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Abstract 

Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is 
crucial for diagnosis and therapy, but also determines the intraoperative surgical course. Advanced radiological 
methods allow for their distinction to a certain extent but ultimately, biopsies are still necessary for final diagno-
sis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules 
via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens 
of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) 
samples. 
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Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms 
(Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished 
the two tumor entities with a balanced accuracy of 82.4% in intraoperative tissue condition and with 94% using 
measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the 
tumor entities, we describe different tumor-specific Raman shifts of interest for classification. 
 
Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive tumor tissue 
discrimination, which may help to choose the proper treatment option. RS may further serve as a useful addi-
tional tool for neuropathological diagnostics with little requirements for tissue integrity. 
 

Keywords: Raman spectroscopy, PCNSL, Glioblastoma, Machine learning 

Introduction 

The highly malignant and rare non-Hodgkin pri-
mary central nervous system lymphoma (PCNSL) ac-
counts for only 3% of all brain tumors1. The common 
practice to confirm the suspicion of a PCNSL is a ste-
reotactic biopsy, according to which it can be histo-
pathologically diagnosed and the following treat-
ment adjusted2. Due to similar initial clinical presen-
tations and imaging properties, an important differ-
ential diagnosis of primary CNS lymphoma is diffuse 
high-grade glioma, especially glioblastoma, WHO 
grade IV. The clinical management and treatment, 
however, considerably vary between these entities. 
While gross surgical resection of the tumor followed 
by combined radio-chemotherapy is standard of 
care in the treatment of glioblastoma, surgery plays 
a subordinate role in PCNSL therapy3-4. 

It is essential to differentiate between these tu-
mors as early as possible5. Recent magnetic reso-
nance imaging (MRI) studies have shown potential, 
using, amongst other parameters, the signal of the 
tumor blood flow (TBF) and diffusion tensor imaging 
(DTI) characteristics preoperatively5. Furthermore, 
discrimination was described using the levels of 
myo-inositol concentration measured with mag-
netic resonance spectroscopy6. Nevertheless, stere-
otactic biopsies remain necessary to confirm the di-
agnosis in the majority of cases. 

As a promising method in tumor diagnostics, 
Raman Spectroscopy (RS) allows fast and non-de-
structive, label-free tissue classification even periop-
eratively. So far, it has been successfully used to dis-

tinguish different entities and grades of brain tu-
mors, such as meningiomas and gliomas7,8,9,10. Due 
to their inherent ability of tissue recognition, inelas-
tic scattered photons caused by changes in the vi-
brational state of molecules are used as a “molecu-
lar fingerprint” of the examined tissue. RS has al-
ready been shown to be capable of detecting intra-
ocular lymphoma cells11. RS is also able to distin-
guish between diffuse large B-cells and chronic lym-
phocytic leukemia in blood samples12, as well as to 
predict the malignancy status of lymph nodes13.  

Assessment of tumor tissue via RS during diag-
nostic stereotactic interventions may lead to early 
changes of the intraoperative surgical course by fa-
voring immediate surgical intervention in the case of 
glioblastoma or rather to cessation of the procedure 
in lymphoma patients without waiting for more de-
tailed histopathological analysis. RS may further be 
applied on processed tissue14, such as on formalin 
fixed paraffin-embedded (FFPE) tissue in the pathol-
ogy department to distinguish between PCNSL and 
malignant glioma.  

Here, we applied RS on freshly resected tissue 
within the operating room (OR) and after histo-
pathological diagnosis of FFPE tissue. We then 
tested linear and nonlinear machine learning algo-
rithms with the goal to create a classifier that in the 
future may be useful both in the OR and in the 
pathological diagnostics for the differentiation be-
tween PCNSL and glioblastoma. 
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Materials and methods 

Patient data 

75 measurements from 3 PCNSL patients (due 
to a low prevalence the number of samples remains 
limited) and 10 glioblastoma patients were carried 
out intraoperatively on freshly resected tissue with-
out further processing (2 patients) and after forma-
lin fixation (1 patient). 45 measurements from 3 
PCNSL patients and 6 glioblastoma samples were 
carried out on FFPE tissue. Table 1 provides a more 
detailed overview about conducted measurements, 
Supplemental Table 1 and 2 contain additional infor-
mation about the glioblastoma samples.  

All tumor samples underwent neuropathologi-
cal diagnostics (histology, immunohistochemistry, 
epigenetic and genetic analysis), performed by a 
board certified neuropathologist at the National 
Center of Pathology (NCP) at the Laboratoire natio-
nale de santé (LNS, Luxembourg). 

