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Abstract 

Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder of uncertain etiology, clinical-
ly characterized by various combinations of Levo-dopa-unresponsive parkinsonism, and cerebellar, motor, and 
autonomic dysfunctions. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving stria-
tonigral, olivopontocerebellar, autonomic and peripheral nervous systems. The pathologic hallmark of this 
unique proteinopathy is the deposition of aberrant α-synuclein (αSyn) in both glia (mainly oligodendroglia) and 
neurons forming pathological inclusions that cause cell dysfunction and demise. The major variants are stria-
tonigral degeneration (MSA with predominant parkinsonism / MSA-P) and olivopontocerebellar atrophy (MSA 
with prominent cerebellar ataxia / MSA-C). However, the clinical and pathological features of MSA are broader 
than previously considered. Studies in various mouse models and human patients have helped to better under-
stand the molecular mechanisms that underlie the progression of the disease. The pathogenesis of MSA is 
characterized by propagation of disease-specific strains of αSyn from neurons to oligodendroglia and cell-to-
cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunctions, myelin 
dysregulation, neuroinflammation, decreased neurotrophic factors, and energy failure. The combination of 
these mechanisms results in neurodegeneration with widespread demyelination and a multisystem involve-
ment that is specific for MSA. Clinical diagnostic accuracy and differential diagnosis of MSA have improved by 
using combined biomarkers. Cognitive impairment, which has been a non-supporting feature of MSA, is not 
uncommon, while severe dementia is rare. Despite several pharmacological approaches in MSA models, no 
effective disease-modifying therapeutic strategies are currently available, although many clinical trials targeting 
disease modification, including immunotherapy and combined approaches, are under way. Multidisciplinary 
research to elucidate the genetic and molecular background of the noxious processes as the basis for develop-
ment of an effective treatment of the hitherto incurable disorder are urgently needed. 
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Abbreviations 

αSyn - α-synuclein, ADNC - Alzheimer disease 
neuropathological changes, BG - basal ganglia, CAA 
- cerebral amyloid angiopathy, CI - cognitive im-
pairment, CN - caudate nucleus, CNS - central 
nervous system, CSF - cerebrospinal fluid, DAT - 
dopamine transporter, FTLD - frontotemporal lobar 
degeneration, GCI - glial cytoplasmic inclusion, 
GDNF - glia-derived neurotrophic factors, GP - glo-
bus pallidus, GWAS - genome-wide association 
study, HPR - hyperintensive putaminal rim, LBD - 
Lewy body disease, LBs - Lewy bodies, MBP - mye-
lin basic protein, MCI - mild cognitive impairment, 
MSA - multiple system atrophy, MSA-C - MSA with 
prominent cerebellar ataxia, MSA-P - MSA with 
predominant parkinsonism, OPC - olivoponto-
cerebellar, OPCA - olivopontocerebellar atrophy, 
OS - oxidative stress, PART - primary age-related 
tauopathy, PD - Parkinson disease, PET - positron 
emission tomography, PrPC - cellular prion protein, 
PSP - progressive supranuclear palsy, SN - substan-
tia nigra, SND - striatonigral degeneration, tg - 
transgenic, TPPP - tubulin polymerization-
promoting protein, wt - wild type 

Introduction 

Multiple system atrophy (MSA) is a rare adult-
onset and lethal neurodegenerative disorder clini-
cally characterized by rapidly progressing autonom-
ic and motor dysfunctions. The pathological hall-
mark of MSA, a specific form of α-synucleinopathy, 
is abnormal accumulation of fibrillar α-synuclein 
(αSyn) in oligodendrocytes as glial cytoplasmic in-
clusions (GCI) [1], which may represent a primary 
pathologic event [2]. Degeneration of many neu-
ronal pathways causes multifaceted clinical pheno-
types: a parkinsonian variant (MSA-P), associated 
with striatonigral degeneration (SND), and a cere-
bellar (MSA-C) variant with olivopontocerebellar 
atrophy (OPCA) [3]. In addition to combined or 
"mixed" MSA, there are several disease variants [4-
6]. The underlying molecular mechanisms are poor-
ly understood, but converging evidence suggests 
that a "prion-like" spreading of disease-specific 
αSyn strains is involved in the pathogenic cascade 
leading to a specific multisystem neurodegenera-
tion in this (oligodendro)glioneuronal proteinopa-

thy [4, 7-12]. The aim of the present review is to 
describe recent advances in MSA neuropathology, 
clinical diagnosis, neuroimaging, and candidate 
biomarkers. It further provides an overview of the 
mechanisms underlying MSA pathogenesis and of 
possible novel therapeutic targets that have 
emerged from animal studies and preclinical inter-
ventional trials [13-16]. 

Epidemiology 

MSA is a rare disease with an estimated inci-
dence of 0.6-0.7/100,000 person-years [17], alt-
hough studies from Russia and Northern Sweden 
have reported incidences of 0.1 and 2.4/100,000 
person-years, respectively [18, 19]. Prevalence 
estimates range from 1.9 to 4.9/100,000 [20] but 
may reach up to 7.8 after the age of 40 years [21], 
and up to 12/100,000 after the age of 70 [22]. 
MSA-P accounts for 70-80% of cases in the western 
world [23], whereas MSA-C is more frequent in 
Asian populations (67-84%) with rather frequent 
mixed phenotypes [24-27], probably due to genetic 
and environmental factors [5]. 

Etiology and genetics 

MSA is generally considered a sporadic dis-
ease [17], but MSA pedigrees with both autosomal 
dominant and autosomal recessive inheritance 
patterns have been reported in Europe and Asia 
[28-33]. A genome-wide association study (GWAS) 
found an estimated heritability of 2-7% [34], but 
unlike Parkinson disease (PD), no single gene muta-
tions linked to familial forms and no definite envi-
ronmental risk factors have been identified [35]. 
Screening for PD causal genes (MAPT, PDYN, Par-
kin, PINK1, and several single nucleotide polymor-
phisms/SNPs) did not reveal any association with 
MSA [36-38], while LRRK2 exon variants may con-
tribute to its susceptibility [39]. Glucocerebrosidase 
(GBA) variants were associated with autopsy-
proven MSA [40, 41], particularly with MSA-C [42], 
while others have found no association [43]. Fur-
thermore, C9ORF72 repeat expansions [44] and 
SNCA polymorphisms as risk factors of MSA [45, 46] 
have not been confirmed [47-49]. No significant 
associations of the APOE locus nor the prion PRNP 
with risk of MSA was observed [50, 51], and there is 
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no evidence of autosomal dominant MSA or of de 
novo mutations in this disorder [52]. A British fami-
ly with SNCA mutation showed neuropathologic 
features of both PD and MSA [53], but they are 
distinct from PD patients carrying the H50Q or 
SNCA duplication [54]. None of the nucleotide pol-
ymorphisms (FBXO47, ELOVL7, EDN1, etc.) reached 
genome-wide significance [34], and polymorphisms 
of the LINGO1 and LINGO2 (nogo receptor interact-
ing protein-1 and -2) do not decrease the risk of 
MSA [55]. The possible involvement of the SNCA, 
COQ2, MAPT, GBA1, LRRK2 and C9ORF72 genes in 
MSA pathogenesis was examined recently [56]. 

The link between V393A mutations and the 
COQ2 gene, encoding the coenzyme Q10 (COQ10), 
and familial or sporadic MSA in Japanese and other 
Asian populations [44, 57-61] has not been con-
firmed in other populations [34, 62-64]. Thus, 
COQ2 polymorphisms may be region-specific and 
may not represent common genetic factors for 
MSA. Decreased levels of COQ10 in cerebellum and 
plasma of MSA patients [65, 66] suggest that its 
deficiency may contribute to pathogenesis due to 
decreased electron transport in the mitochondria 
and increased vulnerability to oxidative stress (OS) 
[67]. 

RNA analyses of MSA brain tissue revealed al-
terations in α- and β-immunoglobuline [68], 
dysregulations of microRNAs that regulate gene 
expression in the pons and cerebellum [69, 70], and 
disruption of long intervening non-coding RNAs 
(lincRNA) in the frontal cortex along with protein 
coding genes related to iron metabolism and im-
mune response regulation [71, 72]. Epidemiological 
studies suggested that epigenetic factors or envi-
ronmental toxins may be associated with the risk 
for MSA [73], but there are no convincing data cor-
relating increased risk of MSA with exposure to 
pesticides, solvents, other toxins, or alcohol con-
sumption [74, 75]. 

