilo et al.2¢ differentiated between
different grades of meningiomas. Zhang et al.27 as-
sociated an intensity ratio in the high wavenumber
region with different meningioma grades. While
gliomas/neuroepithelial tumors and meningiomas
have been described?!® and morpho-chemically
analyzed?19.220 extensively221, some work also exist
on neuroblastomas. One group differentiated bet-
ween different neural crest-derived tumors in fresh
and frozen tissue222223, gnd Ricciardi et al.224 used
RS to examine changes in the biochemistry of neu-
roblastoma cells after exposure to radiation. Me-
dulloblastomas?25, biopsies of the pituitary
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gland209.226 seeds of retinoblastomas???, and carci-
noma metastases?28 have been spectroscopically
studied as well.

Early, intraoperative, and neuropa-
thological diagnostics using RS

Perioperative ex vivo tissue assessments al-
low for direct and early treatment decision, e.g.,
when examining smear brain tumor samples® or
discriminating between primary CNS (central ner-
vous system) lymphoma and glioblastoma based
on biopsies?2. RS can also be applied intraopera-
tively (in vivo) - recently even in dogs?30 - using a
hand-held probe for tumor classification231-237,
where a real-time auditory feedback mechanism
has been proposed to guide the neurosurgeon?3s,
Transcranial RS, leaving the skull intact, has been
proposed and demonstrated in a mouse model?3°.

Using optical spectroscopy applied on FFPE
tissue, Devpura et al.240 and Gajjar et al.15% exami-
ned a possible application of RS to various brain tu-
mors already in 2012/2013. Shortly after, Fulwood
et al.241 distinguished between glioblastoma, meta-
stases and normal brain using immersion RS on FF-
PE samples. Livermore et al.204 have been able to
carry out the above-mentioned analysis of the IDH
mutation detection in glioblastoma tumors also on
FFPE tissue. Different histological areas can be dis-
tinguished in glioblastoma in FFPE tissue, with a
sound separability between the peritumoral area
and the area of necrosis?42.

To enable early and non-invasive cancer dia-
gnosis, some approaches aim for identification of
meningioma?43 and glioma?44 patients based on se-
rum samples and resulting spectroscopic behavior.
Using RS as an additive technique, Le Reste et al.245
combine spectroscopic data and transcriptomic da-
ta for machine learning analyses on glioblastoma
subtypes and related clinical outcomes.

RS in Neurodegenerative Diseases
Misfolded proteins and aggregates in various
diseases?46-248 e g, Alzheimer's (tau and amyloid),

Parkinson's (alpha-synuclein), Huntington's (poly-
glutamine), are in general accessible to vibrational
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spectroscopic techniques?4?. Usage of these techni-
ques ranges from tracking and characterization of
misfolded proteins#!, to potential new diagnostic
methods2°0.251 especially in biofluids?52-254, Studies
on the pathological hallmarks of neurodegenerati-
ve diseases used a variety of RS techniques; most
frequently employed techniques are SERS, TERS
(Tip-enhanced Raman spectroscopy), as well as
DUVRR255.256 (deep UV resonance Raman), where a
wavelength in the range of UV (200nm) is used as
excitation source which results in an increased in-
tensity. Another common technique named ROA
(Raman optical activity) makes use of the principle
that a chiral molecule scatters left and right han-
ded polarized photons at different intensities and
so is particularly useful to analyze protein aggrega-
tes257.258, Furthermore, also IR (infrared)-spectros-
copy and related/modified vibrational methods are
common, and a combination of techniques could
lead to an increased diagnostic ability and gain of
knowledge?259-262, Several ways of increasing the
detectability of a sample via RS have gained popu-
larity in the neurodegenerative field. Bringing in a
labelled isotope into the backbone of a peptide
shifts certain amid bands and enables a demarcati-
on from the existing amide bands emanating from
the unlabeled proteins in the sample, although an
overlap of Raman peaks of interests may oc-
cur263.264 Another similar approach integrates ex-
ternal probes such as unnatural amino acids with
vibrational potential into the sample, which can
afterwards be traced by specific Raman peaks,
often in the range between 1900-2900cm-‘where
the interference with other peaks of the specimen
is minor264-266_ For further reading, Devitt et al.2
provides a detailed insight into the use of RS in the
field of neurodegenerative diseases.