The patient data were collected between 2018-
2020; all patients were part of the INSITU® study (Nr. 
201804/08), which has been authorized by the 
‘Comité National d’Ethique de Recherche’ (CNER) 
and was performed according to the ‘EU General 

Data Protection Regulation’ GDPR15, as well as the 
World Medical Association (WMA) Declaration of 
Helsinki.16 

Data acquisition and tissue preparation 

Tumor samples of PCNSL biopsies and glioblas-
toma resections were collected during surgery / bi-
opsy and put into vials with physiological saline so-
lution. This intraoperative standard procedure pre-
vents drying of the tissue and further degradation. 
For intraoperative data acquisition, we then put the 
tissue samples directly into an aluminum cup. The 
insignificant spectral attribution of aluminum allows 
unimpaired examination of biological tissue and 
minimizes influencing spectra from the surround-
ings. For the measurement itself, we used a robot-
ized visualization and spectroscopic acquisition sys-
tem (Solais™, Synaptive®, Toronto, Canada) ena-
bling the determination of exact measuring points. 
All points were distributed uniformly on the sample; 
we included data that showed representative cover-
age of characteristic histopathological features of 
the subsequent pathologic diagnosis. Visible light 
images of the tissue and the selected measurement 
spots were acquired for comparison and traceability 
(Figure 1). 
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Figure 1. Overview about our workflow and the different Raman devices used for tissue examination. A) Tumor tissue is measured in the 
OR using the Solais™ device. B) Primary CNS lymphoma biopsy with intraoperatively set Raman measurement points (colored). C) FFPE 
tissue blocks are cut using a standard microtome and D) diagnosed by a neuropathologist (corresponding histological sample of the tissue 
in B). E) Consecutive cuts are mounted on a CaF2 slide and used for Raman measurements on processed tissue with the TSI ProRaman 
device.  

 

For neuropathological diagnosis, the tumor 
samples were then fixed in a formalin solution and 
subsequently embedded in paraffin; resulting FFPE 
blocks were cut with a standard microtome. The first 
cuts were used for routine diagnosis (Hematoxylin 
and eosin (HE) staining and immunohistochemistry). 
The consecutive cuts (7 μm) were left unstained and 
placed on a CaF2 (calcium fluoride; Crystran, Poole, 
UK) slide, allowing for microscopic examination of 
the section, which is not possible on aluminum with 
transmitted light. Due to a low amount of spectral 
background (precisely one single peak at 321 cm-1) 
the CaF2 substrate allows appropriate spectroscopi-
cal examination of even thin tissue fragments17. To 
reduce paraffin signals from residual wax within the 
tissue18, the slides were dewaxed using our in-house 
dewaxing protocol. This procedure includes a 60 min 
incubation period (at 60°C) to melt the paraffin and 
xylene/ethanol baths afterwards (2 x 15 min xylene; 
3 x 2 min ethanol) to dewax the tissue chemically. 

First, areas with vital tumor cells were identi-
fied by means of light microscopy on the diagnostic 
HE slides (surrounding blood and fibrin residuals 
were excluded), then the corresponding area on the 
unstained CaF2 slides was marked (encircled) with a 
slide marking pen. The Raman measurement of the 
FFPE tissue was carried out repeatedly at several 
sites within the marked area using the ProRaman-L 
high-performance Raman spectrometer (TSI, Shore-
view, USA). Additionally, see Figure 1 for an over-
view of our workflow.  

Raman Spectroscopy 

For data acquisition on intraoperative and FFPE 
tissue, two different Raman spectrometers were 
used. 

As our permanent tool in the operating room, 
the SOLAIS™ Raman system consists of an automatic 
data acquisition and visualization system. Via a 
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robotized stage the tumor tissue can be exposed to 
the excitation laser (785 nm). The measuring points 
can be set individually on the tissue using a camera 
and an integrated coordination system. Acquisition 
parameters were set to 2 seconds with 6-30 aver-
ages for each measuring point. 

For the Raman measurement on FFPE tissue in 
the neuropathology unit, the portable TSI Raman 
spectrometer was used. It also provides an excita-
tion laser at 785 nm and a CCD sensor; the used lens 
has a 7 mm working distance and a 100 μm laser 
spot size. With the ProRaman Reader software Ver-
sion 8.3.6 (TSI, Shoreview, USA) acquired spectra 
can be displayed, baseline correction can be applied, 
and acquisition parameters can be defined (10 sec-
onds, 30 averages, 90 mW) according to the request 
of the user. 