Pathogenesis 

Although our understanding of MSA remains 
incomplete, evidence from animal models and hu-
man post mortem studies indicates that the accu-
mulation of misfolded αSyn, particularly in oli-
godendrocytes but also in neurons, plays an essen-

tial role in the disease process [10, 76-78]. The im-
pact of the neuronal endosomal-lysosomal system 
in the processing of αSyn in PD is well established, 
while lysosomes contribute to the pathogenesis of 
MSA, enabling oligodendroglial and neuronal up-
takt of αSyn [79]. Reduced oligodendrocyte-derived 
enriched microvesicles (OEMVs) could be an im-
portant mechanism related to pathological αSyn 
aggregation in oligodendrocytes [80]. Although it 
has been speculated that primary neuronal pathol-
ogy leads to secondary oligodendroglial degenera-
tion, as suggested by the widespread occurrence of 
NCIs even in areas lacking GCIs [77], the distribu-
tion and severity of neurodegeneration reflects 
subregional GCI density and supports the assump-
tion that MSA is a primary oligodendrogliopathy [2, 
81]. The role of oligodendroglia in introducing the 
neurodegenerative process was confirmed experi-
mentally in transgenic (tg) mice overexpressing 
αSyn in oligodendrocytes [10, 13, 82-84]. These and 
other results highlight the role of endogenous αSyn 
and p25α in the formation of αSyn assemblies in 
oligodendrocytes and provide in vivo evidence of 
the role of oligodendroglial αSyn in the establish-
ment of αSyn pathology in MSA [85]. Early events 
are an ectopic appearance of αSyn in oligodendro-
cytes, loss of the cAMP-regulated phosphoprotein 
of 32kDA (DARPP-32), and calbindin indicating cal-
cium toxicity and disturbance of phosphorylated 
proteins [86]. Recent findings suggest the possibil-
ity of endogenous αSyn accumulation in oligoden-
drocyte precursor cells that contribute to GCI for-
mation and perturbation of neuronal/glia support 
in MSA brain [86a]. Reduced OEMVs could be an 
important mechanism related to pathological αSyn 
aggregates in oligodendroglia, inducing dysfunction 
of the SNARE protein complex, which regulates 
membran fusion in eukaryotic cells. The concentra-
tions of OEMVs in MSA were significantly reduced 
compared to those in PD [80]. Decreased expres-
sion of glia-derived neurotrophic factors (GDNF) in 
MSA brains [87] indicates that αSyn aggregation in 
oligodendrocytes impacts their trophic transport to 
neurons. Oligodendroglial changes are more wide-
spread than αSyn positive GCIs, suggesting that 
oligodendroglial pathology induces degeneration of 
the oligodendroglia-myelin-axon-neuron complex 
[2, 26]. The selectivity of the neurodegeneration in 
MSA is determined by the interaction of multiple 
noxious factors. Some of these factors include: 
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Fig. 1. Pathogenetical features of MSA causing neurodegeneration. Spontaneous misfolding of αSyn results in formation of abnormally 
folded dimers and further assembly results in oligomers and amyloid formations. αSyn-rich GCIs involving oligodendroglia result in 
demyelization and neurodegeneration. The red arrow shows the “prion-like” cell-to-cell transfer of misfolded αSyn. 

Courtesy of Victoria Sidoroff, MD, Dept. of Neurology, Medical University of Innsbruck, Innsbruck, Austria 
 

ectopic αSyn accumulation in oligodendrocytes and 
neurons, "prion-like" propagation of disease-
specific strains of misfolded αSyn [88], targeting 
distinct brain regions and cell types [89, 90], im-
paired protein degradation, proteasomal and mito-
chondrial dysfunctions [91, 92], alterations of the 
autophagic pathway [91, 93, 94], perturbed iron 
homeostasis [95], lipid dysfunction involved in 
myelin synthesis [96-98], genetic polymorphism 
[55], microglial activation [97, 99], neuroinflamma-
tion [100], proteolytic disturbance, autophagy 
[101], and microRNA dysregulation [102] driving 
inflammation, disrupting myelin, and contributing 
αSyn accumulation via the dysregulation of au-
tophagy and prion mechanisms [103]. These and 
other factors are contributing to OS, which is sug-
gested to be a major pathogenic factor in MSA and 
related diseases [104]. These multiple mechanisms 
interact to result in the system-specific pattern of 
neurodegeneration in MSA (Fig. 1). TNFα-
dependent neuroinflammation may play a key role 
in MSA pathogenesis, and its relevance has been 
underlined in various models of the disease [105]. 

αSyn, which shows specific conformational strains 
[88, 106] that are primarily generated by neurons, 
can be toxic once released to the extracellular envi-
ronment [107] and can spread throughout the 
brain in a "prion-like" manner [9, 108-111]. Extra-
cellular αSyn, interacting with neuronal and non-
neuronal cell types, mediates neuroinflammation 
and cell-to-cell spread [112, 113]. Neuron-to-
oligodendrocyte transport of misfolded αSyn plays 
a major role in the pathogenesis of MSA [114, 115]. 
MSA and PD show different phosphorylation signa-
tures of αSyn and distinct seed characteristics, indi-
cating that distinct strains underlie these diseases 
[90, 116, 117]. After propagation in TgM83 tg mice, 
strain-specific phenotypic differences are main-
tained after serial transmission, providing evidence 
that disease heterogeneity among the synucleinop-
athies is caused by distinct αSyn strains [89]. MSA 
strains show several similarities to PD strains, and 
less so with DLB strains, but more potently induce 
motor deficits, nigrostriatal degeneration, αSyn 
spreading, and inflammation, reflecting the aggres-
sive nature of this disease [118]. 
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Recent animal model studies that only partial-
ly replicate the human disorder have provided 
some progress in our understanding of MSA patho-
genesis [13, 15, 84, 119, 120]. Early accumulation 
of p25α (TPPP), a potent stimulator of αSyn aggre-
gation, may decrease myelin basic protein (MBP), 
favoring both the deposition and fibrillation of αSyn 
and changing myelin metabolism [121]. Relocation 
of p25α from the myelin sheaths to the oligoden-
droglial soma, due to mitochondrial dysfunction, 
and the formation of cytoplasmic p25α inclusions 
precedes the aggregation of transformed αSyn in 
oligodendrocytes. Endogenous αSyn and p25α in-
duce the formation of pathological αSyn assemblies 
in oligodendrocytes and provide in vivo evidence of 
their contribution to the pathogenesis of MSA [85]. 
Although large inclusions appear in a later disease 
states, small, soluble assemblies of αSyn, promoted 
by p25α, are pathogenic [122]. The source of αSyn 
in oligodendroglia is unclear, but it contains αSyn 
mRNA expression and αSyn may be secreted by 
neurons and taken up by oligodendrocytes, which 
is facilitated by protein Cx32 via direct protein-
protein interaction in both neurons and oligoden-
droglia [115]. 21% of proteins found consistently in 
GCIs and LBs are synaptic vesicle-related, suggest-
ing that misfolded αSyn may be targeted via vesi-
cle-mediated transport, and may explain the pres-
ence of this neuronal protein within GCIs [123]. 
Thus, MSA represents a specific form of oligoden-
droglial proteinopathies [124], while others suggest 
that it is a primary neuronal disease with secondary 
accumulation of αSyn in oligodendrocytes [77]. 
Induced pluripotent stem cell (iPSC) studies indi-
cate a pathological phenotype of MSA neurons, 
independently from oligodendrocytes. These data 
together with findings in animal models suggest 
that both neurons and oligodendrocytes are affect-
ed in MSA [91]. The disease is currently viewed as a 
primary synucleinopathy with specific glio-neuronal 
degeneration developing via the oligo-myelin-axon-
neuron complex [2, 4]. 