Around 20 years ago conventional RS was al-
ready capable of distinguishing between AD brain
tissue and healthy control brain tissue (in 2022 ma-
chine learning algorithms are useful to do the sa-
me2%7) and to determine the presence of
amyloid-beta-sheets in senile plaques258-270, Short-
ly after, Raman signals of the hippocampus of AD
rats were proposed to aid diagnosis of AD?27%,
Kurouski et al.#4 give an overview of the application
of RS in the course of plaque formation and struc-
ture; Wilkosz et al.#! provide a comprehensive list
of wavenumbers associated with protein aggregati-
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on. Detailed examinations of the (secondary)-
structure of beta-amyloid in various experimental
set ups have been carried out using DUVRR272-275
or ROA%. Cunha et al.2’¢ used a combination of Ra-
man techniques for amyloid plaque characterizati-
on. SERS has been used to identify tau protein and
(soluble) amyloid beta?77.278, and to detect amylo-
id-beta, ,, monomers and amyloid-beta, ,, fibrils in
solution?’® as well as in brain tissue?80. AB,, and
AB,,?81 were shown to be distinguishable. TERS
was used to characterize natural AB,,, fibrils and
identify toxic oligomeric forms282,283,

RS was capable of visualizing amyloid in AD
brains post mortem and of displaying neuritic
plagues and neurofibrillary tangles?8* — even
though the latter findings were questioned and
measurement of lipofuscin granulates instead of
plaques was proposed?8> Raman imaging also de-
termined the presence of hemoproteins in senile
plaques?86 and allowed for reconstruction of the
evolution process of different types of amyloid be-
ta plaques?8’, Based on RS measurements, AD-as-
sociated astrogliosis288 and lipid deposits in vicinity
of fibrillary plaques were identified and further
morphologically described?s°.

Beside the identification of amyloid beta290-
292 for example in the surrounding of neuronal spi-
nes293, Raman imaging2942% has been used to com-
pare the concentration of AP in hippocampal
regions and eye lens tissue2% and to determine
cholesterol- and sphingomyelin-rich structures sur-
rounding amyloid plaques, thought to represent
dystrophic neurites???. Another research group
used CARS to determine a higher content of lipid,
collagen and amyloid fibers in Alzheimer-affected
brain samples29s,

Searching for biomarkers as an early diagno-
stic tool in AD299-302, human tears393, saliva,3%4 ce-
rebrospinal fluid3%> (different states of amyloid beta
confirmations could be detected in cerebrospinal
fluid already in 20083%), retinal imaging3°’ and
blood samples308-318 have been evaluated for a po-
tential diagnosis of AD using spectral differences
arriving from platelets31® or the concentration of
the neurotransmitters Glutamate (GLU) and y-ami-
nobutyric acid (GABA)320, In the course of this ap-
proach, it has been shown that cortical cataract
may not be a sufficient predictor of AD2%. The de-
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tection of neurotransmitters using RS has been
shown and further analyzed, by Ardini et al.321, Lee
et al322, Moody et al.323-325 (j.e. RS for detection of
neurotransmitters through the skull), Cao et al.326 /
Zhou et al.327 (neurotransmitter detection in se-
rum), Ciubuc et al.328 (RS for dopamine detection
and analysis), Silwal et al.32° (dopamine and dopa-
mine transporter interaction), Manciu et al.33° (do-
pamine — serotonin interaction) and Shi et al.33!
(quantification of norepinephrine).