Data analysis and machine learning 

To reduce bias, data acquired at different time 
points and states of fixation were analyzed sepa-
rately and divided into two data sets. To reduce the 
impact of patient dependent clustering, the same 
number of measurements for each patient was car-
ried out in the majority of cases and all of them were 
recorded with the same acquisition time in the re-
spective systems. Using a custom-made Python 
script, data cleaning was carried out on intraopera-
tively acquired Raman measurements (n = 75), in-
cluding outliers and trend removal, as well as re-
moval of artifacts and standardization of spectra. 
The mean spectra and the variance were visualized 
(Figure 2). Afterwards, three different machine 
learning algorithms were applied to distinguish be-
tween the two tumor entities and performance 

 

 

 

Figure 2. Mean spectra and variance of the perioperatively acquired RS after standardization. The x-axis displays the wavenumbers (in 
cm-1) of the inelastic scattered photons (= the Raman shift) and the y-axis the corresponding intensity value.  
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statistics were calculated (accuracy/sensitiv-
ity/specificity/ROC/PR curve). Starting with the lin-
ear algorithm of Logistic Regression we continued 
with Random Forest classification, which may be 
more favorable in this study due to non-independ-
ent data points within a Raman measurement. To 
further reduce the bias of patient-dependent clus-
tering, Random Forest classifiers were trained with 
randomly split data distribution and a distribution 
split by patients; results were internally checked for 
comparability and suggested no relevant bias. As the 
third machine learning algorithm, we used XGBoost 
classification, in which parameters could be set indi-
vidually.  

Figure 3 gives an overview of our data pro-
cessing and statistical approach.  

We identified characteristic wavenumbers usa-
ble for spectral tumor discrimination and compared 
our findings with the underlying biochemical com-
position of the tissue.  

The Raman measurements acquired in the neu-
ropathology department on FFPE tissue (second 
data set, n total = 45) were classified using a Random 
Forest algorithm. Due to a low number of patients, 
the data was not split into a training and an external 
validation set. In order to create a representative 
sample of the performance of the algorithms, partic-
ular attention was instead made on the internal val-
idation (for example intrinsic re-validation based on 
bootstrap subsamples). Classification was validated 
using specific parameters of algorithm performance 
(AUROC, AUPR), as well as internal comparison of 
the performance based on randomly shuffling of 
measurement points with a patient stratified distri-
bution. For a deeper technical insight in our way of 
machine learning (e.g., way of hyperparameter opti-
mization) and a visualization of sample individual 
Raman spectra, see supplementary material.  

 

 

 

 

 

Figure 3. Workflow of data selection and machine learning for the intraoperative measurements.  
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Results 

Efficient differentiation of distinct tumor entities 
on freshly resected tissue using linear and nonlin-
ear machine learning algorithms 

For an accurate overview of the performance 
of each of our classifiers, see Table 2. Our trained 
Logistic Regression algorithm distinguishes with a 
balanced accuracy of 79.3% between the intraoper-
ative measured PCNSL versus glioblastoma tumor 
tissue. Our Random Forest classifier discriminates 
between these two tumor entities with an overall 
accuracy of 82.4% (balanced), with a sensitivity of 
0.89 ± 0.13 and a specificity of 75 ± 0.12. As an indi-
cator of the classifier performance, we used the ROC 
(receiver operating characteristics) curve, in which 
each threshold is visualized according to the result-
ing specificity and sensitivity, and the AUC (area un-
der the curve) value. The AUC value of the Random 
Forest classification for the PCNSL class was 0.86 ± 
0.07 (Figure 4). Since the ROC curve may be biased 
due to an imbalance in the data set, we additionally 

used the PR (precision – recall) curve, where instead 
the ratio between PPV (Positive predictive 
value=precision) and Recall (=sensitivity) of every 
possible cut-off is displayed. Figure 4 shows our re-
sulting PR curve with the resulting AUC value (0.66 ± 
0.2) for the PCNSL class.  

In order to evaluate our trained models in more 
detail, sensitivity and specificity were calculated for 
all algorithms and displayed in Table 2 according to 
the optimal threshold (maximizing sensitivity and 
specificity). For all resulting plots of statistic perfor-
mance, see Supplementary material.  