Histopathology and molecular pa-
thology 

The histological core features of MSA encom-
pass the following types of different severity: 
(1)specific αSyn-immunoreactive inclusion patholo-

gy with five types of inclusions: GCIs within oli-
godendrocytes (also referred to as Papp-Lantos 
bodies [125], the presence of which is mandatory 
for the post mortem diagnosis of definite MSA [1]) 
and less frequently glial nuclear inclusions, neu-
ronal nuclear inclusions, astroglial cytoplasmic in-
clusions, and neuronal threads, also composed of 
αSyn [126]; (2) selective neuronal loss and axonal 
degeneration involving multiple regions of the 
nervous system; (3) extensive myelin degeneration 
with pallor and reduction in MBP with astrogliosis; 
and (4) widespread microglial activation [127] and 
neuroinflammation [128, 129], with extensive CD4 
and CD8 T-cell infiltration [130]. GCIs and the re-
sulting neurodegeneration show a characteristic 
distribution, involving not only the striatonigral and 
OPC systems, but also cortical regions, autonomic 
and motor nuclei in the brainstem, spinal cord, 
preganglionic autonomic nerve structures [131-
134], and the peripheral nervous system [135-138], 
characterizing MSA as a multi-system/-organ disor-
der [2, 77, 139]. Phosphorylated αSyn is accumu-
lated in subpial and periventricular astrocytes after 
long disease duration [140]. However, αSyn-
positive astrocytes in subpial and perivascular re-
gions are seen in both MSA and Lewy body disease 
(LBD), suggesting that this pathology is not a specif-
ic feature of MSA [141]. 

Inclusion pathology 

GCIs are argyrophilic, triangular, sickle-/half 
moon-shaped or oval cytoplasmic aggregations, 
composed of fibrillar αSyn, ubiquitin and various 
multifunctional proteins, including 14-3-3 protein, 
LRRK2, aggressomal proteins, etc. [125] (Fig. 2). 
They form a meshwork of loosely packed filaments 
or tubules 15-30 nm in diameter with a periodicity 
of 70-90 nm and straight filaments, both composed 
of polymerized αSyn granular material and other 
filaments. The central core contains phosphory-
lated (ser129) αSyn Cryo-EM showed that αSyn 
inclusions from MSA are made of two types of fila-
ments, each of which consists of two different pro-
tofilaments. Each type contains non-proteinaceous 
molecules at the interface of the two proteofila-
ments. Thus, they differ from those in DLB brain, 
which suggests that distinct conformations/strains 
are characteristic for specific synucleinopathies. In 
addition, αSyn filament extracts from MSA tissue
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Fig. 2. (A–C) Glial cytoplamic inclusions in MSA: (A) in globus pallidus (Gallyas silver impregnation), (B) in pontine basis (α-Synuclein) and 
(C) in frontal white matter, anti-ubiquitin. (D) Neuronal cytoplasmic inclusion and neurites in pontine basis (α-Synuclein). (A–D) original 
magnification 34,000.  

From [126]. 

 
differ from those formed in vitro using recombinant 
proteins, which may have implications for the 
mechanisms of protein aggregation and neuro-
degeneration [142]. Soluble αSyn in GCIs differs 
from the insoluble form in Lewy bodies (LBs) [143]. 
Purification of αSyn containing GCIs revealed 11.9% 
αSyn, 2.8% α-β-crystallin, and 1.7% 14-3-3 protein 
compared to 8.5%, 2.0% and 1.5% in LBs [144]. In 
the MSA brain, αSyn 140 and 122 isoform levels are 
increased, whereas αSyn 126 is decreased, in the 
substantia nigra (SN), striatum, and cerebellum. In 
early disease states, diffuse αSyn staining in neu-
ronal nuclei and cytoplasm occurs in many gray 
matter areas, indicating that aggregation of non-
fibrillary αSyn occurs early in neurons [26]. Recent 
studies using a proximity ligation assay revealed a 

wide distribution of αSyn oligomers not only in 
oligodendrocytes but also in neocortical neurons 
and Purkinje cells, suggesting that αSyn oligomer-
mediated toxicity is an early event in MSA, inducing 
neuronal loss in MSA [145]. 

On the other side, interactions exist between ex-
tracellular αSyn and each of the major central 
nervous system (CNS) cell types. This has thepoten-
tial to contribute to secondary disease processes 
such as neuroinflammation, synaptic dysfunc-tion, 
and cell-to-cell spread, with vehicles such as micro-
glia and exosomes that mediate spread of αSyn 
pathology to peripheral brain regions [113]. Ca-
thepsin-D, calpain-1 and kallikrein-6 are elevated in 
the putamen, pontine basis, and cerebellar white 
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matter, indicating that αSyn accumulation is not 
due to reduced activity of these proteases, but 
rather that their upregulation is compensatory to 
increased αSyn [146]. Iron levels in basal ganglia 
(BG) and SN are higher in MSA than in PD and con-
trols, indicating perturbed iron homeostasis as a 
potential pathogenic factor in MSA neurodegenera-
tion [95]. 

Quantitative analyses of neuronal death and 
GCI density showed a positive correlation with each 
other, indicating the pivotal role of GCIs in neuronal 
death [81, 147], and additionally, both lesions in-
crease with disease duration [148-150]. In the SN, 
severe neuronal loss is accompanied by low GCI 
density, indicating that this and other areas affect-
ed in early disease have been burned out [139]. 

Glial nuclear inclusions show a distinct distri-
bution from GCIs (Fig. 2D), and similarly the density 
of neuronal cytoplasmic inclusions (NCIs) and neu-
ronal nuclear inclusions are unrelated to that of 
GCIs [151]. NCIs are more widespread and show a 
hierarchical pattern related to the duration of dis-
ease but are independent of neuronal destruction, 
suggesting that other factors may induce the sub-
type-dependent neuronal loss [77]. Region-specific 
astrogliosis is positively correlated with αSyn pa-
thology in MSA, in contrast to PD [152], and in gen-
eral parallels the severity of neurodegeneration 
[148]. Microglial activation in degenerated regions 
accompanies GCI pathology and is most abundant 
in white matter areas with mild to moderate de-
myelination [153]. In MSA-C, the cerebellar subcor-
tical white matter and cerebellar brainstem projec-
tions are the earliest involved, followed by other 
CNS regions. 

Distribution of lesions 

A grading system for SND was proposed based 
on semiquantitative assessment of atrophy, neu-
ronal loss, and the presence of GCIs [154]: Neu-
ronal loss in the SN pars compacta is grade 1; ex-
tension to the putamen is grade 2; further involve-
ment of the caudate and globus pallidus (GP) is 
grade 3. Subsequently, the grading system was 
extended for both SND and OPCA [155]. Of 42 pa-
tients, 22 were assigned as MSA-P and 20 as MSA-
C, but none displayed "pure" OPCA pathology or 
more severe OPCA pathology than SND (i.e., OPCA 

III+SND I/II). These clinicopathological subtypes 
correlated with initial symptoms and clinical fea-
tures of both types. Post mortem MRI changes in 
the putamen (type 1, mild atrophy and isointensity; 
type 2, atrophy and diffuse hypointensity with a 
hyperintensive putaminal rim/HPR; type 3, putami-
nal atrophy and iso- or hypointensity with HPR) 
reflect various degrees of brain damage [156]. In 
two large series from the UK and Japan, another 
grading system for MSA was proposed [148]: each 
case of SND and OPCA was divided into three 
grades based on semiquantitative assessment of 
neuronal loss in regions of interest: for SND, the 
putamen, GP and SN; and for OPCA the pontine 
nucleus, cerebellar hemisphere and vermis, inferior 
olivary nucleus and SN. This classification showed 
significant clinicopathological correlations. SND 
phenotypes showed more severe bradykinesia, and 
the OPCA phenotype more frequently showed cer-
ebellar signs. No patients showed "pure" SND or 
"pure" OPCA. However, there is an increasing over-
lap of αSyn pathology with increased duration of 
the disease the extent of αSyn pathology [157]. 
Damage to the striatonigral system is most severe 
in the dorsolateral caudal putamen and lateral SN, 
suggesting transsynaptic degeneration of the stria-
tonigral fibers. 

Consistently and severely affected areas are 
the putamen, CN, SN, pontine and medullary teg-
mental nuclei, inferior olives, and cerebellar white 
matter; moderately affected areas are the motor 
cortex and GP, and mild lesions involve the cingular 
cortex, hypothalamus, nucleus basalis of Meynert, 
thalamus, subthalamus, and pontine tegmentum 
[158]. Degeneration of the GP and SN leads to dys-
function of these inhibitory nuclei projecting to the 
motor thalamus, but the SN loss is of dopamine, 
not GABA (gamma aminobutyric acid), neurons. 
Stereological studies of the BG revealed a substan-
tial loss of neurons in the SN, putamen, and GP, 
whereas astrocytes were more frequent in the pu-
tamen and caudate nucleus (CN). Microglia were 
found in all CNS regions with greatest frequency in 
the, otherwise unaffected, red nucleus. These data 
support the region-specific pattern of pathological 
changes in MSA [159]. Another neuropathological 
study showed that the striatonigral region was 
most severely affected in 34% of SND and in 17% in 
OPCA cases, while in almost half of them both re-
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gions were equally affected [133]. In view of the 
frequent overlap and mixed forms, the value of 
grading systems for evaluation of MSA is under 
discussion [139]. 