In addition, RS is also suitable to examine the
interaction of beta-amyloid with metal ions332-337,
Interestingly, detection of tau335-338 and insulin342-
345 has so far been studied to a lesser extent; ozone
exposure as a known risk factor has been found to
lead to spectroscopically measurable changes of
the hippocampus in a rat model34¢,

In Parkinson’s Disease (PD), a main focus of
the application of RS is the characterization of the
secondary structure of alpha-synuclein338:347-349 3g
well as the identification of alpha-synuclein aggre-
gations, feasible not only in the brain but also in
the gut3%0. Mensch et al.35! used ROA to examine
the spectral properties of a-synuclein during tran-
sition to its secondary structure. Another group
spectroscopically characterized the striatal extra-
cellular matrix in a PD mouse model352, Since early
loss of dopaminergic neurons is an early change in
patients with PD, different approaches aim for de-
tection of dopamine3s3-355, e.g., in striatum of mi-
ce3’6, or in blood samples of patients with
antipsychotic drug-induced Parkinsonism357. Other
efforts to establish early diagnostic tests for PD,
such as examination of erythrocytes and blood
coagulation in PD patients3°8, were carried out e.g.,
by Carlomagno et al.3%° using saliva of PD patients
and Schipper et al.380 who combined RS and NIRS
(near infrared spectroscopy) to distinguish bet-
ween blood samples of PD patients and a control
group through different spectroscopic properties
correlated with oxidative stress. Mammadova et al.
361 ysed RS in a PD mouse model to detect patholo-
gical retinal changes as a method to distinguish
between healthy and diseased samples.

Analyzing peripheral nervous tissue in ALS mi-
ce and autopsies of patients suffering from ALS, Ti-
an et al.3%2 showed that Raman imaging was
capable of visualizing and detecting early patholo-
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gical changes. Different approaches distinguish
between altered lipids and proteoglycans in spinal
cord tissue of ALS mice and healthy controls3¢3, or
test the prognostic value of SERS in ALS patients364,
In addition to the many approaches to diagnose AD
and PD patients by RS, others focus on ALS as well.
For diagnostic purposes, Zhang et al.36> used SERS
on plasma samples to distinguish between ALS pa-
tients and a healthy control group; Morasso et al.
366 proposed vibrational spectroscopy and extracel-
lular vesicles as a potential biomarker and another
research group spectroscopically examined saliva
from ALS, PD, and AD patients, showing differences
in the spectral properties of each group3¢7.

In the context of Huntington Disease (HD), RS
has been used for quantification and visualization
of aggregated polyglutamine3%8 and for the assess-
ment of its structure369.370, Huefner et al.371 found
significant changes in the spectra related to disea-
se progression, as well as differences correspon-
ding to genotype and gender in serum samples of
HD patients and healthy controls. In another ap-
proach, membrane composition of HD-affected
and control peripheral fibroblasts were separatable
using RS, suggesting that cell membrane damage
may serve as future diagnostic biomarker372,

RS has also been used for research on Prion
Diseases373-378; one research group employed the
method to examine the diagnostic value when ana-
lyzing blood samples of sheep to detect the alte-
ring from of PrPC to PrPSc37°.

Spectroscopic examination of myelin
composition in the CNS and in peri-
pheral nerve tissue

RS proves useful to gain a deeper understan-
ding of the molecular myelin composition; Pezzotti
et al.380 examined the physical chemistry of cocul-
tured neuronal and Schwann cells. In addition, RS
may be advantageous to detect pathological pro-
cesses of demyelinating diseases in the CNS or in
peripheral nerve tissue. Carmona et al.38! studied
the spectroscopic hallmarks of lipid chains in mye-
lin membranes as well as the secondary structure
of associated proteolipid proteins (PLP). Some pu-
blications report the possibility of detecting myelin
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in vivo using Raman microscopy382383; Huang et al.
384 described different compositions of myelin
structures, whereas Wang et al.385 used CARS mi-
croscopy to detect not only myelin but also axons,
the node of Ranvier, and the Schmidt-Lanterman
incisure. Fu et al.38% visualized fiber tracts in mice
brain by imaging the myelin along the axons. In
2021 Lucas et al.387 used CARS to determine myeli-
nation deficits in a fragile-X-syndrome mouse mo-
del. Out of pure academic interest the publication
of Poulen et al.388, in which Raman scattering on
spinal cord myelin distinguishes between three
different species (human, mouse, lemur), shall be
mentioned at this point.