Biochemical insights from spectral analysis 

In order to determine certain wavenumbers of 
Raman shift for more detailed analysis of the under-
lying biochemical substrates, we arranged wave-
numbers of interest in descending order, according 
to the distinct tumor class and importance as a fea-
ture coefficient for the logistic regression. Table 3 
displays the class-defining wavenumbers (i.e., posi-
tive and negative weights).  
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Figure 4. Left: ROC curve of Random Forest classification with AUROC value of 0.86 ± 0.07. Right: corresponding PR curve with an AUPR 
value of 0.66 ± 0.2.  

 

 

As wavenumbers with highest attribution for 
glioblastoma classification distinct peaks in the re-
gion 2450 to 3000 cm-1 can be detected (2791, 2486, 
2650, 2562, 2673, 2971, 2823 cm-1); most of them 
likely representing CH stretching / OH - NH - CH 
stretching motions. In particular, peaks occurring in 
the region between 2700 to 3000 cm-1 are known to 
be related to underlying methyl groups from phos-
pholipids19,20,21. 

On the contrary, the wavenumbers of interest 
for PCNSL classification cannot be assigned to the 
high wavenumber region. 

For PCNSL classification, the most important 
peak at 1831 cm-1 seems to be related to changes in 
the vibrational state of C=C compounds22; followed 
by bins at 374 cm-1 and 977 cm-1, respectively. Those 
latter bins are, according to the literature19-20, re-
lated to chain expansions and CC-stretching of n-al-
kanes. Other important peaks for PCNSL classifica-
tion, notably 1085 cm-1 and 316 cm-1, may also be 
attributed to n-alkanes, whereas 784 cm-1 is caused 
by ring vibrations – as the spectral region from 600 

to 800 cm-1 is mainly contributed to DNA mole-
cules21. 

Figure 5 provides an overview of the wave-
numbers with highest impact and their distribution 
in relation to the mean spectra of the examined tu-
mor entities. 

Tumor classification on chemically aggressively 
treated formalin fixed paraffin-embedded tissue 

To analyze our measurements of the FFPE tu-
mor tissue (second dataset with n = 45), we chose a 
Random Forest algorithm, as it showed the best per-
formance on fresh tumor tissue in our analysis. Ap-
plying RS on histopathological proven tumor areas, 
we were able to establish a classifier with a balanced 
accuracy of 94%, a sensitivity of 0.93 ± 0.09 and a 
specificity of 0.95 ± 0.05. The AUROC value was 0.98 
± 0.03; the AUPR was 0.97 ± 0.05. For a deeper un-
derstanding of our results, we investigated the 
wavenumber regions used to classify between glio-
blastoma and PCNSL. We detected two regions 
(around 690 - 700 cm-1 and 2820 - 2890 cm-1)  
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Figure 5. Feature importance for classification between primary CNS lymphoma and glioblastoma. The ascending bins are important for 
PCNSL detection; the descending bins for glioblastoma detection. See Table 3 for further explanation of the wavenumbers behind the 
frequency bins.  

 

 

contributing to the classification performance. Pure 
paraffin wax was described to have spectra with 
peaks at 1133, 1296, and 1441 cm-1 23,18, but we also 
saw significant paraffin contribution in higher wave-
number regions, especially around 2820 to 2910  
cm-1. Therefore, we suppose that, in addition to tis-
sue-originating spectra, different and potentially 
characteristic amounts of residual paraffin or its re-
action products with the tumor tissue may play a 
role, which, together with the possible influence of 
other materials related to the dewaxing process and 
experimental setup, needs to be considered when 
applying RS on FFPE tissue. 

Discussion 

In this study, we show that Raman Spectros-
copy can be used as a non-destructive, label-free, 
fast technique for perioperative tissue classification 
to address the differential diagnosis between glio-
blastoma and primary CNS lymphoma at an early 
stage in the diagnostic workflow. We suggest RS as 
a future additional method in the OR. In the current 
application, the method would complement the bi-
opsy procedure by giving a fast-feedback diagnostic 
tool that would allow for a direct treatment decision 

https://doi.org/10.17879/freeneuropathology-2021-3458


Free Neuropathology 2:26 (2021) Klamminger et al 
doi: https://doi.org/10.17879/freeneuropathology-2021-3458 page 11 of 13 
 
 