There is widespread involvement of the neo-
cortex with significant loss of neurons and increase 
of astrocytes and microglia in the frontal and parie-
tal areas, but no change in the total number of 
oligodendrocytes [160]. Early degeneration of the 
BG drives late onset cortical atrophy due to fronto-
striatal degeneration [161, 162]. Reduced neuronal 
numbers in the anterior olfactory nucleus and in-
trabulbar part of the primary olfactory (pyriform) 
cortex may underlie olfactory dysfunction in MSA 
[163]. Limbic TDP-43 pathology is rare in MSA, but 
co-localization with αSyn suggests an interaction 
between the two molecules [164-167]; TDP-43 
positive cases showed significantly older age at 
death than negative ones, suggesting that TDP-43 
pathology in MSA is an age-related phenomenon 
rather than a disease-specific change [141]. 

Demyelination of variable intensity affecting 
all parts of the nervous system [168] is associated 
with reduction of MBP by about 50% [96]. GCIs and 
microglial burden are greatest in mild to moderate 
white matter lesions and decrease with progression 
of myelin damage that increases with disease dura-
tion [169]. The regional vulnerability of the white 
matter to MSA pathology is poorly understood, but 
recent GWASs revealed dysregulation of various 
methylated loci, including HIP1, LMAN2, MOBP, 
and others, giving the first evidence that DNA 
methylation changes contribute to the molecular 
processes altered in MSA [170]. Early MSA stages 
show increased microglia (about 100%) in the white 
matter [127], without concomitant astrogliosis or 
oligodendroglial degeneration [171]. Both microgli-
al activation and αSyn-containing oligodendrocytes 
trigger neuroinflammation in the white matter 
[128]. 

The loss of tubulin polymerization-promoting 
protein (TPPP)/p25α immunoreactivity correlated 
significantly with the degree of microglial reaction 
and loss of MBP density as a marker of tract de-
generation [124]. White matter degeneration caus-
es degeneration of neuronal loops, leading to dys-
function of cerebral autoregulation [172]. Gliosis in 
the degenerated areas of the MSA brain usually 

correlates with αSyn pathology and the severity of 
neurodegeneration [153, 173], which is in contrast 
to PD [174]. Significant increase of monoaminox-
idase B (MAO-B), a biomarker of astrogliosis, in the 
degenerated putamen (+83%) was associated with 
astrogliosis and showed a positive correlation with 
αSyn accumulation [175]. Microglial activation ac-
companying αSyn pathology and phagocytosing 
degenerating myelin is prominent in all degenerat-
ing regions [176], particularly in white matter input 
tracts to the extrapyramidal system and cerebellum 
[177]. Stereological studies revealed a significant 
increase of microglia in the white matter without 
concomitant astrogliosis and with absence of signif-
icant oligodendroglial degeneration [171], suggest-
ing that microglia cells play an important role in the 
initiation and progression of neurodegeneration in 
MSA [100, 178]. This is supported by tg mouse 
models indicating an active contribution of micro-
glial activation by triggering neuroinflammatory 
responses in the MSA brain [179]. 

In MSA-C, GCIs are most prominent in the cer-
ebellum, pons, and medulla [169]. The cerebellar 
Purkinje cells are more severely affected in the 
vermis, with atrophy of olivary nucleus, cerebel-
lopontine fibers, and pontine basis, causing inter-
ruption of specific cerebellocortical circuits [180]. 
The motor subnetwork in MSA-C is significantly 
altered in both BG and cerebellar connectivity 
[181], with hyperintensity of the middle cerebellar 
peduncle [182]. 

Involvement of autonomic and peripheral nerv-
ous systems 

Degeneration of preganglionic autonomic 
neurons of the brain stem and spinal cord cause 
multidomain autonomic failures in MSA [133, 183, 
184]. Supraspinal lesions involve cholinergic neu-
rons of the ventrolateral nucleus ambiguous [185, 
186], tegmental nuclei [187], ventral periaqueduc-
tal dopaminergic neurons [188], medullary and 
arcuate nucleus, noradrenergic locus ceruleus 
[134], serotonergic medullary groups, ventrolateral 
medulla [189], caudal raphe neurons [190, 191], 
catecholaminergic neurons of rostral ventral me-
dulla, and noradrenergic neurons of the caudal 
ventrolateral medulla [185, 192]. The medullary 
serotonergic and catecholaminergic systems are 
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involved in early stages of MSA [193]. Other in-
volved areas are the dorsal vagal nucleus [185], 
periaqueductal gray [132], the Westphal-Edinger 
nucleus and posterior hypothalamus, the tuber-
omamillary and suprachiasmatic nuclei [194], and 
the pontomedullary reticular formation [149]. The 
density of αSyn pathology did not correlate with 
neuronal loss, and there was no correlation be-
tween the αSyn burden and disease duration in 
these regions, indicating that the loss of monoam-
inergic neurons may progress independently from 
αSyn accumulation [195]. Sympathetic preganglion-
ic neurons in the intermediolateral cell columns of 
the thoracolumbar spinal cord [26, 134, 196] and 
sympathetic ganglia and Schwann cells in autonom-
ic nerves are involved [197]. Neuronal loss affects 
Onuf's nucleus in the sacral region [198], with mi-
nor loss of upper and lower motor neurons [26] 
and variable involvement of anterior horn cells 
[134]. Mild degeneration of cardiac sympathetic 
innervation has been reported in some cases of 
MSA [199, 200], which accounts for a mild to mod-
erate decrease in the number of tyrosine hydrox-
ylase, but not of neurofilament-immunoreactive 
nerve fibers in the epicardium. However, depletion 
of cardiac sympathetic nerves is closely related to 
the presence of αSyn pathology in the sympathetic 
ganglia of the CNS [200, 201]. The peripheral nerv-
ous system shows αSyn deposits in sympathetic 
ganglia, skin nerve fibers [138, 202, 203], and 
Schwann cells [204], but lack of αSyn immunoreac-
tivity in dermal fibers in contrast to PD [203, 205]. 
Filamentous αSyn aggregates involve the cytoplasm 
of Schwann cells in cranial, spinal and autonomic 
nerves in MSA [141, 197, 206]. 

Clinical features 

The onset of motor symptoms is 56±9 (mean ± 
SD) years, with both sexes equally affected [207], 
however 20-75% of MSA patients have a prodro-
mal/preclinical phase with non-motor symptoms. 
This phase includes cardiovascular and other auto-
nomic failures (urogenital and sexual dysfunctions, 
orthostatic hypotension, and REM sleep behavior 
disorder (RBD), which occurs in 88% or more [208, 
209]), which may precede the motor presentation 
by months to years [210, 211] and indicates more 
rapid progression of the disease [212, 213]. Aver-

age age at disease onset is earlier in MSA-C com-
pared to MSA-P, the latter leading to more severe 
disability [214-216]. Average duration after clinical 
diagnosis is 6-10 (mean 9.5) years [12, 23], with few 
patients surviving more than 15 years [217]. Others 
have reported a 5 year survival of 78% [218] and a 
43% death rate during 3 years of follow-up [135]. A 
Pan-American multicenter study reported that 68% 
of the participants presenting as MSA-P showed an 
age at onset of 61.5 years, and those as MSA-C of 
57.4 years [219], while a prospective cohort in the 
USA reported a median survival of 9.8 (95% CI 8.8-
10.7) years [220]. Early autonomic dysfunctions and 
severity of orthostatic hypertension have negative 
impact on both disease progression and survival 
[221] and more than triples the risk of shorter sur-
vival [222, 223], and a meta-analysis identified se-
vere dysautonomia, early combined autonomic and 
motor failure, and early falls as unfavorable predic-
tors of survival, whereas MSA phenotype and sex 
did not predict survival [224]. 