Few Raman experiments deal with Multiple
sclerosis (MS)389; the process of myelin degradation
can be addressed with RS not only quantitatively39°
but also qualitatively. To tackle alterations in the
biochemical compositions in human brains post-
mortem, Poon et al.391-393 measured various patho-
logic features and showed that even normal
appearing white matter next to MS lesions inclu-
ded spectroscopically measurable changes. Imitola
et al.3% correlate the presence of microglia (on a
side note: even the activation of microglia is tra-
ceable using RS3%) and axonal injury/demyelinati-
on using CARS microscopy. Fu et al.3% applied the
same method to examine different time points of
experimental autoimmune encephalomyelitis in
mice and Gasecka et al.3%7 used CARS to detect in-
duced autoimmune demyelination in spinal cord of
mice. Another approach was carried out by the
team of Alba-Arbalat et al.3%; they detected spec-
tral changes of defined molecules in the retina
(even an in vivo use of RS applied on human retina
is in line with laser safety regulations3%) - associa-
ted not only with different phases of MS, but also
age-related in healthy patients.

Raman-based research of myelin composition
and pathology is not limited to MS, it also extends
to the study of demyelination and its biochemical
changes in peripheral nerve tissue4% - even patho-
logical*®l and age related4°2 changes. Using diffe-
rent Raman techniques the remyelination process
in the spinal cord of rats after iatrogenic induced
demyelination403, as well as remyelination in rat
sciatic nerve4®4, and biochemical changes during
nerve injury405406 can be tracked. Another ap-
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proach used CARS imaging to interpret the interac-
tion of different macrophages (resident and
recruited) after Wallerian degeneration4%7,

Upcoming novel fields for RS - from
stroke to muscular diseases to psych-
iatry

RS has been applied in combination with in-
frared spectroscopy and atomic force microscopy
to characterize different types of thrombi in ische-
mic stroke4%® or to characterize atherosclerotic
plaques*02.410, Changes in fibrin concentration in a
blood clot after zonal thrombolysis with urokina-
se4l1l or the metabolic regulation of artery tone*12
were examined. Other research groups investiga-
ted spectroscopic changes in the hippocampus due
to cerebral ischemia-reperfusion413, or spectrosco-
pic changes in the amount of Cu* and Cu?* ions in
brain ischemia®!4. Russo et al.#1> used Raman tra-
ceable cytochrome c to investigate effects of insu-
lin on the hippocampus after transient ischemic
brain conditions, Yamazoe et al.416 used a self-de-
veloped Raman approach to detect areas of an
ischemic core area. The group of Caine et al.*’
used a combination of imaging techniques,
amongst others Raman imaging, to track biochemi-
cal changes in the peri-infarct zone after induced
stroke in @ mouse model. As an alternative way of
infarction diagnostic, Fan et al.41® proposed tear RS
in combination with machine learning tools as a
non-invasive technique.

In context of brain hemorrhages, Raman ima-
ging has been used to detect microvessels and in-
duced hemorrhage?!?, as well as to track the
oxygen flow in brain vessels?20, Furthermore, RS
was employed as a method in rat brains with stria-
tal hemorrhages to evaluate the biochemical com-
position after rehabilitation treatment?21,
Employing SERS, the subarachnoid hemorrhage
biomarker glial fibrillary acid protein can be detec-
ted422, SERS can also be used to assess complicati-
ons post subarachnoid hemorrhage, like
vasospasm and hydrocephalus?23.

