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Lectures overview

¢ Introduction Ligands (general)
« Introduction Bifunctionality

« Introduction Metal-DNA binding and
anticancer drugs, followed by:
Bifunctionality in M-DNA binding

 Introduction Materials and Catalysis

¢ Bifunctionality in Molecular Materials and
Homogeneous Catalysis

¢ Conclusions and Outlook 3

Introduction Ligands and
Bifunctionality

« Bifunctionality has been applied in our
recent work on:

« Rigid Coordination polymers (also called
MOFs) and molecular materials

» Oxidation catalysts
* DNA cutting agents based on Cu and Pt
Pt anticancer drugs (third generation)

Ligands for metals (introduction at
lectures coordination chemistry)

* In coordination chemistry the metals
are at the center, some 70
possibilities in the Periodic Table!

» However, with (organic) ligands the
possibilities are almost unlimited!!

Ligands for metals

Simple ligands (monodentate or bridging)

Ligands to master the coordination geometry
(pre-orientation of donor atoms, through rigid
constraints in the ligand)

Special chelate effects with rigid ligands
Ligands to control semi-coordination
Ligands with groups to control the
second coordination sphere (solubility,
stacking, recognition, surface attachment)

Ligands with a second chemical function
(metal binding, intercalator, switches, ...}




The ligand

* Monofunctionality: Monodentate, bridging

e Bi- and Trifunctionality: Metal binding with
other function(s)

» Other functions may include: steric effects
(bulky groups), solubilizing effect
(hydrophobic, hydrophylic), H-bond donor,
H-bond acceptor, intercalator/stacking
ligand, bridge to another metal (flexible or
rigid bridges) 7
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Building up a structure

binding site bridge

metal ion
ancillary group, size, geometry,
for e.g. H bonding

Examples for control of
coordination geometry

* Ligand bite angle some 120-140 degrees:
tetrahedral geometry for Cu(l) and Cu(ll)

« Steric bulk in cis position to force
tetrahedral rather than square planer
geometry

* Pre-orientation of donor atoms in chelating
ligands, at rigid positions
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Reducing reactivity of small
molecules by encapsulation

« EXAMPLES:

« Dioxygen binding in between 2 or more
metals

Dinuclear structure for a dicopper
peroxide-bridged system
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Encapsulation in a dicopper
peroxido system

Enforcing a dinuclear Cu(ll) species
when the ligand cannot chelate

No space for
dioxygen in
between the
Cu ions (Cu--
Cu = 350 pm)
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Ligand to control semi-coordination
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Interplay of metal binding and
hydrogen bonding is important

» Hydrogen-bonding effects often finetune
the coordination phenomenon

* In many cases M-L binding is effected by
hydrogen bonds.

* In almost all cases of metal-DNA binding,
the metal alone cannot be held responsible
for binding and stability;

* In very many cases Hydrogen Bonding
interferes with M-DNA interactions v

Role of H bonding in Ru-Cl complex
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Nucleic acid bases and base pairs:
N7 not involved, so it is available for
M binding; (N3: sterically protected)
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steric repulsion makes A binding weak; H
bonding makes G binding strong (200x)
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Ligands for materials science
and molecular materials

Use of ligand as building bricks

Possible 1D, 2D and 3D Networks
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Crystal Engineering:
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Multi-directional Coordination
ligands geometries 2

Ligands to make linear systems:
3,4,5,7,80r 9 metals in arow
or a cluster

» Semi-Rigid ligands:
e Examples of structures:

Too rigid ligand will not for
a flexible lattice; too flexible
ligands will not form a
lattice.
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Too rigid ligand will not for a flexible lattice; too flexible ligands will not form a lattice.


Trinuclear chain Metals in chains(2)

chain bendings also due
to the solid state packing

A new Cug cluster (Aromi et al) A new double Cug cluster (Aromi)

Mng clusters of high symmetry 3D structure of
Tanase-Grecea, chem. comm. Mn,O,(bpy),(2-ethylhexanoate),

Mixed valence!
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3D structure of
Mn,O,(bpy),(2-ethylhexanoate),

Polymeric 3D systems with
bis(azole)alkane bridges

cage
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MOFs
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Lattice of trinuclear clusters,
bridged by F and OMe

N atoms are part
of
aminopyridazine

Ligands to control the
second coordination sphere

Solubility (in water, or in a hydrophobic
medium)

Stacking with other species in solution,
or on areaction substrate

Recognition site on a cell surface or a
polymer

Binding to a surface (e.g. electrode)
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Ligands with a second chemical
function

e For binding of second (or third) metal,
* Intercalator attachment,
« Recognition site (e.g. at a cell surface),

e Generation of a switch (upon binding, or
after an external effect, such as light or
redox),

e Several functions in addition, or even in
synergy.
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The binding site

« Stability: needed to bind metal, control by
chelate or macrocyclic effect, ligand type
(class A or B)

« Structure: control by denticity, steric
effects

« Lability: decreases with multidentate or
macrocyclic ligands, rigid ligands

The bridge

¢ Provides a mechanical linkage between
sites

« May also provide electronic or magnetic
linkage

¢ Must be flexible enough to allow the
formation of the complex

¢ Must not be too flexible, or chelation may
replace bridging, and stereochemical
information will be lost
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Ancillary groups may have:

« Structural effects: steric bulk (blocking of
conformations), intramolecular attractions

« Links beyond the outer sphere: H-bonding,
stacking interactions, coordination

* Solubility enhancement

« Spectroscopic probes — diastereotopic
protons, chromophores

Functions

May be included at any point of the structure
e Chromophores

¢ Luminophores

» Electrochemical centres

¢ Reactivity (e.g. hydronation, coordination)
¢ Magnetism (unpaired electrons)
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3 Sections on details

* 1. Metal anticancer and Metal-DNA
* 2. Molecular Materials

¢ 3. Metal (biomimetic) complexes in
catalysis

(in 3 later, separate handouts as pdf).
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