Parkinsonism with rigidity, slowness of move-
ments, postural instability, gait disability, and a 
tendency to fall, characterize the motor presenta-
tion of MSA-P [12]. Parkinsonism is rapidly pro-
gressing to wheelchair confinement within 5 to 10 
years from symptom onset, poorly responsive to L-
dopa, and is often associated with atypical features 
[17]. Unilateral parkinsonism occurs in 40% of MSA 
patients [220] and typical tremor in 4-10% [225]. 
Early postural instability and gait difficulties with 
recurrent falls are also seen in MSA [35]. 
Polyminimyoclonus, not included in the current 
diagnostic criteria of MSA, has now been recog-
nized as a specific clinical feature of MSA. 

Among motor and non-motor symptoms in 
early MSA, dysarthria was the most prevalent fea-
ture (98.4%), followed by sexual dysfunction (95%), 
RBD (90.2%), constipation (82%), snoring (70.5%), 
dysphagia (69%), and stridor (42.6%), which was 
more common in MSA-C than in MSA-P [226]. 

A resting tremor is rare, whereas irregular 
postural and action tremor may occur [227, 228]. 
Cerebellar ataxia, widespread gait, uncoordinated 
limb movements, action tremor, and spontaneous 
or gaze invoked nystagmus predominate MSA-C 
[35]. Hyperreflexia and a Babinski sign occur in 30-
50% of patients, while abnormal postures, such as 
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bent spine, antecollis, and hand or foot dystonia 
are rare [229]. Early generalized and rapidly pro-
gressive autonomic failure is typical of MSA [230] 
and, in the absence of parkinsonism or cerebellar 
signs, indicating pure autonomic failure, which con-
verts to MSA within a few years in about 28% [231-
233]. Among non-motor symptoms observed in 75-
95% of patients [234], urinary urgency and in-
creased frequency are common in early disease 
stages [35]. In a subset of MSA patients with early 
urinary retention, the disease may begin in the 
sacral spinal cord and then spread to other regions 
[235]. 

Orthostatic hypotension with recurrent syn-
cope, which occurs after the onset of urogenital 
symptoms, is a hallmark feature of MSA; less spe-
cific are dizziness and nausea. Other symptoms are 
anhydrosis, gastrointestinal dysfunction with early 
dysphagia and constipation [225], pupillary auto-
nomic involvement with blurred vision and dry 
eyes. [236]. 

Dysproportional antecollis and Pisa syndrome 
are common postural deformities in MSA [35]. 
About 50% of patients with MSA-P develop cerebel-
lar signs and even a higher proportion of MSA-C 
cases develop parkinsonian features [23, 220]. Dys-
tonia, repeated falls, drooling, dysphagia, dyspho-
nia, and pain occur in advanced stages of the dis-
ease [237]. Laryngeal stridor is rare [210]. Respira-
tory disturbances including diurnal or nocturnal 
inspiratory stridor and sleep apnea are frequent 
[238, 239]. 

Diagnostic biomarkers 
Despite numerous studies, to date there are 

no reliable diagnostic and prognostic biomarkers 
available. While multimodal imaging of structural 
and functional brain changes gave insight into the 
pathophysiology and may evaluate disease pro-
gression, recent studies suggest that the combina-
tion of neuroimaging and fluid biomarkers may be 
more successful than using single markers to in-
crease the accuracy of the clinical (differential) 
diagnosis of MSA [240]. 

Fluid and tissue biomarkers 

Studies of αSyn levels in cerebrospinal fluid 
(CSF) and plasma have been shown to not be useful 

in the discrimination between MSA and PD or PSP 
[5, 241, 242]. A recent meta-analysis of available 
CSF data showed that reduction of p-tau, αSyn, Aβ-
42 and total tau and elevated NFL are indicators for 
MSA [243]. Currently, the most promising approach 
is a combination of CSF DJ-1, phospho-tau, light 
chain neurofilament protein (NFL) and Aβ-42 that 
may be helpful in the differential diagnosis be-
tween MSA and other parkinsonian disorders [5, 
240, 243, 244] (Fig. 3). Other studies have shown 
increased CSF levels of cytokines such as MCP-3, 
MDC, fractalkine, and MIP-1β [246]. Phosphory-
lated αSyn in red blood cells may be a potential 
diagnostic biomarker for MSA [247]. The results of 
proteomics for biomarker discovery and mRNA 
expression need further elucidation [248]. 

Molecular and functional imaging 

A cardiac sympathetic postganglionic denerva-
tion distinguishes PD from MSA, showing intact 
innervation. I-123 MIBG (metaiodobenzylguani-
dine) scintigraphy can help differentiate the two 
diseases with a pooled specificity of 77% (95% CI: 
68-84%) [199]. Recent meta-analyses suggest that 
MIBG imaging is useful to discriminate PD from 
MSA in moderate to advanced disease stages, but 
unreliable in early stages [199, 249]. However, in-
teractions with many drugs limit the value of this 
method [250]. The anteroposterior diameter of the 
medulla oblongata is a potential imaging marker of 
parasympathetic dysfunction in MSA [251]. 

In recent years, several brain magnetic reso-
nance imaging (MRI) features have been described 
as helpful in the differential diagnosis of parkin-
sonian syndromes. They include atrophy of the 
putamen, pons, cerebellum, and middle cerebellar 
peduncle, a dilated fourth ventricle, and various 
signal intensity variations on MRI [252]. MRI ab-
normalities including the "hot-cross bun" sign, a 
cruciform hyperintensity in the pons [253], and the 
"putaminal rim sign", which marks hyperintensive 
bordering of the dorsolateral margins of the puta 
men in T2-weighted MRI reflecting degeneration 
and iron deposition, may differentiate MSA-P from 
PD [254-258]. They are, however, non-specific signs 
and therefore not included in the recent consensus 
criteria [3], in contrast to putaminal atrophy which 
shows 92.3% specificity but low sensitivity (44.4%)  
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Fig. 3. Candidate biomarkers of multiple system atrophy compared to Parkinson’s disease and controls. 

MSA: multiple system atrophy; PD: Parkinson’s disease; NfL: neurofilament light chain; FH: complement factor H; C3: complement 3; 
MHPG: 3-methoxy-4-hydroxyphenylethyleneglycol; IGF-I: insulin-like growth factor I; UCH-L1: ubiquitin carboxy-terminal hydrolase L1; 
oxDJ: oxidized DJ-1 protein; miRNA: microRNA. 

Modified from [245]. 

 
 [259, 260]. Putaminal atrophy together with hy-
pointense putaminal signal changes on iron-
sensitive routine sequences seem to be specific for 
MSA-P [252]. Others showed significantly increased 
putaminal diffusivity volumes in the small anterior 
region of interest in MSA-P versus PD [261]. Anoth-
er distinguishing feature is the extensive and wide-
spread volume loss across the entire brain in MSA-
P [262]. In quantitative MRI studies, the bilateral 
R2* increase in the putamen best separated MSA-P 
from PD [263]. Putaminal and infratentorial volume 
information classified 96.8% of MSA cases [260]. 
Diffusion tensor imaging permits differentiation 
between PD and MSA-P, the latter showing higher 
values of the diffusion coefficient in the inner cap-
sule, corona radiata, and lateral periputaminal 
white matter [264], while a meta-analysis of pu-
taminal diffusivity measurements showed sensitivi-
ty of 90% and specificity of 93% in distinguishing 
MSA-P from PD based on putaminal diffusivity 

[265]. Combined use of diffusion ratios and mag-
netic susceptibility values/quantitative susceptibil-
ity mapping allowed differentiation of MSA-P and 
MSA-C from other parkinsonian syndromes with 
sensitivities and specificities of 81-100% [266]. Hy-
perintensity of the middle cerebellar peduncle and 
hot cross bun sign should be added into the list of 
additional neuroimaging features of possible MSA-
C [182]. Several studies assessed the diagnostic 
potential of multimodal MRI [267-270]. In conclu-
sion, the sensitivity of conventional MRI findings in 
MSA compared to PD and healthy controls is incon-
sistent (36-83%), the specificity of MRI abnormali-
ties differentiating MSA from PD is high (88-100%). 
Automated imaging differentiation in parkinsonism 
(AID-P) and magnetic resonance Parkinsonism in-
dex (MRPI) are robust biomarkers for PD and MSA 
[271]. Diffusion weighted images, T2* weighted 
images and proton density weighted images are 
useful for diagnosis MSA-P in early stages [272]. 
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Fluorodeoxyglucose-positron emission tomog-
raphy (FDG-PET) can distinguish MSA-P from PD, 
showing different patterns of decreased glucose 
metabolism with a positive predictive value of 97% 
[273, 274]. Targeting postsynaptic dopaminergic 
functions using 123FβCIT SPECT differentiates PD 
(normal or increased signal) from MSA (normal or 
increased signal) [275]. Dopamine transporter 
(DAT) imaging showed more prominent and earlier 
DAT loss in the anterior caudate and ventral puta-
men in MSA than in PD [276], although normal DAT 
imaging does not exclude MSA [277]. In autopsy-
confirmed cases a greater asymmetry of striatal 
binding was seen in MSA than in PD [278], but it is 
highly correlated with SN cell loss [279]. 18F-Dopa-
PET showed more widespread BG dysfunction in 
MSA than in PD without evidence of early compen-
satory increase in Dopa uptake [280]. Future stud-
ies will be needed to determine the usefulness of 
tau-PET imaging for the characterization of αSyn 
filaments and the differential diagnosis of atypical 
parkisonian disorders. 