In tissue conditions of brain or spine injury, RS
was applied to tissue of rat models?24-426 and on
retinae of mice after traumatic brain injury4?’. Bio-
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chemical changes in affected areas arising from
hem or divergent levels of cholesterol were disco-
vered428 and compared to MRI scans#2?. RS was ca-
pable of detecting injured motor cortex areas
where certain spectroscopic properties were asso-
ciated with cell death43°, Employment of SERS-ba-
sed methods allow for detection of neuron-specific
enolase (NSE), N-acetylasparate or S-1008 in blood
samples as biomarkers for brain injury431-435; ai-
ming for intraoperative assessment of molecular
changes - one group developed a device for intra-
cranial spectroscopy within brain injury436. Changes
in the biochemical and cellular composition of rat
brain after gamma radiation have been addressed
by Kocovi¢ et al.43’. For a further reading the rea-
der may refer to Stevens et al.*38, who has recently
reviewed the current deployments of Raman spec-
troscopy in traumatic brain injury in a detailed
way.

Even muscular diseases are accessible to RS:
Niedieker et al.43° used CARS imaging to visualize
morphological hallmarks such as glycogen storage
and internalized nuclei in various muscular disea-
ses; Alix et al.#40 reported different spectral proper-
ties of mitochondrial and non-mitochondrial
muscular diseases; and Gautam et al.#4! showed
the differences in the spectra of Raman measure-
ments from muscles of Drosophila with certain
mutations affecting the muscular system in compa-
rison to healthy controls. SpRS was used for in vivo
identification of Duchenne muscular dystrophy
(DMD) affected muscles in a mouse model and hu-
man muscles affected with the same disease with
ex vivo measurements showing similar Raman
peaks442, Hentschel et al.*43 evaluated the use of
fibroblasts together with application of CARS and
other methods to study the etiology of neuromus-
cular diseases. Blood sample testing for the dia-
gnosis of DMD was proposed and successfully
performed in a mouse model*44; the comparison of
spectral properties of the erythrocyte membrane
in DMD patients and healthy controls demonstra-

ted biochemical differences due to protein anoma-
ly44s.,

One of the potential domains of RS in the area
of infectious diseases of the brain and meninges is
the diagnostic detection of pathogens. It has alrea-
dy been capable of identifying viral strains44¢,
changes in bacterial metabolism447, or differentiate/
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detect different types of bacteria related to menin-
gitis#48449. Although the diagnoses of tuberculous
meningitis**% or Neisseria meningitis*>! as well as
possible differentiation of blood cell types#52 using
RS on CSF samples is reported, reliable detection of
bacterial meningitis in CSF was not yet sufficiently
sensible; therefore, a combination of techniques
was suggested?>3. Another approach employs RS in
neuroimmunology as a tool to monitor apoptotic
changes in hippocampal progenitor cells#54.

RS has also been applied in psychiatric disor-
ders; e.g. to visualize the drug mechanism of a se-
rotonin reuptake inhibitor in mouse brain4s> and to
identify blood serum samples based on alterations
in phospholipids and proteins of patients with
affective disorders456-458, Recently, Chaichi et al.4>°
measured changes in brain lipidome spectroscopi-
cally in post-traumatic stress disorder (PTSD) rats,
but also the vibrational spectroscopic properties
within myalgic encephalomyelitis have been sub-
jected to further analysis#60.461,

Conclusions and outlook

All studies and literature cited in this review
focused on preclinical/clinical use of RS with the in-
tention to provide the interested reader a general
overview rather than a detailed account of each
particular topic. Before jumping into action and
establishing RS as an additional research method in
one’s own laboratory, taking a look on the metho-
dological reviews by Butler et al.28 (including con-
crete information about the general experimental
setup and requirements for biological tissue), and
Guo et al.*62 (analysis of Raman data, machine
learning algorithms) may prove useful.