 

without waiting for lengthy histopathological exam-
ination. This could be advantageous, for example by 
giving the surgeon the opportunity to immediately 
proceed with surgical resection in the case of a diag-
nosis of glioblastoma. Additionally, the tool could be 
modified in such a way that an optical probe could 
replace the biopsy needle and yield an invasive but 
non-destructive stereotactic assessment of the tis-
sue24-25. With our machine learning algorithms, the 
spectral data obtained from intraoperative tumor 
samples could be classified with linear (logistic re-
gression) and nonlinear classifiers (Random Forest), 
with the latter displaying the highest potential with 
an overall balanced accuracy of 82.4%. To our 
knowledge, we describe for the first-time important 
wavenumbers to distinguish PCNSL from glioblas-
toma. The most important numbers for the detec-
tion of the WHO grade IV glioblastoma are mainly 
arising from the spectral region 2450 to 3000 cm-1, 

which is not in contradiction with previous findings. 
Zhou et al.10 described three major peaks (2850, 
2885, 2932 cm-1) in that specific region associated 
with healthy brain tissue, and the mainly phospho-
lipid-derived peaks in the high-wavenumber region 
also showed the potential to distinguish between 
different WHO grades of gliomas. Our suggested 
peaks for primary CNS lymphoma most likely arise 
from vibrational changes in n-alkane molecules 
(316, 374, 977, 1085 cm-1) and partially also from 
backbone vibration of nuclei acids (784 cm-1). To our 
knowledge, these peaks have not yet been used for 
the differentiation between PCNSL and other tumor 
entities. So far, Shiramizu et al.26 showed the possi-
bility to discriminate between B-cell lymphoma cells 
and non-neoplastic lymphocytes by using RS and set 
the fingerprint wavenumber region to 600 – 1800 
cm-1. Manago et al.27 described certain Raman peaks 
of non-neoplastic lymphocytes and lymphoma cells 
(amongst other peaks in the region 700-800 cm-1). 
They differentiated between non-neoplastic B-cells 
and three B-cell lymphoma cell lines and tracked 
changes in the resulting Raman spectra during treat-
ment application27. 

Furthermore, our results demonstrate the ca-
pability of RS to distinguish tumor entities on highly 
processed FFPE tissue in the neuropathology depart-
ment. Here, precise regions of the tissue can be 
measured at the price of aggressive chemical treat-

ment and spectral contamination by residual paraf-
fin wax, fixation and washing agents. Since spectral 
regions initially attributed to paraffin may even play 
an influencing role in FFPE tissue classification, 
standardized dewaxing protocols and tried and 
tested processes are essential. A potential role for 
RS in the neuropathological toolbox is the examina-
tion of tissue fragments with little requirements for 
tissue integrity and neuropathological expertise. Re-
cent studies investigate this possibility14. Future 
studies will show whether the use of this “spectral 
molecular fingerprint” holds true, and can also be 
applied on multiclass differentiation of several tis-
sue entities.  

Due to a low prevalence of primary CNS lym-
phoma, the quantity of measurements in our data 
set remained limited. To deal with resulting imbal-
ance and to minimize the impact of patient-depend-
ent clustering, several efforts have been made. Not 
only were the number of measurements per patient 
correlated for both tumor groups to reduce insensi-
tivity on imbalanced data, but we additionally eval-
uated our statistical algorithms with the balanced 
accuracy, the PR curve, and the corresponding AUPR 
value. While cross validation and bootstrapping 
techniques have been used to provide an indicative 
assessment of the model performance in future pa-
tients, external validation would be required to im-
plement such a prediction model in clinical practice. 
Although our classification shows reasonably good 
results and a distinct separation of classes, for prac-
tical application, the number of reads of one single 
patient (and therefore the number of reads related 
to tumor tissue and not surrounding brain) is key. 
Therefore, multiple reads from one sample, which is 
also preferable to further reduce the bias of patient 
depending clustering, will improve the diagnostic ac-
curacy in a real-world perioperative setting. 

Further studies are required to see if our pro-
posed model of tissue classification holds true when 
using RS for the differentiation of other tumors, such 
as metastasis, and non-neoplastic lesions e.g., brain 
abscess. More extensive knowledge of the amount 
of tumor cells needed to get a tumor-specific Raman 
signal would aid the surgeon to find the tumor bor-
ders28. In a next step, RS may also be able to provide 
early insights into genetic / epigenetic alterations of 
tissue29; as well as insights into therapeutic effects 
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of chemo- or radiotherapy27. RS might also be used 
in combination with additional spectral analysis such 
as IR (Infrared) or mass spectroscopy as complemen-
tary techniques30-31, and in addition as an image-
forming technique32. 

Conclusion 

In conclusion, our study shows that machine 
learning algorithms can be successfully applied on 
spectroscopic data of brain tumor tissue and fulfill 
the need of early differential diagnosis between pri-
mary CNS lymphoma and glioblastoma to determine 
an individual clinical treatment at an early stage.  
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