Interpretation of tau-PET should be done cau-
tiously, since some MSA cases with severe GCI pa-
thology may be false-positive [281, 282], even 
though the affinity of PBB3 is 10 to 50 times less 
than αSyn [283]. 1-(2-chlorophenyl)-N-methyl-N-(1-
methylpropyl)-3-isoquinoline carboxamide 
(PK11195) for imaging microglia-mediated process-
es showed elevated tracer binding in many areas of 
the MSA brain, consistent with the known neuro-
pathologic distribution [284]. 

Diagnostic accuracy and differential 
diagnosis 

Revised consensus guidelines define 3 degrees 
of certainty of clinical diagnosis of MSA: definite, 
probable and possible [3] (Table 1, Fig. 4). 

Definite MSA requires post mortem evidence 
of widespread αSyn inclusions with concomitant 
SND or OPCA [1]. Probable MSA is defined as a spo-
radic, progressive disorder in adults, clinically char-
acterized by severe autonomic failure, urinary dys- 

 

 

 

Fig. 4. Diagnostic scheme for MSA according to the current consensus diagnostic criteria. 
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Table 1. Diagnostic clinical markers for MSA. Modified from [240]. 

MSA, multiple system atrophy; MSA-C, MSA with cerebellar features; MSA-P, MSA with predominant parkinsonism. 

 

 
function and poor L-dopa-responsive parkinsonism 
or cerebellar ataxia. A diagnosis of probable MSA is 
based on clinical features and ancillary diagnostic 
tests. Possible MSA can be diagnosed when a spo-
radic progressive adult-onset disorder with parkin-
sonism or cerebellar ataxia is accompanied by at 
least one of the following additional features within 
3 years of motor onset: dysphagia, gait ataxia and 
other cerebellar symptoms (Table 1). 

"Red flag" diagnostic features 

The presence of "red flag" (warning sign) fea-
tures highly specific for MSA may provide im-

portant clues for a correct and early diagnosis. They 
include orofacial dystonia; inspiratory signs, con-
tractures of hands and feet, jerky myoclonic pos-
tural/action tremor, polyminimyoclonus, severe 
dysphonia and dysarthria, pathological laughter 
and crying, snoring, disproportional antecollis, 
camptocormia and/or Pisa syndrome, and cold 
hands and feet [225, 229] (Table 2). In addition, 
severe disability milestones include: frequent falls, 
use of urinary catheters, wheelchair dependence, 
unintelligible speech, cognitive impairment, severe 
dysphagia, and residential care. In a recent clinico-
pathological study of 203 clinically diagnosed MSA 
patients, a lifetime recorded number of red flags in 
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both MSA-P and MSA-C was compared to LBD and 
PSP [225]. Recognition of patients with early or 
possible MSA may be supported by one or more 
red flags, and two or more out of six had a specifici-
ty of 98.3% and a sensitivity of 84.2% [228, 229], 
while no differences were found in the frequencies 
of red flags within 3 years from disease onset be-
tween MSA and MSA look-alikes [225]. Recent 
studies confirmed the validity of an eight-item pilot 
scale for the assessment of early MSA [285]. 

Due to the heterogeneity of clinical phenotypes 
and lack of specific biomarkers, it is a challenge to 
make a correct antemortem diagnosis of MSA 
[286]. The sensitivity of the second consensus crite-
ria was 41% for possible and 18% for probable MSA 
at first clinical visit and 92% and 63% at last clinical 
visit, respectively [287]. In two recent brain bank 
studies, among patients diagnosed with MSA dur-
ing life, only 62% and 79% met the pathological 

criteria [225, 286], while 25% of patients with the 
diagnosis of "possible" MSA had different patholog-
ical diagnoses, including PD and PSP [225]. The 
most common misdiagnoses were DLB (13 and 
14%, respectively), PSP (6 and 11%) and PD (6%). 
Autonomic failure was the leading cause of misdi-
agnosis in PD and DLB, and cerebellar ataxia that of 
misdiagnosis in PSP [286]. Sporadic spinocerebellar 
ataxia (SCA) with autonomic failure can masquer-
ade as MSA-C. A study reported that 7% of patients 
with clinically diagnosed MSA had mutations in SCA 
genes [288]. Fragile X tremor-ataxia syndrome and 
X-linked adrenoleukodystrophy can also be misdi-
agnosed as MSA-C [61]. The possible explanations 
for the suboptimal diagnostic accuracy of the cur-
rent consensus criteria for MSA that saw a positive 
predictive diagnosis even in later disease stages 
from 60 to 90% [286, 287] have been recently dis-
cussed [289]. 

 

 
 

Table 2. Clinical features supporting and non-supporting a diagnosis of multiple system atrophy. Modified from [240]. 

 

https://doi.org/10.17879/freeneuropathology-2020-2813


Free Neuropathology 1:17 (2020) Kurt A. Jellinger 
doi: https://doi.org/10.17879/freeneuropathology-2020-2813 page 15 of 28 
  
 

 

Atypical MSA 

Almost all cases of MSA display neuronal loss 
in both striatonigral and OPC structures [24, 148], 
with only 11 of 42 cases assigned to the category of 
"pure" SND [155]. However, MSA has a wider range 
of presentations, which expands the list of differen-
tial diagnoses. Several subtypes of MSA do not fit 
into the current classification [290]. "Minimal 
change" MSA is a rare aggressive form with GCIs 
and neurodegeneration almost restricted to the SN, 
putamen, and locus coeruleus, thus representing 
"pure" SND [291-294], suggesting that GCI for-
mation is an early event and may precede neuronal 
loss. One patient with "minimal" MSA-C showed 
abundant GCIs in pontine nuclei, middle cerebellar 
peduncle and cerebellar white matter, with NCIs 
and neuronal nuclear inclusions restricted to the 
pontine basis, cerebellar vermis, and inferior oli-
vary nuclei, which were associated with neuronal 
loss indicating a link between both lesions in early 
disease [295]. Neurologically normal individuals are 
rarely found to have GCIs at autopsy as coincidental 
or incidental findings limited to the pons and infe-
rior olivary nuclei with mild neuronal loss restricted 
to the SN, suggesting that these regions may be 
afflicted first in MSA-P [296, 297]. The presence of 
GCIs may represent an age-related phenomenon 
not necessarily progressing to overt clinical disease, 
classifying these cases as "incidental" or "prodro-
mal/preclinical" MSA, similar to incidental LBD 
[298]. Young-onset MSA with a mean age of 36.4 
years shows more L-dopa-induced dyskinesia but 
less common myoclonus and pyramidal signs com-
pared to late-onset cases. On post mortem analysis, 
the "minimal change" variant was more common in 
young-onset MSA [299]. 