Upcoming applications of RS potentially aim
for in vivo prediction of progression risk463 or em-
ployment of vibrational spectroscopy for detection
of epileptogenic brain regions*64. Advanced Raman
techniques such as Spatially offset Raman Spec-
troscopy (SORS)%> may potentially permit live in-
sight into tissue biochemistry of deeper brain
structures. Alternatively, a future establishment of
intraoperative Raman imaging (in particular it may
even be performed in vivo466) will potentially allow
fast detection of both histomorphological features
and tumor genetics; therefore producing an inte-
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grated diagnosis#¢’ at an early stage of the diagno-
stic workflow468, Extensive clinical studies aiming
for approval of RS in neuroscience by regulatory
authorities are still missing, even though a clinical
need and a patient benefit has been demonstrated
by a broad range of groups and laboratories. To
translate promising results into clinical practice, se-
veral challenges should be considered. When vi-
brational spectroscopy is tested as a diagnostic
method in a multicenter approach, experimental
workflows of spectroscopic examination need to be
standardized and facilitated; consensus within the
spectroscopic community on a collaborative expe-
rimental setup and procedure prevents potential
invariances due to different sample preparation
protocols and hidden artifacts®!. To maximize spec-
tral output and enhance spectral intensity in a cli-
nical setting, handheld probes / spectrometers
with optimized design and in vivo parameters as
well as a preferably low signal-to-noise and high si-
gnal-to-background ratio are currently under inves-
tigation by a growing number of companies
stepping up their efforts in the interface of rese-
arch and clinical implementation.117.469

Since the use of RS on FFPE tissue allows di-
rect comparison with the diagnostic gold standard
of histology, RS is expected to expand its applicati-
ons in neuropathological diagnostics in the future.
Upcoming studies will not only challenge the cur-
rent use of RS on unstained FFPE tissue (is reliable
diagnosis also achievable on H&E stained samp-
les?) but also discuss a potential use of various Ra-
man substrates in a cost-oriented manner4’0. To
reduce the cost factor (id est expensive substrates
such as CaF, or low-E slides) future employment of
RS on glass slides seems worthwhile; therefore, oc-
curring autofluorescence during measurement
needs to be addressed. Within that approach, the
use of a certain excitation wavelength or the de-
tection of only a small spectral wavenumber range
have been proposed®471, In this sense, lbrahim et
al.472 aimed to use glass as Raman substrates by
employing a digital processing method.

In the field of neurodegenerative diseases, a
major and highly anticipated impact of RS could be
the early and non-surgical diagnosis of disorders in
a reproducible manner. Despite promising results,
this application area is only beginning to develop.
To maximize diagnostic reliability, a deeper under-
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standing of Raman features and their correspon-
ding biochemical origin in biofluids is key. Within
the huge amount of obtained data, it remains ne-
cessary to address patient dependent spectral va-
riation as well as variations related to a concrete
experimental set up. Close cooperation between
different research groups and ensured data sha-
re4’0 potentially accelerate the development to-
wards clinical implementation.

An exemplary success story of clinical transla-
tion was reported in the field of dermatology, whe-
re RS had already been established as a diagnostic
method for early detection of skin cancer; a hand-
held device was commercially produced in Cana-
da?#63.473,474 To speed up translation from research
labs to commercialization and clinical use, several
networks have been founded, e.g., International
Society for Clinical Spectroscopy (ClirSpec, clir-
spec.org) and Raman4Clinics (raman4clinics.eu), all
aiming for exchange of expertise and creation of
research collaboration1?’.

To conclude, it is highly likely that RS will con-
tinue to evolve as a method in the intersection of
applied biophysics and medicine — and potentially
make its way deeper into the field of life science,
such as detection of plastic in zebrafish brain ho-
mogenates as a result of exposure to nanoplastic’>
and even more clinical applications. Where the
journey will finally lead remains to be seen in the
next years.
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