The other extreme are "benign" MSA cases 
with prolonged survival up to 15 years in about 2-
3% of patients [217, 300]. Most of them showed 
slowly progressing parkinsonism with subsequent 
rapid deterioration after development of autonom-
ic failure [301]. Many of them developed motor 
fluctuation and L-dopa-induced choreiform dyski-
nesias [302, 303]. Other cases of survival up to 18 
years revealed extensive distribution of GCIs in the 
CNS [304]. Another variant of pathological con-
firmed MSA showed neither parkinsonism nor cer-

ebellar symptoms [305]. An atypical case of fronto-
temporal lobar degeneration (FTLD)-TDP type A 
with MSA phenocopy syndrome showed severe 
striatal degeneration and cerebellar involvement 
[306], while four cases with clinical features of 
FTLD, but without autonomic dysfunction, showed 
frontotemporal atrophy and severe limbic αSyn 
neuronal pathology with Pick body-like, but tau-
negative, inclusions. These cases were suggested to 
represent a novel subtype of FTLD associated with 
αSyn (FTLD-αSyn) [307]. Rare cases in a family with 
pathologic hexanucleotide repeat expansions in 
C9ORF72, a gene linked to amyotrophic lateral scle-
rosis, demonstrated clinical and neuroimaging fea-
tures indistinguishable from MSA [308], and a cer-
ebello-brainstem dominant form of X-linked adre-
noleukodystrophy presented as MSA [61]. Recently, 
rare cases of MSA with transitional or diffuse DLB 
developing clinical features of PDD or DLB have 
been reported. Those with neuronal loss in SN but 
not in striatal or OPC systems with widespread GCIs 
were considered "minimal change" MSA, in which 
LBD was considered the primary pathology and 
MSA as coincidental. APOE allele frequency was not 
different between these forms [309]. These and 
other subtypes should be considered in establishing 
a correct diagnosis of MSA. 

Cognitive impairment in MSA 

Unlike other synucleinopathies, MSA has not 
been associated with significant cognitive impair-
ment (CI), which has been considered an exclusion 
criterion for the diagnosis of MSA [3]. However, a 
recent position statement by the Neuropathology 
Task Force of the Movement Disorder Society indi-
cated that CI may be an under recognized feature 
in MSA occurring in 17-47% of MSA patients, while 
severe dementia is rare [310]. Because CI has been 
underestimated in MSA, not all patients have un-
dergone formal cognitive assessments and, there-
fore, the frequency could be higher than reported 
in several studies. The degree of CI in MSA patients 
ranges from mild to moderate decline and affect 
executive, attentional and visuospatial functions, 
while memory is less often impaired [197, 310-
312]. CI may occur in early stages of MSA, but it is 
generally common in advanced cases [313] and 
often correlates with disease duration [314]. Mild 
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cognitive impairment (MCI) has been reported in 
up to 40% of MSA-P patients, mainly characterized 
by frontal dysfunction [310, 315]. Mild or moderate 
CI has been reported in 14-37% of pathologically 
proven MSA cases [134, 286, 302, 316]. More se-
vere and widespread cognitive dysfunction was 
seen in MSA-P than in MSA-C patients [317], prob-
ably due to prefrontal impairment [315], whereas 
others saw no differences in cognitive variables 
between the two groups [318] or more severe cog-
nitive dysfunctions in MSA-C [319]. CI has been 
regarded as a result of cortical and subcortical 
structural changes [320], frontal lobe dysfunction 
[321, 322], cortical dysfunction driven by focal fron-
tostriatal degeneration [162], alterations in the 
corpus callosum [323], the dorsolateral prefrontal 
cortex network [324], or neocortical neuronal loss 
[159], while others have not found any differences 
in the severity of pathological findings between 
cases with and without CI [325]. 

Recent studies indicated that NCI burden in 
the hippocampus and parahippocampal gyrus is 
associated with memory impairment in MSA [326]. 
Alzheimer’s disease neuropathological changes 
(ADNC), cerebral amyloid angiopathy (CAA), and 
cerebrovascular lesions did not differ between cas-
es with and without CI [325], whereas others 
showed a greater burden of NCIs in medial tem-
poral regions, the hippocampus or perirhinal re-
gions [77, 197, 316, 326, 327]. ADNC has been re-
ported in only 2/35 (7%) autopsy-proven cases of 
MSA [134], whereas two cases of combined MSA 
and AD (Braak stages III and VI) have been report-
ed, in which only a few neurons shared αSyn and 
tau [328]. A recent retrospective clinicopathological 
study of 48 MSA patients (33 MSA-P and 15 MSA-C) 
with a mean age at death of 60.5±7.8 (range 46-82) 
years, reported MCI in 10 cases (20.8%), in which 
three had associated moderate cortical tau pathol-
ogy (Braak I-II), and moderate CI in seven patients 
(14.5%), for which six had associated cortical amy-
loid plaques and moderate cortical tau pathology 
(Braak II-III), one had probable primary age-related 
tauopathy (PART), and one female aged 82 years 
with severe dementia showed fully developed AD. 
Cortical Lewy pathology, observed in four cases, 
was not associated with clinical CI. 77.1% of the 
MSA cases were free of ADNC, compared to 42% in 
controls, while Lewy pathology was higher than in 

the control groups (8.4%) [329]. In view of the lim-
ited data on the molecular basis of CI (and other 
neuropsychiatric symptoms) in MSA, further stud-
ies on the pathological basis of CI in MSA are need-
ed. 

MSA - a prion-like or prion disease? 

The spread of αSyn pathology from one cell to 
another and even from one nervous structure to 
another has been demonstrated in vivo [11, 330-
335]. This pattern, resembling prion spreading, has 
led to the concept of prion-like propagation of αSyn 
and tau [110]. Self-propagation of αSyn oligomers, 
however, is not sufficient to declare them as pri-
ons, because they show "seeding" activity rather 
than infectivity of αSyn [336]. However, the ap-
plicability of the prion hypothesis in α-
synucleinopathies and, in particular, MSA remains 
controversial, since injections of brain lysated from 
MSA patients failed to replicate the oligodendrogli-
al αSyn pathology that is typical for MSA. While 
studies in wild type (wt) mice provided insights into 
the mechanisms of oligodendroglial αSyn aggrega-
tions in MSA, intracerebral inoculation studies in 
non-human primates to the best of our knowledge 
have not been performed yet. 

There are other challenges to the hypothesis 
that MSA is a prion disease. First, endogenous wt 
αSyn is insufficient to propagate αSyn pathology; 
mutant αSyn is needed as a template. The trans-
mission of αSyn "prions" to a second synucleinopa-
thy model and their ability to propagate between 
two distinct mouse cell lines while retaining strain-
specific properties was suggested to provide evi-
dence that MSA is a prion disease [337]. However, 
these and other mouse experiments have not yet 
explained why in MSA αSyn pathology predomi-
nantly accumulates in oligodendroglia, as MSA-
derived αSyn does not appear to have the ability to 
induce strain-like cell-specific aggregates. This 
demonstrates that the intrinsic properties of A53T 
αSyn in the M83 mouse model dominate over any 
strain features harbored by misfolded αSyn in MSA 
brains [9]. 

Furthermore, GCIs have never been identified 
in wt mouse brains inoculated with MSA-derived 
αSyn [338]. Hence, αSyn aggregates ("prionoids") 

https://doi.org/10.17879/freeneuropathology-2020-2813


Free Neuropathology 1:17 (2020) Kurt A. Jellinger 
doi: https://doi.org/10.17879/freeneuropathology-2020-2813 page 17 of 28 
  
 

 

derived from MSA patients created a neurodegen-
erative pattern that is atypical for MSA [336]. 
Moreover, αSyn aggregates, the morphological 
hallmarks of MSA, were not detected in MSA-
inoculated TgM83+/- mice [339, 340], and no study 
has definitely propagated patient-derived seeds 
from cell-to-cell or mouse-to-mouse, or fully char-
acterized αSyn strains from MSA vs. PD [117]. The 
variety of seeds, animal models, and methodolo-
gies currently prevents clear conclusions regarding 
αSyn-related spreading and toxicity, as well as 
translation of preclinical findings to human disease 
[341]. A recent study found no evidence of binding 
between cellular prion protein (PrPC) and αSyn 
oligomers, while PrPC neither binds to αSyn oligo-
mers nor mediates their detrimental effects [342]. 
However, there may be different species of αSyn 
oligomers, which have different binding capacity 
with PrPC, and it remains possible that future stud-
ies could demonstrate that both PrPC-dependent 
and -independent pathways could play a role in the 
pathogenesis of synucleinopathies [343]. Accord-
ingly, it could be possible that aggregated αSyn is 
potent in cross-seeding of prion protein misfolding 
and aggregation in vitro, producing self-
propagating states that can lead to prion diseases 
upon serial passing in wt animals [344]. However, 
recent studies showed that abnormal misfolded 
cellular prion protein was able to efficiently propa-
gate in the brain of animals even in the absence of 
αSyn, suggesting that this protein may not act as a 
key modulator of prion propagation. Thus, αSyn 
may take part in this process of self-propagation 
but is not specifically required for sustaining prion 
conversion and propagation [345]. Finally, gene 
analyses have shown that the homozygous state of 
positions 129 in the PRNP gene is not a risk factor 
for MSA and no variants of the PRNP gene were 
associated with increased risk for MSA [50]. Review 
of clinical notes from patients who had died of MSA 
showed no evidence of neurosurgical transmission 
[346], and studies of couples whose spouses had 
autopsy-confirmed PD, PSP, or MSA, did not sug-
gest an increased risk of synucleinopathy develop-
ment in the other spouses [347, 348]. Although 
there is no evidence of iatrogenic or direct trans-
mission in autopsy-confirmed MSA cases, this is no 
evidence of absence of human transmission or mis-
folded proteins other than prions and β-amyloid, 
and further research is necessary before any con-

clusion can be drawn [349]. In conclusion, it seems 
reasonable to postulate that even if prion-like 
spreading in experimental systems may justify the 
view that the progression of neurodegeneration in 
MSA reflects a cell-to-cell spread of pathological 
αSyn, this is not sufficient to define MSA as classical 
prion disease [336]. 

New therapies 

So far there are no causative or disease-
modifying treatments available for MSA and symp-
tomatic therapies are limited [35, 350]. The first-
line treatment of a hypokinetic-rigid syndrome is 
dopaminergic treatment with L-dopa, the initial 
responsiveness to which has been reported in 83% 
of MSA patients [228], but its effect is usually tran-
sient, and only 31% showed a response for a period 
of 3.5 years [23]. L-Dopa response was observed in 
42-57% of MSA-P and in 13-25% of MSA-C patients 
[220]. Recent animal studies suggest that L-dopa 
failure can be induced by restricted lateral striatal 
lesions combined with dopaminergic denervation 
[351]. In some patients, motor fluctuations with 
wearing-off phenomena or off-bound dystonia 
were observed [352]. L-dopa-induced dyskinesias 
were reported in 24.7% of definite MSA patients 
[23]. Dopamine agonists are not considered a ther-
apeutic option, as they show poor efficacy and may 
involve severe side effects, particularly the worsen-
ing of orthostatic hypotension [353]. For cerebellar 
symptoms, no efficient drug treatments are availa-
ble. Deep brain stimulation in MSA patients 
showed only transient improvement of motor 
symptoms, but was rapidly counteracted by the 
occurrence of disabling symptoms [303]. Non-
pharmacological treatment options such as physio-
therapy and occupational therapy play an im-
portant role in improving symptoms and patients' 
quality of life, and should be integrated into the 
therapeutic concept [354]. 

Translational and novel therapeutic approaches 

Based on the current knowledge about the 
pathogenesis of MSA and the different findings in 
animal models, a number of therapeutic strategies 
have been proposed to target disease progression 
in MSA [5, 15, 16]. Based on the ability of αSyn to 
be transferred from cell to cell and to spread 
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through the brain in a prion-like manner, inhibition 
of αSyn oligomerization and aggregation may con-
stitute a promising therapeutic strategy for disease 
modification, and interesting efforts have been 
made in this direction. These include (1) αSyn inhi-
bition, (2) αSyn degradation enhancement, (3) in-
tervening neuroinflammation, and (4) neuronal 
loss. 

Numerous randomized, placebo-controlled 
trials of putative disease-modifying agents have 
been performed including riluzole, minocyline, 
lithium, rifampicin, fluoxetine, rasagilin, neuropro-
tective mesenchymal stem cells, epigallocatechin 
gallate, intravenous immunoglobulins and others. 
Although most of these treatments were efficient 
in cellular or animal models of MSA, in human pa-
tients they showed no clinical effects [16, 341]. 

Among drugs targeting αSyn aggregation, 
PROMESA studies on the effect of epigallocatechin 
gallate, a polyphenol found in green tea which re-
duces aggregation and toxicity of αSyn oligomers 
[329], did not modify disease progression [355]. 
Among αSyn degradation enhancing compounds, 
rapamycin, an autophagy enhancer, showed a re-
duction of αSyn aggregates in some brain areas 
[356] in preclinical studies, and is now under clini-
cal trial [357]. Another approach concerns the pos-
sible involvement of toll-like receptor 4 (TLR4) and 
its selective antagonist monophosphoryl lipid A 
(MPLA) that reduced GCIs and motor deficits in 
mice [358]. Targeting neuroinflammation, the inhi-
bition of myeloperoxidase as well as the reduction 
of TNFα-dependent reactions are promising dis-
ease-modifying targets and are being clinically test-
ed in MSA patients [16]. The use of microglia inhibi-
tors, such as minocycline, that rescues dopaminer-
gic neurons in MSA mice, and the anti-
inflammatory substance fluoxetine, however, fail to 
change disease progression. An alternative ap-
proach was used in MSA patients to target neuroin-
flammation by delivering intravenous immuno-
globulin, but the results were inconclusive [359]. 
The compound FTY720-Mitoxy, an FDA-approved 
immunosuppressive for multiple sclerosis, reduced 
parkinsonism by increasing brain-derived neu-
rotrophic factor (BDNF), and protected movement 
and mitochondria in wt and CNP-αSyn mice [360]. 
Numerous efforts have been undertaken to address 

neuronal loss, including bone marrow-derived 
mesenchymal stem cells [361, 362] and the antiox-
idant target of rapamycin (mTOR) receptor [363], 
however all of these efforts have failed to slow or 
halt disease progression [16]. 

Several studies have successfully proven the 
therapeutic potential of anti-αSyn immunotherapy 
by preventing αSyn spreading [5, 15]. Based on the 
fact that active immunization of MBP mice reduced 
αSyn accumulation and neurodegeneration [364], 
two αSyn vaccines (PD03A, PD01A) were evaluated 
in phase I studies with MSA and PD patients and 
showed good safety and tolerability [365, 366]. 
Active immunization against αSyn and combination 
with anti-inflammatory treatment may also be 
promising therapeutic strategies [367, 368]. 

Gene therapy may constitute another feasible 
approach to diminish OS excitotoxicity and subse-
quent neuronal loss, but none of the used com-
pounds demonstrated effects on disease progres-
sion and the underlying neurodegeneration [16]. 

New strategies targeting αSyn are in progress 
[16, 280, 369], based on completed or ongoing 
interventional trials by the MSA coalition [12]. 
Therefore, there is a strong need to clarify the 
pathogenic mechanisms of MSA in order to develop 
new therapeutic strategy options, including com-
bined approaches by targeting different MSA-
specific pathogenetic effects. 

Conclusions and further outlook 

Current evidence supports the hypothesis that 
misfolded αSyn contributes to OS that induces a 
cascade of deleterious events, including pro-
teasomal and mitochondrial dysfunctions, neuroin-
flammation, and energy failure that is associated 
with deposition of aberrant αSyn in both glia (main-
ly oligodendroglia) and neurons resulting in neuro-
degeneration and demyelination. Currently, the 
cascade of events that underlies the pathogenesis 
of MSA is not completely understood. Recent stud-
ies using animal models that only partially replicate 
human pathology and the molecular dynamics of 
the neurodegenerative process have provided pro-
gress in our understanding of MSA pathogenesis. 
The disease is viewed as a primary synucleinopathy 
with specific (oligodendro)glial-neuronal degenera-
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tion developing secondarily via the oligo-myelin-
axon-neuron complex [2, 4, 370]. Strong evidence 
against a primary neuronal pathology with the for-
mation of GCIs, resulting from secondary accumula-
tion of pathological αSyn that may be of neuronal 
origin [371], is the fact that GCIs are the hallmark of 
MSA and not of PD, a disease with similar patterns 
of αSyn inclusions (LBs) but resulting from different 
strains of αSyn, differentiating the two disorders 
[88, 89, 106, 372]. The source of αSyn in MSA and 
the pathogenic cascade leading to "prion-like" 
spreading of its strains contributing to progression 
of the disease need further elucidation, and there 
is no convincing evidence for the suggestion that 
MSA is a prion disease. Although disease-modifying 
treatments are currently not available, better 
knowledge about the molecular pathogenesis of 

MSA derived from animal models and human post 
mortem experience have contributed to the devel-
opment of future therapeutic strategies to target 
disease progression in MSA. 
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